
Fast Multipattern Search Algorithms for Intrusion DetectionJosu�e Kuri�Ecole Sup�erieure d'Electricit�eAvenue de la Boulaie { BP 2835511 Cesson S�evign�e { Francejkuri@enst.fr Gonzalo NavarroyDept. of Computer Science, Univ. of ChileBlanco Encalada 2120, Santiago, Chilegnavarro@dcc.uchile.clAbstractWe present new search algorithms to detect the oc-currences of any pattern from a given pattern set ina text, allowing in the occurrences a limited numberof spurious text characters among those of the pat-tern. This is a common requirement in intrusion de-tection applications. Our algorithms exploit the abilityto represent the search state of one or more patternsin the bits of a single machine word and update all thesearch states in a single operation. We show analyt-ically and experimentally that the algorithms are ableof fast searching large sets of patterns allowing a widenumber of spurious characters, yielding about a 75-foldimprovement over the classical algorithm.1. IntroductionA major challenge in intrusion detection is the ef-fective detection of attacks as they are occurring, aproblem known as on-line intrusion detection. Currentresearch trends aim to a simpli�ed representation ofthe problem in order to improve e�ciency and perfor-mance. Pattern matching techniques are getting ma-jor attention as potential solutions because they havesolved analog problems in domains as computationalbiology and information retrieval. In intrusion detec-tion, pattern matching algorithms have been proposedas search engines in two di�erent intrusion detectionmodels. One is based in the concept of state transitionanalysis [11, 14] and the the other uses the computerimmunology approach proposed in [9].We give an example to illustrate how the pattern�Work supported by CONACyT grant # 122688.yWork developed in part while the author was at postdoc-toral stay at Institut Gaspard Monge, Univ. de Marne-la-Vall�ee,France. Supported in part by Fondecyt grant 1-990627 and Fun-daci�on Andes.

matching algorithms presented below can be used tosolve an intrusion detection problem. Auditable eventsin the target system (such as TCP/IP packages in anetwork or commands typed by users of a multi-usercomputer) can be seen as letters of an alphabet � andthe audit trail as a large string of letters in �� (i.e. thetext). The sequences of events representing attacks tobe detected are then substrings (i.e., patterns) to belocated in the main string. Potential attackers mayintroduce spurious events among those that representan actual attack in order to disperse their evidence, soa limited number of spurious letters must be allowedwhen searching the pattern. We are interested in de-tecting a set of possible attacks at the same time. Thisintrusion detection problem can be regarded as a par-ticular case of the multiple approximate pattern match-ing problem, where insertion in the pattern is the onlyallowed edit operation.There is a wide variety of audit facilities that can berun at the system level and that cover di�erent sourcesof potential attacks. A common property of these facil-ities is that they generate huge amounts of audited datain a short time, in the order of several millions of eventsper hour for large computing infrastructures. On theother hand, attacks are typically short sequences of nomore than 8 commands. Finally, the number of knownattacks to system vulnerabilities is so large [13] that itis a common request for an intrusion detection systemto search attack sets of more than 100 elements. Underthe approach of mapping events to letters, the typicalalphabet size may vary from 60 to 80, depending onthe number of di�erent auditable events in a particularsystem.With respect to the typical k values, (i.e. the num-ber of spurious letters allowed), it is important to avoidfalse matches (i.e. triggering unnecessary alarms for se-quences that do not really represent an attack becausek is too large) and to avoid missing true attacks. Em-pirical values of k are typically between 6 and 10.



We formalize the above problem as follows. Ourtext, T1::n, is a sequence of n characters from an al-phabet � of size �. Our pattern, P1::m is a sequenceof m characters from the same alphabet. We want toreport all the text positions that match the pattern,where at most k insertions between characters of P areallowed in its occurrence in T . We call � = k=m the\error level".A lot of work has been carried out on an extendedversion of this problem (called search allowing k dif-ferences), where not only insertions, but also deletionsand replacements are allowed. In a recent survey [19]four approaches are distinguished to search with k dif-ferences: dynamic programming, automata, �lteringand bit-parallelism.However, very little has been done to search withk insertions. Not all the algorithms for k di�erencescan be successfully simpli�ed for our restricted case.The most naive algorithm (which we show in Section2) is a simpli�cation of the classical dynamic program-ming solution for k di�erences, and the same O(mn)search time is maintained. We consider this complexityas the reference point for further improvements. Au-tomata approaches can be adapted with similar e�-ciency results: O(n) search time but impractically highpreprocessing and space requirements (exponential inm or k).Filtering approaches are very successful to searchwith k di�erences and are generally based in the con-cept that some pattern substrings must match even ininexact occurrences. This is also our case: for exam-ple, if k insertions are allowed in the matches then atleast one pattern piece of length bm=(k + 1)c must befound inside every occurrence. Hence we can search forthose pieces and use a more expensive algorithm onlyin the text areas surrounding such occurrences of pat-tern pieces. However, in most applications of the k dif-ferences problem it is common that k is much smallerthan m and therefore reasonably long pattern pieceshave to be found. Instead, in intrusion detection k isnormally large (in many cases k > m) and therefore�ltering approaches are ine�ective in general.The most promising approach seems to be bit-parallelism (which we explain in Section 3), becausethe simplicity of the k insertions model allows devis-ing faster algorithms. In particular, we present inSection 3 a search algorithm with time complexityO(nm log(k)=w) where w is the length in bits of thecomputer word. This is O(n) for reasonably short pat-terns. Moreover, it is better than previous bit-parallelalgorithms for the k di�erences, which were O(nmk=w)time [22, 6], but it is worse than a later development[16] which achieves O(mn=w). Interestingly, this last

