
Fully Dynamic Spatial Approximation Trees ?
Gonzalo Navarro1 and Nora Reyes21 Center for Web Research, Dept. of Computer Science, University of Chile,

Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl2 Depto. de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, San Luis, Argentina.nreyes@unsl.edu.ar

Abstract. The Spatial Approximation Tree (sa-tree) is a recently proposed data
structure for searching in metric spaces. It has been shown that it compares fa-
vorably against alternative data structures in spaces of high dimension or queries
with low selectivity. Its main drawbacks are: costly construction time, poor per-
formance in low dimensional spaces or queries with high selectivity, and the fact
of being a static data structure, that is, once built, one cannot add or delete ele-
ments. These facts rule it out for many interesting applications.
In this paper we overcome these weaknesses. We present a dynamic version of
thesa-treethat handles insertions and deletions, showing experimentally that the
price of adding dynamism is rather low. This is remarkable byitself since very
few data structures for metric spaces are fully dynamic. In addition, we show how
to obtain large improvements in construction and search time for low dimensional
spaces or highly selective queries. The outcome is a much more practical data
structure that can be useful in a wide range of applications.

1 Introduction

The concept of “approximate” searching has applications ina vast number of fields.
Some examples are non-traditional databases (e.g. storingimages, fingerprints or au-
dio clips, where the concept of exact search is of no use and wesearch instead for
similar objects); text searching (to find words and phrases in a text database allow-
ing a small number of typographical or spelling errors); information retrieval (to look
for documents that are similar to a given query or document);machine learning and
classification (to classify a new element according to its closest representative); image
quantization and compression (where only some vectors can be represented and we
code the others as their closest representable point); computational biology (to find a
DNA or protein sequence in a database allowing some errors due to mutations); and
function prediction (to search for the most similar behavior of a function in the past so
as to predict its probable future behavior).

All those applications have some common characteristics. There is a universeU of
objects, and a nonnegativedistance functiond : U � U �! R+ defined among them.
This distance may (and ideally does) satisfy the three axioms that make the set ametric
space: strict positiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))? This work has been partially supported CYTED VII.19 RIBIDI Project (both authors) and

Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile (first author).

and triangle inequality (d(x; z) � d(x; y) + d(y; z)). The smaller the distance between
two objects, the more “similar” they are. We have a finitedatabaseS � U, which
is a subset of the universe of objects and can be preprocessed(to build an index, for
example). Later, given a new object from the universe (aqueryq), we must retrieve all
similar elements found in the database. There are two typical queries of this kind:

Range query: Retrieve all elements within distancer to q in S. This is,fx 2 S ; d(x; q) �rg.
Nearest neighbor query (k-NN): Retrieve thek closest elements toq in S. That is, a

setA � S such thatjAj = k and8x 2 A; y 2 S �A; d(x; q) � d(y; q).
The distance is considered expensive to compute (think, forinstance, in comparing

two fingerprints). Hence, it is customary to define the complexity of the search as the
number of distance evaluations performed, disregarding other components such as CPU
time for side computations, and even I/O time. Given a database of jSj = n objects,
queries can be trivially answered by performingn distance evaluations. The goal is to
structure the database such that we perform less distance evaluations.

A particular case of this problem arises when the space is a set of D-dimensional
points and the distance belongs to the MinkowskiLp family: Lp = (P1�i�D jxi �yijp)1=p. For examplep = 2 yields Euclidean distance. There are effective methods to
search inD-dimensional spaces [4, 1]. However, for roughly 20 dimensions or more
those structures cease to work well. We focus in this paper ongeneral metric spaces,
although the solutions are well suited also forD-dimensional spaces. It is interesting to
notice that the concept of “dimensionality” can be translated to metric spaces as well:
the typical feature in high dimensional spaces withLp distances is that the probability
distribution of distances among elements has a very concentrated histogram (with larger
mean as the dimension grows), making the work of any similarity search algorithm
more difficult [2, 3]. We say that a general metric space is high dimensional when its
histogram of distances is concentrated.

For general metric spaces, there exist a number of methods topreprocess the database
in order to reduce the number of distance evaluations [3]. All those structures work on
the basis of discarding elements using the triangle inequality, and most use the classical
divide-and-conquer approach (which is not specific of metric space searching).

The Spatial Approximation Tree (sa-tree) is a recently proposed data structure of
this kind [5, 6], based on a novel concept: rather than dividing the search space, ap-
proach the query spatially, that is, start at some point in the space and get closer and
closer to the query. Apart from being algorithmically interesting by itself, it has been
shown that thesa-treegives better space-time tradeoffs than the other existing struc-
tures on metric spaces of high dimension or queries with low selectivity, which is the
case in many applications.

