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on �diret� ompressed text searhing, i.e., searhing a ompressed text withoutdeompressing it, has led to a win-win situation where the ompressed text takesless spae and is searhed faster than the plain text [WMB99,ZMNBY00℄.Compressed text databases pose some requirements that outrule some om-pression methods. The most de�nitive is the need for random aess to the textwithout the possibility of deompressing it from the beginning. This rules outmost adaptive ompression methods suh as Ziv-Lempel ompression and arith-meti oding. On the other hand, semiadaptive models suh as Hu�man [Huf52℄yield poor ompression. In the ase of ompressing natural language texts, it hasbeen shown that an exellent hoie is to onsider the words, not the haraters,as the soure symbols [Mof89℄. Thanks to the biased distribution of words, theuse of this model joined to a Hu�man oder gives ompression ratios lose to25%, muh better than those usually obtained with the best adaptive methods.These results are barely a�eted if one swithes to byte-oriented Hu�man od-ing, where eah soure symbol is oded as a sequene of bytes instead of bits.Although ompression ratios raise to 30% (whih is still ompetitive), we havein exhange muh faster deoding and searhing, whih are essential features forompressed text databases. Finally, the fat that the alphabet and the voab-ulary of the text olletions oinide permits e�ient and highly sophistiatedsearhing, both in the form of sequential searhing and in the form of ompressedinverted indexes over the text [WMB99,ZMNBY00,NMN+00,MNZB00℄.Although the area of natural language ompressed text databases has gonea long way sine the end of the eighties, it is interesting that little has beendone about onsidering the struture of the text in this piture. Thanks tothe widespread aeptane of SGML, HTML and XML as the standards forstoring, exhanging and presenting douments, semistrutured text databasesare beoming the standard. Some tehniques to exploit the text struture havebeen proposed, suh as XMill [LS00℄ and XMLPPM [Che01℄. However, these arenot designed to permit searhing the text. Others, like XGrind [TH02℄, permitsearhing but do not take advantage of the struture (they just allow it).Our goal in this paper is to explore the possibility of onsidering the textstruture in the ontext of a ompressed text database. We aim at taking ad-vantage of the struture, while still retaining all the desirable features of a word-based Hu�man ompression over a semiadaptive model. An idea like that ofXMLPPM, where the ontext given by the path in the struture tree is usedto model the text in the subtree, is based on the intuition that the text undersimilar strutural elements (i.e., XML tags) should follow a similar distribution.(In fat XMLPPM uses the full path, whih is more powerful.) Although thisompression is adaptive and does not �t our searh purposes, a simpli�ationwhere only the last element in the path is onsidered an be joined to a semi-adaptive model, whih is suitable for searhing. The idea is then to use separatesemiadaptive models to ompress the text that lies inside di�erent tags. For ex-ample, in an email arhive, a di�erent model would be used for eah of the �eldsFrom:, Subjet:, Date:, Body:, et.).



