
A Bit-parallel SuÆx Automaton Approahfor (Æ;)-Mathing in Musi RetrievalMaxime Crohemore1;2?, Costas S. Iliopoulos2, Gonzalo Navarro3??, andYoan J. Pinzon2;4??1 Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Franema�univ-mlv.frwww-igm.univ-mlv.fr/�ma2 Dept. of Computer Siene, King's College, London, Englandfsi,pinzong�ds.kl.a.ukwww.ds.kl.a.uk/staff/si, www.ds.kl.a.uk/staff/pinzon3 Dept. of Computer Siene, University of Chile, Chilegnavarro�d.uhile.lwww.d.uhile.l/�gnavarro4 Laboratorio de C�omputo Espeializado, Universidad Aut�onoma de Buaramanga,ColombiaAbstrat. (Æ;)-Mathing is a string mathing problem with applia-tions to musi retrieval. The goal is, given a pattern P1:::m and a textT1:::n on an alphabet of integers, �nd the ourrenes P 0 of the pat-tern in the text suh that (i) 81 � i � m; jPi � P 0i j � Æ, and (ii)P1�i�m jPi � P 0i j � . Several tehniques for (Æ;)-mathing have beenproposed. In this paper we show that a lassial string mathing teh-nique that ombines bit-parallelism and suÆx automata an be suess-fully adapted to this problem. This is the �rst harater-skipping algo-rithm that skips haraters using both Æ and . We implemented ouralgorithm and drew experimental results on real musi showing that ouralgorithm is superior to urrent alternatives.1 IntrodutionThe string mathing problem is to �nd all the ourrenes of a given patternP1:::m in a large text T1:::n, both being sequenes of haraters drawn from a �niteharater set �. This problem is fundamental in omputer siene and is a basineed of many appliations, suh as text retrieval, musi retrieval, omputationalbiology, data mining, network seurity, et. Several of these appliations require,however, more sophistiated forms of searhing, in the sense of extending thebasi paradigm of the pattern being a simple sequene of haraters.In this paper we are interested in musi retrieval. A musial sore an beviewed as a string: at a very rudimentary level, the alphabet ould simply bethe set of notes in the hromati or diatoni notation, or the set of intervals thatappear between notes (e.g. pith may be represented as MIDI numbers and pithintervals as number of semitones). It is known that exat mathing annot be? Partly supported by CNRS and NATO.?? Supported by CYTED VII.19 RIBIDI Projet.

2 Maxime Crohemore et al.used to �nd ourrenes of a partiular melody, so one resorts to di�erent formsof approximate mathing, where a limited amount of di�erenes of diverse kindsare permitted between the searh pattern and its ourrene in the text.The approximate mathing problem has been used for a variety of musialappliations [15, 9, 19, 20, 6℄. Most omputer-aided musial appliations adopt anabsolute numeri pith representation (most ommonly MIDI pith and pith in-tervals in semitones; duration is also enoded in a numeri form). The absolutepith enoding, however, may be insuÆient for appliations in tonal musi asit disregards tonal qualities of pithes and pith-intervals (e.g., a tonal transpo-sition from a major to a minor key results in a di�erent enoding of the musialpassage and thus exat mathing annot detet the similarity between the twopassages). One way to aount for similarity between losely related but non-idential musial strings is to permit a di�erene of at most Æ units between thepattern harater and its orresponding text harater in an ourrene, e.g., aC-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequene an be mathedif a tolerane Æ = 1 is allowed in the mathing proess. Additionally, we requirethat the total number of di�erenes aross all the pattern positions does not ex-eed , in order to limit the total number of di�erenes while keeping suÆientexibility at individual positions.The formalization of the above problem is alled (Æ;)-mathing. The prob-lem is de�ned as follows: the alphabet � is assumed to be a set of integer num-bers, � � Z. Apart from the pattern P and the text T , two extra parameters,Æ; 2 N, are given. The goal is to �nd all the ourrenes P 0 of P in T suh that(i) 81 � i � m; jPi � P 0i j � Æ, and (ii) P1�i�m jPi � P 0i j � .Several reent algorithms exist to solve this problem [7, 10, 8, 11℄. Some arebased on extending well-known paradigms suh as the Boyer-Moore family or theuse of suÆx automata. Others are based on bit-parallelism. We detail them inthe next setion. On the other hand, it was shown in [17, 18℄ that bit-parallelismand suÆx automata an be niely ombined in order to obtain faster, simpler,and more exible algorithms, whih are espeially robust to handle extendedstring mathing problems (lasses of haraters, wild ards, regular expressions,approximate searhing based on Hamming or edit distane, and so on).In this paper we extend the bit-parallel suÆx automata to handle (Æ;)-mathing: The resulting algorithm is extremely simple and muh faster than theexisting approahes. It is also the �rst truly (Æ;) harater-skipping algorithm,as it skips haraters using both riteria. Existing approahes do just Æ-mathingand hek the andidates for the -ondition.We use the following de�nitions throughout the paper. A word x 2 �� is afator (or substring) of P if P an be written P = uxv, u; v 2 ��. A fator xof P is alled a suÆx (pre�x) of P if P = ux (P = xu), u 2 ��. The number ofbits in the omputer word is denoted w.