Thesa-tree, however, has some important weaknesses. The first is that, compared
to other indexes, it is relatively costly to build in low dimensions (it is harder to build
in high dimensions, but in this case the competing indexes are even more costly). The
second is that, in low dimensions or for queries with high selectivity (smallr or k), its
search performance is poor when compared to simple alternatives. The third is that it
is a static data structure: once built, it is hard to add/delete elements to/from it. These

weaknesses make thesa-treeunsuitable for important applications such as multimedia
databases.

Overcoming these drawbacks is the aim of this paper. We present a dynamic version
of thesa-treethat handles insertions and deletions. We show that the dynamic sa-tree
can be built incrementally (i.e., by successive insertions) at the same cost of its static
version, and that the search performance is unaffected. We also show that one can re-
move elements from the structure at about the same cost of an insertion, with a very
small penalty in the search performance.

Full dynamism is not so common in metric data structures [3].While permitting
efficient insertions is quite usual, deletions are rarely handled. In several indexes one can
delete some elements, but there are selected elements that cannot be deleted at all. This
is particularly problematic in the metric space scenario, where objects could be very
large (e.g., images) and deleting them physically may be mandatory. Our algorithms
permit deleting any element from asa-tree. This is remarkable on a data structure whose
original conception was markedly static [5].

In addition to the above achievement, we find out how to obtainlarge improvements
in construction and search time for low dimensional spaces or highly selective queries.
The method consists of limiting the tree arity and involves new algorithmic insights on
this data structure. The lower the arity, the cheaper to build the tree. However, at search
time, the best arity depends on the dimension and the query selectivity. In particular, for
low dimensions, we obtain improved construction and searchtime simultaneously.

The outcome is a much more practical data structure that can be useful in a wide
range of applications. We expect the dynamicsa-treeto replace the static version in the
developments to come.

This work builds over [7], where it was shown that insertionson thesa-treecould
be reasonably handled. We improve their insertion algorithm and also permit deletions,
thus obtaining a fully dynamic data structure. In addition,we capture in the tree arity the
parameter that permits adapting it better to different dimensions. The originalsa-tree
adapts itself to the dimension, but not optimally.

For the experiments of this paper we have selected two metricspaces. The first is a
dictionary of 69,069 English words. The distance is the editdistance, that is, the min-
imum number of character insertions, deletions and replacements to make the strings
equal. The second space is the real unitary cube in dimension15 using Euclidean dis-
tance, where we generated 100,000 random points with uniform distribution.

In both cases, we built the indexes with 90% of the points and used the other 10%
(randomly chosen) as queries. For the experiments with deletions in an index ofn el-
ements, we select at random a fraction of thosen elements and delete them from the
index. The results on these two spaces are representative ofthose on several other metric
spaces we tested: NASA images, dictionaries in other languages, Gaussian distributions,
other dimensions, etc.

2 The Spatial Approximation Tree

We describe briefly in this section the staticsa-treedata structure. It needsO(n) space,O(n log2 n= log logn) construction time, and sublinear search time:O(n1��(1= log logn))

in high dimensions andO(n�) (0 < � < 1) in low dimensions. It is experimentally
shown to offer better space-time tradeoffs than other data structures when the dimension
is high or the query radius is large. For more details see the original work [5, 6].

2.1 Construction

We select a random elementa 2 S to be the root of the tree. We then select a suitable
set of neighborsN(a) satisfying

Condition 1: (givena; S) 8x 2 S, x 2 N(a) , 8y 2 N(a) � fxg; d(x; y) >d(x; a).
That is, the neighbors ofa form a set such that any neighbor is closer toa than to

any other neighbor. The “only if” (() part of the definition guarantees that if we can
get closer to anyb 2 S then an element inN(a) is closer tob thana, because we put
as direct neighbors all those elements that are not closer toanother neighbor. The “if”
part ()) aims at putting as few neighbors as possible.

Notice that the setN(a) is defined in terms of itself in a non-trivial way and that
multiple solutions fit the definition. For example, ifa is far fromb and and these are
close to each other, then bothN(a) = fbg andN(a) = fg satisfy the definition.

Finding the smallest possible setN(a) seems to be a nontrivial combinatorial op-
timization problem, since by including an element we need totake out others (this
happens betweenb and in the example of the previous paragraph). However, simple
heuristics which add more neighbors than necessary work well. We begin with the ini-
tial nodea and its “bag” holding all the rest ofS. We first sort the bag by distance toa.
Then, we start adding nodes toN(a) (which is initially empty). Each time we consider
a new nodeb, we check whether it is closer to some element ofN(a) than toa itself. If
that is not the case, we addb toN(a).

