Distributed Query Processing using Suffix Arrays

Mauricio Marin Gonzalo Navarro
mmarin@ona.fi.umag.cl gnavarro@dcc.uchile.cl
Dept. of Computer Science Dept. of Computer Science
University of Magallanes University of Chile

Center for Web Research (www.cwr.cl) *

Abstract. Suffix arrays are more efficient than inverted files for solving
complex queries in a number of applications related to text databases.
Examples arise when dealing with biological or musical data or with texts
written in oriental languages, and when searching for phrases, approxi-
mate patterns and, in general, regular expressions involving separators.
In this paper we propose algorithms for processing in parallel batches of
queries upon distributed text databases. We present efficient alternatives
for speeding up query processing using distributed realizations of suffix
arrays. Empirical results obtained from natural language text on a cluster
of PCs show that the proposed algorithms are efficient in practice.

1 Introduction

In the last decade, the design of efficient data structures and algorithms for
textual databases and related applications has received a great deal of attention
due to the rapid growth of the Web [3]. Typical applications are those known
as client-server in which users take advantage of specialized services available
at dedicated sites [4]. For the cases in which the number and type of services
demanded by clients is such that it generates a very heavy work-load on the
server, the server efficiency in terms of running time is of paramount importance.
As such it is not difficult to see that the only feasible way to overcome limitations
of sequential computers is to resort to the use of several computers or processors
working together to service the ever increasing demands of clients.

An approach to efficient parallelization is to split up the data collection and
distribute it onto the processors in such a way that it becomes feasible to exploit
locality by effecting parallel processing of user requests, each upon a subset
of the data. As opposed to shared memory models, this distributed memory
model provides the benefit of better scalability [7]. However, it introduces new
problems related to the communication and synchronization of processors and
their load balance. This paper describes strategies to overcome these problems
in the context of the parallelization of suffix arrays [3]. We propose strategies for
reduction of inter-processors communication and load balancing.

* Funded by Millennium Nucleus CWR, Grant P01-029-F, Mideplan, Chile.

The advent of powerful processors and cheap storage has allowed the consid-
eration of alternative models for information retrieval other than the traditional
one of a collection of documents indexed by keywords. One such a model which
is gaining popularity is the full text model. In this model documents are repre-
sented by either their complete full text or extended abstracts. The user expresses
his/her information need via words, phrases or patterns to be matched for and
the information system retrieves those documents containing the user specified
strings. While the cost of searching the full text is usually high, the model is
powerful, requires no structure in the text, and is conceptually simple [3].

To reduce the cost of searching a full text, specialized indexing structures
are adopted. The most popular of these are inverted lists [3,1,2]. Suffiz arrays
or PAT arrays [3] are more sophisticated indexing structures which take space
close to the text size. They are superior to inverted lists for searching phrases or
complex queries such as regular expressions [3]. In addition, suffix arrays can be
used to index texts other than occidental natural languages, which have clearly
separated words that follow some convenient statistical rules [3]. Examples of
these applications include computational biology (ADN or protein strings), music
retrieval (MIDI or audio files), oriental languages (Chinese, Korean, and others),
and other multimedia data files.

The suffix array uses a binary search based strategy. Processing a single
T-chars-size query in a text of size N takes O(T log N) time on the standard
sequential suffix array. Thus trying to reduce such time by using a P-processors
distributed memory parallel computer is not very attractive in practical terms.

In this paper we assume a server site at which lots of queries are arriving
per unit of time. Such work-load can be serviced by taking batches of @ queries
each. Processing batches in parallel is appealing in this context as one is more
interested on improving the throughput of the whole process than single opera-
tions. To achieve this goal a pragmatic (though naive) strategy would be to keep
a copy of the whole text database and index in each server machine and route
the queries uniformly at random among the P machines. This can be acceptable.

For very large databases, however, the non-cooperating machines are forced
to keep large pieces of their identical suffix arrays in secondary memory, which
can degrade performance dramatically. A more sensible approach is then to keep
a single copy of the suffix array distributed evenly onto the P main memories.
Now the challenge is to achieve efficient performance on a P-machines server that
must communicate and synchronize in order to service every batch of queries.
This is not trivial because most array positions are expected to point to text
located in remote memory when naive partitioning is employed.

