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element); image quantization and compression (whereonly some vectors can be represented and those thatcannot must be coded as their closest representablepoint); text retrieval (where we look for words in atext database allowing a small number of errors, or welook for documents which are similar to a given queryor document); computational biology (where we wantto �nd a DNA or protein sequence in a database al-lowing some errors due to typical variations); functionprediction (where we want to search the most similarbehavior of a function in the past so as to predict itsprobable future behavior); etc.All those applications have some common charac-teristics. There is a universe Xof objects, and a non-negative distance function d : X�X�! R+ de�nedamong them. This distance satis�es the three axiomsthat make the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangular inequality"and is valid for many reasonable similarity functions.The smaller the distance between two objects, the more\similar" they are. This distance is considered expen-sive to compute (think, for instance, in comparing two�ngerprints). We have a �nite database U� X, whichis a subset of the universe of objects and can be prepro-cessed (to build an index, for instance). Later, given anew object from the universe (a query q), we must re-trieve all similar elements found in the database. Thereare three typical queries of this kind:Range queries: retrieve all elements which arewithin distance r to q.That is, (q; r) = fu 2U= d(u; q) � rg.



Nearest neighbor (NN) queries: retrieve the clos-est elements to q in U.That is, nn(q) = fu 2 U = 8v 2 U; d(u; q) �d(v; q)g.k-NN queries: retrieve the k closest elements to q inU.That is, retrieve a set nnk(q) � U such thatjnnk(q)j = k and 8u 2 nnk(q); v 2 U �nnk(q); d(u; q) � d(v; q).Given a database of jUj= n objects, all those queriescan be trivially answered by performing n distanceevaluations. Since the distance function is assumed tobe expensive to compute, the goal is to structure thedatabase so that we perform few distance evaluations.All the existing techniques work by discarding elementsusing the triangular inequality.We concentrate in range queries in this paper, as theothers can be systematically built over these [10]. Theset of points ofXthat are at distance at most r to q iscalled the \query ball", so (q; r) is the intersection ofthe query ball and U.A particular case of this problem arises when thespace is Rk. There are e�ective methods for this case,such as kd-trees [3] or R-trees [13]. However, for morethan roughly 20 dimensions those structures cease towork well. We focus in this paper in general metricspaces, although the solutions are well suited also fork-dimensional spaces.It is interesting to notice that the concept of \di-mensionality" can be translated to metric spaces aswell: the typical feature in high dimensional spaces isthat the probability distribution of distances among el-ements has a very concentrated histogram (with largermean as the dimension grows), hampering the workof any similarity search algorithm [5, 7]. In the ex-treme case we have a space where d(x; x) = 0 and8y 6= x; d(x; y) = 1, where it is impossible to avoida single distance evaluation at search time. We saythat a general metric space is high dimensional whenits histogram of distances is concentrated. We use inthis paper a quantitative de�nition of the intrinsic di-mensionality proposed in [10]:De�nition: The intrinsic dimensionality of a metricspace is de�ned as � = �22�2 , where � and �2 are themean and variance of its histogram of distances.Under this de�nition, a random vector space with kcoordinates has intrinsic dimension �(k), so the de�-nition extends naturally that of vector spaces.In the same survey [10] a number of approaches tosolve the problem of proximity searching in general

