
Probabilistic Proximity Searching AlgorithmsBased on Compact Partitions ?Benjamin Bustos2 and Gonzalo Navarro1;21 Center for Web Research2 Departamento de Ciencias de la Computaci�on, Universidad de ChileBlanco Encalada 2120, Santiago, Chilefbebustos,gnavarrog@dcc.uchile.clAbstract. The main bottleneck of the research in metric space search-ing is the so-called curse of dimensionality, which makes the task ofsearching some metric spaces intrinsically di�cult, whatever algorithmis used. A recent trend to break this bottleneck resorts to probabilistic al-gorithms, where it has been shown that one can �nd 99% of the elementsat a fraction of the cost of the exact algorithm. These algorithms are wel-come in most applications because resorting to metric space searchingalready involves a fuzziness in the retrieval requirements. In this paperwe push further in this direction by developing probabilistic algorithmson data structures whose exact versions are the best for high dimensions.As a result, we obtain probabilistic algorithms that are better than theprevious ones. We also give new insights on the problem and propose anovel view based on time-bounded searching.1 IntroductionThe concept of proximity searching has applications in a vast number of�elds, for example: multimedia databases, machine learning and classi�-cation, image quantization and compression, text retrieval, computationalbiology, function prediction, etc. All those applications have in commonthat the elements of the database form a metric space [6], that is, it ispossible to de�ne a positive real-valued function d among the elements,called distance or metric, that satis�es the properties of strict positive-ness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)), and triangleinequality (d(x; z) � d(x; y) + d(y; z)). For example, a vector space isa particular case of metric space, where the elements are tuples of realnumbers and the distance function belongs to the Ls family, de�ned asLs ((x1; : : : ; xk); (y1; : : : ; yk)) = �P1�i�k jxi � yijs�1=s. For example, L2is the Euclidean distance.? Work supported by the Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

One of the typical queries that can be posed to retrieve similar objectsfrom a database is a range query, which retrieves all the elements withindistance r to a query object q. An easy way to answer range queries is tomake an exhaustive search on the database, but this turns out to be tooexpensive for real-world applications, because the distance d is consideredexpensive to compute. Think, for example, of a biometric device thatcomputes the distance between two �ngerprints.Proximity searching algorithms build an index of the database andperform range queries using this index, avoiding the exhaustive search.Many of these algorithms are based on dividing the space in partitionsor zones as compact as possible. Each zone stores a representative point,called the center, and a few extra data that permit quickly discardingthe entire zone at query time, without measuring the actual distancefrom the elements of the zone to the query object, hence saving distancecomputations. Other algorithms are based in the use of pivots, which aredistinguished elements from the database and are used together with thetriangle inequality to �lter out elements of the database at query time.An inherent problem of proximity searching in metric spaces is thatthe search becomes more di�cult when the \intrinsic" dimension of themetric space increases, which is known as the curse of dimensionality.The intrinsic dimension of a metric space is de�ned in [6] as �2=2�2,where � and �2 are the mean and the variance of the distance histogramof the metric space. This is coherent with the usual vector space de�ni-tion. Analytical lower bounds and experiments [6] show that all proximitysearching algorithms degrade their performance systematically as the di-mension of the space grows. For example, in the case of vector space thereis no technique that can reasonably cope with dimension higher than 20[6]. This problem is due to two possible reasons: high dimensional met-ric spaces have a very concentrated distance histogram, which gives lessinformation for discarding elements at query time; on the other hand, inorder to retrieve a �xed fraction of the elements of the space it is neces-sary to use a larger search radius, because in high dimensional spaces theelements are \far away" from each other.Probabilistic algorithms are acceptable in most applications that needto search in metric spaces, because in general the modelization as a metricspace already carries some kind of relaxation. In most cases, �nding someclose elements is as good as �nding all of them.There exists a pivot-based probabilistic proximity searching algorithmwhich largely improves the search time at the cost of missing few elements[5]. On the other hand, it is known that compact partitioning algorithms

