
t-Spanners as a Data Struturefor Metri Spae Searhing ?Gonzalo Navarro1, Rodrigo Paredes1, and Edgar Ch�avez21 Center for Web Researh, Dept. of Computer Siene, University of Chile. BlanoEnalada 2120, Santiago, Chile. fgnavarro,raparedeg�d.uhile.l2 Esuela de Cienias F��sio-Matem�atias, Univ. Mihoaana, Morelia, Mih. M�exio.elhavez�zeus.u.umih.mx.Abstrat. A t-spanner, a subgraph that approximates graph distaneswithin a preision fator t, is a well known onept in graph theory.In this paper we use it in a novel way, namely as a data struture forsearhing metri spaes. The key idea is to onsider the t-spanner as anapproximation of the omplete graph of distanes among the objets,and use it as a ompat devie to simulate the large matrix of distanesrequired by suessful searh algorithms like AESA [Vidal 1986℄. Thet-spanner provides a time-spae tradeo� where full AESA is just oneextreme. We show that the resulting algorithm is ompetitive againsturrent approahes, e.g., 1.5 times the time ost of AESA using only3.21% of its spae requirement, in a metri spae of strings; and 1.09times the time ost of AESA using only 3.83 % of its spae requirement,in a metri spae of douments. We also show that t-spanners providebetter spae-time tradeo�s than lassial alternatives suh as pivot-basedindexes. Furthermore, we show that the onept of t-spanners has po-tential for large improvements.1 IntrodutionThe onept of \approximate" searhing has appliations in a vast number of�elds. Some examples are non-traditional databases (where the onept of ex-at searh is of no use and we searh for similar objets, e.g. databases storingimages, �ngerprints or audio lips); mahine learning and lassi�ation (wherea new element must be lassi�ed aording to its losest existing element); im-age quantization and ompression (where only some vetors an be representedand those that annot must be oded as their losest representable point); textretrieval (where we look for words in a text database allowing a small numberof errors, or we look for douments whih are similar to a given query or dou-ment); omputational biology (where we want to �nd a DNA or protein sequenein a database allowing some errors due to typial variations); funtion predition? This work has been supported in part by the Millenium Nuleus Center for WebResearh, Grant P01-029-F, Mideplan, Chile (1st and 2nd authors), CYTED VII.19RIBIDI Projet (all authors), and AT&T LA Chile (2nd author).



(where we want to searh the most similar behavior of a funtion in the past soas to predit its probable future behavior); et.All those appliations have some ommon harateristis. There is a universeX of objets, and a nonnegative distane funtion d : X � X �! R+ de�nedamong them. This distane satis�es the three axioms that make the set a metrispae d(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is alled the \triangle inequality" and is valid for many rea-sonable similarity funtions. The smaller the distane between two objets, themore \similar" they are. This distane is onsidered expensive to ompute (think,for instane, in omparing two �ngerprints). We have a �nite database U � X,whih is a subset of the universe of objets and an be preproessed (to build anindex, for instane). Later, given a new objet from the universe (a query q), wemust retrieve all similar elements found in the database. There are two typialqueries of this kind:(a) Retrieve all elements whih are within distane r to q.This is, fx 2 U = d(x; q) � rg.(b) Retrieve the k losest elements to q in U.This is, A � U suh that jAj = k and 8x 2 A; y 2 U �A; d(x; q) � d(y; q).Given a database of jUj = n objets, all those queries an be triviallyanswered by performing n distane evaluations. The goal is to struture thedatabase suh that we perform less distane evaluations. Sine the distane isusually expensive to ompute, we take the number of distane evaluations as themeasure of the searh omplexity. This is the approah we take in this paper.A partiular ase of this problem arises when the spae is Rk . There are e�e-tive methods for this ase, suh as kd-trees, R-trees, X-trees, et. [6℄. However,for roughly 20 dimensions or more those strutures ease to work well. We fousin this paper in general metri spaes, although the solutions are well suitedalso for k-dimensional spaes. It is interesting to notie that the onept of \di-mensionality" an be translated to metri spaes as well: the typial feature inhigh dimensional spaes is that the probability distribution of distanes amongelements has a very onentrated histogram (with larger mean as the dimensiongrows), diÆulting the work of any similarity searh algorithm [4℄. We say thata general metri spae is high dimensional when its histogram of distanes isonentrated.There are a number of methods to preproess the set in order to redue thenumber of distane evaluations. All them work by disarding elements with thetriangle inequality. See [4℄ for a reent survey.By far, the most suessful tehnique for searhing metri spaes ever pro-posed is AESA [10℄. Its main problem is that it requires preomputing and