At this point we have a suitable set of neighbors. Note that Condition 1 is satisfied
thanks to the fact that we have considered the elements in order of increasing distance
to a. The “only if” part of Condition 1 is clearly satisfied because any element not
satisfying it is inserted inN(a). The “if” part is more delicate. Letx 6= y 2 N(a). If y
is closer toa thanx theny was considered first. Our construction algorithm guarantees
that if we insertedx in N(a) thend(x; a) < d(x; y). If, on the other hand,x is closer
to a thany, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor cannot be removed by
a new neighbor inserted later).

We now must decide in which neighbor’s bag we put the rest of the nodes. We put
each node not infag[N(a) in the bag of its closest element ofN(a) (best-fitstrategy).
Observe that this requires a second pass onceN(a) is fully determined.

We are done now witha, and process recursively all its neighbors, each one with
the elements of its bag. Note that the resulting structure isa tree that can be searched
for anyq 2 S by spatial approximation for nearest neighbor queries. Thereason why
this works is that, at search time, we repeat exactly what happened withq during the
construction process (i.e. we enter into the subtree of the neighbor closest toq), until
we reachq. This is is becauseq is present in the tree, i.e., we are doing an exact search
after all.

Finally, we save some comparisons at search time by storing at each nodea its
covering radius, i.e., the maximum distanceR(a) betweena and any element in the
subtree rooted bya. The way to use this information is made clear in Section 2.2.

Figure 1 depicts the construction process. It is first invoked asBuildTree(a,S�fag) wherea is a random element ofS. Note that, except for the first level of the
recursion, we already know all the distancesd(v; a) for everyv 2 S and hence do not
need to recompute them. Similarly, some of thed(v;) distances at line 9 is already
known from line 6. The information stored by the data structure is the roota and theN() andR() values of all the nodes.

BuildTree (Node a, Set of nodes S)
1. N(a) ; // neighbors of a
2. R(a) 0 // covering radius
4. For v 2 S in increasing distance to a Do
5. R(a) max(R(a); d(v; a))
6. If 8b 2 N(a); d(v; a) < d(v; b) Then N(a) N(a) [fvg
7. For b 2 N(a) Do S(b) ;
8. For v 2 S �N(a) Do
9. argminb2N(a)d(v; b)

10. S() S() [fvg
11. For b 2 N(a) Do BuildTree (b, S(b))

Fig. 1. Algorithm to build thesa-tree.

2.2 Searching

Of course it is of little interest to search only for elementsq 2 S. The tree we have
described can, however, be used as a device to solve queries of any type for anyq 2 U.
We consider first range queries with radiusr.

The key observation is that, even ifq 62 S, the answers to the query are elementsq0 2 S. So we use the tree to pretend that we are searching for an elementq0 2 S. We
do not knowq0, but sinced(q; q0) � r, we can obtain fromq some distance information
regardingq0: by the triangle inequality it holds that for anyx 2 U, d(x; q) � r �d(x; q0) � d(x; q) + r.

Hence, instead of simply going to the closest neighbor, we first determine the closest
neighbor of q amongfag [N(a). We then enter intoall neighborsb 2 N(a) such
thatd(q; b) � d(q;)+2r. This is because the virtual elementq0 sought can differ fromq by at mostr at any distance evaluation, so it could have been inserted inside any of
thoseb nodes. In the process, we report all the nodesq0 we found close enough toq.
(A more sophisticated search scheme is given in [6], but it cannot be applied to our
dynamic version, so we prefer to omit it.)

Finally, the covering radiusR(a) is used to further prune the search, by not entering
into subtrees such thatd(q; a) > R(a) + r, since they cannot contain useful elements.

Figure 2 illustrates the search process on the left, starting from the tree rootp11.
Only p9 is in the result, but all the bold edges are traversed. On the right, we give the
search algorithm, initially invoked asRangeSearch(a,q,r), wherea is the tree
root. Note that in the recursive invocationsd(a; q) is already computed.

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10

RangeSearch (Node a, Query q,
Radius r)

1. If d(a; q) � R(a) + r Then
2. If d(a; q) � r Then Report a
3. dmin min fd(; q); 2 fag [N(a)g
4. For b 2 N(a) Do
5. If d(b; q) � dmin + 2r Then
6. RangeSearch (b,q,r)

Fig. 2. On the left, an example of the search process. On the right, the algorithm to search forq
with radiusr in a sa-tree.

We can also perform nearest neighbor searching by simulating a range search where
the search radius is reduced as we proceed. We have a priorityqueue of subtrees sorted
by the known lower bound distance between the subtree andq. Initially, we insert the
sa-treeroot in the data structure. Iteratively, we extract the (as far as it is known) closest
subtree, process its root, and insert all its subtrees in thequeue. This is repeated until
the queue gets empty or the lower bound distance is larger than r. For lack of space we
omit further details.

