Fast Multipattern Search Algorithms for Intrusion Detection

Josué Kuri*
Ecole Supérieure d’Electricité
Avenue de la Boulaie — BP 28
35511 Cesson Sévigné — France
jkuri@enst.fr

Abstract

We present new search algorithms to detect the oc-
currences of any pattern from a given pattern set in
a text, allowing in the occurrences a limited number
of spurious text characters among those of the pat-
tern. This is a common requirement in intrusion de-
tection applications. Our algorithms exploit the ability
to represent the search state of one or more patterns
in the bits of a single machine word and update all the
search states in a single operation. We show analyt-
ically and experimentally that the algorithms are able
of fast searching large sets of patterns allowing a wide
number of spurious characters, yielding about a 75-fold
improvement over the classical algorithm.

1. Introduction

A major challenge in intrusion detection is the ef-
fective detection of attacks as they are occurring, a
problem known as on-line intrusion detection. Current
research trends aim to a simplified representation of
the problem in order to improve efficiency and perfor-
mance. Pattern matching techniques are getting ma-
jor attention as potential solutions because they have
solved analog problems in domains as computational
biology and information retrieval. In intrusion detec-
tion, pattern matching algorithms have been proposed
as search engines in two different intrusion detection
models. One is based in the concept of state transition
analysis [11, 14] and the the other uses the computer
tmmunology approach proposed in [9].

We give an example to illustrate how the pattern

*Work supported by CONACyT grant # 122688.

TWork developed in part while the author was at postdoc-
toral stay at Institut Gaspard Monge, Univ. de Marne-la-Vallée,
France. Supported in part by Fondecyt grant 1-990627 and Fun-
dacién Andes.

Gonzalo Navarro!
Dept. of Computer Science, Univ. of Chile

Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

matching algorithms presented below can be used to
solve an intrusion detection problem. Auditable events
in the target system (such as TCP/IP packages in a
network or commands typed by users of a multi-user
computer) can be seen as letters of an alphabet ¥ and
the audit trail as a large string of letters in X* (i.e. the
text). The sequences of events representing attacks to
be detected are then substrings (i.e., patterns) to be
located in the main string. Potential attackers may
introduce spurious events among those that represent
an actual attack in order to disperse their evidence, so
a limited number of spurious letters must be allowed
when searching the pattern. We are interested in de-
tecting a set of possible attacks at the same time. This
intrusion detection problem can be regarded as a par-
ticular case of the multiple approximate pattern match-
ing problem, where insertion in the pattern is the only
allowed edit operation.

There is a wide variety of audit facilities that can be
run at the system level and that cover different sources
of potential attacks. A common property of these facil-
ities is that they generate huge amounts of audited data
in a short time, in the order of several millions of events
per hour for large computing infrastructures. On the
other hand, attacks are typically short sequences of no
more than 8 commands. Finally, the number of known
attacks to system vulnerabilities is so large [13] that it
is a common request for an intrusion detection system
to search attack sets of more than 100 elements. Under
the approach of mapping events to letters, the typical
alphabet size may vary from 60 to 80, depending on
the number of different auditable events in a particular
system.

With respect to the typical & values, (i.e. the num-
ber of spurious letters allowed), it is important to avoid
false matches (i.e. triggering unnecessary alarms for se-
quences that do not really represent an attack because
k is too large) and to avoid missing true attacks. Em-
pirical values of k are typically between 6 and 10.

We formalize the above problem as follows. Our
text, T1.n, is a sequence of n characters from an al-
phabet ¥ of size o. Our pattern, P; ,, is a sequence
of m characters from the same alphabet. We want to
report all the text positions that match the pattern,
where at most k insertions between characters of P are
allowed in its occurrence in T. We call o = k/m the
“error level”.

A lot of work has been carried out on an extended
version of this problem (called search allowing k dif-
ferences), where not only insertions, but also deletions
and replacements are allowed. In a recent survey [19]
four approaches are distinguished to search with & dif-
ferences: dynamic programming, automata, filtering
and bit-parallelism.

However, very little has been done to search with
k insertions. Not all the algorithms for & differences
can be successfully simplified for our restricted case.
The most naive algorithm (which we show in Section
2) is a simplification of the classical dynamic program-
ming solution for & differences, and the same O(mn)
search time is maintained. We consider this complexity
as the reference point for further improvements. Au-
tomata approaches can be adapted with similar effi-
ciency results: O(n) search time but impractically high
preprocessing and space requirements (exponential in
m or k).

Filtering approaches are very successful to search
with % differences and are generally based in the con-
cept that some pattern substrings must match even in
inexact occurrences. This is also our case: for exam-
ple, if % insertions are allowed in the matches then at
least one pattern piece of length |m/(k + 1)| must be
found inside every occurrence. Hence we can search for
those pieces and use a more expensive algorithm only
in the text areas surrounding such occurrences of pat-
tern pieces. However, in most applications of the k dif-
ferences problem it is common that % is much smaller
than m and therefore reasonably long pattern pieces
have to be found. Instead, in intrusion detection % is
normally large (in many cases k& > m) and therefore
filtering approaches are ineffective in general.