An important fact to consider in natural language texts is that words are not
uniformly distributed, both in the text itself and in the queries provided by the
users of the system. For example, in the Chilean web (www.todocl.cl) words

starting with letters such as “c”, “m”, “a” and “p” are the most frequent ones.
This fact can lead to significant imbalance in the parallel processing of queries.

The efficient index construction using parallel computing techniques has been
investigated in [8,6]. The aim was the construction of a global suffix array for

the entire text collection so that queries upon that index can be performed using
the standard sequential binary search algorithm. However, the problem of going
further on by properly distributing the suffix array on a set of processors to effi-
ciently support parallel processing of batches of queries has not been investigated
so far. Note that in [5] a related parallel algorithm was proposed which works
upon a distributed Patricia like tree that is constructed upon the suffix array. No
implementation was proposed and tested. We perform parallel searching directly
on the distributed suffix array with no additional data structure upon it.

In this paper we focus on such form of query processing. We propose efficient
parallel algorithms for (1) processing queries grouped in batches on distributed
realizations of suffix arrays, and (2) properly load balancing this process when
dealing with biased collections of terms such as in natural language texts. In each
case our aim is to reduce the communication and synchronization requirements.
We explore alternative ways of solving those problems and our empirical results
show that the proposed algorithms are efficient in practice.

A valuable feature of the algorithms we propose is that they are devised upon
the bulk-synchronous model of parallel computing (BSP model) [10,12]. This is
a distributed memory model with a well-defined structure that enables the pre-
diction of running time. We use this last feature to compare different alternatives
for index partitioning by considering their respective effects in communication
and synchronization of processors. The model of computation ensures porta-
bility at the very fundamental level by allowing algorithm design in a manner
that is independent of the architecture of the parallel computer. Shared and dis-
tributed memory parallel computers are programmed in the same way. They are
considered emulators of the more general bulk-synchronous parallel machine.

The practical model of programming is SPMD, which is realized as P program
copies running on the P processors, wherein communication and synchronization
among copies is performed by ways of libraries such as BSPlib [13] or BSPub
[14]. Note that BSP is actually a paradigm of parallel programming and not a
particular communication library. In practice, it is certainly possible to imple-
ment BSP programs using the traditional PVM and MPI libraries. A number
of studies have shown that bulk-synchronous parallel algorithms lead to more
efficient performance than their message-passing or shared-memory counterparts
in many applications [10, 11].

2 Suffix Arrays

Suffiz arrays or PAT arrays [3] are data structures for full text retrieval based on
binary searching. Given a text collection, the suffix array contains pointers to the
initial positions of all the retrievable strings, for example, all the word beginnings
to retrieve words and phrases, or all the text characters to retrieve any substring.
These pointers identify both documents and positions within them. Each such
pointer represents a suffiz, which is the string from that position to the end of
the text. The array is sorted in lexicographical order by suffixes as shown in
Figure 1. Thus, for example, finding all positions for terms starting with “tex”

leads to a binary search to obtain the positions pointed to by the array members
7 and 8 of Figure 1. This search is conducted by direct comparison of the suffixes
pointed to by the array elements.

1 2 3 4 5 6 7 8 9

‘28‘14‘38‘17‘11‘25‘ 6‘30‘ 1‘

Thistext is an example of atextual database

Pt ottt t1
1

6 111417 252830 38

Fig. 1. Suffix array.