3 Incremental Construction

The construction of thesa-treeneeds to know all the elements ofS in advance. In
particular, it is difficult to add new elements once the tree is already built. To insert a
new elementx, we should go down the tree by the closest neighbor untilx must become
a neighbor of the current nodea, that is, untilx is closer toa than to anyb 2 N(a)
(Condition 1). All the subtree rooted atamust be rebuilt from scratch, since some nodes
that went into another neighbor could prefer now to get into the new neighborx.

Several insertion alternatives have been previously considered [7, 6]. The best me-
thods turned out to be the so-called “timestamping” and “insertion at the fringe”. We
propose here a novel technique based on ideas from these two methods.

Timestamping permits inserting an element with a techniquevery similar to that
of the static construction, by recording the time every element was inserted. Remark-
ably, this technique obtained a performance very similar tothat of the static version,
by avoiding any reconstruction. Insertion at the fringe, onthe other hand, limits the
maximum tree size where a new element can be inserted, with the aim of reconstruct-
ing only small subtrees. The technique permits us avoiding insertion at the point where
Condition 1 would require it, delaying it to a point downwards the tree. Surprisingly,

this technique evenimprovedthe performance in low dimensions, so there was a factor
largely compensating the cost of the reconstructions. Where this factor came from was
not clear at that time [7].

We have pursued this line and determined that the key fact is that these trees have a
reduced arity. Moreover, the main reason of the poor performance of thesa-treein low
dimensional spaces is its excessively high arity (the tree automatically adapts its arity to
the dimension, but not optimally). Hence we decided to focusdirectly on the maximum
permitted arity and made it a tuning parameter. The same delaying technique used to
limit the tree size to rebuild is now used to limit the tree arity. Moreover, by merging
this technique with timestamping, we have no reconstruction cost to compensate, so we
get the best of both worlds.

Observe that one of the nice features of the originalsa-treewas that it had no pa-
rameter to set, so any non-expert could just use it. Our new parameter does not harm
in this sense, because it can be set to1 to obtain the same performance of the original
sa-tree. On the other hand, very large improvements can be obtained in low dimensions
by appropriately setting the maximum tree arity. We get intothe details now.

3.1 Insertion

To construct thesa-treeincrementally we fix a maximum tree arity, and also keep a
timestamp of the insertion time of each element. When inserting a new elementx, we
add it as a neighbor at the appropriate pointa (Condition 1) only if the arity of nodea is
not already maximal. Otherwise, even whenx is closer toa than to anyb 2 N(a), we
forcex to choose the closest neighbor inN(a) and keep walking down the tree, until
we reach a nodea where Condition 1 is satisfied (x is closer toa than to anyb 2 N(a))
and the arity of nodea is not maximal (this eventually occurs at a tree leaf). At this
point we addx at the end of the listN(a), put the current timestamp tox and increment
the current timestamp.

Note that by reading neighbors from left to right we have increasing timestamps.
It also holds that the parent is always older than its children. Note also that now it is
not sure anymore that a new inserted elementx is a neighbor of the first nodea that
satisfies Condition 1 in its path. It may be that the arity ofa was maximal andx was
forced to choose a neighbor ofa. This has implications in the search process that will
be considered soon.

Figure 3 illustrates the insertion process. We follow only one path from the tree root
to the parent of the inserted element. The function is invoked asInsert(a,x), wherea is the tree root andx is the element to be inserted. Thesa-treecan now be built by
starting with a first single nodea whereN(a) = ; andR(a) = 0, and then performing
successive insertions.

Figure 4 compares the cost of incremental construction using our technique against
static construction for increasing subsets of the database. We show arities 4, 8, 16 and
32. In both cases, the construction performance improves aswe reduce the tree arity,
being by far better than the static construction (twice as fast on strings and four times
faster on vectors). Note that if we permit a sufficiently large arity (e.g., 32 on strings) the
incremental version becomes somewhat worse than the staticversion (whose arity is un-
limited). This shows that the reduced arity is a key factor inlowering construction costs.

Insert (Node a, Element x)
1. R(a) max(R(a); d(a; x))
2. argminb2N(a)d(b; x)
3. If d(a; x) < d(; x) ^ jN(a)j < MaxArity Then
4. N(a) N(a) [fxg
5. N(x) ;, R(x) 0
6. time(x) CurrentT ime
7. Else Insert (,x)

Fig. 3. Insertion of a new elementx into a dynamicsa-treewith roota. MaxArity is the maxi-
mum tree arity andCurrentT ime is the current time, incremented in each insertion.

This is clear, as the insertion cost with arityA isA logA n. On unlimited arity the aver-
age arity isA = O(logn), so the construction cost per element isO(log2 n= log logn)
[6]. We consider next how a reduced arity affects search time.