metric spaces are considered, which are divided in twoclasses:� Pivot-based algorithms: which select a number of\pivots" from the database and classify all theother elements according to their distances to thepivots. The distances between elements and pivotsand between the query q and the pivots are usedtogether with the triangular inequality to �lter outelements of the database without actually measur-ing their distance to q. These algorithms generallyimprove as more pivots are added, although thespace requirements of the indexes increase as well.� Clustering algorithms: which divide the set intospatial zones which are as compact as possible, andare able to discard complete zones by performingfew distance evaluations (e.g. between the queryq and a centroid of the zone). The partition intozones can be hierarchical, but the indexes use a�xed amount of memory and cannot be improvedby giving them more space.As shown in [10], clustering algorithms deal bet-ter with high dimensional metric spaces. Despite thatpivot-based algorithms can improve by using morememory, they need more and more memory to beatclustering algorithms as the dimension grows. For in-trinsic dimension around 20 they already need imprac-tical amounts of extra space. Therefore, clustering al-gorithms seem a promising alternative to index highdimensional metric spaces.In this paper we present a new clustering algo-rithm based on an asymmetrical querying process. Wepresent analytical results based on the intrinsic dimen-sion to analyze its di�erent alternatives and tuning op-tions, and later we present experimental results show-ing that it outperforms by far all the existing schemes.2. Related WorkDi�erent data structures have been proposed to �l-ter out elements based on the triangular inequality (see[10] for a complete survey). We divide the expositionaccording to the two classes of techniques.2.1. Pivot-based AlgorithmsBurkhard-Keller Trees (bk-trees) [6] are designed fordiscrete distance functions: they select a pivot elementp as the root of the tree, and put at child i the elementswhich are at distance i to the pivot. Each subtree isrecursively built with the same technique until there



are b elements or less, in which case the elements aresimply stored in a \bucket" at the tree leaf. A rangequery q with tolerance radius r is searched by mea-suring d(p; q), reporting p if appropriate, and enteringonly into subtrees numbered d(p; q)� r to d(p; q) + r.The rest need not be considered because of the the tri-angle inequality. The buckets reached are exhaustivelycompared against q.Fixed Queries Trees (fq-trees) [2] are an evolutionwhere the same pivot is used for all the nodes of thesame level of the tree. In this case the pivot does notneed to belong to the subtree. Many comparisons aresaved in the backtracking process because only one dif-ferent pivot per level exists. However, the tree is taller.A variant called Fixed Height fq-tree (fhq-tree) is alsoproposed where all the leaves are at the same depth h,regardless of the bucket size.Vantage Point Trees (vp-trees) [20, 22] are designedfor continuous distance functions. The root has twoequal-size subtrees that divide the elements in closerto and farther from the root. This can be extended tom-ary trees (mvp-trees) [5, 4].Finally, algorithms like AESA [21], LAESA [16, 15]and its variants [18, 8] and Fixed Queries Arrays (fq-arrays [9]) are based in a common idea: k pivots areselected and each object is mapped to k coordinateswhich are its distances to the pivots. Later, the queryq is also mapped and if it di�ers from an object inmore than r along some coordinate then the elementis �ltered out by the triangle inequality. That is, if forsome pivot pi and some element v of the set it holdsjd(q; pi) � d(v; pi)j > r, then we know that d(q; v) > rwithout need to evaluate d(v; q). The elements thatcannot be �ltered out using this rule are directly com-pared.An interesting feature of most of these algorithmsis that they can reduce the number of distance eval-uations by increasing the number of pivots. De�neDk(x; y) = max1�j�k jd(x; pj)� d(y; pj)j. Using thepivots p1; :::; pk is equivalent to discarding elements usuch that Dk(q; u) > r. As more pivots are added weneed to perform more distance evaluations (exactly k)to compute Dk(q; �), but on the other hand Dk(q; �)increases its value and hence it has a higher chanceof �ltering out more elements. It follows that thereexists an optimum k, This optimum, however, cannotbe normally reached because it is too high in terms ofspace requirements: kn distances have to be precom-puted and stored in order to use k pivots. Hence, ingeneral these methods use as many pivots as they can,and they are normally well below their optimum.