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 32 Related Work2.1 (Æ;)-MathingWe reall three approahes that have been attempted to (Æ;)-mathing.Bit-Parallelism onsists of taking advantage of the intrinsi parallelism of thebit operations inside a omputer word [1℄, so as to pak several values in a singleword and manage to update them all in less operations than those neessary toupdate the values separately. In [7, 8℄ this approah was used to obtain an O(n)searh time algorithm for (Æ;)-mathing alled Shift-Plus. The algorithmpaksm ounters whose maximum value ismÆ, so it an pak all them in a singleomputer word provided mdlog2(1 + mÆ)e � w. Otherwise, several omputerwords have to be maintained, for a total searh time of O(n m log(mÆ)=w).Ourrene Heuristis onsist of skipping some text haraters by using infor-mation on the position of some haraters in the pattern. Typial algorithms ofthis type are those of the Boyer-Moore family [5, 21℄. In [7℄, several algorithmsof this type were proposed for Æ-mathing (a restrited ase where =1), andthey were extended to general (Æ;)-mathing in [10℄. These are Tuned-Boyer-Moore, Skip-Searh and Maximal-Shift, eah of whih have a ounterpartin exat string mathing. It is shown that these algorithms are faster than thebit-parallel ones, as they are simple and able to skip text haraters.Substring Heuristis onsist of skipping some text haraters by using informa-tion on the position of some pattern substrings. Typial algorithms of this typeare those based on suÆx automata [13, 12℄. In [10, 11℄ three algorithms based onthese ideas, alled Æ-BM1, Æ-BM2 and Æ-BM3, are proposed. They try to gener-alize the suÆx automata to Æ-mathing, but they obtain only an approximationthat aepts more ourrenes than neessary, whih have to be veri�ed later.In lassial string mathing, substring heuristis perform better than haraterheuristis on small alphabets. This makes it probable that in this appliationsubstrings heuristis perform better for large Æ and values.2.2 Bit-parallel SuÆx AutomataBit-parallelism provides a general method to use automata in their nondeter-ministi form rather than onverting them to deterministi. The latter is thelassial approah and normally involves a omplex onstrution algorithm andlak of exibility in the resulting sheme (see the previous omment on adaptingsuÆx automata to Æ-mathing). Nondeterministi automata, on the other hand,tend to be rather simple and an be easily extended to handle new problems.Bit-parallelism permits simulating nondeterministi automata as they are, sinethey an handle all the ative states in a single operation.In this spirit, the algorithm BNDM was developed in [17℄ as a ombinationbetween Shift-Or [2℄ (a bit-parallel algorithm) and BDM [13℄ (an algorithm based