The most promising approach seems to be bit-
parallelism (which we explain in Section 3), because
the simplicity of the % insertions model allows devis-
ing faster algorithms. In particular, we present in
Section 3 a search algorithm with time complexity
O(nmlog(k)/w) where w is the length in bits of the
computer word. This is O(n) for reasonably short pat-
terns. Moreover, it is better than previous bit-parallel
algorithms for the k differences, which were O(nmk/w)
time [22, 6], but it is worse than a later development
[16] which achieves O(mn/w). Interestingly, this last

approach cannot be adapted to our problem, but that
of [22] can be adapted at the same O(nmk/w) time
cost. A related but different problem, called “episode
matching”, is to find the pattern with the minimum
number of insertions. Many algorithms are presented
in [8], where the best one needing space polynomial in
m takes O(mn/log m) time. Finally, an independently
developed work obtains also O(nmlog(k)/w) time for
the k insertions problem [7], yet it does not generalize
to multipattern search, as explained next.

A special requirement of our application is the need
for multipattern search. That is, we are given r pat-
terns Pl...P" and we have to report all their occur-
rences. Very little work has been done on multipattern
search for the k differences problem [15, 4, 17, 5, 18].
In Sections 4 and 5 we adapt two of those approaches
to the & insertions problem. The first one obtains a
speedup of ca®/(1+ a)'+* (where o = k/m) over the
basic bit-parallel algorithm of Section 3. This speedup
is larger than 1 for « < o/e — 1. The second one ob-
tains a speedup of w/log,(m + k), but it works well
only for m + k < o, i.e. short patterns.

All the algorithms mentioned form the first nontriv-
1al solutions to the & insertions problem, both for single
and multiple patterns. In Section 6 we show some ex-
perimental results about the practical performance of
the algorithms. For typical cases our bit-parallel ver-
sion outperforms the classical dynamic programming
by a factor of 3, while the multipattern filters obtain a
25-fold speedups. The net result is a 75-fold speedup
over a classical approach.

2. The Insertion Distance and a Naive
Algorithm

Our problem can be modeled using the concept of
insertion distance. The insertion distance from a to b,
denoted id(a, b), is the number of insertions necessary
to convert a into b. We say that id(a,b) = oo if this
is not possible. Clearly, id(a,b) = |[b] — |a| if a is a
subsequence of b, and co otherwise.

A more interesting definition arises when we search
for a pattern P in a text T allowing insertions. At each
text position j € 1..n we are interested in the minimum
number of insertions needed to convert P into some
suffix of T3 ;. This is defined as

l’Ld(P, Tl..j) = mln’Ld(P,TJ/])

jlel.g

The search problem can therefore be formalized as

follows: given P, T and k, report all text positions j
such that lid(P, T, ;) < k.

An immediate solution to the problem comes from
adapting an algorithm for % differences [21]. A vector
of values C; (i € 0..m) is updated for each new text
character 7;. The invariant is that, after processing
text position j, C; = lid(Py.4,T1.j). Therefore, we
report all text positions j satisfying C,, < k. Initially
(for j = 0) we have Cy = 0 and C; = oo for ¢ > 0.
When reading the text character T; the C; values are
updated to the new C/ values using the formula
C] = if (P, =1T;) then min(C;_1,C;+1) else C; +1

(1)
which has the following rationale: if the new text char-
acter T; does not match P;, then we keep the previous
match of P; in a suffix of 77 j_; (the cost is C;) and
add an insertion to reflect that undesired last charac-
ter T;. If, on the other hand, the new text character
matches P; then we have also the choice of using it and
matching Py ;_1 with the best suffix of 77 j_; (the cost
is Ci—l)-

This algorithm is O(mn) time and O(m) space.

3. A Bit-parallel Simulation

Bit-parallelism is a technique of common use in
string matching [2], firstly proposed in [1, 3]. The tech-
nique consists in taking advantage of the intrinsic par-
allelism of the bit operations inside a computer word.
By using cleverly this fact, the number of operations
that an algorithm performs can be cut down by a fac-
tor of at most w, where w is the number of bits in the
computer word. Since in current architectures w is 32
or 64, the speedup is very significant in practice (and
improves with technological progress).

We introduce now some notation we use for bit-
parallel algorithms. We denote as b,...5; the bits of
a mask of length s. We use exponentiation to denote
bit repetition (e.g. 031 = 0001). We use C-like syn-
tax for operations on the bits of computer words: “|”
is the bitwise-or, “&” is the bitwise-and, “ ™ ” is the
bitwise-xor and “~” complements all the bits. The
shift-left operation, “<<”, moves the bits to the left
and enters zeros from the right, i.e. b,b,_1...5251 <<
r = b;_,...b0b10". Finally, we can perform arithmetic
operations on the bits, such as addition and subtrac-
tion, which operates the bits as if they formed a num-
ber. For instance, b;...5,10000 — 1 = b,...5,01111.

Many text searching algorithms can be seen as im-
plementations of clever automata (classically, in their
deterministic form). Bit-parallelism has since its in-
vention became a general way to simulate simple non-
deterministic automata instead of converting them to
deterministic. It has the advantage of being much sim-
pler, in many cases faster (since it makes better usage

of the registers of the computer word), and easier to
extend to handle complex patterns than its classical
counterparts. Its main disadvantage is the limitations
it imposes with regard to the size of the computer word.
In many cases its adaptations to cope with longer pat-
terns are not so efficient. For our application, in par-
ticular, bit-parallelism seems to be a very promising
approach.

We show now how can we pack the C; values of
Section 2 in the bits of a computer word to speed up
the search. Only the values from zero to k& + 1 are of
interest, since if a C; value is larger than k& 4+ 1 then
the outcome of the search is the same if we replace it
by k + 1. Therefore, we use £ = [log,(k + 1)] bits to
hold each C; value, plus an extra overflow bit whose
purpose is made clear shortly.