While the possible gain due to this idea is lear, the prie is that we haveto store several models instead of just one. This may or may not pay o�. Inour example, oding the dates separately is probably a good idea, but odingthe subjets separate from the bodies is probably not worth the extra spae ofstoring two models (e.g., two Hu�man trees). Hene we also design a tehniqueto merge the models if we an predit that this is onvenient in terms of om-pressed �le length. Although the problem of �nding the optimal merging seemsa hard ombinatorial problem, we design a heuristi to automatially obtaina reasonably good merging of an initially separate set of models, one per tag.Other related tehniques an be found in [BCC+00℄In a text olletion, some words an be ommon in some parts (with highfrequeny) and rather unommon in others (low frequeny). This is typial innews arhives, for example, where some subjets are hot issues today and fadeout in a few weeks. Considering this fat, another possiblility is to apply SCMover di�erent text hunks. This idea allows us to adjust word freuenies as theyhange aross the text, improving ompression rates.This model, whih we all Strutural Contexts Model, is general and does notdepend on the oder. We plug it to a word-based Hu�man oder to test it. Ourexperimental results show signi�ant gains over the methods that are insensitiveto the struture and over the urrent methods that onsider the struture. Atthe same time, we retain all the features of the original model that makes itsuitable for ompressed text databases.2 Related WorkWith regard to ompressing natural language texts in order to permit e�ientretrieval from the olletion, the most suessful tehniques are based on modelswhere the text words are taken as the soure symbols [Mof89℄, as opposed to thetraditional models where the haraters are the soure symbols.On the one hand, words re�et muh better than haraters the true entropyof the text [TCB90℄. For example, a semiadaptive Hu�man oder over the modelthat onsiders haraters as symbols typially obtains a ompressed �le whosesize is around 60% of the original size, on natural language. A Hu�man oderwhen words are the symbols obtains 25% [ZMNBY00℄. Another example is theWLZW algorithm (Ziv-Lempel on words) [BSTW86,DPS99℄.On the other hand, most information retrieval systems use words as themain information atoms, so a word-based ompression eases the integration withan information retrieval system. Some examples of suessful integration are[WMB99,NMN+00,MW01℄.The text in natural language is not only made up of words. There are alsopuntuation, separators, and other speial haraters. The sequene of haratersbetween every pair of onseutive words will be alled a separator. In [BSTW86℄they propose to reate two alphabets of disjoint symbols: one for oding wordsand another for separators. Enoders that use this model onsider texts as a stritalternation of two independent data soures and enode eah one independently.



One we know that the text starts with a word or a separator, we know thatafter a word has been oded we an expet a separator and vie versa. This ideais known as the separate alphabets model.A fat that the separate alphabets model does not onsider is that in mostases a word is followed by a single blank spae as a separator. Sine at least the70% of separators in text are single blanks [Mof89℄, they propose in [MNZB00℄ anew data model whih uses a single alphabet for both words and separators, andrepresents the blank spae impliitly. This model is known as spaeless model.Hene, after eah word is deoded, we assume a single blank follows unless thenext deoded symbol is a separator.On the one hand we have to use a larger oding alphabet and then odelengths grow. On the other hand we do not need to ode about 35% of thesoure symbols. It is shown in [MNZB00℄ that ompression improves a bit usingthis method, although the improvement is not muh.A ompression method that onsiders the doument struture is XMill [LS00℄,developed in AT&T Labs. XMill is an XML-spei� ompressor designed toexhange and store XML douments, and its ompression approah is not in-tended for diretly supporting querying or updating of the ompressed doument.XMill is based on the zlib library, whih ombines Ziv-Lempel ompression (LZ77[ZL77℄) with a variant of Hu�man.Another XML ompressor is XGrind [TH02℄, whih diretly supports queriesover the ompressed �les. An XML doument ompressed with XGrind retainsthe struture of the original doument, permitting reuse of the standard XMLtehniques for proessing the ompressed doument. It does not, however, takefull advantage of the struture.Other approahes to ompress XML data exist, based on the use of a PPM-like oder, where the ontext is given by the path from the root to the tree nodethat ontains the urrent text. One example is XMLPPM [Che01℄, whih is anadaptive ompressor pased on PPM, where the ontext is given by the struture.3 Strutural Contexts ModelLet us, for this paper, fous on a semiadaptive Hu�man oder, as it has giventhe best results on natural language texts. Our ideas, however, an be adaptedto other enoders. Let us all ditionary the set of soure symbols together withtheir assigned odes.An enoder based on the separate alphabets model (see Setion 2) must usetwo soure symbol ditionaries: one for all the separators and the other for allthe words in the texts. This idea is still suitable when we handle semistrutureddouments �like SGML or XML douments�, but in fat we an extend themehanism to do better.In most ases, natural language texts are strutured in a semantially mean-ingful manner. This means that we an expet that, at least for some tags, thedistribution of the text that appears inside a given tag di�ers from that of an-other tag. In our example of Setion 1, where the tags orrespond to the �elds of