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction cost for n = 69,069 words

Static construction
Arity 4
Arity 8

Arity 16
Arity 32

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction cost for n = 100,000 vectors dimension 15

Static
Arity 4
Arity 8

Arity 16
Arity 32

Fig. 4. Static versus dynamic construction costs.

3.2 Searching

At search time we have to consider two facts. The first is that,at the time an elementx was inserted, a nodea in its path may not have been chosen as its parent because its
arity was already maximal. So instead of choosing the closest to x amongfag [N(a),
we may have chosen only amongN(a). This means that we have to removefag from
the minimization of line 3 in Figure 2. The second fact to consider is that, at the timex
was inserted, elements with higher timestamp were not present in the tree, sox could
choose its best neighbor only among elements older than itself.

Hence, we consider the neighborsfb1; : : : ; bkg of a from oldest to newest, disre-
gardinga, and perform the minimization as we traverse the list. This means that we
enter into the subtree ofbi if d(q; bi) � min(d(q; b1); : : : ; d(q; bi�1)) + 2r. That is, we
always enter intob1; we enter intob2 if d(q; b2) � d(q; b1) + 2r; and so on. Let us

stress again the reason: between the insertion ofbi andbi+j there may have appeared
new elements that chosebi just becausebi+j was not yet present, so we may miss an
element if we do not enter intobi because of the existence ofbi+j .

Up to now we do not really need the exact timestamps but just tokeep the neighbors
sorted by timestamp. We can make better use of the timestamp information in order
to reduce the work done inside older neighbors. Say thatd(q; bi) > d(q; bi+j) + 2r.
We have to enter into the subtree ofbi anyway becausebi is older. However, only the
elements with timestamp smaller than that ofbi+j should be considered when searching
insidebi; younger elements have seenbi+j and they cannot be interesting for the search
if they are insidebi. As parent nodes are older than their descendants, as soon aswe
find a node inside the subtree ofbi with timestamp larger than that ofbi+j we can stop
the search in that branch, because all its subtree is even younger.

Figure 5 shows the search algorithm, initially invoked asRangeSearch(a,q,r,1),
wherea is the tree root. Note thatd(a; q) is always known except in the first invocation.
Despite of the quadratic nature of the loop implicit in lines4 and 6, the query is of
course compared only once against each neighbor.

RangeSearch (Node a, Query q, Radius r, Timestamp t)
1. If time(a) < t ^ d(a; q) � R(a) + r Then
2. If d(a; q) � r Then Report a
3. dmin 1
4. For bi 2 N(a) in increasing timestamp order Do
5. If d(bi; q) � dmin + 2r Then
6. k min fj > i; d(bi; q) > d(bj ; q) + 2rg
7. RangeSearch (bi,q,r,time(bk))
8. dmin minfdmin; d(bi; q)g

Fig. 5. Searchingq with radiusr in a dynamicsa-tree.

Figure 6 compares this technique against the static one. In the case of strings, the
static method provides slightly better search time compared to the dynamic technique.
In vector spaces of dimension 15, arities 16 and 32 improve (by a small margin) the
static performance. We have also included an example in dimension 5, showing that in
low dimensions small arities largely improve the search time of the static method. The
best arity for searching depends on the metric space, but therule of thumb is that low
arities are good for low dimensions or small search radii.

The percentage retrieved in the space of strings for search radius 1 is 0.003%, for 2
is 0.037%, for 3 is 0.326% and for 4 is 1.757% aproximately.

We consider the number of distance evaluations instead of the CPU time because
the CPU overhead over the number of distance evaluations is negligible in thesa-tree,
unlike other structures.

It is important to notice that we have obtained dynamism and also have improved
the construction performance. In some cases we have also (largely) improved the search
performance, while in other cases we have paid a small price for the dynamism. Overall,

this turns out to be a very convenient choice. This techniquecan be easily adapted to
nearest neighbor searching with the same results.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search Radius

Query cost for n = 69,069 words

Static
Arity 4
Arity 8

Arity 16
Arity 32

50000

55000

60000

65000

70000

75000

80000

85000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost for n = 100,000 vectors dim. 15

Static
Arity 4
Arity 8

Arity 16
Arity 32

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost for n = 100,000 vectors dim. 5

Static
Arity 4
Arity 8

Arity 16
Arity 32

Fig. 6. Static versus dynamic search costs.

4 Deletions

To delete an elementx, the first step is to find it in the tree. Unlike most classical data
structures, doing this is not equivalent to simulating the insertion ofx and seeing where
it leads us to in the tree. The reason is that the tree was different at the timex was
inserted. Ifx were inserted again, it could choose to enter a different path in the tree,
which did not exist at the time of its first insertion.

An elegant solution to this problem is to perform a range search with radius zero,
that is, a query of the form(x; 0). This is reasonably cheap and will lead us to all the
places in the tree wherex could have been inserted.