Taking minima in parallel is not impossible, but
it is difficult. We show that the update formula (1)
can be modified to avoid taking minima. First note
that C;_; < C; + 1. That is, lid(Plni_l,Tlnj) <
ltd(P1..4,T1.5) + 1. This is clear, since any match of
Py ; against a suffix of 77 ; can be converted into a
match of Py ;_; just by removing the alignment of P;
and considering it as an extra insertion (the +1). Hence
the best alignment must be at most of that cost. There-
fore, Eq. (1) is equivalent to
C; = if (P, =1Tj) then C;_q else C; +1

1

which we now parallelize. We precompute a table
B : ¥ —{0,1}™¢+1) defined as

Ble] = 0b(c, Pr) 0b(c, Ppp—1) -+ 0b(c, P2) 0b(c, P1)

where b(c,c) = 1¢ and b(c,c') = 0¢ for ¢ # ¢. That is,
Blc] has m chunks of zeros or ones, indicating which
pattern positions match character c¢. The idea is to use
Blc] to implement the test (P; = T;), assigning C;_
where it has ones and leaving C; + 1 where it has zeros.

The state of the search is kept in a bit mask D,
composed of m chunks of £ bits each (plus the overflow
bit), so that the i-th chunk stores the current C; value,
i.e.

D = 0[Cnle 0[Cpm-1]s 0 [C2]e 0[Ci]e

where [z]; is the number z represented in £ bits in the
usual way (right-aligned). Note that Co is not rep-
resented because it is always zero. In principle, the
update formula could be as simple as

D' = (BIB] & (D << (£+1))
| (~BIT] & (D+ (0)™))

where B[Tj] is being used to select between (D <<
(£+1)) (which puts the previous value C;_; at the é-th

chunk) and (D + (0¢1)™) (which adds 1 to the current
C; values). In particular, the left shift brings zero bits
to the first chunk C7, which is adequate since Coy = 0.
The problem with this scheme is that the C; values
could surpass the barrier of k& + 1.

To overcome the problem we use the overflow bit.
We let the C; values grow over k 4 1 provided they fit
in £ bits. As soon as they overflow, the overflow bit will
be set. At this point, we subtract one to them. The
easiest way to subtract one to all the C; values whose
overflow bit is set is to isolate the overflow bits, shift
them £ positions to the right and subtract the mask
from D.

The final problem is how to determine the text posi-
tions that match. In the dynamic programming version
we simply check Cp,, < k. In the bit-parallel version the
C,, value corresponds to the highest bits, and there-
fore we can numerically compare the whole bit mask
D against [k],1¢+1D(™=1) which avoids any additional
bit shift or masking. We also want to report only text
positions that end a genuine match, i.e. such that the
last text character matches the last pattern character.
Otherwise we would be reporting trivial extensions of
previously found matches. This can be determined by
looking at the m-th chunk of B[T}]. The final algorithm
is shown in Figure 1.

Search (T',n,P,m,k)

/* Preprocessing */
£+ [log,(k + 1)]
for ¢ €T do B[c] « 0™+
for 1 €1..m do
B[Pl] FB[Pl] | 0(m—i)(l+1)01l0(i—1)(l+1)
/* Searching */
for j€l.n
Ds+— D<<(£+1)
D « D+ (0t1)™
D+ D—((D>>40) & (0‘1)™)
D« (BIT)] & Ds) | (~ BIT}] & D)
if (D < [k]1¢4D0m=1)) and
((BIT] & 0140(m=D(e+D) £ gmic+1))

then report a match ending at j

Figure 1. The bit parallel algorithm. All the con-
stants and repeated expressions are of course pre-

computed.

If the bits of the simulation do not fit in the com-
puter word we set up as many computer words as
needed. Since each one is updated in O(1) time per

text character, the total complexity is O(nmlog(k)/w).
For short patterns (i.e. mlogk = O(w)) this is O(n).

4. A Multipattern Filter

As already noted in [4, 5, 18], the ability of bit-
parallel algorithms to allow classes of characters can
be used to build multipattern filters. Imagine that the
pattern is not a sequence of letters but a sequence of
classes of letters. A letter a is said to match P at po-
sition 7 if a € P;, i.e. if it belongs to the corresponding
class.

If we have a pattern which is a sequence of classes of
characters, the algorithm of Section 3 can still be used,
Just by changing the preprocessing phase. The idea is
that we can redefine the b function to

blc,c') = 1%if ¢ € ¢’ and 0 otherwise
which is equivalent to changing the fourth line in the
preprocessing of Figure 1 to

for ¢ € P; do
Blc] + Blc] | 0tm=)(t+1)p14G-1(4+1)

that is, we allow the value of C;_; to pass to position
1 for any character ¢ that matches pattern position z.
Consider now that we have r patterns P!...P" of
the same length m (otherwise we truncate them to the
shortest one). From them we generate a much more
relaxed pattern with classes of characters, which we
call the superimposition of PL...P". This is defined as

P = {Pl,..,Pl}{P},..,P;} .. {PL, .., P}
which necessarily matches when one of the P7 matches,
although the converse is not true. For instance, if
we search "abcd" and '"adcc' then the superimposed
pattern is "{a}{b,d}{c}{d,c}", and the text window
"adcd" will match with zero insertions, even if it is not
in the set of patterns.