an email arhive, we an expet that the From: �eld ontains names and emailaddresses, the Date: �eld ontains dates, and the Subjet: and Body: �eldsontain free text.In ases where the words under one tag have little intersetion with wordsunder another tag, or their distribution is very di�erent, the use of separatealphabets to ode the di�erent tags is likely to improve the ompression ratio.On the other hand, there is a ost in the ase of semiadaptive models, as we haveto store several ditionaries instead of just one. In this setion we assume thateah tag should use a separate ditionary, and will address in the next setionthe way to group tags under a single ditionary.3.1 Compressing the TextWe ompress the text with a word-based Hu�man [Huf52,BSTW86℄. The textis seen as an alternating sequene of words and separators, where a word isa maximal sequene of alphanumeri haraters and a separator is a maximalsequene of non-alphanumeri haraters.Besides, we will take into aount a speial ase of words: tags. A tag is aode embedded in the text whih represents the struture, format or style ofthe data. A tag is reognized from surrounding text by the use of delimiterharaters. A ommon delimiter harater for an XML or SGML tag are thesymbols '<' and '>'. Usually two types of tags exist: start-tags, whih are the�rst part of a ontainer element, '<...>'; and end-tags, whih are the markupthat ends a ontainer element, '</...>'.Tags will be wholly onsidered (that is, inluding their delimiter haraters)as words, and will be used to determine when to swith ditionaries at ompres-sion and deompression time.3.2 Model DesriptionThe strutural ontexts model (as the separate alphabets model) uses one di-tionary to store all the separators in the texts, independently of their loation.Also, it assumes that words and separators alternate, otherwise, it must inserteither an empty word or an empty separator. There must be at least one wordditionary, alled the default ditionary. The default ditionary is the one in useat the beginning of the enoding proess. If only the default ditionary exists forwords then the model is equivalent to the separate alphabets model.We an have a di�erent ditionary for eah tag, or we an have separateditionaries for some tags and use the default for the others, or in general wean have any grouping of tags under ditionaries. As explained, we will assumefor now that eah tag has its own ditionary and that the default is used for thetext that is not under any tag.The ompression algorithm written below makes two passes over the text. Inthe �rst pass, the text is modeled and separate ditionaries are built for eah tagand for the default and separators ditionary. These are based on the statistis of



words under eah tag, under no tag, and separators, respetively. In the seondpass, the texts are ompressed aording to the model obtained.At the begining of the modeling proess, words are stored in the defaultditionary. When a start-struture tag appears we push the urrent ditionaryin a stak and swith to the appropriate ditionary. When an end-struture tagis found we must return to the previous ditionary stored in the stak. Bothstart-struture and end-struture tags are stored and oded using the urrentditionary and then we swith ditionaries. Likewise, the enoding and deodingproesses use the same ditionary swithing tehnique.The following ode desribes the ditionary swithing used for modeling,oding and deoding.Algorithm 1 (Ditionary Swithing)urrent_ditionary  default_ditionarywhile there are more symbols doword  get_symbol()if (word is separator)then store=ode=deode(word; separators_ditionary)else store=ode=deode(word; urrent_ditionary)if (word is a start-struture tag)then push(urrent_ditionary)urrent_ditionary  ditionary(word)else if (word is an end-struture tag)then urrent_ditionary  pop()3.3 Considering Text ChunksIn addition to tags, we may deide to separate the text olletion into a sequeneof hunks. There will be a di�erent ditionary for eah di�erent tag appearingin eah hunk. This permits the method to adapt to word frequenies as theyhange aross the text olletions.For eah hunk we have a separate default ditionary, but still there is aunique separators ditionary for the whole olletion.There is a tradeo� regarding hunk size. Too small hunks will reate toomany ditionaries whih will require a larger header table to �nd the right di-tionary. Even if many ditionaries are �nally merged (Setion 4) and sharedby many of these headers, the header table may get too large. Also, mergingmay beome too expensive. On the other hand, too large hunks will not permitadapting fast enough to hanges in text distribution.3.4 Entropy EstimationThe entropy of a soure is a number that only depends on its model, and isusually measured in bits/symbol. It is also seen as a funtion of the probabilitydistribution of the soure (under the model), and refers to the average amount