On the other hand, whether this search is necessary is application dependent. The
application could return a handle when an object was inserted into the database. This
handle can contain a pointer to the corresponding tree node.Adding pointers to the
parent in the tree would permit to locate the path for free (interms of distance compu-

tations). Hence, in which follows, we do not consider the location of the object as part
of the deletion problem, although we have shown how to proceed if necessary.

We have studied several alternatives to delete elements from a dynamicsa-tree.
From the beginning we have discarded the trivial option of marking the element as
deleted without actually deleting it. As explained, this islikely to be unacceptable in
most applications. We assume that the element has to be physically deleted. We may, if
desired, keep its node in the tree, but not the object itself.

It should be clear that a tree leaf can always be removed without any complication,
so we focus on how to remove internal tree nodes.

4.1 Fake Nodes

Our first alternative to delete elementx is to leave its node in the tree (without content)
and mark it as deleted. We call these nodesfake. Although cheap and simple at deletion
time, we must now figure out how to carry out a consistent search when some nodes do
not contain an object.

Basically, if nodeb 2 N(a) is fake, we do not have enough information to avoid
entering into the subtree ofb once we have reacheda. So we cannot includeb in the
minimization and have to enter always its subtree (except ifwe can use the timestamp
information ofb to prune the search).

The search performed at insertion time, on the other hand, has to follow just one
path in the tree. In this case, one is free to choose insertingthe new element into any
fake neighbor of the current node, or into the closest non-fake neighbor. A good policy
is, however, trying not to increase the size of subtrees rooted at fake nodes, as eventually
they will have to be rebuilt (see later).

Hence, although deletion is simple, the search process degrades its performance.

4.2 Reinserting Subtrees

A widespread idea in the Euclidean range search community isthat reinserting the
elements of a disk page may be benefical because, with more elements in the tree, the
space can be clustered better. We follow this principle now to obtain a method with
costly deletions but good search performance.

When nodex is deleted, we disconnect the subtree rooted atx from the main tree.
This operation does not affect the correctness of the remaining tree, but we have now to
reinsert the subtrees rooted at the nodes ofN(x). To do this efficiently we try to reinsert
complete subtrees whenever possible.

In order to reinsert a subtree rooted aty, we follow the same steps as for inserting
a fresh objecty, so as to find the insertion pointa. The difference is that we have to
assume thaty is a “fat” object with radiusR(y). That is, we can choose to put the
whole subtree rooted aty as a new neighbor ofa only if d(y; a) +R(y) is smaller thand(y; b) for anyb 2 N(a). Similarly, we can choose to go down by neighbor 2 N(a)
only if d(y;) + R(y) is smaller thand(y; b) for anyb 2 N(a). When none of these
conditions hold, we are forced to split the subtree rooted aty into its elements: one is
a single elementy, and the others are the subtrees rooted atN(y). Once we split the
subtree, we continue the insertion process with each constituent separately.

Every time we insert a node or a subtree, we pick a fresh timestamp for the node
or the root of the subtree. The elements inside the subtree should get fresh timestamps
while keeping the relative ordering among the subtree elements. The easiest way to
do this is to assume that timestamps are stored relative to those of their parent. In this
way, nothing has to be done. We need, however, to store at eachnode the maximum
differential time stored in the subtree, so as to updateCurrentT ime appropriately
when a whole subtree is reinserted. This is easily done at insertion time and omitted in
the pseudocode for simplicity.

During reinsertion, we also modify the covering radii of thetree nodesa traversed.
When inserting a whole subtree we have to addd(y; a) + R(y), which may be larger
than necessary. This involves at search time a price for having reinserted a whole subtree
in one shot.

Note that it may seem that, when searching the place to reinsert the subtrees of a
removed nodex, one could save some time by starting the search at the parentof x.
However, the tree has changed since the time the subtree ofx was created, and new
choices may exist now.

Figure 7 shows the algorithm to reinsert a tree with rooty into a dynamicsa-tree
rooted ata. The deletion of a nodex is done by first locating it in the tree (say,x 2N(b)), then removing it fromN(b), and finally reinserting every subtreey 2 N(x)
usingReinsert(a,y).

Reinsert (Node a, Node y)
1. If jN(a)j < MaxArity Then M fag [N(a) Else M N(a)
2. 1 argminb2Md(b; y)
3. 2 argminb2M�f1gd(b; y)
4. If d(1; y) +R(y) � d(2; y) Then // keep subtree together
5. R(a) max(R(a); d(a; y) +R(y))
6. If 1 = a Then // insert it here
7. N(a) N(a) [fyg
8. time(y) CurrentT ime // subtree shifts automatically
9. Else Reinsert (1, y) // go down

10. Else // split subtree
11. For z 2 N(y) Do Reinsert (a, z)
12. N(y) ;, R(y) 0
13. Reinsert (a, y)
Fig. 7. Simple algorithm to reinsert a subtree with rooty into a dynamicsa-treewith roota.