To make this more clear, consider the NFA of Fig-
ure 2. The rows represent the number of insertions.
The first one zero, the second one 1, and so on. Each
column represents a pattern prefix. Horizontal arrows
represent matching a pattern letter with a text letter,
while vertical arrows represent skipping a text letter
(since we advance in the text but not in the pattern,
and increment the number of insertions). The initial
state has a self-loop to allow any text position to start
a match. State in row s € 0..k and column 7 € 0..m is
active each time a suffix of the text read matches P;_;
with s insertions, so each time the lower right state is
active we have an occurrence of the pattern in the text
with at most %k insertions.

Indeed, it can be proved that if state (s,14) is active
then any state (s',7) with s’ > s is active as well, and
that the C; value of Section 2 is the minimum row of
an active state at NFA column i. Therefore, our bit-
parallel simulation can be thought of as a mechanism
to pack the information of this NFA in bits and to
simulate the transitions that occur along the arrows of
the automaton.

The NFA of Figure 2 has been built for the super-
imposition of "abcd" and "adcc'". For instance, the
arrows in the second column can be traversed either
by the letter "b" or "d". Clearly this automaton will
recognize any occurrence of the two patterns, and some
others as well.

z
Q a bd ¢ de () noinsertions
2z 2 2z 2 2]
a bd ¢ de 1insertion
2z 2 2z 2 2z
O 2 bd ¢ de O 2insertions

Figure 2. An NFA to search the superimposition

"abcd" and "adcc" allowing 2 insertions.

Therefore, the technique consists in superimposing
the search patterns, search the superimposition with
the same algorithm of Section 3, and then checking
the areas where the superimposition is found for the
presence of any of the individual patterns. That is,
each time the algorithm finds the superimposed pat-
tern at text position j, we check each of the patterns
separately (with the same algorithm) in the text area
Tj—m—k+1..;- A similar idea was proposed in [4, 5, 18]
for the k-differences problem.

To avoid re-verification due to overlapping areas, we
keep track of the last position verified and the state of
the verification algorithm. If a new verification require-
ment starts before the last verified position, we start
the verification from the last verified position, avoiding
to re-verify the preceding area.

4.1. Hierarchical Verification

Instead of checking one by one the patterns for each
occurrence of the superimposed pattern, we can build
up a hierarchy of superimpositions [20, 18]. Imagine

that » = 8. Then we build, at preprocessing time, the
superimposition of the 8 patterns, called P18, We con-
sider this the root of a binary tree, whose two children
are P1* and P58 i.e. they superimpose only 4 pat-
terns. The first one has two children P2 and P34,
and so on. Finally, the leaves of the tree are the actual
patterns. If r is not a power of two we build the tree
as balanced as possible. Figure 3 illustrates.

ENFAINT

E\g\—

=

~ =

Figure 3. Hierarchical verification for 4 superim-

posed patterns.

We search P1-®in the text. When it is found, we do
not check immediately all the leaves P! to P&, but just
its two children P* and P58, It is possible that, de-
spite that the root was found, none of the two children
appears (and therefore no leaf can appear as well). So
we can avold performing 8 verifications at the cost of
2. Of course it is also possible that one and even both
of the children appears in the text area and then their
children have to be checked in turn until the leaves
are found (and these are actually reported). In par-
ticular, if a leaf appears it will require all the path of
verifications. However, as we show next, hierarchical
verification pays off.

4.2. Analysis

Superimposing r patterns gives of course better
search time because only one search is carried out in-
stead of r. On the other hand, however, it makes nec-
essary to check the occurrences of the superimposed
pattern for the presence of the actual ones. Moreover,
the probability of matching raises as we superimpose
more patterns, because up to r characters of the alpha-
bet match each pattern position.

We start by giving an upper bound on the matching
probability of a random pattern of length m at a ran-
dom text position, with up to % insertions. Consider a
random text position j. The pattern P appears with
k insertions at a text position ending at j if and only
if the text window T;_,,_%41.; contains the m pattern
letters in order. The window positions that match the
pattern letters can be chosen in (m:;k) ways. Those let-

ters are fixed but the other k£ can take any value. There-
fore the probability that the text window matches the
pattern with %k insertions is at most

m4+k\ oF m+k\ 1

(")em = ()
where we are overestimating because not all the selec-
tions of window positions give different windows. For
instance the pattern "abcd' matches in text window
"abced" with & = 1 in two ways, but only one text
window should be counted. In particular, our overes-
timation includes the case of k' < k insertions, which
is obtained by selecting the first k¥ — k' characters of
the text window as insertions and distributing the &’
remaining insertions in the remaining text window of
length m + &'.

If we are given r patterns and superimpose them in
groups of 7', there are at most r’ out of o alphabet
letters that will match each pattern position now. The
net effect is that of dividing & by =’ in the formulas.
If we consider that no hierarchical verification is used,
then each match of the superimposed pattern triggers
a verification of ' original patterns in a text area of
width m + k. Therefore the total search cost is on
average (assuming that the patterns fit in a computer

word) |
(2532
= nr<%+<m+k>w>

Assume now that we use hierarchical verification. In
this case, 2 searches with r'/2 patterns are triggered for
each occurrence of the superimposed pattern. For each
occurrence of those superimpositions of r'/2 patterns
we will have to check a text window with 2 patterns
superimposing r'/4 original patterns, and so on. Ab-
stracting from the mechanism we use to find the nodes
of the tree of superimpositions, we have that in total,
in the hierarchy there are 2 groups of r'/2° patterns,
for i = 0..log,(r') — 1. Each such group matches with
probability (m:;k)/(o?i/r')m, and each match costs the
verification of a window of length m + %k for other two
patterns. The total verification cost is