perform better than pivot-based algorithms in high dimensional metricspaces [6] and they have lower memory requirements.In this paper we present several probabilistic algorithms for proximitysearching based on compact partitions, which alleviate in some way thecurse of the dimensionality. We also present experimental results thatshow that these algorithms perform better than probabilistic algorithmsbased on pivots, and the latter needs much more memory space to beatthe former when the dimension of the space is very high.2 Basic conceptsLet (X; d) be a metric space and U� X the set of objects or database,with jUj= n. There are two typical proximity searching queries:{ Range query. A range query (q; r), q 2X, r 2 R+, reports all elementsthat are within distance r to q, that is (q; r) = fu 2 U; d(u; q) � rg.{ k nearest neighbors (k-NN). Reports the k elements from U closer toq, that is, returns the set C � U such that jC j = k and 8x 2 C ; y 2U� C ; d(x; q) � d(y; q).The volume de�ned by (q; r) is called the query ball, and all the el-ements inside it are reported. Nearest neighbors queries can be imple-mented using range queries.There exist two classes of techniques used to implement proximitysearching algorithms: based on pivots and based on compact partitions.2.1 Pivot-based algorithmsThese algorithms select a number of \pivots", which are distinguishedelements from the database, and classify all the other elements accordingto their distance to the pivots.The canonical pivot-based algorithm is as follows: given a range query(q; r) and a set of k pivots fp1; : : : ; pkg; pi 2 U, by the triangle inequalityit follows for any x 2 X that d(pi; x) � d(pi; q) + d(q; x), and also thatd(pi; q) � d(pi; x)+ d(x; q). From both inequalities it follows that a lowerbound on d(q; x) is d(q; x) � jd(pi; x)� d(pi; q)j. The elements u 2 Uof interest are those that satisfy d(q; u) � r, so one can exclude all theelements that satisfy jd(pi; u)� d(pi; q)j > r for some pivot pi (exclusioncondition), without actually evaluating d(q; u).The index consists of the kn distances d(u; pi) between every elementand every pivot. Therefore, at query time it is necessary to compute

the k distances between the pivots and the query q in order to apply theexclusion condition. Those distance calculations are known as the internalcomplexity of the algorithm, and this complexity is �xed if there is a �xednumber of pivots. The list of elements fu1; : : : ; umg � U that cannot beexcluded by the exclusion condition, known as the element candidate list,must be checked directly against the query. Those distance calculationsd(ui; q) are known as the external complexity of the algorithm. The totalcomplexity of the search algorithm is the sum of the internal and externalcomplexity, k+m. Since one increases and the other decreases with k, itfollows that there is an optimum k� that depends on the tolerance ranger of the query. In practice, however, k� is so large that one cannot storethe k�n distances, and the index uses as many pivots as space permits.Examples of pivot-based algorithms [6] are BK-Tree, Fixed QueriesTree (FQT),Fixed-Height FQT, Fixed Queries Array, Vantage Point Tree(VPT),Multi VPT, Excluded Middle Vantage Point Forest, Approximat-ing Eliminating Search Algorithm (AESA) and Linear AESA.2.2 Algorithms based on compact partitionsThese algorithms are based on dividing the space in partitions or zonesas compact as possible. Each zone stores a representative point, called thecenter, and a few extra data that permit quickly discarding the entire zoneat query time, without measuring the actual distance from the elements ofthe zone to the query object. Each zone can be partitioned recursively intomore zones, inducing a search hierarchy. There are two general criteriafor partitioning the space: Voronoi partition and covering radius.Voronoi partition criterion. A set of m centers is selected, and the rest ofthe elements are assigned to the zone of their closest center. Given a rangequery (q; r), the distances between q and them centers are computed. Letc be the closest center to q. Every zone of center ci 6= c which satis�esd(q; ci) > d(q; c) + 2r can be discarded, because its Voronoi area cannothave intersection with the query ball. Figure 1 (left) shows an exampleof the Voronoi partition criterion. For q1 the zone of c4 can be discarded,and for q2 only the zone of c3 must be visited.Covering radius criterion. The covering radius cr(c) is the maximumdistance between a center c and an element that belongs to its zone.Given a range query (q; r), if d(q; ci)� r > cr(ci) then zone i cannot haveintersection with the query ball and all its elements can be discarded. InFigure 1 (right), the query ball of q1 does not have intersection with the

zone of center c, thus it can be discarded. For the query balls of q2 andq3, the zone cannot be discarded, because it intersects these balls.
u10