of information of a soure symbol. The entropy gives a lower bound on the sizeof the ompressed �le if the given model is used.De�nition 1 (Raw frequeny) Let n be the total number of terms that appearin the text. The raw frequeny fi of term i is given byfi = oin (1)where oi is the number of ourrenes of voabulary term i in the text. Theraw frequeny is also alled ourrene probability of term i.The fundamental theorem of Shannon [Sha48℄ establishes that the entropy ofa probability distribution fpig isPi pi log2(1=pi) bits. That is, the optimum wayto ode symbol i is to use log2(1=pi) bits. In a zero-order model, the probabilityof a symbol is de�ned independently of surrounding symbols. Usually one doesnot know the real symbol probabilities, but rather estimate them using the rawfrequenies seen in the text.De�nition 2 (Zero-order entropy estimation) Let Tv be the number of vo-abulary terms. Bearing in mind Shannon's theorem and assuming that a singleditionary is used to enode symbols, we estimate the zero-order entropy H of atext H = TvXi=1 fi log2 1fi (2)This de�nition lets us estimate the entropy when we have only one ditionary.If we want to estimate the entropy value when our model inludes multipleditionaries, we have to ombine the entropies of eah ditionary.De�nition 3 (Zero-order entropy estimation for a ditionary) Let nd bethe total number of text terms in ditionary d. Let T dv be the total number of dis-tint terms in ditionary d. Let fdi be raw frequeny of term i in ditionary dgiven by fdi = odind (3)where odi is the number of ourrenes of voabulary term i of ditionary din the texts. We an reformulate equation 2 to get the entropy for terms inditionary d: Hd = TdvXi=1 fdi log2 1fdi (4)De�nition 4 (Zero-order entropy estimation with multiple ditionaries)Let N be the total number of ditionaries. The zero-order entropy for all di-tionaries, H, is omputed as the weighted average of zero-order entropies on-tributed by eah ditionary (Hd; d 2 1 : : :N):H = PNd=1 nd Hdn (5)



4 Merging DitionariesUp to now we have assumed that eah di�erent tag and hunk uses its ownditionary. However, this may not be optimal beause of the overhead to storethe ditionaries in the ompressed �le. In partiular, if two ditionaries happento share many terms and to have similar probability distributions, then mergingboth tags under a single ditionary is likely to improve the ompression ratio.In this setion we develop a general method to obtain a good grouping oftags/hunks under ditionaries. For e�ieny reasons we will use the entropy asthe estimation of the size of the text ompressed using a ditionary, instead ofatually running the Hu�man algorithm and omputing the exat size.De�nition 5 (Estimated size ontribution of a ditionary) Let Vd be thesize, in bits, of the voabulary that onstitutes ditionary d, and Hd its estimatedzero-order entropy. Then the estimated size ontribution of ditionary d is givenby T d = Vd + ndHd (6)Considering the last de�nition we determine to merge ditionaries i and jwhen the sum of their ontributions is larger than the ontribution of their union.In other words, when T i + T j > T i[j (7)To ompute T i[j we have to ompute the union of the voabularies and theentropy of that union. This an be done in time linear in the voabulary sizes.De�nition 6 (Estimated saving of a merge) Let Ai[j be the estimated sav-ing of merging ditionaries i and j. ThenAi[j = T i + T j � T i[j (8)Our optimization algorithm works as follows. We start with one separate di-tionary per tag/hunk, plus the default ditionary for eah hunk (the separatorsditionary is not onsidered in this proess). Then, we progressively merge pairsof ditionaries until no further merging promises to be advantageous. Obtainingthe optimal division into groups looks as a hard ombinatorial problem, but weuse a heuristi whih produes good results and is reasonably fast.We start by omputing T i for every ditionary i, as well as T i[j for all pairsi; j of ditionaries. With that we ompute the savings Ai[j for all pairs. Then,we merge the pair of ditionaries i and j that maximizes Ai[j , if this is positive.Then, we erase i and j and introdue i [ j in the set. This proess is repeateduntil all the Ai[j values are negative.The algorithm is depited next. We have hidden the details on when the Tvalues are preomputed and updated. Its ost is O(V N3) when there are N di-tionaries and the voabulary size is V . This an be redued to O(V N2 logN) bysimple triks suh as reomputing savings only for the newly merged ditionariesand keeping ditionary pairs in a priority queue sorted by gain.