2.2. Clustering AlgorithmsGeneralized Hyperplane Trees (gh-trees) [20] usetwo \centers" for each tree node and divide the spaceaccording to which of the two centers is closer to eachobject. At search time the query enters into the sub-trees whose zone of inuence has a nonempty intersec-tion with the query ball.Bisector Trees [14, 19] are similar but the zones arenot de�ned according to which is the closest center butusing the concept of \covering radius". The coveringradius of a zone is the minimum radius of a spherethat is necessary to contain all the points in the zone,and the elements are inserted in the subtrees trying tominimize covering radii. This is generalized to VoronoiTrees (v-trees) in [12] to reduce more the covering radii.Gh-trees are generalized to an m-ary partition inthe Geometric Near-neighbor Access Tree (gna-tree)[5], which makes a Voronoi-like partition of the space [1]among the m pivots at each node of the tree. However,the gna-tree uses also the covering radius criterion toprune the search even more.The M-tree [11] also takes m elements and dividesthe space among its zones of inuence, but it uses onlythe covering radius information to classify and searchthe elements. The M-tree is able of dynamic insertionand deletion of points and is optimized for secondarymemory.Spatial Approximation Trees (sa-trees) [17] arebased on approaching the query spatially: the searchstarts at the root of the tree and moves to neighborsthat are closer to the query. The ideal data structureto obtain this is a Voronoi graph, which in the paper isproven impossible to build on a general metric space.Therefore the sa-tree is a simpli�cation which forcessome backtracking in the tree.3. A New Clustering TechniqueWe propose now a novel technique to index a metricspace. We start by taking a \center" c 2Uand a radiusr (whose value is discussed later). We de�ne the centerball of (c; r) (or just c if no ambiguity is possible) asthe subset of elements of Xwhich are at distance atmost r from c. Now we de�neIU;c;r = fu 2U� fcg; d(c; u) � rgas the bucket of \internal" elements, which lie insidecenter ball of c, andEU;c;r = fu 2U; d(c; u) > rg



as the rest of the elements (the \external" ones). Nowthe process is repeated recursively inside E. The con-struction procedure returns a list of triples (ci; ri; Ii)(center,radius,bucket) and it is shown in Figure 1.Build (U)if U= ; then return an empty listSelect c 2USelect a radius rI  � fu 2U� fcg; d(c; u) � rgE  � U� Ireturn (c,r,I):Build(E)Figure 1. The construction algorithm. The operator":" is the list constructor. It is not hard to removethe tail recursion to make it iterative.The data structure that is built looks rather sym-metric, but it is not. The �rst center chosen has pref-erence over the subsequent centers in case of overlap-ping balls. Figure 2 illustrates. All the elements thatare inside the ball of the �rst center (c1 in the �gure)are stored in its I bucket, despite that they may alsolie inside the I buckets of subsequent centers (c2 andc3 in the �gure). The �gure also shows how the datastructure can be seen as a list.
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uFigure 2. The inuence zones of three centers takenin this order: c1, c2, c3. We also show a list ar-rangement for the data structure.The search algorithm is depicted in Figure 4. Theidea is that if the �rst center chosen is c and its radius is

rc, then the search for a query (q; r) starts by measuringd(c; q) and adding c to the set of results if appropriate.Then, we search exhaustively inside the bucket I only ifthe query ball has some intersection with the center ballof c. Now, given the asymmetry of the data structure,we can also prune the search in the other direction: ifthe query ball is totally contained in the center ballof c, then we do not need to consider E because byconstruction we know that all the elements that areinside the query ball have been inserted in I.Search (L,q,r)if L is empty then returnLet L = (c; rc; I) : ECompute d(c; q)if d(c; q) � r then add c to the resultsif d(c; q) � rc + r then search I exhaustivelyif d(c; q) > rc � r then Search (E,q,r)Figure 3. The search algorithm. It is not hard toremove the tail recursion to make it iterative.This is an essential feature absent in other cluster-ing algorithms, where the search needs to enter intoall the clusters which are intersected by the query ball.With our data structure the consideration of the rel-evant clusters can be preempted as soon as the queryball is totally contained in a cluster. Figure 4 illus-trates.
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Figure 4. Three cases of query ball versus centerball. For q1 we need to consider the current bucketand the rest of centers. For q2 we can prune thesearch inside the rest of the clusters. For q3 we canavoid considering the current bucket.