u13
c1

u4

c3

u12
c2

u7

u1

u15

u14
c4

u6

u8

q1

u11

q2

q
1

q
2

q
3

r

r

r

c

cr(c)Fig. 1. Voronoi partition criterion (left) and covering radius criterion (right)Generalized-Hyperplane Tree [14] is an example of an algorithm thatuses the Voronoi partition criterion. Examples of algorithms that use thecovering radius criterion are Bisector Trees (BST) [11],Monotonous BST[13],Voronoi Tree [8],M-Tree [7] and List of Clusters [4]. Also, there existalgorithms that use both criteria, for example Spatial Approximation Tree(SAT) [12] and Geometric Near-neighbor Access Tree [2]. Of all thesealgorithms, two of the most e�cient are SAT and List of Clusters, so nowwe explain brie
y how these algorithms work.2.3 Spatial Approximation TreeThe SAT [12] is based on approaching the query spatially rather thandividing the search space, that is, start at some point in the space andget closer to the query, which is done only via \neighbors". The SATuses both compact partition criteria for discarding zones, it needs O(n)space, reasonable construction time O(n log2(n)= log(log(n))) and sublin-ear search time O(n1��(1= log(log(n)))) in high dimensional spaces.Construction of SAT is as follows: an arbitrary object a 2 U is chosenas the root node of the tree (note that since there exists only one objectper node, we use both terms interchangeably in this section). Then, weselect a suitable set of neighborsN(a) such that 8u 2U; u 2 N(a), 8v 2N(a)� fug; d(u; v)> d(u; a). Note that N(a) is de�ned in terms of itselfin a non-trivial way, and that multiple solutions �t the de�nition. In fact,�nding the minimal set of neighbors seems to be a hard combinatorial

optimization problem [12]. A simple heuristic that works well in mostcases considers the objects in U�fag in increasing order of their distancefrom a, and adds an object x to N(a) if x is closer to a than to anyobject already in N(a). Next, we put each node in U�N(a) into the bagof it closest element of N(a). Also, for each subtree u 2 N(a) we store itscovering radius cr(u). The process is repeated recursively in each subtreeusing the elements of its bag. Figure 2 (left) shows an example of a SAT.This construction process ensures that if we search for an object q 2 Uby spatial approximation, we will �nd that element in the tree becausewe are repeating exactly what happened during the construction process,i.e., we enter into the subtree of the neighbor closest to q, until we reachq (in fact, in this case we are doing an exact search because q is presentin the tree). For general range queries (q; r), instead of simply going tothe closest neighbor, we �rst determine the closest neighbor c of q amongfag[N(a). Then, we enter into all neighbors b 2 N(a) such that d(q; b)�d(q; c)+2r.During the search process, all the nodes x such that d(q; x) � rare reported. The search algorithm can be improved a bit more: when wesearch for an element q 2 U (exact search), we follow a single path fromthe root to q. At any node a0 in this path, we choose the closest to q amongfa0g [N(a0). Therefore, if the search is currently at tree node a, we havethat q is closer to a than to any ancestor a0 of a and also any neighborof a0. Hence, if we call A(a) the set of ancestors of a (including a), wehave that, at search time, we can avoid entering any element x 2 N(a)such that d(q; x) > 2r + minfd(q; c); c 2 fa0g [N(a0); a0 2 A(a)g. Thiscondition is a stricter version of the original Voronoi partition criterion.The covering radius stored for all nodes during the construction processcan be used to prune the search further, by not entering into subtreessuch that d(q; b)� r > cr(b).2.4 List of ClustersThe List of Clusters [4] is a list of \zones". Each zone has a center andstores its covering radius. A center c 2 U is chosen at random, as wellas a radius rp, whose value depends on whether the number of elementsper compact partition is �xed or not. The center ball of (c; rp) is de�nedas (c; rp) = fx 2 X; d(c; x) � rpg. We then de�ne I = U\ (c; rp) asthe bucket of \internal" objects lying inside (c; rp), and E = U� I asthe rest of the elements (the \external" ones). The process is repeatedrecursively inside E. The construction process returns a list of triples(ci; rpi; Ii) (center, radius, internal bucket), as shown in Figure 2 (right).