approach cannot be adapted to our problem, but thatof [22] can be adapted at the same O(nmk=w) timecost. A related but di�erent problem, called \episodematching", is to �nd the pattern with the minimumnumber of insertions. Many algorithms are presentedin [8], where the best one needing space polynomial inm takes O(mn= logm) time. Finally, an independentlydeveloped work obtains also O(nm log(k)=w) time forthe k insertions problem [7], yet it does not generalizeto multipattern search, as explained next.A special requirement of our application is the needfor multipattern search. That is, we are given r pat-terns P 1:::P r and we have to report all their occur-rences. Very little work has been done on multipatternsearch for the k di�erences problem [15, 4, 17, 5, 18].In Sections 4 and 5 we adapt two of those approachesto the k insertions problem. The �rst one obtains aspeedup of ���=(1 + �)1+� (where � = k=m) over thebasic bit-parallel algorithm of Section 3. This speedupis larger than 1 for � < �=e � 1. The second one ob-tains a speedup of w= log2(m + k), but it works wellonly for m+ k < �, i.e. short patterns.All the algorithms mentioned form the �rst nontriv-ial solutions to the k insertions problem, both for singleand multiple patterns. In Section 6 we show some ex-perimental results about the practical performance ofthe algorithms. For typical cases our bit-parallel ver-sion outperforms the classical dynamic programmingby a factor of 3, while the multipattern �lters obtain a25-fold speedups. The net result is a 75-fold speedupover a classical approach.2. The Insertion Distance and a NaiveAlgorithmOur problem can be modeled using the concept ofinsertion distance. The insertion distance from a to b,denoted id(a; b), is the number of insertions necessaryto convert a into b. We say that id(a; b) = 1 if thisis not possible. Clearly, id(a; b) = jbj � jaj if a is asubsequence of b, and 1 otherwise.A more interesting de�nition arises when we searchfor a pattern P in a text T allowing insertions. At eachtext position j 2 1::n we are interested in the minimumnumber of insertions needed to convert P into somesu�x of T1::j. This is de�ned aslid(P; T1::j) = minj021::j id(P; Tj0::j)The search problem can therefore be formalized asfollows: given P , T and k, report all text positions jsuch that lid(P; T1::j) � k.



An immediate solution to the problem comes fromadapting an algorithm for k di�erences [21]. A vectorof values Ci (i 2 0::m) is updated for each new textcharacter Tj . The invariant is that, after processingtext position j, Ci = lid(P1::i; T1::j). Therefore, wereport all text positions j satisfying Cm � k. Initially(for j = 0) we have C0 = 0 and Ci = 1 for i > 0.When reading the text character Tj the Ci values areupdated to the new C 0i values using the formulaC0i = if (Pi = Tj) then min(Ci�1; Ci+1) else Ci+1(1)which has the following rationale: if the new text char-acter Tj does not match Pi, then we keep the previousmatch of Pi in a su�x of T1::j�1 (the cost is Ci) andadd an insertion to re
ect that undesired last charac-ter Tj . If, on the other hand, the new text charactermatches Pi then we have also the choice of using it andmatching P1::i�1 with the best su�x of T1::j�1 (the costis Ci�1).This algorithm is O(mn) time and O(m) space.3. A Bit-parallel SimulationBit-parallelism is a technique of common use instring matching [2], �rstly proposed in [1, 3]. The tech-nique consists in taking advantage of the intrinsic par-allelism of the bit operations inside a computer word.By using cleverly this fact, the number of operationsthat an algorithm performs can be cut down by a fac-tor of at most w, where w is the number of bits in thecomputer word. Since in current architectures w is 32or 64, the speedup is very signi�cant in practice (andimproves with technological progress).We introduce now some notation we use for bit-parallel algorithms. We denote as bs:::b1 the bits ofa mask of length s. We use exponentiation to denotebit repetition (e.g. 031 = 0001). We use C-like syn-tax for operations on the bits of computer words: \j"is the bitwise-or, \&" is the bitwise-and, \ b " is thebitwise-xor and \�" complements all the bits. Theshift-left operation, \<<", moves the bits to the leftand enters zeros from the right, i.e. bsbs�1:::b2b1 <<r = bs�r:::b2b10r. Finally, we can perform arithmeticoperations on the bits, such as addition and subtrac-tion, which operates the bits as if they formed a num-ber. For instance, bs:::bx10000� 1 = bs:::bx01111.Many text searching algorithms can be seen as im-plementations of clever automata (classically, in theirdeterministic form). Bit-parallelism has since its in-vention became a general way to simulate simple non-deterministic automata instead of converting them todeterministic. It has the advantage of being much sim-pler, in many cases faster (since it makes better usage