3 BSP and The Cost Model

In the bulk-synchronous parallel (BSP) model of computing [12, 10], any paral-
lel computer (e.g., PC cluster, shared or distributed memory multiprocessors) is
seen as composed of a set of P processor-local-memory components which com-
municate with each other through messages. The computation is organized as a
sequence of supersteps. During a superstep, the processors may perform sequen-
tial computations on local data and/or send messages to other processors. The
messages are available for processing at their destinations by the next superstep,
and each superstep is ended with the barrier synchronization of the processors.
The total running time cost of a BSP program is the cumulative sum of the
costs of its supersteps, and the cost of each superstep is the sum of three quanti-
ties: w, h G and L, where w is the maximum of the computations performed by
each processor, h is the maximum of the messages sent/received by each proces-
sor with each word costing G units of running time, and L is the cost of barrier
synchronising the processors. The effect of the computer architecture is included
by the parameters G and L, which are increasing functions of P. These values
along with the processors speed s (e.g. mflops) can be empirically determined for
each parallel computer by executing benchmark programs at installation [10].
As an example of a basic BSP algorithm, let us consider a broadcast operation
that will be used in this paper. Suppose a processor wants to send a copy of P
chapters of a book, each of size a, to all other P processors (itself included).
A naive approach would be to send the P chapters to all processors in one
superstep. That is, in superstep 1, the sending processor sends P chapters to P
processors at a cost of O(P 2 (a + aG) + L) units. Thus, in superstep 2 all P
processors have available into their respective incoming message buffers the P
chapters of the book. An optimal algorithm for the same problem is as follows.
In superstep 1, the sending processor sends just one different chapter to each
processor at a cost of O(P (a 4+ a G) + L) units. In superstep 2, each processor
sends its arriving chapter to all others at a cost of O(P (a+a G)+ L) units. Thus,

at superstep 2, all processors have a copy of the whole book. Hence the broadcast
of a large P-pieces a-sized message can be effected at O(P (a + a G) + L) cost.

We assume a server operating upon a set of P machines, each containing
its own memory. Clients request service to one or more broker machines, which
in turn distribute them evenly onto the P machines implementing the server.
Requests are queries that must be solved with the data stored on the P ma-
chines. We assume that under a situation of heavy traffic the server processes
batches of @ = ¢ P queries. Processing each batch can be considered as a hyper-
step composed of one or more BSP supersteps. The value of ¢ should be large
enough to properly amortize the communication and synchronization costs of
the particular BSP machine.

Observe that hypersteps can be pipelined so that at any superstep we can
have one or more cycles at different stages of execution. For the algorithms pre-
sented below we assume that in each superstep a new batch starts execution and
its computations are performed together with those associated with the solution
to previous batches. Typically processing a batch will require two supersteps,
thus on average every superstep deals with queries from two different batches.

4 Global versus Local Suffix Arrays

Let us assume that we are interested in determining the text positions in which
a given substring z (of length T') is located in. This means that we want all
the suffixes starting with z. In the sequential suffix array this can be solved by
performing two queries; one with the immediate predecesor and the other with
the immediate succesor. This takes T log N time for a text of N characters. Let
us call this operation interval query.

A suffix array can be distributed onto the processors using a global index
approach in which a single array is built from the whole text collection and
mapped evenly on the processors. A realization of this idea for the example in
Figure 1 is shown in Figure 2 for 2 processors. Notice that in this global index
approach each processor stands for a lexicographical interval or range of suffixes
(for example, in Figure 2 processor 1 represents suffixes with first letters from
“a” to “e”). The broker machine mantains information of the values limiting the
intervals in each machine and route queries to the processors accordingly. This
fact can be the source of load imbalance in the processors when queries tend to
be dynamically biased to particular intervals.

Let us assume the ideal scenario in which the queries are routed uniformly
at random onto the processors. A search for all text positions associated with
a batch of Q = ¢ P queries can be performed as follows. The broker takes
QT logP+ QTG + L time to route the queries to their respective target pro-
cessors (note that this cost can be actually reduced to QT G + L by routing
uniformly at random the queries as we propose below). Once the processors get
their ¢ queries, in parallel each of them performs ¢ binary searches. Note that for
each query, with high probability 1 — 1/P, it is necessary to get from a remote
processor a T-sized piece of text in order to decide the result of the comparison

1 2 3 4 5 6 7 8 9

‘28‘14‘38‘17 11‘25‘ 6‘30‘ 1‘

Tﬁ%ﬂeo atextual database

trorrt t1)

1 6 111417 252830 38

Processor 1 Processor 2

Fig. 2. A global index suffix array distributed on two processors.