4 Maxime Crohemore et al.on suÆx automata and able to skip haraters). The result is an algorithm withthe best of both worlds: simple, eÆient, and extensible. It is shown that itoutperforms both Shift-Or and BDM, and that there is no reason for bit-parallelalgorithms not to skip haraters. BNDM was extended to handle lasses ofharaters, wild ards, regular expressions, and widely used forms of approximatesearhing [18℄.2.3 Our Work in ContextOur goal in this paper is to develop an extension of BNDM to handle (Æ;)-mathing. The algorithm turns out to be simple and very eÆient. In the aboveategorization, it orresponds to a rossing between bit-parallel and substring-heuristi algorithms. Compared to the original bit-parallel algorithm [7, 8℄, itmakes a better paking of values, sine it needs only md1 + log2(+ 1)e bits,so the number of haraters inspeted has to be multiplied by O(m log()=w).Compared to the original substring mathing heuristis, the nondeterministiversion is able to aept exatly the patterns that qualify, without any need offurther veri�ation. In partiular, all the existing methods really do Æ-mathingand enfore the -ondition in a further veri�ation, while we are able of enfor-ing both onditions as we san the text. This makes up a muh more robust andeÆient algorithm.3 Searhing with SuÆx AutomataWe desribe in this setion the BDM pattern mathing algorithm [12, 13℄, whihis based on a suÆx automaton. A suÆx automaton on a pattern P1:::m (frequentlyalled DAWG(P), for Deterministi Ayli Word Graph) is the minimal (in-omplete) deterministi �nite automaton that reognizes all the suÆxes of thispattern. By \inomplete" we mean that unneessary transitions are not present.The nondeterministi version of this automaton has a very regular struture andis shown in Figure 1.
a b c d e f g

1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε εFig. 1. A nondeterministi suÆx automaton for the pattern P = "abdefg". Dashedlines represent "-transitions (i.e. they our without onsuming any input). I is theinitial state of the automatonThe (deterministi) suÆx automaton is a well known struture [12℄. The sizeof DAWG(P) is linear in m (ounting both nodes and edges), and a linear on-line onstrution algorithm exists [12℄. A very important fat for our algorithm

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 5is that this automaton annot only be used to reognize the suÆxes of P , butalso fators of P : The automaton has ative states as long as we have read afator of P .The suÆx automaton struture is used in [12, 13℄ to design a simple patternmathing algorithm alled BDM. This algorithm is O(mn) time in the worstase, but optimal on average (O(n logj�jm=m) time). To searh for P in a text T ,the suÆx automaton of P r = PmPm�1 : : : P1 (i.e., the pattern read bakwards)is built. A window of length m is slid along the text, from left to right. Thealgorithm searhes the window bakwards for a fator of the pattern P usingthe suÆx automaton. During this searh, if a terminal state is reahed whihdoes not orrespond to the entire pattern P , the window position is reorded(in a variable last). This orresponds to �nding a pre�x of the pattern startingat position last inside the window and ending at the end of the window (sinethe suÆxes of P r are the reverse pre�xes of P). Sine we remember the lastpre�x reognized bakwards, we have the longest pre�x of P that is a suÆx ofthe window. This bakward searh ends in two possible forms:1. We fail to reognize a fator, i.e., we reah a harater � that does notorrespond to a transition in DAWG(P r). Figure 2 illustrates this ase. Inthis ase we shift the window to the right, its starting position orrespondingto the position last (we annot miss an ourrene beause in that ase thesuÆx automaton would have found its pre�x in the window).
New searh

Window Searh for a fator with the suÆx automaton� uFail to reognize a fator at �.� New windowSafe shift Fig. 2. Basi searh with the suÆx automaton2. We reah the beginning of the window, therefore reognizing the pattern P .We report the ourrene, and shift the window exatly as in the previousase (notie that we have the previous last value).