This data structure is asymmetric, because the �rst center chosen haspreference over the next centers in case of overlapping balls, as shown inFigure 2 (right).With respect to the value of the radius rp of each compactpartition and the selection of the next center in the list, there exist manyalternatives. In [4] it is shown experimentally that the best performance isachieved when the compact partition has a �xed number of elements, so rpbecomes simply cr(c), and the next center is selected as the element whichmaximizes the distance sum to the centers previously chosen. The bruteforce algorithm for constructing the list takes O(n2=m), where m is thesize of the compact partition, but it can be improved using auxiliary datastructures to build the partitions. For high dimensional metric spaces, theoptimalm is very low (we used m = 5 in our experiments).For a range query (q; r), d(q; c) is computed, reporting c if it is withinthe query ball. Then, we search exhaustively inside I only if d(q; c) �cr(c) � r (covering radius criterion).E is processed only if cr(c)�d(q; c)<r, because of the asymmetry of the data structure. The search cost has aform close to O(n�) for some 0:5 < � < 1:0 [4].
u13

u4

u2

u12
u3

u7

u15

u6

u8

u9
u14

u11

u1
u5

u10

(c , r) (c , r) (c , r)
1 1 2 2 3 3

I I I

E E E

r

r
1

r

c

c

2

3

c
1

3

2Fig. 2. Example of SAT (left) and List of Clusters (right)3 Probabilistic algorithms for proximity searchingAll the algorithms seen in the previous section are exact algorithms, whichretrieve exactly the elements of U that are within the query ball of (q; r).In this work we are interested in probabilistic algorithms, which relax thecondition of delivering the exact solution. As explained before, this isacceptable in most applications.

In [5] they present a probabilistic algorithm based on \stretching" thetriangle inequality. The idea is general, but they applied it to pivot basedalgorithms. Their analysis shows that the net e�ect of the technique is toreduce the search radius by a factor �, and that that reduction is largerwhen the search problem becomes harder, i.e., the intrinsic dimension ofthe space becomes high. Even with very little stretching, they obtain largeimprovements in the search time with low error probability. The factor� can be chosen at search time, so the index can be built beforehandand later one can choose the desired level of accurateness and speed ofthe algorithm. As the factor is used only to discard elements, no elementcloser to q than r=� can be missed during the search. In practice, all theelements that satisfy jd(pi; u)� d(pi; q)j > r=� for some pi are discarded.Figure 3 illustrates how the idea operates. The exact algorithmguaranteesthat no relevant element is missed, while the probabilistic one stretchesboth sides of the ring and can miss some elements.
p q

u

p q

u

d(p,q)+r/β

d(p,q)-r/ β

d(p,q)+r

d(p,q)-r

r r

Exact Probabilistic

Fig. 3. How the probabilistic algorithm based on pivots works4 Our approachWe focus in probabilistic algorithms for high dimensional metric spaces,where for exact searching it is very di�cult to avoid the exhaustive searchregardless of the index and search algorithm used.It is well known that compact partition algorithms perform betterthan pivot-based algorithms in high dimensional metric spaces [6], andthat the latter need more space requirements, i.e., many pivots, to reachthe performance of the former. For this reason, it is interesting to develop