and go to the next step in the search. This reading takes one additional superstep
plus the involved cost of communicating T' bytes per query. For a global array of
size N, the binary search and the respective sending of the array positions are
performed at cost ¢ T log(N/P)+ (¢T G + L) log(N/P). Then the ¢ array posi-
tions per processor are received by the broker at cost @ G to continue with the
following batch and so on. However, it is not necessary to wait for a given batch
to finish since in each superstep we can start the processing of a new batch. This
forms a pipelining across supersteps in which at any given superstep we have,
on average, log(IN/P) batches at different stages of execution. The net effect is
that at the end of every superstep we have the completion of a different batch.
Thus the total (asymptotic) cost per batch is given by

[qPTlogP+qPTG+ L]+ [qT log(N/P)+qT log(N/P)G + L],

where the first term represents the cost of the operations effected by the broker
machine whereas the second term is the (pipelined) cost of processing a Q-sized
batch in the P-machines server. We call this strategy GO.

As shown in Figure 2 a binary search on the global index approach can lead
to a certain number of accesses to remote memory. In BSP, one of these accesses
must be done using an additional superstep; in superstep ¢ a processor p sends a
message to another processor, it receives the message in superstep ¢+ 1, reads the
string, composes and sends to p a message containing it. In superstep 7 4+ 2 the
processor p gets the string and performs the comparison that allows continuing
the binary search. A cache scheme can be implemented in order to keep in p
the most frequently referenced strings from remote memory (i.e., those close to
the root of the global binary search virtual tree). A very effective way to reduce
the average number of remote memory accesses is to associate with every array
entry the first ¢ characters of the suffix pointed. This technique is called pruned
suffizes. The value of ¢ depends on the text and usual queries. In [6] it has been
shown that this strategy is able to put below 5% the remote memory references
for relatively modest ¢t values. Our experiments show rates below 1%.

In the local index strategy, on the other hand, a suffix array is constructed
in each processor by considering only the subset of text stored in its respective
processor. See Figure 3. No references to text postitions stored in other processors
are made. Thus it is not necessary to pay for the cost of sending T-sized pieces
of text per each binary search step.

1 2 3 4 5 1 2 3 4

‘14‘17‘11‘ 6‘ 1‘28‘38‘25‘30‘

me m&e

I A 111
1

6 111417 2528 30 38

Processor 1 Processor 2

Fig. 3. Local index suffix array.

However, for every query it is necessary to search in all of the processors in
order to find the pieces of local arrays that form the solution for a given interval
query. As answers for interval queries, it is necessary to send to the broker @Q P
pairs (a, b), @ per processor, where a/b are the start/end positions respectively
of the local arrays.

The processing of a batch of @) queries is as follows. Let us charge 1 unit to
the handling of each query by the broker so it first does a work proportional
to @ = ¢ P. Unfortunately, the broker now has to send every query to every
processor. This broadcast operation can be effected as described in Section 3.
That is, the processors get ¢ queries from the broker and then broadcast them
to all other processors at a total cost of Q + QT G + L. In the next superstep,
each processor performs in parallel @ binary searches and sends @ pairs (a, b) to
the broker at a total cost of ¢ PT log(N/P) + q P?G + L. The broker, in turn,
receives (Q P queries at a cost of ¢ P? G units of time. Thus the total cost of this
strategy is given by

[qP+qP*G]+[gPTlog(N/P)+qP?>G+1].

Thus we see that the global index approach offers the potential of better per-
formance in asymptotic terms. It is worthwhile then to focus on how to improve
some performance drawbacks of the global index strategy. In the proposal we
describe below we get rid of the log P factor in the broker machine by improving
load balance in the P-machines server, and we reduce significantly the amount
of communication (¢ T log(N/P) G) performed by the server.

5 Global Multiplexed Suffix Array

One drawback of the global index approach is related to the possibility of load
imbalance coming from large and sustained sequences of queries being routed
to the same processor. The best way to avoid particular preferences for a given
processor is to send queries uniformly at random among the processors. We
propose to achieve this effect by multiplexing each interval defined by the original
global array, so that if array element 4 is stored in processor p, then elements

1+ 1,7+ 2, ... are stored in processors p + 1, p + 2, ... respectively, in a circular
manner as shown in Figure 4. We call this strategy G2.