6 Maxime Crohemore et al.4 Our AlgorithmWe �rst desribe a forward-san version that extends Shift-And and permitsus explaining the details of the bit-parallel simulation, and then a bakward-sanning version that extends BNDM.We start with some terminology. A bit mask of length r is a sequene of bits,denoted br : : : b1. We use exponentiation to denote bit repetition (e.g. 031 =0001). We use C-like syntax for operations on the bits of omputer words: \j"is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�" om-plements all the bits. The shift-left operation, \<<", moves the bits to the leftand enters zeros from the right. The shift-right, \>>" moves the bits in theother diretion. Finally, we an perform arithmeti operations on the bits, suhas addition and subtration, whih operate the bits as if they formed a number.For instane, br : : : bx10000� 1 = br : : : bx01111.4.1 Forward SanningThe Shift-And algorithm �rst builds a table B whih for eah harater storesa bit mask bm : : : b1. The mask in B[℄ has the i-th bit set if and only if Pi = .The state of the searh is kept in a mahine word D = dm : : : d1, where di is setwhenever P1:::i mathes the end of the text read up to now. Therefore, we reporta math whenever dm is set.We set D = 0m originally and, for eah new text harater Tj , update Dusing the formula D ((D << 1) j 0m�11) & B[Tj ℄We now extend the Shift-And algorithm. First of all, notie that Æ-mathingis trivial under the bit-parallel approah, as it an be aommodated using theability to searh for lasses of haraters. We de�ne that pattern harater mathes text haraters � Æ : : : + Æ, therefore setting the i-th bit of B[℄ to 1if and only if jPi� j � Æ. The rest of the algorithm is unhanged. On a uniformdistribution over � = f1 : : : j�jg we obtain O(n logj�j=Æ(m)=m) time for theBNDM version, and we still need dm=we omputer words for the simulation.However, the real hallenge is to do (Æ;)-mathing. In the following we assumeÆ � � mÆ, otherwise the formulation makes little sense.Instead of storing just one bit di to tell whether P1:::i mathes Tj�i+1:::j ,we store a ounter i to reord the sum of the absolute di�erenes between theorresponding haraters. That isi = X1�k�i jPk � Tj�i+k jIn fat we are only interested in storing min(i; + 1), as any value largerthan is equivalent for us. For reasons that will be lear soon, we need torepresent i suh that its highest bit is set to 1 if and only if i > . So weuse ` = 1 + dlog2(+ 1)e bits to represent i, and instead of representing i

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 7we represent i + 2`�1 � (+ 1). This guarantees that the highest bit is setwhen i reahes +1 (as its representation reahes 2`�1). Hene our bit mask Dneeds m` = m(1 + dlog2(+ 1)e) bits and our simulation needs O(m log()=w)omputer words.We preompute a mask B[℄ of ounters as follows. The i-th ounter of B[℄will store jPi � j if and only if jPi � j � Æ. Otherwise, the haraters simplydo not math, in whih ase we store + 1 for this ounter. This value ensuresthat no math will be reported, as the global ount of di�erenes will surpass .Sine Æ � , ` bits suÆe to store eah of these ounters.The algorithm is basially the same of Shift-And, exept that we add B[℄to D in order to keep ount of the sum of the di�erenes between the mathedharaters. The overow is avoided as follows: we remove the highest bits fromthe ounters in D before adding those of B[Tj ℄, and then restore them in theresult. Therefore, (1) overow is impossible beause we are adding two valuesthat at most add up 2+1, and we have enough spae to store 2`�1 � 2(+1)�1 = 2 + 1 di�erenes; (2) if the highest bit was set before, it will stay set; (3)if the highest bit was not yet set then our operation with highest bits does nota�et the sum. Note that it is not stritly true that we maintain min(i; + 1),but it is true that the highest bit of eah ounter i is set if and only if i > ,and this is enough for the orretness of the algorithm.This solution has some resemblanes with that of [3℄ for Hamming distane.Figure 3 depits the forward-sanning algorithm. It is O(n) time if m log =O(w), otherwise it takes time O(nm log()=w). The preproessing takesO(mj�j)time. We remark that previous forward sanning versions [7, 8℄ required O(nmlog(mÆ)=w) bits, whih is stritly larger than our requirement. The di�erene isthat we managed to keep the ounters below 2 instead of letting them grow upto mÆ.4.2 Bakward SanningWe start by explaining the BNDM algorithm [17℄ and then show how to extendit. We assume m � w in the exposition for simpliity, although the sheme isgeneral.The BNDM algorithm moves a window over the text. Eah time the windowis positioned at a new text position just after pos, it searhes bakwards thewindow Tpos+1:::pos+m using the DAWG automaton, until either m iterationsare performed (whih implies a math in the urrent window) or the automatonannot follow any transition. In this ase, the bit di at iteration k is set if andonly if Pm�i+1:::m�i+k = Tpos+1+m�k:::pos+m. Some observations follow{ Sine we begin at iteration 0, the initial value for D is 1m (reall that weuse exponentiation to denote bit repetition).{ There is a math if and only if after iteration m it holds dm = 1.{ Whenever dm = 1, we have mathed a pre�x of the pattern in the ur-rent window. The longest pre�x mathed (exluding the omplete pattern)orresponds to the next window position (variable last).