Compared to other clustering algorithms, ours usesonly the covering radius criterion (and not Voronoi-like areas), but it is able to prune more by using theorder of the centers, as explained. It is also possible tosee our list of clusters as a particular case of a vp-treeor an M-tree by considering I and E as the left andright subtrees of the root c, but there is a fundamentaldi�erence that is made clear in the next section: whilethose data structures try to build balanced trees, oursis extremely unbalanced, as I is much smaller thanE. Moreover, our I bucket does not have any internalstructure.4. AnalysisThe description of the data structure does not spec-ify how the center and the radius are selected at eachpoint of the construction algorithm. As this is relatedto the e�ciency and not the correctness of the datastructure, we have left it unspeci�ed until now, whenthe e�ciency is analyzed.Let us consider the histogram of distances betweenarbitrary elements of X. As implied by the de�nitionof the intrinsic dimensionality, this histogram is com-pressed and moved to the right as the dimension of themetric space grows.When we choose a random center c, the histogramof distances to c is similar to the global histogram.Therefore, we can use the global histogram to considerthe e�ect of radius selection. Moreover, we assumethat the histogram remains unchanged after removingthe elements corresponding to each cluster. All theseare reasonable simpli�cations.4.1. Clusters of Fixed RadiusThe simplest alternative seems to be selecting a �xedradius ri = r� for all the clusters in the list. This im-plies that a �xed proportion p� of the remaining ele-ments lie inside the center ball, which corresponds tothe mass of the histogram in the interval [0; r�]. Fig-ure 5 (left) illustrates.Let us call p+ the mass of the histogram in the inter-val (r�; r� + r] and p� that in the interval [r� � r; r�).Then pI = p� + p+ is the probability that a given Ibucket has to be examined, while pE = 1 � (p� � p2)is the probability of having to continue consideringthe other buckets (see the right plot of Figure 5).In a real application these probabilities can be es-timated with a Monte Carlo method. Furthermore,the average number of elements in the i-th cluster ismi = np�(1�p�)i�1, which decreases as we advance inthe list.

The average search cost can be computed as fol-lows. We pay one comparison against the �rst centerand with probability pI we have to consider the �rstbucket, which has on averagem1 = p�n elements. Withprobability pE we continue considering the rest of thebuckets, which arrange (1� p�)n elements on average.This yields an average search cost of C(n), whereC(n) = 1 + np�pI + pEC((1� p�)n)= np�(p� + p+)1� (1� p�)(1 � p� + p�) + 1p� � p�We would like to �nd the optimum p�. Under thesimplifying assumption that the search radius is zero(which implies p+ = p� = 0), the above cost is mini-mized for p� = 21 +p2n � r 2nand the corresponding search cost is 1=2+p2n � p2n.The expected length of the list (solving (1�p�)hn = 1)is log1=(1�p�) n �pn=2 lnn buckets of size p2n in the�rst buckets and decreasing as we advance in the list.The solution for the general case depends, unfortu-nately, on p+ and p�, which in turn depend on thequery radius r. As this cannot be determined before-hand, one has to optimize the structure for a given ror to use a simpli�cation as the one we have done.4.2. Clusters of Fixed SizeAnother choice is to try to have a �xed number m�of elements inside each center ball, and to de�ne riaccordingly. This also �xes the length of the list todn=(m� + 1)e.When we are building the i-th cluster the numberof remaining elements is n�m(i�1). This means thatwe have to select the radius ri so that pi = m�=(n �m�(i � 1)) of the mass of the histogram lies in theinterval [0; ri]. Compared to the previous approach, wenow increase the radius instead of letting the numberof elements of the clusters reduce as we advance in thelist.The average search cost can be computed as before.We pay one comparison against the �rst center andwith probability pI;1 = p1+p+ we have to consider the�rst bucket, which has m elements. With probabilitypE;1 = 1 � (p1 � p�) we continue considering the restof the buckets, which arrange n � m� elements. Thisyields an average search cost of C(1), whereC(i) = 1 + m�pI;i + pE;iC(i + 1)
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r*+rr*-rFigure 5. The histogram of distances between c and a random element x. On the left, the grayed part is the fractionof the set captured by a ball of radius r centered at c. On the right we have plotted the areas corresponding top+ and p�.= Xi�0(1 +m�pI;i+1) Y1�j�ipE;jAgain we make the simpli�cation of assuming r = 0and therefore p+ = p� = 0. This makesY1�j�ipE;j = Y1�j�i1� pj = n� im�nand the whole cost formula becomesn(m� + 2)2(m� + 1)2 + 2m�2 +m� + 22(m� + 1) + m�2n � n2m� +m�where the �rst term corresponds to the expected com-parisons against the centers and the second to thoseinside the buckets. This cost is optimized for m� =pn=2, where the expected search cost is about p2n,independent on the intrinsic dimension of the space.In both cases we have obtained a list of length aboutpn with about pn elements in each bucket and aboutpn search cost. The main di�erence is in the exactform of the list. As the analysis does not tell which isbetter, we have to decide that experimentally.Another thing that the analysis does not tell is howthe dimension a�ects the search times. As the dimen-sion grows, p+ and p� grow for a given r, and thereforethe probability of entering into more clusters increases.This will be measured experimentally.4.3. Center SelectionIndependently on how we select the radius of eachcluster, we can apply di�erent heuristics to select thei-th center. Some choices are:(p1) At random.