of the registers of the computer word), and easier toextend to handle complex patterns than its classicalcounterparts. Its main disadvantage is the limitationsit imposes with regard to the size of the computer word.In many cases its adaptations to cope with longer pat-terns are not so e�cient. For our application, in par-ticular, bit-parallelism seems to be a very promisingapproach.We show now how can we pack the Ci values ofSection 2 in the bits of a computer word to speed upthe search. Only the values from zero to k + 1 are ofinterest, since if a Ci value is larger than k + 1 thenthe outcome of the search is the same if we replace itby k + 1. Therefore, we use ` = dlog2(k + 1)e bits tohold each Ci value, plus an extra over
ow bit whosepurpose is made clear shortly.Taking minima in parallel is not impossible, butit is di�cult. We show that the update formula (1)can be modi�ed to avoid taking minima. First notethat Ci�1 � Ci + 1. That is, lid(P1::i�1; T1::j) �lid(P1::i; T1::j) + 1. This is clear, since any match ofP1::i against a su�x of T1::j can be converted into amatch of P1::i�1 just by removing the alignment of Piand considering it as an extra insertion (the +1). Hencethe best alignment must be at most of that cost. There-fore, Eq. (1) is equivalent toC 0i = if (Pi = Tj) then Ci�1 else Ci + 1which we now parallelize. We precompute a tableB : �! f0; 1gm(`+1), de�ned asB[c] = 0 b(c; Pm) 0 b(c; Pm�1) � � � 0 b(c; P2) 0 b(c; P1)where b(c; c) = 1` and b(c; c0) = 0` for c 6= c0. That is,B[c] has m chunks of zeros or ones, indicating whichpattern positions match character c. The idea is to useB[c] to implement the test (Pi = Tj), assigning Ci�1where it has ones and leaving Ci+1 where it has zeros.The state of the search is kept in a bit mask D,composed of m chunks of ` bits each (plus the over
owbit), so that the i-th chunk stores the current Ci value,i.e.D = 0 [Cm]` 0 [Cm�1]` � � � 0 [C2]` 0 [C1]`where [x]` is the number x represented in ` bits in theusual way (right-aligned). Note that C0 is not rep-resented because it is always zero. In principle, theupdate formula could be as simple asD0 = (B[Tj ] & (D << (` + 1)))j (� B[Tj ] & (D + (0`1)m))where B[Tj ] is being used to select between (D <<(`+1)) (which puts the previous value Ci�1 at the i-th



chunk) and (D+ (0`1)m) (which adds 1 to the currentCi values). In particular, the left shift brings zero bitsto the �rst chunk C1, which is adequate since C0 = 0.The problem with this scheme is that the Ci valuescould surpass the barrier of k + 1.To overcome the problem we use the over
ow bit.We let the Ci values grow over k + 1 provided they �tin ` bits. As soon as they over
ow, the over
ow bit willbe set. At this point, we subtract one to them. Theeasiest way to subtract one to all the Ci values whoseover
ow bit is set is to isolate the over
ow bits, shiftthem ` positions to the right and subtract the maskfrom D.The �nal problem is how to determine the text posi-tions that match. In the dynamic programming versionwe simply check Cm � k. In the bit-parallel version theCm value corresponds to the highest bits, and there-fore we can numerically compare the whole bit maskD against [k]`1(`+1)(m�1), which avoids any additionalbit shift or masking. We also want to report only textpositions that end a genuine match, i.e. such that thelast text character matches the last pattern character.Otherwise we would be reporting trivial extensions ofpreviously found matches. This can be determined bylooking at them-th chunk ofB[Tj ]. The �nal algorithmis shown in Figure 1.Search (T,n,P,m,k)/* Preprocessing */` dlog2(k + 1)efor c 2 � do B[c] 0m(`+1)for i 2 1::m doB[Pi] B[Pi] j 0(m�i)(`+1)01`0(i�1)(`+1)/* Searching */for j 2 1::nDs D << (` + 1)D  D + (0`1)mD  D � ((D >> `) & (0`1)m)D  (B[Tj ] & Ds) j (� B[Tj ] & D)if (D � [k]`1(`+1)(m�1)) and((B[Tj ] & 01`0(m�1)(`+1)) 6= 0m(`+1))then report a match ending at jFigure 1. The bit parallel algorithm. All the con-stants and repeated expressions are of course pre-computed.If the bits of the simulation do not �t in the com-puter word we set up as many computer words asneeded. Since each one is updated in O(1) time per

text character, the total complexity is O(nm log(k)=w).For short patterns (i.e. m log k = O(w)) this is O(n).4. A Multipattern FilterAs already noted in [4, 5, 18], the ability of bit-parallel algorithms to allow classes of characters canbe used to build multipattern �lters. Imagine that thepattern is not a sequence of letters but a sequence ofclasses of letters. A letter a is said to match P at po-sition i if a 2 Pi, i.e. if it belongs to the correspondingclass.If we have a pattern which is a sequence of classes ofcharacters, the algorithm of Section 3 can still be used,just by changing the preprocessing phase. The idea isthat we can rede�ne the b function tob(c; c0) = 1` if c 2 c0 and 0` otherwisewhich is equivalent to changing the fourth line in thepreprocessing of Figure 1 tofor c 2 Pi doB[c] B[c] j 0(m�i)(`+1)01`0(i�1)(`+1)that is, we allow the value of Ci�1 to pass to positioni for any character c that matches pattern position i.Consider now that we have r patterns P 1:::P r ofthe same length m (otherwise we truncate them to theshortest one). From them we generate a much morerelaxed pattern with classes of characters, which wecall the superimposition of P 1:::P r. This is de�ned asP = fP 11 ; :::; P r1g fP 12 ; :::; P r2g ::: fP 1m; :::; P rmgwhich necessarily matches when one of the P j matches,although the converse is not true. For instance, ifwe search "abcd" and "adcc" then the superimposedpattern is "fagfb,dgfcgfd,cg", and the text window"adcd" will match with zero insertions, even if it is notin the set of patterns.To make this more clear, consider the NFA of Fig-ure 2. The rows represent the number of insertions.The �rst one zero, the second one 1, and so on. Eachcolumn represents a pattern pre�x. Horizontal arrowsrepresent matching a pattern letter with a text letter,while vertical arrows represent skipping a text letter(since we advance in the text but not in the pattern,and increment the number of insertions). The initialstate has a self-loop to allow any text position to starta match. State in row s 2 0::k and column i 2 0::m isactive each time a su�x of the text read matches P1::iwith s insertions, so each time the lower right state isactive we have an occurrence of the pattern in the textwith at most k insertions.