In this case, any binary search can start at any processor. Once a search
has determined that the given term must be located between two consecutive
entries k and k + 1 of the array in a processor, the search is continued in the
next processor and so on, where at each processor it is only necessary to look
at entry k of its own array. For example, in Figure 4 a term located in the first
interval, may be located either in processor 1 or 2. If it happens that a search
for a term located at position 6 of the array starts in processor 1, then once it
determines that the term is between positions 5 and 7, the search is continued
in processor 2 by directly examining position 6.

In general, for large P, the inter-processors search can be done in at most
log P additional supersteps by performing a binary search accross processors.
This increases computation and communication in an additive log P factor leav-
ing the pipelined BSP cost of this strategy (broker + server) in

[qP+qPTG+ LI+ [qT log(N) +¢qT log(N)G + L].

Processor 1 Processor 2

|1|2|3|4|5|6|7|8|9|10 11| 12| 11 1:1 151 161 17| 1£1 151 2q

12121212121 212121212
EEENEEREEE

| 11| 11 151 17| 19 11 1:1 1(1 1% 2(1

Fig. 4. Multiplexing the global index suffix array entries.

Note that the multiplexed strategy (G2) can be seen as the opposite extreme
of the global index distributed lexicographically starting from processor 0 to
P — 1, wherein each processor holds a certain interval of the suffixes pointed
to by the N/P array elements (G0). The delimiting points of each interval of
the GO strategy can be kept in an array of size P — 1 so that a binary search
conducted on it can determine to which processor to route a given query.

An intermediate strategy (G1) between GO and G2 can be obtained by con-
sidering the global array as distributed on V = 2% P virtual processors with
k > 0 and that each of the V' virtual processors is mapped circularly on the P
real processors using ¢ mod P for ¢ = 0...V with ¢ being the i-th virtual proces-
sor. In this case, each real processor ends up with V/ P different intervals of N/V
elements of the global array. This tends to break apart the imbalance introduced
by biased queries. Calculation of the array positions are trivial.

In our realization of GO and G1 we keep in each processor an array of P (V)
strings of size L marking the delimiting points of each interval of GO (G1). The
broker machine routes queries uniformly at random to the P real processors, and
in every processor a log P (logV') binary search is performed to determine to
which processor to send a given query (we do so to avoid the broker becoming a
bottleneck). Once a query has been sent to its target processor it cannot migrate
to other processors as in the case of G2. That is, this strategy avoids the inter-
processors log P binary search. In particular, G1 avoids this search for a modest
k whilst it approaches well the load balance achieved by G2, as we show in
the experiments. The extra space should not be a burden as N > P and k is
expected to be small.

6 Global Suffix Array with Local Text

Yet another method which solves both load imbalance and remote references is
to redistribute the original global array so that every element of local arrays
contain only pointers to local text, as shown in Figure 5. This becomes similar
to the local index strategy whilst it still keeps global information that avoids
the P parallel binary searches and broadcast per query. Unfortunately we now
lose the capability of performing the inter-processors log P-cost binary search,
since the owners of the next global array positions are unknown. We propose
an O(r PY/7) cost strategy to perform this search when necessary, at the cost of
storing r values per suffix array cell (instead of storing a pruned suffix of ¢ chars
per cell). We call this strategy G3.

.

his {ext is an example Of a textual database
P TR

1 6 11 1417 2528 30 38
Processor 1 Processor 2

Fig. 5. Combining multiplexing with local-only references.

The method works for any r > 1, as follows. For r = 1, each cell stores the
processor that owns the next cell of the global suffix array, plus the local address
of that next cell inside the local suffix array of the processor owning it. Hence,
given that a processor = finds the answer between its local consecutive cells i
and i + d (these are global addresses), it retrieves the processor y that owns cell

1+ 1, as well as the position of that cell in the local suffix array of processor
y. Then z requests y to determine whether its text pointed by suffix array cell
1+ 1 is lexicographically larger than the query. If it is, then ¢ is the right answer.
If it is not, then y is now in charge of finding the right position, by finding the
processor z that owns cell ¢ + 2, and so on. This needs O(d) supersteps because
we advance cell by cell. On average d = O(P) is the distance in the global suffix
array between two cells that are consecutive in some local suffix array.