(p2) The element closest to ci�1 in the remaining set.(p3) The element farthest from ci�1 in the remainingset.(p4) The element minimizing the sum of distances toprevious centers.(p5) The element maximizing the sum of distances toprevious centers.The �rst alternative is the simplest but not neces-sarily the best one. The second one aims at buildinga bucket ordering that moves slowly across the metricspace. The third one aims at minimizing the overlapbetween clusters. (p4) and (p5) are more global ver-sions of (p2) and (p3), respectively. Moreover, (p2) and(p4) aim at �nding a next pivot close to the current one,as in sa-trees, while (p3) and (p5) try that the volumesof di�erent clusters do not overlap, as gna-trees.5. Building and Updating the DataStructure5.1. ConstructionOur data structure can be built by brute force inO(n2=p�) time for �xed radius clusters and O(n2=m�)time for �xed size clusters. Using the optimal settingsthis is O(n3=2) in both cases.This cost is independent on the dimension, and canbe reduced by noting that I is de�ned as the result ofa range query (ci; r�) for �xed radius clusters and of anearest neighbor nnm� (ci) query for �xed size clusters.Therefore, another (cheaper to build) data structurebuilt on the metric space could be used as an auxiliarydata structure to build ours. This matches especiallywell with the center selection heuristics (p1) and (p2),



while the others may need extra work. It is also worth-while to note that this auxiliary data structure shouldbe able of e�cient deletion of the elements that are in-serted into each new cluster, in order to answer querieson the remaining set.The �xed radius data structure has the disadvantagethat the bucket sizes cannot be predicted in advance,which complicates a bit secondary memory arrange-ments. On the other hand, updating the structure issimpler than with �xed size buckets.5.2. UpdatingLet us consider the process of inserting a new ele-ment in the �xed radius data structure. If p� (and r�)have been correctly computed in the beginning, theyshould not change as we insert more elements, and theinsertion should be done by traversing the list of clus-ters until the element falls inside some center ball, orotherwise creating a new cluster for it at the end of thelist.Deletion can be trivially done except if a center isdeleted, in which case a �rst choice is to keep it anywayas a fake element. A safer choice is to remove the wholebucket from the list and reinsert all the elements (notethat the insertion of those elements can be done justin the tail of the list, as we already know that they donot lie inside any previous center ball).However, a massive insertion of elements may a�ectthe optimality of the r� value chosen (e.g. pn). Inthose cases a periodic rebuild of the whole data struc-ture may be bene�cal for the performance.These update operations are a bit more complex ifwe have a �xed bucket size. When inserting an ele-ment, as soon as we �nd its appropriate ball i, thebucket will overow. Hence we take the element of thebucket which is farthest from the center ci, remove itfrom the bucket (modifying ri accordingly), and con-tinue the insertion process in the tail of the list withthe new element. Hence we are guaranteed to traversethe whole list of centers for every insertion. Deletionpresents a more di�cult problem, since the bucket un-derows and we have to �nd the next nearest neighborof ci in the rest of the elements. This can be done usingthe same data structure, but it is costly anyway. Twochoices are lazy deletion (i.e. leave the whole hopingthat a new insertion will �t the place) and setting arange of values for m� instead of a �xed value. Dele-tion of a center can be handled as for the �xed radiusdata structure.