Indeed, it can be proved that if state (s; i) is activethen any state (s0; i) with s0 > s is active as well, andthat the Ci value of Section 2 is the minimum row ofan active state at NFA column i. Therefore, our bit-parallel simulation can be thought of as a mechanismto pack the information of this NFA in bits and tosimulate the transitions that occur along the arrows ofthe automaton.The NFA of Figure 2 has been built for the super-imposition of "abcd" and "adcc". For instance, thearrows in the second column can be traversed eitherby the letter "b" or "d". Clearly this automaton willrecognize any occurrence of the two patterns, and someothers as well.
a

a

c

c

no insertions

2 insertions

1 insertion

  

c

Σ
b,d

b,d

b,d

d,c

d,c

d,c

a

Σ Σ Σ Σ Σ

ΣΣΣΣΣFigure 2. An NFA to search the superimposition"abcd" and "adcc" allowing 2 insertions.Therefore, the technique consists in superimposingthe search patterns, search the superimposition withthe same algorithm of Section 3, and then checkingthe areas where the superimposition is found for thepresence of any of the individual patterns. That is,each time the algorithm �nds the superimposed pat-tern at text position j, we check each of the patternsseparately (with the same algorithm) in the text areaTj�m�k+1::j. A similar idea was proposed in [4, 5, 18]for the k-di�erences problem.To avoid re-veri�cation due to overlapping areas, wekeep track of the last position veri�ed and the state ofthe veri�cation algorithm. If a new veri�cation require-ment starts before the last veri�ed position, we startthe veri�cation from the last veri�ed position, avoidingto re-verify the preceding area.4.1. Hierarchical Veri�cationInstead of checking one by one the patterns for eachoccurrence of the superimposed pattern, we can buildup a hierarchy of superimpositions [20, 18]. Imagine

that r = 8. Then we build, at preprocessing time, thesuperimposition of the 8 patterns, called P 1::8. We con-sider this the root of a binary tree, whose two childrenare P 1::4 and P 5::8, i.e. they superimpose only 4 pat-terns. The �rst one has two children P 1::2 and P 3::4,and so on. Finally, the leaves of the tree are the actualpatterns. If r is not a power of two we build the treeas balanced as possible. Figure 3 illustrates.
1
2
3
4

1
2

3
4

1 2 3 4Figure 3. Hierarchical veri�cation for 4 superim-posed patterns.We search P 1::8 in the text. When it is found, we donot check immediately all the leaves P 1 to P 8, but justits two children P 1::4 and P 5::8. It is possible that, de-spite that the root was found, none of the two childrenappears (and therefore no leaf can appear as well). Sowe can avoid performing 8 veri�cations at the cost of2. Of course it is also possible that one and even bothof the children appears in the text area and then theirchildren have to be checked in turn until the leavesare found (and these are actually reported). In par-ticular, if a leaf appears it will require all the path ofveri�cations. However, as we show next, hierarchicalveri�cation pays o�.4.2. AnalysisSuperimposing r patterns gives of course bettersearch time because only one search is carried out in-stead of r. On the other hand, however, it makes nec-essary to check the occurrences of the superimposedpattern for the presence of the actual ones. Moreover,the probability of matching raises as we superimposemore patterns, because up to r characters of the alpha-bet match each pattern position.We start by giving an upper bound on the matchingprobability of a random pattern of length m at a ran-dom text position, with up to k insertions. Consider arandom text position j. The pattern P appears withk insertions at a text position ending at j if and onlyif the text window Tj�m�k+1::j contains the m patternletters in order. The window positions that match thepattern letters can be chosen in �m+km � ways. Those let-



ters are �xed but the other k can take any value. There-fore the probability that the text window matches thepattern with k insertions is at most�m+ km � �k�m+k = �m+ km � 1�mwhere we are overestimating because not all the selec-tions of window positions give di�erent windows. Forinstance the pattern "abcd" matches in text window"abccd" with k = 1 in two ways, but only one textwindow should be counted. In particular, our overes-timation includes the case of k0 < k insertions, whichis obtained by selecting the �rst k � k0 characters ofthe text window as insertions and distributing the k0remaining insertions in the remaining text window oflength m+ k0.If we are given r patterns and superimpose them ingroups of r0, there are at most r0 out of � alphabetletters that will match each pattern position now. Thenet e�ect is that of dividing � by r0 in the formulas.If we consider that no hierarchical veri�cation is used,then each match of the superimposed pattern triggersa veri�cation of r0 original patterns in a text area ofwidth m + k. Therefore the total search cost is onaverage (assuming that the patterns �t in a computerword) nrr0 �1 +�m+ km �(m + k)r0(�=r0)m �= nr� 1r0 +�m+ km �(m + k)r0m�m �Assume now that we use hierarchical veri�cation. Inthis case, 2 searches with r0=2 patterns are triggered foreach occurrence of the superimposed pattern. For eachoccurrence of those superimpositions of r0=2 patternswe will have to check a text window with 2 patternssuperimposing r0=4 original patterns, and so on. Ab-stracting from the mechanism we use to �nd the nodesof the tree of superimpositions, we have that in total,in the hierarchy there are 2i groups of r0=2i patterns,for i = 0:: log2(r0) � 1. Each such group matches withprobability �m+km �=(�2i=r0)m, and each match costs theveri�cation of a window of length m + k for other twopatterns. The total veri�cation cost is�m + km �2(m+ k)r0m�m log2(r0)�1Xi=0 2i(2i)m= �m + km �2(m+ k)r0m�m (1 +O(1=2m))which is r0=2 times cheaper than without hierarchicalveri�cation. The search cost becomes nownr� 1r0 +�m+ km �2(m + k)r0m�1�m �

