
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2008; 0:1–23 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

New Adaptive Compressors
for Natural Language Text†

N. R. Brisaboa1, A. Fariña1,∗, G. Navarro2 and J. R. Parama1

1 Database Laboratory, Department of Computer Science, University of A Coruña.
Campus de Elviña s/n, 15071, A Coruña, Spain.
2 Center for Web Research, Department of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile.

SUMMARY

Semistatic byte-oriented word-based compression codes have been shown to be an
attractive alternative to compress natural language text databases, because of the
combination of speed, effectiveness, and direct searchability they offer. In particular,
our recently proposed family of dense compression codes has been shown to be superior
to the more traditional byte-oriented word-based Huffman codes in most aspects. In
this paper, we focus on the problem of transmitting texts among peers that do not
share the vocabulary. This is the typical scenario for adaptive compression methods.
We design adaptive variants of our semistatic dense codes, showing that they are much
simpler and faster than dynamic Huffman codes and reach almost the same compression
effectiveness. We show that our variants have a very compelling trade-off between
compression/decompression speed, compression ratio and search speed compared with
most of the state-of-the-art general compressors.

key words: Text databases; Natural language text compression; Dynamic compression; Searching

compressed text.

1. Introduction

Text compression is of special interest in data transmission. In some scenarios, it is feasible
that compression and transmission complete before reception and decompression start. In these
cases, statistical two-pass techniques, also called semistatic, can be used. A first pass over the
text gathers global statistical information about the vocabulary (list of source symbols) in order

∗Correspondence to: fari@udc.es
†A preliminary partial version on this work appeared in [4].
Contract/grant sponsor: Funded in part (for the Spanish group) by MEC (TIN2006-15071-C03-03), Xunta de
Galicia (PGIDIT05-SIN-10502PR) and (for the third author) by Millennium Nucleus Center for Web Research,
grant (P04-067-F), Mideplan, Chile.

Received <Date>
Copyright c© 2008 John Wiley & Sons, Ltd. Revised <Date>

Accepted <Date>

2 BRISABOA ET AL.

to obtain a model of the text. The model is used to compute the codeword corresponding to
each source symbol and then, in a second pass, each original symbol is substituted by its
codeword. Therefore, the model must be stored/transmitted with the compressed text, so the
decompressor can know the model to perform the decompression.

In real-time transmission, the sender should be able to start the transmission of compressed
data without preprocessing the whole text, and simultaneously the receiver should start the
reception and decompression of the text as it arrives. Real-time transmission is handled with
so-called dynamic or adaptive compression techniques. These perform a single pass over the
text (so they are also called one-pass) and begin compression and transmission as they read the
data. Adaptive or dynamic compression methods do not need to transmit the model because
the receiver can learn it as it receives the compressed text.

In recent years, statistical semistatic compression techniques especially designed for natural
language texts have not only proven extremely effective (with compression ratios around 25%-
30%), but also permitted searching the compressed text much faster (up to 8 times) than the
original text. The success of these techniques is based in regarding the text to be compressed as
a sequence of words instead of characters [2]. In [15], a word based Huffman code, which reaches
25% of compression ratio, was presented. Moura et. al. also presented important improvements
in two compression codes called Plain Huffman (PH) and Tagged Huffman (TH) [17]. The byte-
oriented Plain Huffman achieves compression ratios close to 30%, as opposed to the 25% that
is achieved by using bit-oriented codes [20]. In exchange, decompression is much faster because
bit manipulations are not necessary. Tagged Huffman adds a flag bit to mark the limits of
each codeword and, therefore, it permits fast direct search of the compressed text, reaching
compression ratios around 34%. Due to the flag bit, a pattern can be compressed and directly
searched for in the compressed text without decompressing it. This property is also essential
to permit local decompression of text passages in order to present them to the final users.

Recently, a family of compression codes called Dense Codes has been shown to offer several
advantages over Huffman-based compression for natural language [6]. Dense codes are simpler
and faster to build than Huffman codes, and they permit the same fast direct searchability
of Tagged Huffman, yet with better compression ratios. The simplest variant is End-Tagged
Dense Code (ETDC), which is just a variable-length integer representation for the position of
the word in a frequency rank. A more sophisticated variant is (s, c)-Dense Code (SCDC), which
adapts better to the text distribution. ETDC reaches around 31% compression ratio and SCDC
reaches less than 0.3 percentage points over PH compression ratio. Another recent competitive
semistatic proposal is the Restricted Prefix Byte Code [9], which gets better compression ratio
than SCDC but, as PH, does not use a flag bit to mark the limits of each codeword in the
compressed text. This absence implies that searchers and decompressors have more difficulties
to perform random access and local decompression of text passages due to a problem of
synchronization.