This can be improved for larger r as follows. The r values at cell i store
the addresses of cells i + P%/", i+ PY7 ... i+ P=1/" Note that the first
value is, as before, the address of cell 7+ + 1. This value is essential to ensure
the correctness of the algorithm, the others are just optional accelerators. Now,
given that processor z finds that the answer is between cells ¢ and ¢ + d, which
are consecutive in its local suffix array, it finds the largest j such that PJ/" < d.
Then it finds processor y owning cell i + P7/". If y answers that the query is
smaller than its cell, then processor x retains the problem, sets d «— P7/7 and
goes on with j — 1. Otherwise, processor y gets the problem, with i « i 4+ P7/"
and d < d — P/ Tt will keep trying with the same j value.

Let us analyze the above algorithm on average, where d = P. We will start
with j = 7 — 1. We can transfer the problem forward by P"=1/" cells at most
P/PU=1/m = P17 times before the interval becomes too short for such a
long skip value. At this point we set 7 <« r — 2 and the interval cannot be
larger than P("~1/7 By jumps of P("=2/" cells, we cannot make more than
pUr=1/r/pr=2)/r — P jumps before the interval becomes too small. This
process continues until the interval is of size P'/" and we use the pointers to
i + 1 to finish the search. Overall, we perform O(r P'/") steps on average. This
complexity is optimized for r = In P, where the average cost becomes O(log P),
just as with the multiplexed strategy G2. In practice we may not have enough
space to reach this optimum. The pipelined BSP cost of this strategy (broker +
server) is given by

[P+ qPTG+L]+[qT (log(N/P)+ P"") +qT P"/" G + L].

Strategy G3 is most useful in applications where the t-sized pruned suffixes
are unable of significantly reducing the number of accesses to remote memory.

7 Experimental Results

We compared the multiplexed strategy (G2) with the plain global suffix array
(G0), and the intermediate strategy (G1). For each element of the array we kept
t characters which are the t-sized prefix of the suffix pointed to by the array
element. We found ¢ = 4 to be a good value for our text collection.

In G2 the inter-processors binary search is conducted by sending messages
with the first ¢ characters of the query. The complete query is sent only when it
is necessary to decide the final outcome of the search or when the ¢ characters are
not enough to continue the search (this reduces the amount of communication
during the inter-processors search).

We use 1GB sample text from the Chilean Web search engine www.todocl.cl,
treated as a single string of characters. Queries were formed in three ways: (1)
by selecting at random initial word positions within the text and extracting sub-
strings of length 16; (2) similarly but starting at words that start with the four
most popular letters of the Spanish language, “c”, “m”, “a” and “p” ; (3) taken
from the query log of www.todocl.cl, which registers a few hundred thousand
user queries submitted to the web site. In set (1) we expect optimal balance,
while in (2) and (3) we expect large imbalance as searches tend to end up in a
subset of the global array.

The results were obtained on a PC cluster of 16 machines (PIII 700, 128MB)
contected by a 100MB/s communication switch. Experiments with more than
16 processors were performed by simulating virtual processors. In this small
cluster most speed-ups obtained against a sequential realization of suffix arrays
were super-linear. This was not a surprise since due to hardware limitations
we had to keep large pieces of the suffix array in secondary memory whilst
communication among machines was composed by a comparatively small number
of small strings. The whole text was kept on disk so that once the first ¢ chars
of a query were found to be equal to the t chars kept in the respective array
element, a disk access was necessary to verify that the string forming the query
was effectively found at that position. This frequently required an access to a
disk file located in other processor, in which case the whole query was sent to
that processor to be compared with the text retrieved from the remote disk.