which is minimized forr0 = ��2�m+km �(m + k)(m � 1)�1=mand gives a search time ofnr� mm� 1 ��m+ km �2(m + k)(m � 1)�1=mAn asymptotic simpli�cation (for large m and � =k=m considered constant) of the cost can be obtainedusing Stirling's approximation to the factorial m! =(m=e)mp2�m(1 + O(1=m)):nr� (1 + �)1+���which monotonically worsens with �, as expected.This shows that in the best case we may expecta speedup of O(�) by superimposing the subpatterns.The speedup is � for k = 0 and it moves to 1 as � grows.A natural question up to which error level the speedupis larger than 1 (i.e. useful). This is, when it happensthat ��� > (1 + �)1+�, i.e. � > (1 + �)(1 + 1=�)�.A su�cient condition can be obtained by noticing that1 � (1+ 1=�)� � e, and therefore � < �=e� 1 su�ces.In general it has to hold � < �=(r0e) � 1.For longer patterns all search costs get multiplied bym log2(k)=w. On the other hand, if the patterns arevery short, we may do multipattern search by packingthe states of many patterns inside the same computerword, so that we update the states of all the searchesin a single operation. The size of the representationof each pattern, however, is nearly m log2(k), whichmakes the idea impractical except for very short pat-terns. In the next section we present a �lter that needsmuch less information per pattern and therefore is suit-able for this approach.5. A Counting FilterA di�erent approach to �lter the search for multiplepatterns is to use a \counting" �lter. The �lter is basedon the notion that if a pattern is found at text positionj, then all its characters must appear in the text win-dow Tj�m�k+1::j. The idea is to keep count at any textposition j of how many pattern characters are presentin the text window, updating this information in O(1)operations per text character. Note that we cannot en-sure that the pattern characters appear in the correctorder, so we �lter with a necessary condition which isnot su�cient to guarantee a match. Moreover, we showthat for a multipattern search many counters (one per



pattern) can be stored in a single computer word andall can be updated in O(1) operations per text charac-ter. Each time a counter reaches the critical value m,it means that all its characters are in the text windowand therefore the window is checked using the algo-rithm of Section 3. A similar idea has been proposedin [12, 17, 18] for the k-di�erences problem and earlier[10] for the k-mismatches problem. We now describethe algorithm and later show how to adapt it for mul-tiple patterns (by combining it with bit-parallelism).5.1. One PatternThe �lter passes over the text examining an (m+k)-letters long window. It keeps track of how many char-acters of P are present in the current text window(accounting for multiplicities too). If, at a given textposition j, the m characters of P are in the windowTj�m�k+1::j, the window area is veri�ed with a classi-cal algorithm (in this paper, with the bit-parallel algo-rithm of Section 3).We implement the �ltering algorithm as follows: webuild a table A[ ] where, for each character c 2 �, thenumber of times that c appears in P is initially stored.Throughout the algorithm, A[c] indicates the di�erencebetween the number of times c appears in P and thenumber of times is has appeared in the current window.Only when A[c] is positive we count a c letter thatenters the window. We also keep a counter count ofmatching characters. To advance the window, we mustinclude the new character Tj+1 and exclude the lastcharacter, Tj�m�k+1. To include the new character, wedecrement A[Tj+1]. If the entry was greater than zerobefore the operation, it is because the character is in P ,so we increment the counter count. To exclude the oldcharacter, we increment A[Tj�m�k+1]. If the entry isgreater than zero after the operation, it is because thecharacter was in P , so we decrement count. When thecounter count reaches m we verify the preceding area.When A[c] is negative, it means that the characterc must leave the window �A[c] times before we acceptit again as belonging to the pattern. For example, ifwe run the pattern "abca" over the text "aaaaaaaa",with k = 1 it will hold A[0a0] = �3, and the value ofcount will be 2. Figure 4 shows another example.Figure 5 shows the pseudocode of the algorithm. Asit can be seen, the algorithm is not only linear time(excluding veri�cations), but the number of operationsper character is very small.