Among the adaptive compressors, dynamic arithmetic coding over PPM-like modelling [16]
obtains compression ratios around 24%, but it requires significant computational effort by both
the sender and the receiver, being quite slow at both ends.

Compression methods based on the Ziv-Lempel family [24, 25] (used in zip, gzip, arj, winzip,
etc.) obtain reasonable but not spectacular compression ratios on natural language text (around
40%), yet they are very fast at decompression.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 3

In this paper we introduce two dynamic compressors, called Dynamic End-Tagged Dense
Code (DETDC) and Dynamic (s,c)-Dense Code (DSCDC), which adapt ETDC and SCDC
to real-time transmission. We also implemented a byte-oriented word-based dynamic Huffman
compressor, which we call DPH, to have a powerful statistical compressor to compare with our
dense dynamic compressors. Details about its implementation can be found in [10].

In this paper, we show experimentally that DETDC and DSCDC offer several advantages
over state-of-the-art adaptive compression methods in scenarios where real-time transmission
of natural text is needed. Some concrete examples of these scenarios follow:

1. News agency: This type of organizations are continuously disseminating news, in real
time, to newspapers, TV channels, radio stations, etc. Each piece of news is broadcast
to all the registered organizations, and this process is done in real time as news arise.

2. Digital library: When a user chooses a literary work, the digital library usually offers the
user to download the literary work split in some sort of parts (sections, chapters, pages,
etc.). After choosing one of these parts, the server sends the associated text. Those parts
can be requested in an arbitrary order.

3. Chat session established between two Internet users: Again, the messages are short, and
they should be delivered as soon as they are written.

4. HTTP session established between a server and a client: The HTML pages are sent by
the server when the client requests them.

All those situations can be described as scenarios where a sender sends short messages to
a receiver during a certain period of time (session). The individual messages are not long
enough to obtain good compression ratios using word-based semistatic compression, as they
need to process at least 5-10 Mbytes to compensate for the burden of storing the vocabulary
(the model), according to Moura et. al. [17] and our own results. The whole session is long
enough. This type of transmission must be carried out in real time, therefore it is not feasible
to accumulate short messages along time so as to send them together using a semistatic
compressor. Therefore, dynamic compression turns out to be the most suitable alternative.

In dynamic compression, the model changes each time a text word is processed. These
frequent changes of the model make it difficult to carry out direct searches over text compressed
with adaptive methods, as the search pattern looks different in different points of the
compressed text. Yet, there are several adaptive compression scenarios where a direct search on
the compressed text (without decompressing it) is of interest. For example, for classification or
distribution purposes, the receiver may be interested not in uncompressing all the arriving text,
but in searching it for some specific words. In ubiquitous computation or mobile databases,
servers broadcast information to the devices (PDAs, mobile phones, etc.) in their cell. Probably,
these devices are not interested in decompressing all the information they receive. So they would
perform a multipattern search on the arriving compressed text seeking some keywords, which
denote topics of interest (for example sports, tourism or traffic information). When some of
the keywords are found, the device decompresses the information and stores it or points it to
specific places in the device.

In all those cases, documents are received and pointed out to users, or stored in specific
places, when keywords that denote topics of interest are found in the message. There exist

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

4 BRISABOA ET AL.

some direct search techniques for adaptive compression that, even being slower than searching
the uncompressed text, are faster than uncompressing plus searching [19]. In this paper we also
show how direct search (without decompression) can be done over text compressed with our
adaptive dense compressors DETDC and DSCDC. In practice, searches over text compressed
with DETDC are faster than searches over text compressed with previous non-dense adaptive
techniques. Moreover, our searches are more efficient than searches over uncompressed text
when a large number of patterns are searched for, which is usually the case in the applications
given above.