Algorithm 2 (Merging Ditionaries)do best_saving  0for 1 � i < j � N dourrent_saving  T i + T j � T i[jif (urrent_saving > best_saving)then best_saving  urrent_savingbi i ; bj  jif (best_saving > 0)then dbi  merge_ditionaries(dbi; dbj)dbj  dNN  N � 1while (best_saving > 0)5 Evaluation of the ModelWe have developed a prototype implementing the Strutural Contexts Modelwith a word-oriented Hu�man oding, and used it to empirially analyze ourmodel and evaluate its performane. Ditionaries are ompressed using arith-meti harater-based adaptive oding. Tests were arried out on the Linux RedHat 7.2 operating system, running on a omputer with a Pentium III proessorat 500 MHz and 128 Mbytes of RAM.For the experiments we seleted di�erent size olletions of WSJ, ZIFF andAP, from TREC-3 [Har95℄. Several harateristis of the olletions are shownin Table 1. We onatenated �les so as to obtain approximately similar subol-letion sizes from the three olletions, so the size in Mbytes is approximate.The struturing of the olletions is similar: they have only one level of stru-turing, with the tag <DOC> indiating douments, and inside eah doument tagsindiating doument identi�er, date, title, author, soure, ontent, keywords, et.Size TREC-WSJ TREC-ZIFF TREC-AP(Mb) #T.W. #V.W. Ratio #T.W. #V.W. Ratio #T.W. #V.W. Ratio1 193899 18380 9.479% 161900 12924 7.982% 195915 19103 9.750%5 874586 38750 4.430% 992067 35555 3.583% 956340 41263 4.314%10 1669506 52218 3.127% 1821015 51094 2.805% 1721137 54058 3.140%20 3370544 71832 2.131% 3489650 71136 2.038% 3486098 73820 2.117%40 6690067 97190 1.452% 6970106 102737 1.473% 6985763 101480 1.452%60 10015765 116221 1.160% 10272649 125326 1.219% 10411824 122340 1.175%100 16672690 144701 0.867% 17289782 165113 0.954% 17252119 157376 0.912%Table 1. Colletion harateristis. For eah olletion we show the total number ofwords (#T.W.), the total number of voabulary words (#V.W.) and the ratio betweenthe two (Ratio).



When text hunks are not used, the average speed to ompress all olletionsis around 128 Kbytes/se. In this value we inlude the time needed to model,merge ditionaries and ompress. Time for merging ditionaries ranges from 4.37seonds for 1 Mb to 40.27 seonds for 100 Mb. Its impat is large for the smallestolletion (about 50% of the total time), but it beomes muh less signi�antfor the largest olletion (about 5%). The reason is that merging time is linearin the voabulary size, whih grows sublinearly with the olletion size [Hea78℄,typially lose to O(pn). Although merging time also depends quadratially onthe number of di�erent tags, this number is usually small and does not growwith the olletion size but depends on the DTD/shema.In Table 2 we show original sizes, ompressed sizes and ompression ratiosfor eah olletion. It an be seen that ompression ratios improve for largerolletions, as the impat of the voabulary is redued [Hea78℄.TREC-WSJ TREC-ZIFF TREC-APOriginal Compr. Ratio Original Compr. Ratio Original Compr. Ratio1221659 484575 39.66% 1021882 376180 36.81% 1185968 492832 41.55%5516592 1793950 32.51% 6083389 1956195 32.15% 5805776 1952979 33.63%10510481 3214613 30.58% 11164171 3480842 31.17% 10469592 3315087 31.66%21235547 6190051 29.14% 21306059 6414762 30.10% 21219693 6371426 30.02%42113697 11858566 28.15% 42659558 12452756 29.19% 42523572 12307072 28.94%62963963 17498136 27.79% 62966279 18131869 28.79% 63343648 18054387 28.50%104942941 28681879 27.33% 105709264 29972861 28.35% 105018927 29479824 28.07%Table 2. Sizes and ompression ratios for eah olletion.In Figure 1 we an see a omparison, for WSJ (using up to 200 Mb this time),of the ompression performane using the plain separate alphabets model (SAM)and the strutural ontext model (SCM) with and without merging ditionaries.For short