X

X

X

X

h e l l o a

l

1

-1

0

0

-1

a

o

h

e

Searching ’aloha’

c A[c]

(k=1)

XFigure 4. An example of the counting �lter. Thecrosses represent elements which A[ ] accepts, andthe circles are the elements that appeared in thewindow. A[c] stores crosses minus circles, andcount counts circled crosses.5.2. Multiple PatternsThe previous algorithm can search for one patternonly. However, we can extend it to handle multiplepatterns. To search r patterns in the same text, weuse bit-parallelism to keep all the counters in a singlemachine word. We must do that for the A[ ] table andfor count.The values of the entries ofA[ ] lie in the range [�m�k::m], so we need exactly 1+` bits to store them, where` = dlog2(m + k + 1)e. This is also enough for count,since it is in the range [0::m]. Hence, we can packbw=(1 + dlog2(m + k)e)c patterns in a single search(recall that w is the number of bits in the computerword). If we have more patterns, we must divide theset in subsets of at most this size and search each subsetseparately. We focus our attention on a single subsetnow.The algorithm simulates the simple one as follows.We have a table MA[ ] that packs all the A[ ] tables.Each entry of MA[ ] is divided in bit areas of length1 + `. In the area of the machine word correspondingto each pattern, we store 2` + A[ ] � 1. When, in thealgorithm, we have to add or subtract 1, we can easilydo it in parallel without causing over
ow from an areato the next. Moreover, the corresponding A[ ] value isnot positive if and only if the most signi�cant bit ofthe area is zero. Figure 6 illustrates.We have a parallel counter Mcount, where the areasare aligned with MA[ ]. It is initialized with 2` �m ineach area. Later, we can add or subtract 1 in parallelwithout causing over
ow. Moreover, the window mustbe veri�ed for a pattern whenever the most signi�cant



CountFilter (T,n,P,m,k)/* Preprocessing */for c 2 � do A[c] 0for i 2 1::m do A[Pi] A[Pi] + 1count 0/* Searching */for j 2 1::m+ k do /* fill init.window */if A[Tj] > 0 then count count+ 1A[Tj] A[Tj]� 1for j 2 m+ k + 1::n do /* move window */if count = m then verify Tj�m�k::j�1if A[Tj] > 0 then count count+ 1A[Tj] A[Tj]� 1A[Tj�m�k] A[Tj�m�k] + 1if A[Tj�m�k] > 0 then count count� 1Figure 5. The �ltering algorithm for one pattern.bit of its area reaches 1. The condition can be checkedin parallel, although if some counter reaches zero wesequentially verify which one did it.Observe that the counters that we want to selec-tively increment or decrement correspond exactly tothe MA[ ] areas that have a 1 in their most signi�cantbit (i.e. those whose A[ ] value is positive). This yieldsa bit mask-shift-add mechanism to perform this oper-ation in parallel on all the counters.Figure 7 shows the pseudocode of the parallel algo-rithm. As it can be seen, the algorithm is more complexthan the simple version but the number of operationsper character is still very low.5.3. AnalysisWe want to determine the probability that the �ltertriggers a veri�cation for a given pattern. Since the mcharacters of P can appear at any window position inany order, the probability can be upper bounded by(recall Section 4.2)�m + km �m!�m = (m + k)!k!�mwhich, compared to the real matching probability wehave been using, has an extra m! factor. Since we packa pattern in dlog2(m+ k)e bits, the total search cost isnr� log2(m+ k)w + (m + k)!k!�m (m + k)�where, unlike the case of superimposed automata, wehave to pack the maximum number of patterns to-gether, since the number of veri�cations triggered does

MA[c]McountA[c]count+2`�1+2`�m10000m = 5; k = 1; ` = 3 MA [a]MA [l]MA [o]MA [h]MA [e]A[c]> 00 0 0111 111 1 11 01 Mcount0 1 1 10count �mFigure 6. Scheme and an example of the bit-parallelcounters. The example follows that of Figure 4.not depend on how the packing is done. We are inter-ested, on the other hand, in the maximum error level� for which this �lter is useful.Applying Stirling's approximation to the matchingprobability formula we get an asymptotic simpli�cationfor large m: � (1 + �)1+�me��� �mwhich is exponentially decreasing with m as long asthe base is smaller than 1. When this happens, allthe veri�cation costs become negligible. When, on theother hand, the cost is not exponentially decreasingwith m, the veri�cations dominate the search cost andthe �lter is no longer useful.So the simpli�ed condition for the �lter to be usefulis (1 + �)1+��� < e�mwhich worsens as m or � grow. A simpli�ed conditioncan be obtained by noticing again that (1+�)1+�=�� =(1 + �)(1 + 1=�)� � e(1 + �), and therefore it su�cesthat � < �=m � 1to ensure that the �lter is useful. Note that the condi-tion is equivalent to m + k < �.



CountFilter (T,n,P 1::r,m,k)/* Preprocessing */` = dlog2(m+ k)e;for c 2 � do MA[c] (01`)rfor s 2 1::r dofor i 2 1::m doMA[P si ] MA[P si ] + 10(s�1)(`+1)Mcount (10` �m)) � (0`1)r/* Searching */for j 2 1::m+ k do /* fill init.window */Mcount Mcount +((MA[Tj ] >> `) & (0`1)r)MA[Tj] MA[Tj] � (0`1)rfor j 2 m+ k + 1::n do /* move window */if Mcount & (10`)r 6= 0r(`+1) thenfor s 2 1::r doif Mcount & 0(r�s)(`+1)10`0(s�1)(`+1)6= 0r(`+1) thenverify Tj�m�k::j�1 for patt.P sMcount Mcount +((MA[Tj ] >> `) & (0`1)r)MA[Tj] MA[Tj] � (0`1)rMA[Tj�m�k] MA[Tj�m�k] + (0`1)rMcount Mcount �((MA[Tj�m�k] >> `) & (0`1)r)Figure 7. The multiple-pattern algorithm. All theconstants are of course precomputed.6. Experimental ResultsIn this section we present some experimental resultsabout our algorithms and their analyses.6.1. Probability of MatchingWe test experimentally the probability that a ran-dom pattern matches at a random text position. Wegenerated a random text and 100 random patterns foreach experimental value shown. Figure 8 shows theprobability of matching in a text of 3 Mb for a patternwith m = 300, where pattern and text were randomlygenerated over an alphabet of size � = 68. As can beseen, there is a k value from where the matching prob-ability starts to grow abruptly, moving from almost 0to almost 1 in a short range of values. Despite that thisphenomenon is not as abrupt as for the k di�erencesproblem [6, 18], it is sharp enough to make this k valuethe most important parameter governing the behavior