Though we present running time comparisons below, what we considered
more relevant for this paper is an implementation and hardware independent
comparison among G0, G1 and G2. This came in the form of two performance
metrics devised to evaluate load balance in computation and communication.
They are average maxima across supersteps. During the processing of a query
each strategy performs the same kind of operations, so for the case of computa-
tion the number of these ones executed in each processor per superstep suffices as
an indicator of load balance for computation. For communication we measured
the amount of data sent to and received from at each processor in every super-
step. We also measured balance of disk accesses. In all cases the same number of
supersteps were performed and a very similar number of queries were completed.
In each case 5 runs with different seeds were performed and averaged. At each
superstep we introduced 1024/ P new queries in each processor.

In Table 1(1) we show results for queries biased to the 4 popular letters.
Columns 2, 3, and 4 show the ratio G2/G0 for each of the above defined per-
formance metrics (average maximum for computation, communication and disk
access). The results for G2/G1 are shown in Table 1(2). These results confirm in-
tuition, that is GO can degenerate into a very poor performance strategy whereas
G2 and GI1 are a much better alternative. Noticeably G1 can achieve similar
performance to G2 at a small k = 4. This value depends on the application, in
particular on the type of queries generated by the users. G2 is independent of
the application but, though well-balanced, it tends to generate more message
traffic due to the inter-processors binary searches (especially for large t). The

differences among G2, G1, GO are not significant for the case of queries selected
uniformly at random. G2 tends to have a slightly better load balance.

| Plcomp|comm] disk] [P|comp|comm]| disk] P[G2/G0[G2/G1[G2/G3
2| 0.95] 0.90| 0.89 2| 1.10] 0.90| 0.89 0.68 0.87 0.41
4| 0.49/ 0.61| 0.69 4/ 0.92| 0.82| 0.69 0.55 0.66 0.36
8| 0.43| 0.45| 0.53 8| 0.86| 0.65| 0.53 0.61 0.67| 0.31

16| 0.39] 0.35| 0.36 16| 0.80| 0.55| 0.36 0.78| 0.77| 0.58
32| 0.38] 0.29| 0.24 32| 0.78| 0.45| 0.24 0.78| 0.73| 0.45
64| 0.35| 0.27| 0.17 64| 0.75| 0.43| 0.17 1 0.86| 0.83] 0.46

(1) Ratio G2/GO. (2) G2/G1 witk k = 4. (3) Running times ratios

—
S 0 [00 >

Table 1. Comparison of search costs. The upper part of the table (3) shows results
for the biased query terms (queries of type (2)) and the lower part for terms selected
uniformly at random (queries of type (1)).

As speed-ups were superlinear due to disk activity, we performed experiments
with a reduced text database. We used a sample of 1MB per processor, which
reduces very significantly the computation costs and thereby it makes much more
relevant the communication and synchronization costs in the overall running
time. We observed an average efficiency (speed-up divided by the number of
processors) of 0.65.

In Table 1(3) we show running time ratios for our 16 machines cluster. The
biased workload increased running times by a factor of 1.7 approximately.

The results of Table 1(3) show that the G2 strategy outperformed the other
two strategies, though G1 has competitive performance for the imbalanced case
(first part of the table). Notice, however, that for the work-load with good load
balance (second part of the table) G2 tends to lose efficiency as the number of
processors increases. This is because, as P grows up, the effect of performing
inter-processors binary searches becomes more significant in this very low-cost
computation and ideal load balance scenario (case in which GO is expected to
achieve its best performance). G3 showed worse performance. However, this and
all others were at least 3 times faster than the local index strategy.

In our computational platform we observed that the cost of broadcasts and
increased number of binary searches at each processor were significant and too
detrimental for the local index strategy.

Let us now further illustrate the comparative performance of GO, G1 and G2
with respect to a sequential implementation of suffix arrays, all using the same
workload. This is intended to show the practicality of our algorithms.

For our cluster machines, we explored the points at which page-faults reduced
performance dramatically in the sequential strategy. We found N = 8MB to be
a reasonable maximum. Thus we decided to execute experiments for N = 1, 2,
4 and 8 MB in the sequential algorithm. We also performed similar experiments
on 4 processors but now keeping N/P =1, 2, 4 and 8 MB in each processor.