storing a matrix with all the O(n2) distanes among the objets of U. This highspae requirement has prevented it from being seriously onsidered exept invery small domains.On the other hand, the onept of a t-spanner is well known in graph theory[9℄. Let G be a onneted graph G(V;E) with a nonnegative ost funtion d(e)assigned to its edges e 2 E, and dG(u; v) be the ost of the heapest path betweenu; v 2 V . Then, a t-spanner of G is a subgraph G0(V;E0) where E0 � E and8u; v 2 V; dG0(u; v) � t � dG(u; v). (It should be lear that dG(u; v) � dG0(u; v)also holds beause G0 is a subgraph of G.) Several algorithms to build t-spannersare known [5, 7℄, and we have proposed some spei� onstrution algorithms forour present metri spae appliation [8℄ (omplete G, metri osts, and t < 2).The naive onstrution algorithm is O(n4) time. On eulidean spaes, this dropsto O(n logn). Our onstrution omplexity [8℄ for general metri spaes is aroundO(n2:2) in pratie.Our main idea is to ombine both onepts so as to use the t-spanner as aontrolled approximation to the full AESA distane matrix, so as to obtain aompetitive spae-time tradeo�. We show experimentally that t-spanners provideompetitive performane as simple replaements of AESA. At the end, we arguethat they give us tools for several improvements that are under study.We apply the idea to approximate ditionary searhing under the edit dis-tane, whih is a ommon problem in text databases. As an example, if wesearh permitting one error, a 1.4-spanner (needing only a 3.2% of the memoryof AESA) needs only 26% distane evaluations over AESA. If we permit twoerrors the overhead in distane omputations is 15%, and 46% for three errors.A lassial pivot-based tehnique using the same amount of memory needs muhmore distane evaluations.We also apply the idea to approximate doument retrieval form textualdatabase using the osine distane. As an example, if we use a 2.0-spanner weneed only a 3.8% of the memory of AESA for the index. With the 2.0-spannerindex, we need only 9% distane evaluations over AESA in order to retrieve 1doument on average, and 8% distane evaluations over AESA to retrieve 10douments on average.2 Previous WorkDi�erent data strutures have been proposed to �lter out elements at searh timebased on the triangle inequality [4℄. In this paper we will fous on a partiularlass of algorithms alled \pivot-based". These algorithms selet a set of pivotsfp1 : : : pkg � U and store a table of kn distanes d(pi; u); i 2 f1 : : : kg; u 2 U.To solve a range query (q; r), we measure d(q; p1) and use the fat that, beauseof the triangle inequality,d(q; u) � jd(q; p)� d(u; p)j ;so we an disard every u 2 U suh that jd(q; p1)� d(u; p1)j > r, as this impliesd(q; u) > r. One we are done with p1 we try to disard elements from the



remaining set using p2 and so on until we use all the k pivots. The elements uthat still annot be disarded at the end are diretly ompared against q. Fig. 1(left) shows the onept graphially.
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Fig. 1. On the left, the ring of elements not disarded by pivot p. On the right, therelaxed ring used when using a t-spanner. We denote as D the (real or approximated)distane between p and q.In AESA [10℄ this idea is taken to the extreme k = n, that is, every elementis a potential pivot and hene we need a matrix with all the n(n�1)=2 distanespreomputed. Sine we are free to hoose any pivot, the \next" pivot is hosenfrom the remaining set of elements, whih improves loality and the searh ost.Additionally, as it is well known that pivots loser to the query are muh moree�etive, andidates to pivots u are sorted aording to the sum of their lowerbound distanes to q up to now. That is, if we have used pivots fp1 : : : pig andwant to hoose pivot pi+1, we hoose the element u minimizingSumLB(u) = iXj=1 jd(pj ; q)� d(pj ; u)j (1)AESA is experimentally shown to have almost onstant ost as a funtion ofn. The problem is that storing O(n2) distanes is unrealisti for most applia-tions. This has restrited an exellent algorithm to the few appliations wheren is small. Our goal in this paper is to overome this weakness.3 Our ProposalOur main idea is to use t-spanners as low memory replaement of the full distanematrix, allowing a ontrolled approximation to the true distanes. Let us assume