probabilistic algorithms based on compact partitions, with the hope thatthese algorithms could have at least the same performance than pivot-based probabilistic algorithms,with less memory requirements. It is worthnoting that the index data structure used with the probabilistic searchalgorithm is the same used with the exact search algorithm.We propose two techniques: the �rst based on incremental searchingand the last based on ranking zones.4.1 Probabilistic Incremental SearchThis technique is an adaptation of the incremental nearest neighbor searchalgorithm [10]. This incremental search traverses the search hierarchyde�ned by the index (whatever it be) in a \best-�rst" manner. At anystep of the algorithm, it visits the \element" (zone or object) with thesmallest distance from the query object among all unvisited elements inthe search hierarchy. This can be done by maintaining a priority queueof elements organized by their maximum lower bound distance known tothe query object at any time.In [10] is proved that this search is range-optimal, that is, it obtains thekth nearest neighbor, ok, after visiting the same search hierarchy elementsas would a range query with radius d(q; ok) implemented with a top-downtraversal of the search hierarchy.The incremental nearest neighbor search can be adapted to answerrange queries. We report all objects u that satisfy d(q; u) � r, but we stopwhen it is dequeued an element with lower bound l > r (global stoppingcriterion). It is not possible to �nd another object within the query ballamong the unexplored elements, because we have retrieved them orderedby their lower bounded distances to q. An equivalent method is to enqueueelements only if they have a lower bound l � r, in which case the queuemust be processed until it gets empty.The idea of the probabilistic technique based on the incremental searchis to �x in advance the number of distance computations allowed to answera range query. Using the adapted incremental search for range queries,if the search is pruned after we make the maximum number of distancecomputations allowed, then we obtain a probabilistic algorithm in thesense that some relevant elements can be missed. However, as the searchis performed range-optimally, one can presume that the allotted distancecomputations are used in an e�cient way.Figure 4 depicts the general form of the probabilistic incrementalsearch. Index is the data structure that indexes U, q is the query object,

e is an element of the index and dLB(q; e) is a lower bound of the real dis-tance between q and all the elements rooted in the search hierarchy of e,where dLB(q; e) = d(q; e) if e is an object of U, and dLB(q; e) � dLB(q; e0)if e0 is an ancestor of e in the hierarchy. For example, in the List ofClusters, if e is a child of a and belongs to the zone of center c thendLB(q; e) = max(d(q; c)� cr(c); dLB(q; a)); in SAT if e is a child of a thendLB(q; e) = max(d(q; a)�cr(a); (d(q; e)�minfd(q; c); c2 fa0g[N(a0); a0 2A(a)g)=2; dLB(q; a)). The maximum number of distance computations al-lowed to perform the search is denoted by quota. Once quota has beenreached, no more elements are enqueued. Note that the only stoppingcriterion of the algorithm is that the queue gets empty, even if the workquota has been reached, because for all the objects enqueued their dis-tance to q are already known. The syntax of the enqueue procedure isEnqueue(queue, element, lower bound distance). The dequeue pro-cedure recovers the element e and its lower bound distance. Variable costindicates the number of distance computations needed to process the chil-dren of element e in the search hierarchy. In SAT, cost is equal to N(e);in List of Clusters, cost is equal to m.ProbIncrSearch(q, Index, quota)1. Queue ; // Priority queue2. e root of Index3. counter 0 // Number of distances computed4. Enqueue(Queue, e, 0)5. while not IsEmpty(Queue) do6. (e;dLB(q; e)) Dequeue(Queue)7. if e is an object then report e8. else9. cost cost to process children of e10. if counter + cost � quota11. for each child element e0 of e do12. Compute dLB(q; e0)13. if dLB(q; e0) � r then14. Enqueue(Queue, e0, max(dLB(q; e); dLB(q; e0)))15. counter counter + costFig. 4. Probabilistic incremental search algorithm

4.2 Ranking of zonesThe probabilistic incremental search aims at quickly �nding elementswithin the query ball, before the work quota gets exhausted. As the max-imum number of distance computations is �xed, the total search time isalso bounded. This technique can be generalized to what we call rankingof zones, where the idea is to sort the zones in order to favor the mostpromising and then to traverse the list until we use up the quota. Theprobabilistic incremental search can be seen as a ranking method, wherewe �rst rank all the zones using dLB(q; e) and then work until we useup the quota. However, this ranking does not have to be the best zoneranking criterion.The sorting criterion must aim at quickly �nding elements that areclose to the query object. As the space is partitioned into zones, we mustsort these zones in a promising search order using the information givenby the index data structure. For example, in List of Clusters the onlyinformationwe have is the distances from q to each center and the coveringradius of each zone. One not only would like to search �rst the zones closerto the query, but also to search �rst the zones that are more compact,that is, the zones which have \higher element density". In spite of the factthat it is very di�cult to de�ne the volume of a zone in a general metricspace, we assume that if the zones have the same number of elements,as in the best implementation of List of Clusters, then the zones withsmaller covering radii have higher element density than those with largercovering radii.We have tested several zone ranking criteria:{ the distance from q to each zone center, d(q; c), closest �rst.{ the covering radius of each zone, cr(c), in increasing order.{ d(q; c)+cr(c), the distance from q to the farthest element in the zone.{ d(q; c) � cr(c).{ d(q; c)� cr(c), the distance from q to the closest element in the zone.{ �(d(q; c)� cr(c)).The �rst two techniques are the simplest ranking criteria. The nexttwo techniques aim to search �rst in those zones that are closer to q andalso are compact. The next technique, d(q; c)� cr(c), is equivalent to theincremental search technique. The last technique is equivalent to reducingthe search radius by a factor � as in [4], where 1=� 2 [0::1].If factor � is �xed, then this technique is equivalent to the probabilis-tic incremental search, because the ordering is the same in both cases.