Optimization. A further optimization to the subtree reinsertion process makes a more
clever use of timestamps. Say thatx will be deleted, and letA(x) be the set of ancestors
of x, that is, all the nodes in the path from the root tox. For each node belonging to
the subtree rooted atx we haveA(x) � A(). So, when node was inserted, it was
compared against all the neighbors of every node inA(x) whose timestamp was lower
than that of. Using this information we can avoid evaluating distances to these nodes

when revisiting them at the time of reinserting. That is, when looking for the neighbor
closest to, we know that the one inA(x) is closer to than any older neighbor, so we
have to consider only newer neighbors. Note that this is valid as long as we reenter the
same path where was inserted previously.

The average cost of subtree reinsertion is as follows. Assume that we just reinsert the
elements one by one. Assuming that the tree has always arityA and that it is perfectly
balanced, the average size of a randomly chosen subtree turns out to belogA n. As every
(re)insertions costsA logA n, the average deletion cost isA log2A n. This is much more
costly than an insertion.

4.3 Combining both Methods

We have two methods. Fake nodes delete elements for free but degrade the search per-
formance of the tree. Subtree reinsertion make a costly subtree reinsertion but try to
maintain the search quality of the tree. Note that the cost ofreinserting a subtree would
not be much different if it contained fake nodes, so we could remove all the fake nodes
with a single subtree reinsertion, therefore amortizing the high cost of the reinsertion
over many deletions.

Our idea is to ensure that every subtree has at most a fraction� of fake nodes. We
say that such subtrees are “balanced”. When we mark a new nodex as fake, we check
if we have not unbalanced it. In this case,x is discarded and its subtrees reinserted. The
only difference is that we never insert a subtree whose root is fake, rather, we split the
subtree and discard the fake root.

A complication is that removing the subtree rooted atx may unbalance several
ancestors ofx, even ifx is just a leaf that can be directly removed, and even if the
ancestor is not rooted at a fake node. As an example, considera unary tree of height3n
where all the nodes at distance3i from the root,i � 0, are fake. The three is balanced
for � = 1=3, but removing the leaf or marking as fake its parent unbalances every node.

We opt for a simple solution. We look for the lowest ancestor of x that gets unbal-
anced and reinsert all the subtree rooted atx. Because of this complication, we reinsert
whole subtrees only when they have no fake nodes.

This technique has a nice performance property. Even if we reinserted the elements
one by one (instead of whole subtrees), we would have the guarantee that we would
reinsert a subtree only when a fraction� of its elements were fake. This would mean
that if the size of the subtree to rebuild werem, we would paym(1 � �) reinsertions
for each�m deletions made in the subtree. Hence the amortized cost of a deletion
would be at most(1��)=� times the cost of an insertion, that is,(1��)=� A logA n.
Asymptotically, the tree would work as if we permanently hada fraction� of fake
nodes. Hence, we can control the tradeoff between deletion and search cost. Note that
pure fake nodes corresponds to� = 1 and pure subtree reinsertion to� = 0.

4.4 Experimental Comparison

Let us now compare the three methods to handle deletions on the space of words using
arity 16. Figure 8 shows the deletion cost for the first 10% (left) or 40% (right) of the

database. On the left we have shown the case of full subtree reinsertion (that is, reinsert-
ing the subtrees after each deletion), with and without the final optimization proposed.
As it can be seen, we save about 50% of the deletion cost with the optimization. We
also show that one can only rarely insert whole subtrees, as reinserting the elements
one by one has almost the same cost. Hence the algorithms could be simplified without
sacrificing much. We also show the combined method with� = 1%, 3% and 5%. On
the right we have shown much larger values of�, from 0% (full reinsertion) until 100%
(pure fake nodes), as well as larger percentages of deletions (only the optimized version
of reinsertions is used from now on).

We compare the methods deleting different percentages of the database to make
appreciable not only the deletion cost per element but also to show the cumulative effect
of deletions over the structure.

It can be seen that, even with full reinsertion, the individual deletion cost is not so
high. For example, the average insertion cost in this space is about 58 distance compu-
tations per element. With the optimized method, each deletion costs about 173 distance
computations, i.e., 3 times the cost of an insertion. The combined method largely im-
proves over this: using� as low as 1% we have a deletion cost of 65 distance computa-
tions, which is close to the cost of insertions, and with�=3% this reduces to 35.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e
ev

al
ua

tio
ns

 x
 1

00
0

Percentage of database deleted

Deletion cost for n = 69,069 words Arity 16

Full subtree reinsertion
Full subtree reinsertion (opt)
Elementwise reinsertion (opt)
Combined --- 1% fake nodes (opt)
Combined --- 3% fake nodes (opt)
Combined --- 5% fake nodes (opt)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40

D
is

ta
nc

e
ev

al
ua

tio
ns

 x
 1

00
0

Percentage of database deleted

Deletion cost for n = 69,069 words Arity 16

Full reinsertion (0% fake)
1% fake nodes
3% fake nodes
10% fake nodes
30% fake nodes
50% fake nodes
Pure fake nodes (100% fake)

Fig. 8. Deletion costs using different methods.