we have a omplete graph G(U;U � U), where d(u; v) = dG(u; v) is the metrispae distane between elements u and v. A t-spanner G0(U; E) of G wouldpermit us estimate the distane between every pair of objets within a fator t,without the need to store O(n2) distanes but only jEj edges. We note that, forevery u; v 2 U, d(u; v) � dG0(u; v) � t � d(u; v) (2)whih permits us adapting AESA to this approximated distane.Let us return to the ondition to disard an element u with a pivot p. Theondition to be outside the ring an be rewritten asd(p; u) < d(p; q)� r or d(p; u) > d(p; q) + r : (3)If we only know dG0(p; u), we an use Eqs. (2) and (3) to obtain a new onditionthat implies Eq. (3) and hene guarantees that d(q; u) > r:dG0(p; u) < d(p; q)� r or dG0(p; u) > t � (d(p; q) + r) : (4)Therefore, a pivot p an disard every element outside the ring dG0(p; u) 2[d(p; q)� r ; t � (d(p; q) + r)℄. Fig. 1 (right) illustrates.What we have obtained is a relaxed version of AESA, whih requires lessmemory (O(jEj) instead of O(n2)) and, in exhange, disards less element perpivot. As t tends to 1, our approximation beomes better but we need more andmore edges. Hene we have a spae-time tradeo� where the full AESA is justone extreme.Sine we have only an approximation to the distane, we annot diretly useEq. (1). To ompensate the e�et of the preision fator t, we de�ne �t, andrewrite Eq. (1) as follows:sumLB0(u) = k�1Xi=0 ���d(pi; q)� dG0(pi; u) � �t���; �t = 2=t+ 13 (5)Our searh algorithm is as follows. We start with a set of andidate nodes C,whih is initially U. Then, we hoose a node p 2 C minimizing SumLB0 (Eq. (5))and remove it from C. We measure D = d(p; q) and report p if D � r. Now,we run Dijkstra's shortest path algorithm in the t-spanner starting at p, untilthe last node v whose distane to p gets omputed satis�es dG0(v; p) > t(D+ r).(Sine Dijkstra's algorithm gives the distanes to p in inreasing order, we knowthat all the remaining nodes will be farther away.) By Eq. (4), we keep from Conly the nodes u suh that D� r � dG0(p; u) � t(D + r). We repeat these stepsuntil C = ;. Fig. 2 depits the algorithm.The analysis is similar to that of AESA. Let ni be the number of pivots wehave to onsider before we an remove node ui from C (it may be neessary to�nally ompare q against ui diretly). Then the number of distane omputationsmade by AESA is maxi=1:::n ni and its extra CPU ost is Pi=1:::n ni (whih isbetween O(n) and O(n2)). In pratie it is shown that the number of distaneevaluations is lose to O(1) and the extra CPU time to O(n) [10℄.



Searh (Query q, Radius r, t-Spanner G0)C  U�t  (2=t+ 1)=3for p 2 C do SumLB(p) 0while C 6= ; dop argmin2CSumLB0()C  C � fpgD  d(q; p)if D � r then Report pdG0  Dijkstra(G0; p; t(D + r))for u 2 C doif dG0(p; u) 62 [D � r; t(D + r)℄ thenC  C � fugelse SumLB0(u) SumLB0(u) + jD � dG0(p; v) � �tjFig. 2. Searh algorithm. Dijkstra(G0; p; x) omputes the distanes from p in G0 forall nodes up to distane x, and marks the remaining ones as \farther away".In our ase, however, we have the additional ost of running Dijkstra. Albeitwe are interested only in the nodes belonging to C, we need to ompute thedistanes to all the others to obtain the ones we need. We remark that thisalgorithm works only up to the point where the next losest element it extratsis far enough. Overall, this an be as bad as O(njEj logn) or O(n3) dependingon the version of Dijkstra we use. On the other hand, if we assume that wework to obtain little more than the distanes we preserve in C, the overall ostis only that of AESA multiplied by O(logn). In any ase, we remind that weare fousing on appliations where the ost to ompute d dominates even heavyextra CPU osts.4 Experimental ResultsWe have tested our t-spanner on two real-world metri spaes. The �rst is astring metri spae using the edit distane (a disrete funtion that measuresthe minimum number of harater insertions, deletions and replaements neededto make them equal). The strings form an English ditionary, where we indexa subset of n = 23,023 words. The seond is a spae of 1,215 douments underthe Cosine distane, whih is used to retrieve douments with higher rank withrespet to a query (i.e., loser to the query point under Cosine distane) [1℄.Both spaes are of interest to Information Retrieval appliations.As our index data struture we use t-spanners with preision fators t 2[1:4; 2:0℄, and ompare them against AESA. Sine t-spanners o�er a time-spaetradeo� and AESA does not, we onsider also pivot-based indexes with varyingnumber of pivots. For every t value, we measure the size of the resulting t-spanner