8 Maxime Crohemore et al.Forward-San (P1:::m; T1:::n; Æ;)1. Preproessing2. ` 1 + dlog2(+ 1)e3. For 2 � Do4. B[℄ 0m5. For i 2 1 : : :m Do6. B[℄ B[℄ j (j� Pij > Æ? + 1 : j� Pij) << (`(i� 1)))7. Searh8. D 1m`9. For j 2 1 : : : n Do10. If D & 10m`�1 = 0m` Then11. Report an ourrene at j �m+ 112. D (D << `) j (2`�1 � (+ 1))13. H D & (10`�1)m14. D ((D & � H) +B[Tj ℄) j HFig. 3. Forward sanning algorithm for (Æ;)-mathing{ Sine there is no initial self-loop, this automaton eventually runs out of ativestates. Moreover, states (m� k) : : :m are inative at iteration k.The algorithm works as follows. Every time we position the window in thetext we initialize D and san the window bakwards. For eah new text haraterwe update D. Eah time we �nd a pre�x of the pattern (dm = 1) we rememberthe position in the window. If we run out of 1's inD then there annot be a mathand we suspend the sanning (this orresponds to not having any transition tofollow in the automaton). If we an performm iterations then we report a math.We use a mask B whih stores a bit mask for eah harater . This masksets the bits orresponding to the positions i where Pi = (just as in Shift-And).The formula to update D isD (D & B[Tj ℄) << 1We now extend BNDM to (Æ;)-mathing. The main di�erenes with respetto the representation used in forward sanning are (1) we initialize the ountersof D to i = 0 beause they orrespond to mathing empty strings; (2) aftershifting D, the fresh ounters that enter from the right are not important (theimportant ones are those present when we start sanning the window); and (3)we suspend sanning the window when all the ounters exeeded .Figure 4 depits the bakward-sanning algorithm. This is the �rst harater-skipping algorithm that does not use veri�ations and is able to stop sanningtext windows that Æ-math the pattern, if they do not (Æ;)-math the pattern.

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 9Bakward-San (P1:::m; T1:::n; Æ;)1. Preproessing2. ` 1 + dlog2(+ 1)e3. For 2 � Do4. B[℄ 0m5. For i 2 1 : : : m Do6. B[℄ B[℄ j (j� Pm�i+1j > Æ? + 1 : j� Pm�i+1j) << (`(i� 1)))7. Searh8. pos 09. While pos � n�m Do10. j m; last m11. D (2`�1 � (+ 1))� (0`�11)m12. While D & (10`�1)m 6= (10`�1)m Do13. H D & (10`�1)m14. D ((D & � H) +B[Tj ℄) j H15. j j � 116. If D & 10m`�1 = 0m` Then17. If j > 0 Then last j18. Else Report an ourrene at pos+ 119. D (D << `) j 10`�120. pos pos+ lastFig. 4. Bakward sanning algorithm for (Æ;)-mathing. Some ode optimizations arenot inluded for simpliity5 Experimental ResultsIn this setion we show experimental evidene supporting the superiority of thenew algorithm (This) ompared to the (Æ;)-Boyer-Moore algorithm (BM2)presented in [10, 11℄, whih is urrently the most ompetitive hoie.The time reported inludes only the searhing phase. Preproessing was neg-ligible. The tests were performed using a SUN Ultra Enterprise 300MHz runningSolaris Unix with w = 32. We used the GNU g++ ompiler version 2.95.1. Eahdata point represents the median of 60 trials.We ran our experiments using both real musi and random text. The musidata used for this study omes from a data base of MIDI �les of lassi musiwith 1.8Mb of absolute pithes. We also make use of this musi data base tomeasure the zero-order and one-order entropy to estimated the size of alphabetneeded to emulated musi using random text. Zero-order entropy was equivalentto having a random alphabet of size 17.35. One-order entropy was muh smaller,6.27. Therefore, we used random text uniformly distributed with alphabet size of10{20 for this study. Other typial parameter values were 0{5 for Æ, 1:5m{2:0mfor , and 10{200 for m.