texts, the voabulary size is signi�ant with respet to the text size,so SCM without merging pays a high prie for the separate ditionaries anddoes not improve upon SAM. As the text olletion grows, the impat of theditionaries gets redued and we obtain nearly 10% additional ompression. TheSCM with merging obtains similar results for large olletions (12.25% additionalompression), but its performane is muh better on small texts, where it startsobtaining 11% even for 1 Mbyte of text.Table 3 shows the number of ditionaries merged. Column �Initial� tells howmany ditionaries are in the beginning: The default and separators ditionaryplus one per tag, exept for <DOC>, whih marks the start of a doument anduses the default ditionary. Column �Final� tells how many di�erent ditionariesare left after the merge.For example, for small WSJ subsets, the tags <DOCNO> and <DOCID>, both ofwhih ontain numbers and internal referenes, were merged. The other groupthat was merged was formed by the tags <HL>, <LP> and <TEXT>, all of whih
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Separate Alphabets Model Size SCM+merge SCM SAM1221659 39.66% 44.64% 44.52%5516592 32.51% 35.41% 35.89%10510481 30.58% 32.76% 33.67%21235547 29.14% 30.72% 32.08%42113697 28.15% 29.24% 31.01%62963963 27.79% 28.64% 30.63%104942941 27.33% 27.95% 30.26%210009482 26.80% 27.20% 30.54%Figure 1. Compression ratios using di�erent models, for WSJ.ontain the text of the news (headlines, summary for teletypes, and body). Onthe larger WSJ subsets, only the last group of three tags was merged. Thisshows that our intuition that similar-ontent tags would be merged is orret.The larger the olletion, the less the impat of storing more voabularies, andhene the fewer merges will our.Aprox. TREC-WSJ TREC-ZIFF TREC-APSize(Mb) Initial Final Initial Final Initial Final1 11 8 10 4 9 55 11 8 10 4 9 510 11 8 10 4 9 720 11 9 10 6 9 740 11 9 10 6 9 760 11 9 10 6 9 7100 11 9 10 7 9 7Table 3. Number of ditionaries used.The method to predit the size of the merged ditionaries from the voabularydistributions was quite aurate: our predition was usually 98%�99% of the �nalvalue.Let us now onsider the use of text hunks. In Table 4 we an see a ompar-ison of the ompression performane using di�erents hunks sizes over the sameolletion sizes for WSJ. The best gain obtained is around 0.03%, not reallysigni�ant. This an be due to the harateristis of WSJ: all the texts are veryuniform, with similar distributions of words. In fat, all ditionaries in di�erenthunks of tags <HL>, <LP> and <TEXT> were merged. On the other hand, thetime for generating and merging ditionaries grows fast as the number of ditio-



Aprox. Chunk size (Mbytes)Size(Mb) 0 2 4 8 161 39.66% 39.66% 39.66% 39.66% 39.66%5 32.51% 32.51% 32.51% 32.51% 32.51%10 30.58% 30.57% 30.57% 30.58% 30.58%20 29.14% 29.13% 29.13% 29.13% 29.14%40 28.15% 28.13% 28.13% 28.14% 28.14%60 27.79% 27.76% 27.76% 27.76% 27.77%100 27.33% 27.28% 27.28% 27.28% 27.29%Table 4. Compression ratios using di�erents hunk sizes in Mbytes. Zero size showsompression ratio without using hunks.naries grows. With these results, we an onlude that the use of hunks is notpro�table in this ase.Finally, we ompared our prototype (using merging) against other ompres-sion systems: the MG system, XMill, and XMLPPM. The MG system [WMB99℄is a publi domain software, versatile and of general purpose, whih handles textand images. MG ompresses strutured douments by handling tags as words,and uses a variant of word-based Hu�man ompression alled Hu�word. On theother hand, XMill [LS00℄ is an XML-spei� ompressor based on Ziv-Lempeland Hu�man, able to handle the doument struture. XMLPPM [Che01℄ is alsospei� of XML and based on adaptive PPM over the strutural ontext.We ompressed all