and build a pivot-based index using the same amount of memory (pivots arehosen at random). This way we ompare t-spanners against the lassial spae-time alternative tradeo�. Note that AESA needs more than 250 millions of ells(1 gigabytes of memory) even for the relatively small example of strings.Sine in some ases the pivots were too many ompared to the average num-ber of andidates to eliminate, we deided to stop using the pivots when theremaining set of andidates was smaller than the remaining set of pivots to use.This way we never pay more for having more pivots available than neessary.Also, it turns out that even the smallest number of pivots shown is beyond theoptimal sometimes. In these ases we show also the result with less pivots untilwe reah the optimum.4.1 Strings under Edit DistaneIn the spae of strings, we selet 100 queries randomly from ditionary words notinluded in the index, and searh with radii r = 1, 2, 3, whih return 0.0041%,0.036% and 0.29% of the database, respetively. Tables 1, 2 and 3 show the sizeof the index strutures tested, as well as the distane evaluations required forsearhing. t jE0j r = 1 r = 2 r = 31.4 8,507,720 27.66 98.54 723.201.5 3,740,705 34.55 135.59 944.131.6 2,658,556 39.00 167.36 1188.441.7 1,861,260 42.53 185.24 1205.321.8 1,249,313 56.15 267.22 1581.681.9 901,577 62.79 293.80 1763.812.0 626,266 96.25 471.35 2306.07Table 1. t-Spanner index size and distane evaluations at query time. Every edgeneeds two mahine words of storage.
n(n� 1)=2 r = 1 r = 2 r = 3265,017,753 21.83 85.05 495.05Table 2. AESA struture size and distane evaluations at query time. Every ell entryneeds one mahine word of storage.As seen in Tables 1 and 2, our indexes are ompetitive against AESA anduse only a fration of its spae (e.g., only 3.21% for t = 1:4). With respet to



t equivalent # of pivots r = 1 r = 2 r = 31.4 739 539.48 642.65 1251.151.5 325 248.13 318.57 1685.521.6 230 181.80 268.40 2129.341.7 161 132.13 256.17 2845.851.8 108 86.75 321.08 3956.211.9 78 64.26 465.84 5047.142.0 54 49.29 748.81 6082.60Table 3. Pivot table struture and distane evaluations at query time. Every table ellneeds one mahine word. We have omputed the amount of pivots that orresponds tothe t-spanner size for every t.pivots (Tables 1 and 3), in almost every ase the orresponding t-spanners usethe spae better.Figures 3, 4 and 5 present the results graphially. We have hosen to drawa line to represent AESA, although, sine it permits no spae-time tradeo�s, apoint would be the orret representation. The position of this point in the xaxis would be 132.5, far away from the right end of the plot.
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Fig. 3. Distane evaluations, searh radius r = 1.4.2 Douments under Cosine DistaneIn the spae of douments, we selet 50 queries randomly from the doumentdatabase not inluded in the index, and searh with radii hosen to retrieve 1or 10 douments per query (r = 0:1325; 0:167 respetively). Tables 4, 5 and 6
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Fig. 4. Distane evaluations, searh radius r = 2.
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Fig. 5. Distane evaluations, searh radius r = 3.show the size of the index strutures tested, as well as the distane evaluationsrequired for searhing.As seen in Tables 4 and 5, our indexes are very ompetitive against AESAand use only a fration of its spae (e.g., only 3.84% for t = 2:0). With respet topivots (Tables 4 and 6), in all ases the orresponding t-spanners use the spaebetter.Figures 6 and 7 present the results graphially. We have hosen to draw aline to represent AESA.5 ConlusionsWe have presented a new approah to metri spae searhing, whih is basedon using a t-spanner data struture as an approximate map of the spae. This