10 Maxime Crohemore et al.Figure 5 shows plots of the performane of both algorithms using randomdata. For the di�erent ombinations of Æ and used in these experiments, ouralgorithm (This) was signi�antly faster than Algorithm BM2. As expeted,the performane of the algorithm degrades with smaller alphabets. However, italso degrades as m inreases, as the implementation is limited to using m=wnumber of omputer words and skipping at most w haraters. To speed-up themathing algorithm we an use an alphabet redution method suh as otaveequivalene [14℄.The results using real musi data are shown in Figure 6. Although the di�er-ene is smaller than on syntheti data, learly This algorithm performs better.As an be seen, the dependene on Æ is signi�ant to the extent that it an dou-ble (note the hange of sale) the time it takes by going from Æ =2 to Æ =4. Thedependene on , on the other hand, is not muh signi�ant.In onlusion the algorithm introdued in this paper performs onsistentlybetter than previous known algorithms.
 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2 |Σ|=10
this |Σ|=10

BM2 |Σ|=20
this |Σ|=20

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2 |Σ|=10
this |Σ|=10

BM2 |Σ|=20
this |Σ|=20

(a) Æ = 2 and =1:5m (b) Æ = 4 and =1:5m
 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2 |Σ|=10
this |Σ|=10

BM2 |Σ|=20
this |Σ|=20

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2 |Σ|=10
this |Σ|=10

BM2 |Σ|=20
this |Σ|=20

() Æ = 2 and =2m (d) Æ = 4 and =2mFig. 5. Timing �gures for random data

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 11
 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2
this

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2
this

(a) Æ = 2 and =1:5m (b) Æ = 4 and =1:5m
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2
this

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

se
c/

M
b

m

BM2
this

() Æ = 2 and =2m (d) Æ = 4 and =2mFig. 6. Timing �gures for real musi data6 ConlusionsWe have presented a new bit-parallel algorithm for (Æ;)-mathing, an extendedstring mathing problem with appliations in musi retrieval. Our new algo-rithm is a rossing between bit-parallelism and suÆx automata and has severaladvantages over the previous approahes: it makes better use of the bits of theomputer word, it inspets less text haraters, it is simple and extensible.Our algorithms is also the �rst truly (Æ;) harater-skipping algorithm, as itskips haraters using both riteria. Existing approahes do just Æ-mathing andhek the andidates for the -ondition. This makes our algorithm a strongerhoie for this problem.The algorithm we have presented is useful for short pattern lengths, as it islimited by the length of the omputer word. We have handled longer patternswith the naive approah of using as many omputer words as needed to representall the ounters. A more sophistiated approah we are pursuing is to partitionthe pattern into piees short enough to be handled with the basi algorithm.It is interesting to notie that if we partition the pattern into j piees, then atleast one of them has to math with 0 = b=j di�erenes overall, so we do(Æ; 0)-mathing in the piees. Moreover, if Æ > 0 we do (0; 0)-mathing. Hene