of the algorithm. We call k� this point, and �� = k�=mthe corresponding error level.
0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

pr
ob

ab
ili

ty
 o

f m
at

ch

Figure 8. Matching probability for increasing k val-ues and �xed m = 300.On Figure 9 we have shown this limiting �� valuefor di�erent pattern lengths, showing that �� tends toa constant for large m, despite that it is smaller forshort patterns.
0 500 1000 1500

40

45

50

55

60

65

m

α∗ Figure 9. The �� limit as m grows.Finally, we show in Figure 10 how the alphabet size� a�ects the asymptotic �� value (really for m = 300).As can be seen, the curve looks as a straight line, whereleast squares estimation yields �� = �=1:0856�0:8878.All this matches our analytical results in the sensethat (a) there is a clear error level �� where thematching probability goes almost from 0 to 1; (b) thispoint does not depend on m asymptotically; and (c)it depends on � linearly as predicted by the analysis(�� = �=e� 1) except because the e has been changed



10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

σ

α∗Figure 10. The �� limit as � grows, for m = 300.to about 1.09. Interestingly, this is similar to the resultobtained for the k di�erences problem in [6, 18] whenrelating their analytical predictions (�� = 1 � e=p�)with the experiments (�� = 1� 1:09=p�) and shows aconsistent behavior of the pessimistic analytical modelused in both cases.6.2. The AlgorithmsWe experimentally study our algorithms now. Wetested with 35 Mb of random text (� = 68) and a setof 100 random patterns of lengths m 2 f4; 5; 6g. Thisis a typical setup for intrusion detection applications.We use a Sun Enterprise 450 server (4 x UltraSPARC-II250MHz) running SunOS 5.6 with 512 Mb of RAM andw = 32. Each data point was obtained by averagingthe Unix's real time over 10 trials.A �rst concern is which is the scanning e�ciency ofthe algorithms compared to plain dynamic program-ming for one pattern, independently of their �lteringe�ciency to deal with multiple patterns. Figure 11shows the scanning e�ciency of the dynamic program-ming, the bit-parallel simulation and the counting �l-ter (using the bit-parallel simulation as the veri�cationengine) for single random patterns with m = 4. Wemeasure the megabytes per second (Mb/s) processedby the algorithms as k increases. As can be seen, thebit-parallel simulation is 2.5 to 3 times faster than theclassical solution even for very large k values. Thecounting �lter is in between.We compare now the impact of the number of pat-terns r0 in the multipattern �lter based on superim-posed automata. We take m = 4 (i.e., the length ofthe shortest pattern in the set) and � = 68 for our an-alytical estimation of optimal superimposition, whichyields r0k=4 = 8:93, r0k=6 = 6:41 and r0k=8 = 4:94. Fig-

20 40 60 80 100 120
2

4

6

8

10

12

14

16

18

k

M
b/

s

 Dynamic Prog       
 Bit−parallel Simulation 
 Counting Filter    

Figure 11. Scanning e�ciency of the bit-parallel sim-ulation and the counting �lter compared to the clas-sical dynamic programming algorithm.ure 12 shows the Mb/s processed when using di�erentvalues of r0 over a set of 100 patterns. As the analysispredicts, there is an optimal amount of superimpositionthat is reduced as k grows. The analytically estimatedoptima are below the practical ones, since our analysisuses a pessimistic bound on the matching probability.We use the experimental optima in the tests that fol-low.
0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

r’

M
b/

s

 k = 4
 k = 6
 k = 8

Figure 12. Mb/s vs partition size for k = 4, k = 6and k = 8 over a set of 100 patterns with m 2f4; 5; 6g.We now show the degree of parallelism achieved bythe superimposition and counting �lters algorithms, in



terms of the ratio between the parallel version and rapplications of the corresponding single-pattern algo-rithm. We search the same set of randomly selectedpatterns (m 2 f4; 5; 6g) with k = 8. Figure 13 showsthe behavior in terms of r. We observe that the multi-pattern �lter quickly converges to a 5-fold improvementover its sequential version as r increases. The count-ing �lter achieves a lower degree of parallelism, taking0.27 of its sequential counterpart. The \waves" in thesuperimposition �lter is due to a discretization e�ectwhen the patterns are divided into groups.
0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

pa
ra

lle
l/s

eq
ue

nt
ia

l

 Superimposition Filter
 Counting Filter    

Figure 13. Ratio between parallel and sequential ver-sions of the algorithms.Figure 14 shows the impact of searching allowingdi�erent numbers of insertions for both algorithms, forpattern sets of r = f1::100g. We observe that per-formance remains stable up to a limit around r = 25with low k. For higher k values, however, performancedrops drastically from the beginning. The counting �l-ter resists more this behavior, which shows its highertolerance to insertions for short patterns. To see this,note that the case m = 6, k = 25 and � = 68 is to-tally inside the scope of the counting �lter according tothe analysis, while the superimposition �lter can onlysuperimpose 3 patterns under this setup.7. ConclusionsWe have presented a string matching approach tothe problem of intrusion detection, which is formal-ized as the problem of multipattern matching allow-ing insertions. Besides the classical solution for onepattern adapted from the �eld of approximate pat-tern matching, we have presented two new search al-gorithms which we also extended to handle multiple