retrieving retrievingt jE0j 1 doument 10 douments1.4 266,590 191.60 210.841.5 190,145 193.04 212.781.6 125,358 195.14 212.301.7 109,387 194.96 215.301.8 87,618 197.20 216.381.9 43,336 201.76 218.982.0 28,239 205.60 223.02Table 4. t-Spanner index size and distane evaluations at query time. Every edgeneeds two mahine words of storage.retrieving retrievingn(n� 1)=2 1 doument 10 douments737,505 187.32 206.26Table 5. AESA struture size and distane evaluations at query time. Every ell entryneeds one mahine word of storage.permits us trading spae for query time. We have shown experimentally thatthe alternative is ompetitive against existing solutions. In partiular we haveshown that t-spanners are speially ompetitive in appliations of interest toInformation Retrieval: strings under edit distane and douments under osinedistane. For example, in an approximate string mathing senario typial oftext databases, we show that t-spanners provide better spae-time tradeo�s om-pared to the lassial pivot-based solutions. It also permits approximating AESA,whih is an unbeaten index, within 50% of extra time using only about 3% of thespae it requires. This beomes a feasible approximation to AESA, whih in itsretrieving retrievingt equivalent # of pivots 1 doument 10 douments1.4 438 256.54 288.541.5 312 273.80 281.281.6 206 281.98 307.461.7 180 275.42 319.201.8 144 279.48 307.041.9 71 251.30 269.702.0 46 232.98 252.20Table 6. Pivot table struture and distane evaluations at query time. Every table ellneeds one mahine word. We have omputed the amount of pivots that orresponds tothe t-spanner size for every t.
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Fig. 6. Distane evaluations, searh radius r = 0:1325, retrieving 1 doument.
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Fig. 7. Distane evaluations, searh radius r = 0:167, retrieving 10 douments.original form annot be implemented in pratie beause of its quadrati mem-ory requirements. Furthermore, for doument retrieval in a textual database, weneed a 9% extra time over AESA, using only 4% of its memory requirement.On the other hand, t-spanners have a large potential for improvements weare pursuing. A �rst one is that we do not really need the same preision t forall the edges. Shorter edges are more important than longer edges, as Dijkstratends to use shorter edges to build the shortest paths. Using a t that dependson the distane to estimate may give us better spae-time tradeo�s.Another idea is that we an build a t-spanner and use it as a t0-spanner,for t0 < t. This may lose some relevant elements but improves the searh time.The result is a probabilisti algorithm, whih is a new suessful trend in metrispae searhing [3, 2℄. In partiular, we have observed that in order to build at-spanner, many distanes are estimated better than t times the real one, so



this idea seems promising. For example, a preliminary experiment in the stringmetri spae shows that, with a 2.0-spanner and using t0 = 1:9, we need only53% of the distane omputations to retrieve the 92% of the result.Finally, another idea is to use the t-spanner as a navigational devie. A pivotis muh more e�etive if it is loser to the query, as the ball of andidate elementshas muh smaller volume. We an use the t-spanner edges to start at a randomnode and approah the query by neighbors.Referenes1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.2. B. Bustos and G. Navarro. Probabilisti proximity searhing algorithms based onompat partitions. In Pro. 9th International Symposium on String Proessingand Information Retrieval (SPIRE 2002), LNCS. Springer, 2002. To appear.3. E. Ch�avez and G. Navarro. A probabilisti spell for the urse of dimensionality. InPro. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX'01),LNCS 2153, pages 147{160, 2001.4. E. Ch�avez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Proximity searhingin metri spaes. ACM Computing Surveys, 33(3):273{321, September 2001.5. E. Cohen. Fast algorithms for onstruting t-spanners and paths with streth t.SIAM J. on Computing, 28:210{236, 1998.6. V. Gaede and O. G�unther. Multidimensional aess methods. ACM ComputingSurveys, 30(2):170{231, 1998.7. J. Gudmundsson, C. Levopoulos, and G. Narasimhan. Improved greedy algo-rithms for onstruting sparse geometri spanners. In Pro. 7th SandinavianWorkshop on Algorithm Theory (SWAT 2000), LNCS v. 1851, pages 314{327,2000.8. G. Navarro and R. Paredes. Pratial onstrution of metri t-spanners. TehnialReport TR/DCC-2002-4, Dept. of Computer Siene, Univ. of Chile, July 2002.9. D. Peleg and A. Sha�er. Graph spanners. Journal of Graph Theory, 13(1):99{116,1989.10. E. Vidal. An algorithm for �nding nearest neighbors in (approximately) onstantaverage time. Patt. Reog. Lett., 4:145{157, 1986.