However, instead of using a constant factor � 2 [0::1], we can use a dy-namic factor of the form � = 1=(1:0� cr(c)mcr), where mcr is the maximumsize of the covering radius of all zones. This implies that we reduce morethe search radius as the covering radius of a particular zone is greater. Aspecial case is when cr(c) = mcr. In this case we de�ne dLB(q; e) = 1for all objects in the zone of center c.Note that d(q; c)�cr(c) is the only criterion that can be used with theincremental search technique, because only with this criterion is guaran-teed that dLB(q; e) � dLB(q; e0) for any element e0 ancestor of e.5 Experimental resultsWe use the SAT and List of Clusters to implement the probabilistic tech-niques described in Section 4, but with SAT we only implement the prob-abilistic incremental search because in this data structure every node isa center, so it takes O(n) time to compute the distances between thequery and every center. We have tested the probabilistic techniques ona synthetic set of random points in a k-dimensional vector space treatedas a metric space, that is, we have not used the fact that the space hascoordinates, but treated the points as abstract objects in an unknownmetric space. The advantage of this choice is that it allows us to controlthe exact dimensionality we are working with, which is very di�cult todo in general metric spaces. The points are uniformly distributed in theunitary cube, our tests use the L2 (Euclidean) distance, the database sizeis n = 10; 000 and we perform range queries returning 0.01% of the totaldatabase size, taking an average from 1,000 queries. The techniques weretested using a space of dimension 128, where no known exact algorithmcan avoid an exhaustive search to answer useful range queries.Figure 5 shows the results of the probabilistic List of Clusters andSAT. The best technique, in this case, is the ranking zone method withcriterion d(q; c)+ cr(c).Figure 6 shows a comparison of the probabilistic List of Clusters andthe probabilistic pivot-based algorithm, implemented in its canonical form(see Section 2.1 and 3). In this experiment, the probabilistic List of Clus-ters performs almost equal than the pivot-based algorithmwith 256 pivotswhen more than 97% of the result is actually retrieved. The pivot-basedtechniques are slightly better when the pivots are selected using the \goodpivots" criterion [3]. However, the size of the List of Clusters index (0.12Mb) is about 82 times less than the size of the pivot-based index with 256pivots (9.78 Mb) and about 5 times less than the size of the pivot-based

4000

5000

6000

7000

8000

9000

10000

0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved

128 dimensions, retrieving 0.01% of the database

List of Clusters: prob. incr. search
List of Clusters: dist(q,c)

List of Clusters: cr(c)
List of Clusters: dist(q,c)+cr(c)
List of Clusters: dist(q,c)*cr(c)
List of Clusters: dynamic beta

SAT: prob. incr. searchFig. 5. Probabilistic List of Clusters and SAT in a vector space of dimension 128index with 16 pivots (0.62 Mb). Experiments with di�erent search radiusand database size obtained similar results to those presented here.
4000

5000

6000

7000

8000

9000

10000

0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved

128 dimensions, retrieving 0.01% of the database

16 pivots, good
256 pivots, good

16 pivots, random
256 pivots, random

List of Clusters: d(q,c)+cr(c)