<m + k> 2(m + k)r'™ 1°32§:)_1 2t

om prd (21)m

= ("I ko)

which is r'/2 times cheaper than without hierarchical
verification. The search cost becomes now

m—1
o <l+<m—|—k> 2(m+k)r >
r! m o™

which is minimized for

o

(2 (m + B)(m — 1)) o

m

1
r =

and gives a search time of

nr_m_ <<m+ k>2(m—|—k)(m— 1)>1/m

cm-—1 m

An asymptotic simplification (for large m and o =
k/m considered constant) of the cost can be obtained
using Stirling’s approximation to the factorial m! =

(m/e)™2mm(1 4 O(1/m)):

nr (1+ a)tte

o a®

which monotonically worsens with «, as expected.

This shows that in the best case we may expect
a speedup of O(c) by superimposing the subpatterns.
The speedup is o for £ = 0 and it moves to 1 as « grows.
A natural question up to which error level the speedup
is larger than 1 (i.e. useful). This is, when it happens
that ca® > (1 + a)tt? ie. o > (14 a)(1 + 1/a)>.
A sufficient condition can be obtained by noticing that
1< (141/a)* <e, and therefore o < o/e — 1 suffices.
In general it has to hold a < o/(r'e) — 1.

For longer patterns all search costs get multiplied by
mlog,(k)/w. On the other hand, if the patterns are
very short, we may do multipattern search by packing
the states of many patterns inside the same computer
word, so that we update the states of all the searches
in a single operation. The size of the representation
of each pattern, however, is nearly mlog,(k), which
makes the idea impractical except for very short pat-
terns. In the next section we present a filter that needs
much less information per pattern and therefore is suit-
able for this approach.

5. A Counting Filter

A different approach to filter the search for multiple
patterns is to use a “counting” filter. The filter is based
on the notion that if a pattern is found at text position
j, then all its characters must appear in the text win-
dow T _m—_t+1.;. The idea is to keep count at any text
position j of how many pattern characters are present
in the text window, updating this information in O(1)
operations per text character. Note that we cannot en-
sure that the pattern characters appear in the correct
order, so we filter with a necessary condition which is
not sufficient to guarantee a match. Moreover, we show
that for a multipattern search many counters (one per

pattern) can be stored in a single computer word and
all can be updated in O(1) operations per text charac-
ter. Each time a counter reaches the critical value m,
it means that all its characters are in the text window
and therefore the window is checked using the algo-
rithm of Section 3. A similar idea has been proposed
in [12, 17, 18] for the k-differences problem and earlier
[10] for the k-mismatches problem. We now describe
the algorithm and later show how to adapt it for mul-
tiple patterns (by combining it with bit-parallelism).

5.1. One Pattern

The filter passes over the text examining an (m—+k)-
letters long window. It keeps track of how many char-
acters of P are present in the current text window
(accounting for multiplicities too). If, at a given text
position j, the m characters of P are in the window
T _m—k+1..;, the window area is verified with a classi-
cal algorithm (in this paper, with the bit-parallel algo-
rithm of Section 3).

We implement the filtering algorithm as follows: we
build a table A[] where, for each character ¢ € 3, the
number of times that ¢ appears in P is initially stored.
Throughout the algorithm, A[c] indicates the difference
between the number of times ¢ appears in P and the
number of times is has appeared in the current window.
Only when A[c] is positive we count a ¢ letter that
enters the window. We also keep a counter count of
matching characters. To advance the window, we must
include the new character T;; and exclude the last
character, Tj_;_t41. Toinclude the new character, we
decrement A[Tj4q]. If the entry was greater than zero
before the operation, it is because the character is in P,
so we increment the counter count. To exclude the old
character, we increment A[Tj_,,_g41]. If the entry is
greater than zero after the operation, it is because the
character was in P, so we decrement count. When the
counter count reaches m we verify the preceding area.

When Alc] is negative, it means that the character
¢ must leave the window —A[c] times before we accept
it again as belonging to the pattern. For example, if
we run the pattern "abca' over the text "aaaaaaaa",
with £ = 1 it will hold A['a’] = —3, and the value of
count will be 2. Figure 4 shows another example.

Figure 5 shows the pseudocode of the algorithm. As
it can be seen, the algorithm is not only linear time
(excluding verifications), but the number of operations
per character is very small.

1 1
‘helloa, |

L' X®@|al| 1
: 3 O ® | -1
Searching 'aloha’ L e o]
(k:1§)l _ % h
L o O e | -1
c | Alq]

Figure 4. An example of the counting filter. The
crosses represent elements which A[] accepts, and
the circles are the elements that appeared in the

window. A[c] stores crosses minus circles, and

count counts circled crosses.

5.2. Multiple Patterns

The previous algorithm can search for one pattern
only. However, we can extend it to handle multiple
patterns. To search r patterns in the same text, we
use bit-parallelism to keep all the counters in a single
machine word. We must do that for the A[] table and
for count.

The values of the entries of A[]lie in the range [—-m—
k..m], so we need exactly 1+¢ bits to store them, where
£ = [logy(m + k + 1)]. This is also enough for count,
since it is in the range [0..m]. Hence, we can pack
|w/(1 + [logy(m + k)])| patterns in a single search
(recall that w is the number of bits in the computer
word). If we have more patterns, we must divide the
set in subsets of at most this size and search each subset
separately. We focus our attention on a single subset
now.