12 Maxime Crohemore et al.we run j searhes for shorter patterns and hek every math of a piee for aomplete ourrene. These piees an be grouped and searhed for togetherusing the so-alled \superimposition". These ideas have been used in [4, 16℄ forapproximate string mathing, and should be useful here too.It is not hard to design an algorithm with the same average omplexity butalso linear in the worst ase, as done in [17℄. Despite theoretially interesting, thisimprovement is usually disregarded beause it worsens the pratial performaneof the algorithm.A more hallenging problem is to onsider text indexing approahes, that is,preproessing the musial strings in order to permit fast searhing of patternslater. A simple solution is the use of a suÆx tree of the text ombined withbaktraking, whih yields searh times whih are exponential on the patternlength but independent of the text length [22℄.We also plan to investigate further on more sophistiated mathing problemsthat arise in musi retrieval. For example, it would be good to extend (Æ;)-mathing in order to permit insertions and deletions of symbols.Referenes1. R. Baeza-Yates. Text retrieval: Theory and pratie. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Siene, September 1992.2. R. Baeza-Yates and G. Gonnet. A new approah to text searhing. Comm. ACM,35(10):74{82, Otober 1992.3. R. Baeza-Yates and G. Gonnet. Fast string mathing with mismathes. Informationand Computation, 108(2):187{199, 1994.4. R. Baeza-Yates and G. Navarro. Faster approximate string mathing. Algorithmia,23(2):127{158, 1999.5. R. S. Boyer and J. S. Moore. A fast string searhing algorithm. Communiationsof the ACM, 20(10):762{772, 1977.6. E. Cambouropoulos, T. Crawford, and C. Iliopoulos. Pattern proessing in melodisequenes: Challenges, aveats and prospets. In Pro. Arti�ial Intelligene andSimulation of Behaviour (AISB'99) Convention, pages 42{47, 1999.7. E. Cambouropoulos, M. Crohemore, C. Iliopoulos, L. Mouhard, and Y. J. Pinzon.Algorithms for omputing approximate repetitions in musial sequenes. In Pro.10th Australasian Workshop on Combinatorial Algorithms (AWOCA'99), pages129{144, 1999.8. E. Cambouropoulos, M. Crohemore, C. S. Iliopoulos, L. Mouhard, and Y. J.Pinzon. Algorithms for omputing approximate repetitions in musial sequenes.Int. J. Comput. Math., 79(11):1135{1148, 2002.9. T. Crawford, C. Iliopoulos, and R. Raman. String mathing tehniques for musialsimilarity and melodi reognition. Computing in Musiology, 11:73{100, 1998.10. M. Crohemore, C. Iliopoulos, T. Leroq, Y. J. Pinzon, W. Plandowski, andW. Rytter. Ourene and substring heuristis for Æ-mathing. Fundamenta In-formatiae, 55:1{15, 2003.11. M. Crohemore, C. Iliopoulos, T. Leroq, W. Plandowski, and W. Rytter. Threeheuristis for Æ-mathing: Æ-bm algorithms. In Combinatorial Pattern Mathing,CPM'2002, LNCS v. 2373, pages 178{189. Springer-Verlag, 2002.12. M. Crohemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

A Bit-parallel SuÆx Automaton Approah for (Æ;)-Mathing 1313. A. Czumaj, M. Crohemore, L. Gasienie, S. Jarominek, Thierry Leroq,W. Plandowski, and W. Rytter. Speeding up two string-mathing algorithms.Algorithmia, 12:247{267, 1994.14. K Lemstr�om and J. Tarhio. Searhing monophoni patterns within polyphonisoures. In Pro. of Content-Based Multimedia Information Aess, volume 2,pages 1261{1279, 2000.15. P. MGettrik. MIDIMath: Musial Pattern Mathing in Real Time. MS. Dis-sertation, York University, U.K., 1997.16. G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate stringmathing. Algorithmia, 30(4):473{502, 2001.17. G. Navarro and M. RaÆnot. Fast and exible string mathing by ombiningbit-parallelism and suÆx automata. ACM Journal of Experimental Algorithmis(JEA), 5(4), 2000.18. G. Navarro and M. RaÆnot. Flexible Pattern Mathing in Strings { Pratial on-line rh algorithms for texts and biologial sequenes. Cambridge University Press,2002. ISBN 0-521-81307-7.19. P. Roland and J. Ganasia. Musial pattern extration and similarity assessment.In E. Miranda, editor, Readings in Musi and Arti�ial Intelligene, pages 115{144.Harwood Aademi Publishers, 2000.20. L. A. Smith, E. F. Chiu, and B. L. Sott. A speeh interfae for building musialsore olletions. In Pro. of the �fth ACM onferene on Digital libraries, pages165{173. ACM Press, 2000.21. D. Sunday. A very fast substring searhing algorithm. Comm. ACM, 33(8):132{142, August 1990.22. E. Ukkonen. Approximate string mathing over suÆx trees. In Pro. 4th AnnualSymposium on Combinatorial Pattern Mathing (CPM'93), pages 228{242, 1993.