Fig. 6. Comparison among probabilistic algorithms in a vector space of dimension 128One of the most clear applications of metric space techniques to In-formation Retrieval is the task of �nding documents relevant to a query(which can be a set of terms or a whole document itself) [1]. Documents(and queries) are seen as vectors, where every term is a coordinate whosevalue is the weight of the term in that document. The distance between

two documents is the angle between their vectors, so documents sharingimportant terms are seen as more similar. Documents closer to a queryare considered to be more relevant to the query. Hence the task is to �ndthe elements of this metric space of documents which are closest to agiven query.Despite of this clear link, metric space techniques have seldom beenused for this purpose. One reason is that the metric space of documentshas a very high dimension, which makes any exact search approach unaf-fordable. This is a case where probabilistic algorithms would be of greatvalue, since the de�nition of relevance is fuzzy and it is customary to per-mit approximations. Figure 7 shows a result on a subset of the TREC-3collection [9], comparing the pivot-based algorithmwith the ranking zonemethod using the dynamic beta criterion (m = 10 for the List of Clusters,retrieving on average 0.035% of the database per query). The result showsthat our probabilistic algorithms can handle better this space, retrievingmore than 99% of the relevant objects and traversing merely a 17% of thedatabase, using much less memory, approximately 16 times less than theindex with 64 pivots, hence becoming for the �rst time a feasible metricspace approach to this long standing problem.6 ConclusionsWe have de�ned a general probabilistic technique based on the incremen-tal nearest search, that allows us to perform time-bounded range searchqueries in metric spaces with a high probability of �nding all the relevantelements. Our experimental results show in both synthetic and real-worldexamples that our technique performs better than the pivot-based prob-abilistic algorithm in high dimensional metric spaces, as the latter needsmuch more memory space to be competitive.Future work involves testing more zone ranking criteria. Also, we areinterested in �nding a formal model that allows us to predict how wellwill perform an arbitrary index with our probabilistic techniques.References1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.2. S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference onVery Large Databases (VLDB'95), pages 574{584, 1995.3. B. Bustos, G. Navarro, and E. Ch�avez. Pivot selection techniques for proximitysearching in metric spaces. In Proc. of the XXI Conference of the Chilean ComputerScience Society (SCCC'01), pages 33{40. IEEE CS Press, 2001.

0

5000

10000

15000

20000

25000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

es
 c

om
pu

ta
tio

ns

Fraction of the result actually retrieved

24.960 documents, retrieving 0.035% of the database

16 pivots, random
64 pivots, random

128 pivots, random
dynamic beta

Fig. 7. Comparison among probabilistic algorithms in a document space4. E. Ch�avez and G. Navarro. An e�ective clustering algorithm to index high dimen-sional metric spaces. In Proc. 7th South American Symposium on String Processingand Information Retrieval (SPIRE'00), pages 75{86. IEEE CS Press, 2000.5. E. Ch�avez and G. Navarro. A probabilistic spell for the curse of dimensionality. InProc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX'01),LNCS 2153, pages 147{160, 2001.6. E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Proximity searchingin metric spaces. ACM Computing Surveys, 33(3):273{321, 2001.7. P. Ciaccia, M. Patella, and P. Zezula. M-tree: an e�cient access method for sim-ilarity search in metric spaces. In Proc. of the 23rd Conference on Very LargeDatabases (VLDB'97), pages 426{435, 1997.8. F. Dehne and H. Noltemeier. Voronoi trees and clustering problems. InformationSystems, 12(2):171{175, 1987.9. D. Harman. Overview of the Third Text REtrieval Conference. In Proc. ThirdText REtrieval Conference (TREC-3), pages 1{19, 1995. NIST Special Publication500-207.10. G. Hjaltason and H. Samet. Incremental similarity search in multimedia data-bases. Technical Report TR 4199, Department of Computer Science, University ofMaryland, November 2000.11. I. Kalantari and G. McDonald. A data structure and an algorithm for the nearestpoint problem. IEEE Transactions on Software Engineering, 9(5):631{634, 1983.12. G. Navarro. Searching in metric spaces by spatial approximation. The Very LargeDatabases Journal (VLDBJ), 2002. To appear. Earlier version in SPIRE'99, IEEECS Press.13. H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous Bisector� Trees { atool for e�cient partitioning of complex schenes of geometric objects. In DataStructures and E�cient Algorithms, LNCS 594, pages 186{203. Springer-Verlag,1992.14. J. Uhlmann. Satisfying general proximity/similarity queries with metric trees.Information Processing Letters, 40:175{179, 1991.