This allowed comparing the effect of communication versus the effect of disk
activity, since this sequential algorithm only maintains the suffix array in main

memory whereas the text database is kept in disk. For each step of the sequen-
tial binary search an access to disk must be performed in order to decide the
comparison of suffixes. We retrieved ¢ chars for ¢ large enough so that remote
memory accesses in the parallel algorithms were not significant. We tested the
three types of queries, (1), (2) and (3). The results are illustrated in Figure 6.

12 T T T
r Se?v
10+ =X
e
8t
6k
4 (2)
E
2 L L L 2 L L

[N}

S

(@)
ool
ok
S

(=}

Fig. 6. Search times for (1) random balanced queries, (2) large imbalance, (3) real
query log. The y-axis is running time (sec) and x-axis is DB size in MB.

The results show that the proposed algorithms are also useful in cases in
which a single machine does not have enough main memory to keep in it both
the text database and the index. In that case, it is more efficient to distribute
the database and index on a set of machines.

8 Final Comments

We have presented a number of alternative realizations of distributed suffix ar-
rays devised to support parallel processing of batches of queries as encountered
in client-server applications. We have analyzed the algorithms by using actual
implementations. Experiments were run on natural language texts.

In general, the implementation of the algorithms for GO and G1 were simpler
than that for G2. For texts and queries that are not highly biased we suggest
using G1 with & = 4 as it is a simple strategy that achieves a reasonable load
balance. Certainly the G2 strategy is the best one in cases of query patterns

generating large imbalance. Note that its performance is good enough even in
well-behaved (balanced) query patterns.

Strategy G3 is competitive for cases in which the ¢ chars maintained by GO,
G1 and G2 in each array cell are not able to reduce significantly the number of
references to remote memory. Our results show that G3 is much more efficient
than the local index strategy because it avoids completely the parallel local
searches across processors while it still keeps references to local text in its array
cells.

References

1. A. A. MacFarlane, J.A. McCann, and S.E. Robertson. Parallel search using par-
titioned inverted files. In 7th International Symposium on String Processing and
Information Retrieval, pages 209-220, 2000.

2. C. Santos Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani. Concurrent

query processing using distributed inverted files. In 8th International Symposium

on String Processing and Information Retrieval, pages 10-20, 2001.

R. Baeza and B. Ribeiro. Modern Information Retrieval. Addison-Wesley., 1999.

4. S.H. Chung, H.C. Kwon, K.R. Ryu, H.K. Jang, J.H. Kim, and C.A. Choi. Parallel
information retrieval on a SCI-based PC-NOW. In Workshop on Personal Com-
puters based Networks of Workstations (PC-NOW 2000). (Springer-Verlag), May
2000.

5. P. Ferragina and F. Luccio. String search in coarse-grained parallel computers.
Algorithmica, 24:177-194, 1999.

6. J. Kitajima and G. Navarro. A fast distributed suffix array generation algorithm.
In 6th International Symposium on String Processing and Information Retrieval,
pages 97-104, 1999.

7. W.F. McColl. General purpose parallel computing. In A.M. Gibbons and P. Spi-
rakis, editors, Lectures on Parallel Computation, pages 337-391. Cambridge Uni-
versity Press, 1993.

8. G. Navarro, J. Kitajima, B. Ribeiro, and N. Ziviani. Distributed generation of
suffix arrays. In 8th Annual Symposium on Combinatorial Pattern Matching, pages
102-115, 1997. LNCS 1264.

9. B. Ribeiro, J. Kitajima, G. Navarro, C. Santana, and N. Ziviani. Parallel generation
of inverted lists for distributed text collections. In X VIII Conference of the Chilean
Computer Science Society, pages 149-157, 1998.

10. D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.
Technical Report PRG-TR-15-96, Computing Laboratory, Oxford University, 1996.
Also in Journal of Scientific Programming, V.6 N.3, 1997.

11. D.B. Skillicorn and D. Talia, Models and languages for parallel computation, ACM
Computing Surveys V.20 N.2 1998.

12. L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103-
111, Aug. 1990.

13. BSP World-wide Standard, www.bsp-worldwide.org.

14. BSP PUB Library at Paderborn University, www.uni-paderborn.de/bsp.

w