The algorithm simulates the simple one as follows.
We have a table MA[] that packs all the A[] tables.
Each entry of MA[] is divided in bit areas of length
1+ £. In the area of the machine word corresponding
to each pattern, we store 2¢ + A[] — 1. When, in the
algorithm, we have to add or subtract 1, we can easily
do it in parallel without causing overflow from an area
to the next. Moreover, the corresponding A[] value is
not positive if and only if the most significant bit of
the area is zero. Figure 6 illustrates.

We have a parallel counter M count, where the areas
are aligned with MA[]. It is initialized with 2¢ — m in
each area. Later, we can add or subtract 1 in parallel
without causing overflow. Moreover, the window must
be verified for a pattern whenever the most significant

CountFilter (T',n,P,m,k)

/* Preprocessing */
for c€X do Alc] « 0
for i € 1.m do A[P] + A[P]+1
count < 0
/* Searching */
for j€l.m+k do /* £ill init.window */
if A[Tj] > 0 then count + count + 1
AT & ATy - 1
for jEm+k+1..n do /* move window */
if count = m then verify T;_,, . ;-1
if A[Tj] > 0 then count + count + 1
AT £ ATy - 1
ATy m-i] & A[Tj—m—i] + 1
if A[Tj_m—x] > 0 then count < count — 1

Figure 5. The filtering algorithm for one pattern.

bit of its area reaches 1. The condition can be checked
in parallel, although if some counter reaches zero we
sequentially verify which one did it.

Observe that the counters that we want to selec-
tively increment or decrement correspond exactly to
the MA[] areas that have a 1 in their most significant
bit (i.e. those whose A[] value is positive). This yields
a bit mask-shift-add mechanism to perform this oper-
ation in parallel on all the counters.

Figure 7 shows the pseudocode of the parallel algo-
rithm. Asit can be seen, the algorithm is more complex
than the simple version but the number of operations
per character is still very low.

5.3. Analysis

We want to determine the probability that the filter
triggers a verification for a given pattern. Since the m
characters of P can appear at any window position in
any order, the probability can be upper bounded by
(recall Section 4.2)

m4+k\m! (m+k)!
m om klo™
which, compared to the real matching probability we

have been using, has an extra m! factor. Since we pack
a pattern in [log,(m+ k)] bits, the total search cost is

. <log2(m—|— k) (m+ k) (m+k)>

w klo™
where, unlike the case of superimposed automata, we
have to pack the maximum number of patterns to-
gether, since the number of verifications triggered does

| [+2-1 | | MAL]
/——count
| | +2¢—m | | Mcount
m=5k=14=3
10 0 0 MA[a]
0110 MAT
o111 MA o]
0111 MATh]
o110 MA[e]
A[§>0
| | 0|1 1|1 | Mcount

count > m

Figure 6. Scheme and an example of the bit-parallel

counters. The example follows that of Figure 4.

not depend on how the packing is done. We are inter-
ested, on the other hand, in the maximum error level
o for which this filter is useful.

Applying Stirling’s approximation to the matching
probability formula we get an asymptotic simplification
for large m:

<(1 + Ol)1+am>m

eca®

which is exponentially decreasing with m as long as
the base is smaller than 1. When this happens, all
the verification costs become negligible. When, on the
other hand, the cost is not exponentially decreasing
with m, the verifications dominate the search cost and

the filter is no longer useful.
So the simplified condition for the filter to be useful

is

(1+ a)tte ec
P ™
a m

which worsens as m or a grow. A simplified condition
can be obtained by noticing again that (1+a)'t*/a* =
(1+a)(1+1/0)* < e(1+), and therefore it suffices
that

a<o/m-—1

to ensure that the filter is useful. Note that the condi-
tion is equivalent to m + k < o.

CountFilter (T,n,PY",m,k)

/* Preprocessing */
£ = Nlogy(m+ k) ;
for c € ¥ do MA[c] + (01%)
for s€ l..r do
for : € 1..m do
MA[P#] « MA[P?] + 10(-1)(+1)
Mcount + (10 — m)) x (0¢1)"
/* Searching */
for j€l.m+k do /* £ill init.window */
M count < Mcount +
(MA[T}] >>) & (041))
MA[T) « MAT,] — (041y
for jEm+k+1..n do /* move window */
if Mcount & (10%)" # 0"¢+1) then
for s€l..r do
if Mcount & 0(r—s)t+1)10¢0(s—1)(£+1)
#0741 then
verify T; . ;-1 for patt.P?
M count < Mcount +
(MA[T}] >>) & (041))
MA[T) « MAT] — (041y
MA[T 4] & MA[T)_mi] + (0°1)
M count + Mcount —
(MA[Tym_i] >>) & (041))

Figure 7. The multiple-pattern algorithm. All the

constants are of course precomputed.

6. Experimental Results

In this section we present some experimental results
about our algorithms and their analyses.

6.1. Probability of Matching

We test experimentally the probability that a ran-
dom pattern matches at a random text position. We
generated a random text and 100 random patterns for
each experimental value shown. Figure 8 shows the
probability of matching in a text of 3 Mb for a pattern
with m = 300, where pattern and text were randomly
generated over an alphabet of size 0 = 68. As can be
seen, there is a k value from where the matching prob-
ability starts to grow abruptly, moving from almost 0
to almost 1 in a short range of values. Despite that this
phenomenon is not as abrupt as for the & differences
problem [6, 18], it is sharp enough to make this & value
the most important parameter governing the behavior

of the algorithm. We call £* this point, and o* = k*/m
the corresponding error level.