The outline of this paper is as follows. In Sections 2 and 3, we describe our two adaptive
techniques, DETDC and DSCDC, with sufficient detail to be useful for a practitioner. In
Section 4, we briefly comment the advantages and disadvantages of the block-wise versions of
the semistatic alternatives. Section 5 presents the experimental results comparing our methods,
in terms of compression ratio and compression/decompression speed, against several state-of-
the-art compressors. In Section 6, it is shown how to search text compressed with either
DETDC or DSCDC without previously decompressing it. We present experimental results
comparing those searchers against other search algorithms that work over compressed and
uncompressed text. Finally, Section 7 gives our conclusions and future work.

2. Dynamic End-Tagged Dense Codes

2.1. End Tagged Dense Codes

As explained in [17], PH is simply a word-based byte-oriented Huffman code. TH reserves the
first bit of each byte to flag whether the byte is the first of its codeword. Hence, only 7 bits
of each byte are used for the Huffman code. Note that the use of a Huffman code over the
remaining 7 bits is mandatory, as the flag is not useful by itself to make the code a prefix code.
While searching PH compressed text requires inspecting all its bytes from the beginning, the
tag bit in TH permits a Boyer-Moore-type searching [3] (that is, skipping bytes) by simply
compressing the pattern and then running the string matching algorithm. On PH this does
not work, as the pattern could occur in the text not aligned to any codeword [17].

ETDC has, as TH, a flag bit, but now this bit signals the end of a codeword. That is, the
leading bit of a codeword byte is 1 for the last byte (not the first) and 0 for the others. The
remaining 7 bits of each byte are the responsible for carrying the information. Observe that
the flag bit is enough to ensure that the code is a prefix code regardless of the content of
the other 7 bits of each byte. Therefore, there is no need at all to use Huffman coding in
order to maintain a prefix code. Thus, all the possible combinations of bits can be used to fill
the remaining 7 bits of each byte. ETDC obtains better performance than TH in all aspects,
whereas it maintains all its good search capabilities.

In fact, the coding scheme used by ETDC had already been used previously to compress
integers, such as the document identifiers in inverted indexes [9, 21], receiving different names
like bc or variable-byte coding (Vbyte).

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 5

In ETDC, the model is just the vocabulary sorted by frequency, because the codeword
assigned to each source word depends only on the rank of such a word in the vocabulary
ordered by frequency, and not on its actual frequency.

Definition 1. Given source symbols with nonincreasing probabilities {pi}0≤i<n, the
corresponding ETDC codeword for the symbol in position i has k bytes (k ≥ 1), for the k
that satisfies:

2b−1 2(b−1)(k−1) − 1

2b−1 − 1
≤ i < 2b−1 2(b−1)k − 1

2b−1 − 1

Thus, the codeword corresponding to source symbol i is formed by k−1 digits in base 2b−1, and
a final base-2b−1 digit added to 2b−1. If k = 1 then the codeword is simply i + 2b−1. Otherwise

the codeword is formed by the number x written in base 2b−1, where x = i− 2(b−1)k−2b−1

2b−1−1
, and

adding 2b−1 to the last digit.

ETDC can be defined over symbols of b bits, although the byte-oriented version (b = 8) is
the most common one. That is, the first word (i = 0) is encoded as 〈128〉, the second (i = 1)
as 〈129〉, until the 128th as 〈255〉. The 129th word (i = 128) is encoded as 〈0:128〉, the 130th

as 〈0:129〉 and so on until the (1282 + 128)th word 〈127:255〉.
The simplicity of the code also allows simple encode and decode procedures, and makes

ETDC codification faster than those based in Huffman, since it does not have to deal with a
tree. We denote encode as the function that obtains the codeword Ci = encode(i) for a word
at the i-th position in the ranked vocabulary; decode computes the position i = decode(Ci)
in the rank, for a codeword Ci. Both functions take just O(l) time, where l = O(log(i)/b) is
the length in digits of codeword Ci, and are efficiently implemented through bit shifts and
masking. These algorithms are based on Definition 1.

A complete description of ETDC as well as empirical results comparing ETDC against PH
and TH can be found in [6].

2.2. Towards Dynamic End-Tagged Dense Code (DETDC)

The main challenge to make ETDC dynamic is how to maintain the model updated as
compression progresses, since this process implies the insertion of new source symbols and
frequency increments. In the case of ETDC, the model is essentially the array of source symbols
sorted by frequency, therefore this array must be kept ordered upon insertions and frequency
changes.