5.3. Secondary MemoryOur data structure has the advantage of a ratherpredictable access pattern. The cluster centers arecompared always in the same order. Sometimes weneed to retrieve a whole bucket, sometimes not. Fi-nally, we can stop the search at any moment in the listof centers.A simple linear arrangement of the centers yieldsan e�cient disk layout for this search algorithm, withminimal seek time. The buckets should be similarlyarranged in a separate list. Fixed size buckets makethis extremely simple, while �xed radius clusters needan expansion mechanism to accommodate their varyingsize. There are well known mechanisms of that type,and the histogram can be used as a tool to upper boundoverow probabilities.6. Experimental ResultsWe present now experiments that help determiningthe best choice for our data structure and comparingit against previous work.Our metric space is the unitary real cube in k di-mensions ([0; 1)k) under the Euclidean distance. Wegenerate a �xed number n of random points and searchrandom queries q with a radius r such that 0.01% to0.1% of the set of points is retrieved. We show theresults as a function of the dimension k of the space.Despite that this is a restricted case of vector space, wecan in this case e�ectively control the dimension, whichis di�cult to do in real-world examples. We make theexperiments with n = 100; 000 elements.We have made all the experiments on both versionsof the algorithms: �xed bucket size and �xed radius.As we show in the last experiments, the former turnedout to be superior, so for the rest of the experimentswe show only the results on �xed bucket size.6.1 Tuning Our Data StructureOur �rst experiment tries to determine the bestchoice among (p1)�(p5). Figure 6 shows the results us-ing two di�erent choices for m� (12 and 100). It can beseen that (p3) and (p5) are better choices, which favorsheuristics that try to minimize the intersection amongclusters [22, 5]. The di�erence among (p3) and (p5) isnot statistically signi�cant when using a large bucketsize. With a smaller bucket size (12) the (p5) heuristicsis clearly better and therefore we use (p5) from now on,as it is a more elaborated version of (p3) that shouldwork in more complex scenarios (e.g. clustered data).
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Figure 6. Number of distance evaluations for pivotselection techniques (p1) to (p5), as the dimensiongrows. We show �xed bucket sizes m� = 12 (top)and m� = 100 (bottom), capturing 0.01% of adatabase of size n = 100; 000.

We now focus on the optimal m�. Figure 7 showsthat the optimal optimal value depends on the dimen-sion, starting at m� = 200 for low dimension and end-ing at m� = 6 for high dimensions. The growth of theoptimal search cost as the dimension increases is notso sharp as in most of the previous work (we comparelater the di�erent algorithms).
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Figure 7. On the top, number of distance evalua-tions for di�erent bucket sizes as a function of thedimension. On the bottom, search cost as a func-tion of the bucket size for di�erent dimensions. Thequery captures 0.01% of a database of n = 100; 000elements.The analysis predicts that the optimal bucket sizealso depends on the database size, giving pn as a lowerbound for the search cost. Figure 8 shows this fact.The �rst plot shows that there is a dependence (on�xed dimension 8), while the second plot shows the



cost when the optimum bucket size is used for eachdimension and each database size.Using least squares we �nd that pn is a reasonablelower bound (recall that it was obtained by assuminga search with radius zero). Retrieving 0.01% of thedatabase, we get search complexities O(n0:65) for di-mension 4, O(n0:69) for dimension 8, O(n0:72) for di-mension 12, O(n0:81) for dimension 16 and O(n0:88) fordimension 20. The relative error of these approxima-tions is around 5%.
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Figure 8. On the top, number of distance evalua-tions for di�erent bucket sizes as a function of thedatabase size, in 8 dimensions. On the bottom,search cost when the optimal bucket size is usedfor each dimension and database size. The querycaptures 0.01% of n.Just to check the accurateness of the analysis, wehave run experiments with search radius zero. Accord-