1

o =) o o
> S ® ©
T

proba?ilit}j/ of match

o
@

Figure 8. Matching probability for increasing & val-

ues and fixed m = 300.

On Figure 9 we have shown this limiting o* value
for different pattern lengths, showing that a* tends to
a constant for large m, despite that it is smaller for
short patterns.

65

60

55

add

50

45

40

L L
0 500 1000 1500

Figure 9. The o limit as m grows.

Finally, we show in Figure 10 how the alphabet size
o affects the asymptotic o* value (really for m = 300).
As can be seen, the curve looks as a straight line, where
least squares estimation yields o* = o/1.0856 —0.8878.

All this matches our analytical results in the sense
that (a) there is a clear error level a* where the
matching probability goes almost from 0 to 1; (b) this
point does not depend on m asymptotically; and (c)
it depends on o linearly as predicted by the analysis
(e* = o/e — 1) except because the e has been changed

70

60 |

50 |

a0 B

ald

30 b

20 |

Figure 10. The o™ limit as o grows, for m = 300.

to about 1.09. Interestingly, this is similar to the result
obtained for the k differences problem in [6, 18] when
relating their analytical predictions (a* = 1 — e/4/0)
with the experiments (a* = 1—1.09/,/c) and shows a
consistent behavior of the pessimistic analytical model
used in both cases.

6.2. The Algorithms

We experimentally study our algorithms now. We
tested with 35 Mb of random text (o = 68) and a set
of 100 random patterns of lengths m € {4, 5,6}. This
is a typical setup for intrusion detection applications.
We use a Sun Enterprise 450 server (4 x UltraSPARC-II
250MHz) running SunOS 5.6 with 512 Mb of RAM and
w = 32. Each data point was obtained by averaging
the Unix’s real time over 10 trials.

A first concern is which is the scanning efficiency of
the algorithms compared to plain dynamic program-
ming for one pattern, independently of their filtering
efficiency to deal with multiple patterns. Figure 11
shows the scanning efficiency of the dynamic program-
ming, the bit-parallel simulation and the counting fil-
ter (using the bit-parallel simulation as the verification
engine) for single random patterns with m = 4. We
measure the megabytes per second (Mb/s) processed
by the algorithms as %k increases. As can be seen, the
bit-parallel simulation is 2.5 to 3 times faster than the
classical solution even for very large k values. The
counting filter is in between.

We compare now the impact of the number of pat-
terns 7' in the multipattern filter based on superim-
posed automata. We take m = 4 (i.e., the length of
the shortest pattern in the set) and o = 68 for our an-
alytical estimation of optimal superimposition, which
yields r},_, = 8.93, rj,_s = 6.41 and r},_g = 4.94. Fig-

—— Dynamic Prog
16l --- Bit—parallel Simulation ||
Counting Filter

L L
20 40 60 80 100 120

Figure 11. Scanning efficiency of the bit-parallel sim-
ulation and the counting filter compared to the clas-

sical dynamic programming algorithm.

ure 12 shows the Mb/s processed when using different
values of r' over a set of 100 patterns. As the analysis
predicts, there is an optimal amount of superimposition
that is reduced as k grows. The analytically estimated
optima are below the practical ones, since our analysis
uses a pessimistic bound on the matching probability.
We use the experimental optima in the tests that fol-
low.

0 5 10 15 20 25 30 35 40 45 50

Figure 12. Mb/s vs partition size for k = 4, k = 6
and £ = 8 over a set of 100 patterns with m €

{4,5,6}.

We now show the degree of parallelism achieved by
the superimposition and counting filters algorithms, in

terms of the ratio between the parallel version and r
applications of the corresponding single-pattern algo-
rithm. We search the same set of randomly selected
patterns (m € {4,5,6}) with & = 8. Figure 13 shows
the behavior in terms of r. We observe that the multi-
pattern filter quickly converges to a 5-fold improvement
over its sequential version as r increases. The count-
ing filter achieves a lower degree of parallelism, taking
0.27 of its sequential counterpart. The “waves” in the
superimposition filter is due to a discretization effect
when the patterns are divided into groups.

0oH —— Superimposition Filter | |
! --- Counting Filter

parallel/sequential

o

Figure 13. Ratio between parallel and sequential ver-

sions of the algorithms.

Figure 14 shows the impact of searching allowing
different numbers of insertions for both algorithms, for
pattern sets of r = {1..100}. We observe that per-
formance remains stable up to a limit around r = 25
with low k. For higher & values, however, performance
drops drastically from the beginning. The counting fil-
ter resists more this behavior, which shows its higher
tolerance to insertions for short patterns. To see this,
note that the case m = 6, &k = 25 and o = 68 is to-
tally inside the scope of the counting filter according to
the analysis, while the superimposition filter can only
superimpose 3 patterns under this setup.

7. Conclusions

We have presented a string matching approach to
the problem of intrusion detection, which is formal-
1zed as the problem of multipattern matching allow-
ing insertions. Besides the classical solution for one
pattern adapted from the field of approximate pat-
tern matching, we have presented two new search al-
gorithms which we also extended to handle multiple

Conting Filter
“a --- Superimposition Filter | |

—— Conting Filter
--- Superimposition Filter | |

Figure 14. Mb/s processed by both algorithms for a
set of patterns with m € {4,5,6} with k& = 4 (top)
and k = 25 (bottom).

patterns. Each of the two algorithms can be better
than the other depending on the number of insertions
allowed.