the olletions with the four systems1 and averaged om-pression rates for eah olletion size. Average ompression rates are shown inFigure 2. XGrind was not inluded beause we ould not �nd publi ode for it.CGrep [MNZB00℄ was not inluded beause it is byte-oriented and the ompar-ison would be unfair against it.XMill obtains an average ompression ratio roughly onstant in all asesbeause it uses zlib as its main ompression mahinery. The ompression ratioobtained is not ompetitive in this experiment.XMLPPM, on the other hand, obtains the best ompression. This showsthat the idea of using the strutural ontext to ompress is good. The problemof XMLPPM is that its ompression is adaptive, and hene it is not suitable fordiret aess on large ompressed text databases.Our prototype is better than MG for medium and large olletion sizes, butnot for small sizes. This an be due to our penalty in storing more than oneditionary. SCM starts to be better from 40 Mbytes, and for 100 Mbytes itimproves over MG by 2.2%.Note also that the di�erene between XMLPPM and our prototype is rathersmall for large olletion sizes. In any ase, the penalty is a rather small priefor permitting diret aess to the text.1 XMLPPM required several hanges to the soures in order to run properly, but thesedid not a�et the ompressibility of the olletion.
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XMLPPM Size SCM MG XMill XMLPPM1 39.34% 34.22% 36.46% 25.38%5 32.76% 30.72% 36.44% 25.70%10 31.13% 29.93% 36.49% 25.79%20 29.75% 29.30% 36.51% 25.80%40 28.76% 28.83% 36.55% 25.88%60 28.36% 28.67% 36.61% 25.91%100 27.91% 28.54% 36.56% 25.90%Figure 2. Comparison between SCM and other systems over WSJ, using default set-tings for all. The ratios shown in the table are average values for eah olletion size,over the di�erent olletions tested.6 Conlusions and Future WorkWe have proposed a new model for ompressing semistrutured douments basedon the idea that texts under the same tags should have similar distributions. Thisis enrihed with a heuristi that determines a good grouping of tags so as to odeeah group with a separate model. On the other hand, the impat of the modelon the retrieval performane is insigni�ant, in fat it is similar to the retrievalperformane over ompressed douments.We have shown that the idea atually improves ompression ratios by morethan 10% with respet to the basi tehnique. We have ompared our prototypeagainst state-of-the-art ompression systems, showing that our prototype obtainsthe best ompression for medium and large olletions (more than 40 Mbytes)among tehniques that permit diret aess to the text, whih is essential forompressed text databases. On very large texts, the di�erene with the bestprototype, whih however does not permit diret text aess, is no more than7.2%. These text sizes are the most interesting for ompressed text databases.The prototype is a basi implementation and we are working on several im-provements, whih will make it even more ompetitive. We an tune our methodto predit the outome of merging ditionaries: Sine we know that usually ourpredition is 1%�2% o�, we ould add a mean value to our predition. Also,we an try the spaeless model [MNZB00℄, whih should give a small additionalgain. However, the need to inlude the separators in all the ditionaries maymake this approah unsuitable for our ase.Use of text hunks did not appear to be promising, but we plan to work onde�ning them more leverly. We still have to test their e�et on other olletions.With respet to the study of the method itself, we have to investigate more indepth the relationship between the type and density of the struturing and theimprovements obtained with our method, sine its suess is based on a semanti
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