ing to the analysis, the search cost with the optimalbucket size is O(pn) independently of the dimension.Figure 9 shows the search time in 8 and 20 dimensionsusing the optimal bucket size. The �gure makes it clearthat there is no dependence on the dimension in thiscase. Least squares yields O(n0:49) and O(n0:51), ex-actly as predicted.
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Figure 9. Number of distance evaluations as n growsfor di�erent dimensions using optimal bucket sizeand search radius zero.6.2 Comparing Against the RestWe compare now our data structure against someexisting techniques. We have included our �xed bucketsize and �xed radius alternatives, both using their opti-mal setups, to show that �xed bucket size outperformsthe other. In particular, the P5 heuristics turned outto be the best one for �xed radius as well, the opti-mal radius size moving from 2.5 to 1.0 times the queryradius as the dimension moves from 4 to 20.Observe in Figure 10 that two pivot-based algo-rithms (fq-arrays and LAESA) have needed at least 32and 64 times more memory, respectively, than the otherclustering algorithms (gna-trees and sa-trees) in orderto beat them in high dimension. This evidence favorsthe use of clustering algorithms instead of pivot-basedones in high dimensions. Beating clustering algorithmswith pivot based ones becomes be even more di�cultfor higher dimensions and bigger search radius.As the other clustering algorithms, ours does notneed more memory to cope with higher dimensions.Moreover, the search complexity of our new schemesgrows much slower as the dimension grows. In particu-lar, the combination we have chosen is by far the best
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Figure 10. Comparison with existing approaches for varying dimension. On the left all the algorithms use (about)the same memory, on the right the pivot-based algorithms are allowed to use more memory (indicated in bits perdatabase element). The query captures 0.01% (�rst row), 0.1% (second row) and 1% (third row) of a databaseof n = 100; 000 elements.



in 20 dimensions, even if we allow using 32 times morememory to competing pivot based algorithms. For ex-ample, with n = 100; 000 and 20 dimensions we inspectonly 55% of the set to retrieve 0.01% of the set, againstalmost 70% for the best competitor.The situation improves for us even more as n grows.Figure 11 shows the behavior of all the algorithms forincreasing n. As can be seen, our algorithms presenta much slower growing search time than all previouswork, especially on high dimensions. Still the �xedbucket variant ourperforms the �xed radius one in highdimension.7. ConclusionsWe have presented a new clustering algorithm whichis experimentally shown to be much more e�cient thanthe others, especially in high dimensions. We havefound analytical recommendations to tune the datastructure, despite that the �ne tuning still has to beempirical. With respect to the database growth, ouranalysis predicts a sublinear behavior, which we ex-perimentally veri�ed to have a form close to O(n�),for some 0:5 < � < 1. We have also shown experimen-tally that the search cost of our algorithms grows muchslower than the others with respect to the databasesize.Among all the strategies we have tested, the �xedbucket size which selects the next pivot far away fromprevious ones is simple to tune, behaves much betterthan its competitors, and is well suited for secondarymemory implementations.An interesting alternative view of our data structureis that each cluster representative is in fact a pivot, andthe only information we store for each pivot and eachdatabase element (in fact not for all pairs) is whetherthe distance among them is smaller or larger than agiven threshold. Moreover, the list of clusters permitsstoring this information in a compact form. The key ofits success is that this compact representation permitshaving a huge number of pivots with constant spaceper element. This is impossible with traditional pivotbased schemes.Future work involves improving the constructionprocedure, possibly by using auxiliary data structuresto build the I buckets. We also plan to pursue in theproblem of obtaining a dynamic data structure thatsupports insertion and removal of elements. Finally,it would be interesting to devise I/O e�cient variantsthat are able to compete with M-trees in secondarymemory. We have sketched possible alternatives but adeeper study is necessary.
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Figure 11. Comparison with existing approaches, forincreasing n on �xed dimension 12 (�rst plot) and20 (last two plots). In the �rst two plots all thealgorithms use about the same memory, while thelast one permits pivot based algorithms to use morememory. The query captures 0.01% of the set.
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