We have presented analytical and experimental re-
sults concerning the performance of the new algo-
rithms. As an example, we illustrate the case of 4-
letters patterns searched allowing 4 insertions, which
is a case of interest in intrusion detection applications.
The single pattern versions are typically 3 times faster
than the classical solution. The multipattern algo-
rithms allow searching 100 patterns at the same cost
of 4 single pattern searches (a 25-fold speedup). As a
result, our new algorithms allow searching for 100 pat-
terns at a rate of 4 Mb/s in our machine, while the

classical algorithm can search for just one single pat-
tern at 5 Mb/s.

In the field of approximate string matching, the

fastest algorithms are filters able to discard most of
the text by checking a necessary condition. In gen-
eral, those filters cannot easily be applied here because
the error levels typical in intrusion detection applica-
tions are too high for the standards of the approximate
string matching problem. We have shown, however,
that some filtration techniques can be adapted to this
problem to obtain a large improvement in the perfor-
mance of multipattern searching.

Future work involves searching for new algorithms,
as well as a detailed study of optimization and exten-
sions on the current ones. With respect to the length of
the patterns, we point out that we have concentrated in
the parameters typical of intrusion detection, where the
patterns are rather short, the k value is quite high, and
the number of patterns is large. The new algorithms
we have presented are very well suited to this setup,
but other variants of the problem could be of interest
in other applications and could demand (or permit)
different approaches. In particular, more sophisticated
models of attacks may yield more cpomplex pattern
matching problems.

References

[1] R. Baeza-Yates. Efficient Tezt Searching. PhD thesis,
Dept. of Computer Science, Univ. of Waterloo, May
1989. Also as Research Report CS-89-17.

[2] R. Baeza-Yates. Text retrieval: Theory and practice.
In 12th IFIP World Computer Congress, volume I,
pages 465-476. Elsevier Science, Sept. 1992.

[3] R. Baeza-Yates and G. Gonnet. A new approach to
text searching. Comm. of the ACM, 35(10):74-82, Oct.
1992.

[4] R. Baeza-Yates and G. Navarro. Multiple approxi-
mate string matching. In Proc. WADS’97, LNCS 1272,
pages 174-184, 1997.

[5] R. Baeza-Yates and G. Navarro.
filters for multiple approximate string matching.
Technical Report TR/DCC-98-10, Dept. of Com-
puter Science, Univ. of Chile, 1998. Submitted.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
multi.ps.gz.

New and faster

[6] R. Baeza-Yates and G. Navarro. Faster approximate
string matching. Algorithmica, 23(2):127-158, 1999.

[7] L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiya-
sevich. Window accumulated subsequence matching is
linear. In Proc. ACM P0ODS’99, pages 327-336, 1999.

[8] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and
J. Karkkéinen. Episode matching. In Proc. CPM’97,
LNCS 1264, pages 12-27, 1997.

[9] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. In Proc.
IEEE Symp. on Research in Security and Privacy,
1994.

[10] R. Grossi and F. Luccio. Simple and efficient string
matching with & mismatches. Information Processing
Letters, 33(3):113-120, 1989.

[11] K. llgun. USTAT: A real-time intrusion detection sys-
tem for UNIX. Master’s thesis, Computer Science
Dept., University of California, Santa Barbara, July
1992.

[12] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison
of approximate string matching algorithms. Software
Practice and Ezperience, 26(12):1439-1458, 1996.

[13] K. Kendall. A database of computer attacks for the
evaluation of intrusion detection systems. Master’s
thesis, MIT, Dept. of Electrical Engineering and Com-
puter Science, June 1999.

[14] S. Kumar. Classification and Detection of Computer
Intrusions. PhD thesis, Dept. of Computer Science,
Purdue University, Aug. 1995.

[15] R. Muth and U. Manber. Approximate multiple string
search. In Proc. CPM’96, LNCS 1075, pages 75-86,
1996.

[16] G. Myers. A fast bit-vector algorithm for approximate
string matching based on dynamic progamming. Jour-
nal of the ACM, 46(3):395-415, 1999.

[17] G. Navarro. Multiple approximate string matching by
counting. In Proc. WSP’97, pages 125-139. Carleton
University Press, 1997.

[18] G. Navarro. Approzimate Tezt Searching. PhD
thesis, Dept. of Computer Science, Univ. of Chile,
Dec. 1998. Technical Report TR/DCC-98-14.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
thesis98.ps.gz.

[19] G. Navarro. A guided tour to approximate
string matching. Technical Report TR/DCC-99-
5, Dept. of Computer Science, Univ. of Chile,
1999. To appear in ACM Computing Surveys.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
survasm.ps.gz.

[20] G. Navarro and R. Baeza-Yates. Improving an
algorithm for approximate pattern matching.
Technical Report TR/DCC-98-5, Dept. of Com-
puter Science, Univ. of Chile, 1998. Submitted.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
dexp.ps.gz.

[21] P. Sellers. The theory and computation of evolution-
ary distances: pattern recognition. J. of Algorithms,
1:359-373, 1980.

[22] S. Wu and U. Manber. Fast text searching allowing
errors. Comm. of the ACM, 35(10):83-91, Oct. 1992.