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter     
 Superimposition Filter

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter     
 Superimposition Filter

Figure 14. Mb/s processed by both algorithms for aset of patterns with m 2 f4; 5; 6g with k = 4 (top)and k = 25 (bottom).patterns. Each of the two algorithms can be betterthan the other depending on the number of insertionsallowed.We have presented analytical and experimental re-sults concerning the performance of the new algo-rithms. As an example, we illustrate the case of 4-letters patterns searched allowing 4 insertions, whichis a case of interest in intrusion detection applications.The single pattern versions are typically 3 times fasterthan the classical solution. The multipattern algo-rithms allow searching 100 patterns at the same costof 4 single pattern searches (a 25-fold speedup). As aresult, our new algorithms allow searching for 100 pat-terns at a rate of 4 Mb/s in our machine, while theclassical algorithm can search for just one single pat-tern at 5 Mb/s.In the �eld of approximate string matching, the



fastest algorithms are �lters able to discard most ofthe text by checking a necessary condition. In gen-eral, those �lters cannot easily be applied here becausethe error levels typical in intrusion detection applica-tions are too high for the standards of the approximatestring matching problem. We have shown, however,that some �ltration techniques can be adapted to thisproblem to obtain a large improvement in the perfor-mance of multipattern searching.Future work involves searching for new algorithms,as well as a detailed study of optimization and exten-sions on the current ones. With respect to the length ofthe patterns, we point out that we have concentrated inthe parameters typical of intrusion detection, where thepatterns are rather short, the k value is quite high, andthe number of patterns is large. The new algorithmswe have presented are very well suited to this setup,but other variants of the problem could be of interestin other applications and could demand (or permit)di�erent approaches. In particular, more sophisticatedmodels of attacks may yield more cpomplex patternmatching problems.References[1] R. Baeza-Yates. E�cient Text Searching. PhD thesis,Dept. of Computer Science, Univ. of Waterloo, May1989. Also as Research Report CS-89-17.[2] R. Baeza-Yates. Text retrieval: Theory and practice.In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Science, Sept. 1992.[3] R. Baeza-Yates and G. Gonnet. A new approach totext searching. Comm. of the ACM, 35(10):74{82, Oct.1992.[4] R. Baeza-Yates and G. Navarro. Multiple approxi-mate string matching. In Proc. WADS'97, LNCS 1272,pages 174{184, 1997.[5] R. Baeza-Yates and G. Navarro. New and faster�lters for multiple approximate string matching.Technical Report TR/DCC-98-10, Dept. of Com-puter Science, Univ. of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-multi.ps.gz.[6] R. Baeza-Yates and G. Navarro. Faster approximatestring matching. Algorithmica, 23(2):127{158, 1999.[7] L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiya-sevich. Window accumulated subsequence matching islinear. In Proc. ACM PODS'99, pages 327{336, 1999.[8] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, andJ. K�arkk�ainen. Episode matching. In Proc. CPM'97,LNCS 1264, pages 12{27, 1997.[9] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri.Self-nonself discrimination in a computer. In Proc.IEEE Symp. on Research in Security and Privacy,1994.

[10] R. Grossi and F. Luccio. Simple and e�cient stringmatching with k mismatches. Information ProcessingLetters, 33(3):113{120, 1989.[11] K. Ilgun. USTAT: A real-time intrusion detection sys-tem for UNIX. Master's thesis, Computer ScienceDept., University of California, Santa Barbara, July1992.[12] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparisonof approximate string matching algorithms. SoftwarePractice and Experience, 26(12):1439{1458, 1996.[13] K. Kendall. A database of computer attacks for theevaluation of intrusion detection systems. Master'sthesis, MIT, Dept. of Electrical Engineering and Com-puter Science, June 1999.[14] S. Kumar. Classi�cation and Detection of ComputerIntrusions. PhD thesis, Dept. of Computer Science,Purdue University, Aug. 1995.[15] R. Muth and U. Manber. Approximate multiple stringsearch. In Proc. CPM'96, LNCS 1075, pages 75{86,1996.[16] G. Myers. A fast bit-vector algorithm for approximatestring matching based on dynamic progamming. Jour-nal of the ACM, 46(3):395{415, 1999.[17] G. Navarro. Multiple approximate string matching bycounting. In Proc. WSP'97, pages 125{139. CarletonUniversity Press, 1997.[18] G. Navarro. Approximate Text Searching. PhDthesis, Dept. of Computer Science, Univ. of Chile,Dec. 1998. Technical Report TR/DCC-98-14.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-thesis98.ps.gz.[19] G. Navarro. A guided tour to approximatestring matching. Technical Report TR/DCC-99-5, Dept. of Computer Science, Univ. of Chile,1999. To appear in ACM Computing Surveys.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-survasm.ps.gz.[20] G. Navarro and R. Baeza-Yates. Improving analgorithm for approximate pattern matching.Technical Report TR/DCC-98-5, Dept. of Com-puter Science, Univ. of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-dexp.ps.gz.[21] P. Sellers. The theory and computation of evolution-ary distances: pattern recognition. J. of Algorithms,1:359{373, 1980.[22] S. Wu and U. Manber. Fast text searching allowingerrors. Comm. of the ACM, 35(10):83{91, Oct. 1992.