Let us now consider how the search costs are affected by deletions. We search on an
index built on half of the elements of the database. This halfis built by inserting more
elements and then removing enough elements to leave 50% of the set in the index. So
we compare the search on sets of the same size where a percentage of the elements has
been deleted in order to leave the set in that size. For example, 30% deletions means that
we inserted 49,335 elements and then removed 14,800, so as toleave 34,534 elements
(half of the set).

Figure 9 shows the results. As it can be seen, even with full reinsertions (� = 0%)
the search quality degrades, albeit hardly noticeably and non-monotonically with the
number of deletions made. As� grows, the search costs increase because of the need to
enter every children of fake nodes. The difference in searchcost ceases to be reasonable

as early as� = 10%, and in fact it is significant even for� = 1%. So one has to choose
the right tradeoff between deletion and search cost depending on the application. A
good tradeoff for strings is� = 1%.

5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost for n = 34,534 words Arity 16, alpha = 0%

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost for n = 34,534 words Arity 16, alpha = 1%

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost for n = 34,534 words Arity 16, alpha = 3%

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost for n = 34,534 words Arity 16, alpha = 10%

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

Fig. 9. Search costs using different deletion methods. In reading order we show the cases of� =
0%, 1%, 3% and 10%.

Figure 10 shows the same data in a way that permits comparing the change in search
cost as� grows.

5 Conclusions

We have presented a dynamic version of thesa-treedata structure, which is able of
handling insertions and deletions efficiently without affecting its search quality. Very
few data structures for searching metric spaces are fully dynamic. Furthermore, we
have shown how to improve the behavior of thesa-treein low dimensional spaces, both
for construction and search costs.

Thesa-treewas a promising data structure for metric space searching, with several
drawbacks that prevented it from being practical: high construction cost in low dimen-
sional spaces, poor search performance in low dimensional spaces or queries with high
selectivity, and unability to accommodate insertions and deletions.

5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query Cost for n = 34,534 words Arity 16, 10% deleted

alpha = 0%
alpha = 1%
alpha = 3%

alpha = 10%
alpha = 30%
alpha = 50%

alpha = 100%
5000

10000

15000

20000

25000

30000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost for n = 34,534 words Arity 16, 40% deleted

alpha = 0%
alpha = 1%
alpha = 3%

alpha = 10%
alpha = 30%
alpha = 50%

alpha = 100%

Fig. 10. Search costs using different deletion methods, comparing�. On the left we have deleted
10% of the database, on the right, 40%.

We have addressed all these weaknesses. Our new dynamicsa-treestand out as a
practical and efficient data structure that can be used in a wide range of applications,
while retaining the good features of the original data structure.

As an example to give an idea of the behavior of our dynamicsa-tree, let us con-
sider the space of vectors in dimension 15 using arity 16. We save 52.63% of the static
construction cost, and improve the search time by 0.91% on average. A deletion with
full element reinsertion costs on average 143 distance evaluations, which is 2.43 times
the cost of an insertion. If we allow 10% of fake nodes in the structure, then the cost of
a deletion drops to 17 and the search time becomes 3.04% worsethan the static version.

We are currently pursuing in the direction of making thesa-treework efficiently
in secondary memory. In that case both the number of distancecomputations and disk
accesses are relevant.

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index struc-
tures for improving the performance of multimedia databases. ACM Computing Surveys,
33(3):322–373, September 2001.

2. S. Brin. Near neighbor search in large metric spaces. InProc. 21st Conference on Very Large
Databases (VLDB’95), pages 574–584, 1995.

3. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquı́n. Searching in metric spaces.ACM
Computing Surveys, 33(3):273–321, September 2001.

4. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys,
30(2):170–231, 1998.

5. G. Navarro. Searching in metric spaces by spatial approximation. InProc. String Processing
and Information Retrieval (SPIRE’99), pages 141–148. IEEE CS Press, 1999.

6. G. Navarro. Searching in metric spaces by spatial approximation. The VLDB Journal, 2002.
To appear.

7. G. Navarro and N. Reyes. Dynamic spatial approximation trees. InProc. XXI Conference of
the Chilean Computer Science Society (SCCC’01), pages 213–222. IEEE CS Press, 2001.