Both sender (compressor) and receiver (decompressor) increase the frequency of a word
each time it arrives, and maintain the vocabulary ordered by frequency, carrying out two
symmetric processes. Therefore, the sender does not transmit the model, since the receiver can
figure it out by itself from the received codewords. The sender only informs the receiver of
new source symbols appearing in the text using a special codeword that we denote CzeroNode.
The sender transmits CzeroNode followed by the source word in ASCII. The receiver inserts it
in its vocabulary and sets its frequency to 1. In DETDC, CzeroNode is always the first unused
codeword, that is, the codeword that follows that of the last word in the vocabulary. When a

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

6 BRISABOA ET AL.

land

--

--

--

--

0

1

2

3

land

--

--

--

0

1

2

3

no

Word parsed

In vocabulary?

C0 landData sent

Vocabulary

state

far

land

far

--

--

0

1

2

3

no

C1 far

far

far

land

--

--

0

1

2

3

yes

C1

away

far

land

--

away

0

1

2

3

no

C2 away

long

far

land

long

away

0

1

2

3

no

C3 long

long

far

long

land

away

0

1

2

3

yes

C3

1 1

1

2

1

2

1

1

2

1

1

2

2

1

Bytes = 25

Plain text

Compressed text

1 1

n f a r f ad r a w a y l o n gl a l o n g

a n d # f a #l r y # l o n g #C0 C1 C3C1 C3

Bytes = 27

a w aC2

Input order 0 1 2 3 4 5 6

Figure 1. Transmission of "land far far away long long (ago)".

word arrives, and it is already in the vocabulary, the sender transmits its codeword, increases
its frequency and reorders the vocabulary if necessary. When the receiver gets a codeword other
than CzeroNode, it just decodes it to obtain the corresponding vocabulary position, recovers
the word and increases its frequency, reordering the vocabulary if necessary.

Figure 1 shows how the compressor operates. At first (step 0), no words have been read, so
zeroNode is the only word in the vocabulary (it is implicitly placed at position 0). In step 1, a
new symbol "land" is read. Since it is not in the vocabulary, C0 (the codeword of zeroNode) is
sent, followed by "land". Then "land" is added to the vocabulary with frequency 1, at position
0. Step 2 shows the transmission of "far", which was not in the vocabulary yet. In step 3,
"far" is read again. Since it was in the vocabulary at position 1, the codeword C1 is sent. Now
"far" becomes more frequent than "land", so it moves upwards in the ordered vocabulary.
Note that a hypothetical new occurrence of "far" would be transmitted as C0, although it
was sent as C1 in step 3. In steps 4 and 5, two more new words, "away" and "long", are
transmitted and added to the vocabulary. Finally, in step 6, "long" is read again, and when
its frequency is updated, it becomes more frequent than "away" and "land". Therefore, it
moves upwards in the vocabulary by means of an exchange with "land" (which is the first
word in the ranked vocabulary with its same frequency).

The main issue is how to efficiently maintain the vocabulary sorted. We show next how to
do this with a complexity equal to the number of source symbols transmitted. Essentially, we
must be able to identify blocks of words with the same frequency in the ordered vocabulary,
and to quickly promote a word to the next block when its frequency increases. Promoting a
word wi with frequency f to the next frequency (f + 1) block consists of:

• Sliding wi over all words whose frequency is f . This implies two operations:

- Locating the first word in the ordered vocabulary whose frequency is f . This word
is called topf .

- Exchanging wi with topf .

• Increasing the frequency of wi.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 7

2.3. Data structures for DETDC

The sender maintains a hash table that permits fast searching for a source word si. The hash
table is also used to obtain the rank i in the vocabulary vector (remember that, to encode a
word si, using ETDC, only its rank i is needed), as well as its current frequency fi (which is
used to rapidly find the position of word topfi

).

The receiver does not need to maintain a hash table to hold words because finding a word
lexicographically is never necessary at decompression. It only needs to use a word vector where
words are kept sorted by frequency, because the decoding process uses the codeword to directly
obtain the rank value i that can be used to index the word vector.

Let n be the vocabulary size and F the maximum frequency value for any word in the
vocabulary. The data structures used by both the sender and the receiver, as well as their
functionality, are given next.

2.3.1. Sender’s data structures

The following three main data structures, shown in Figure 2, are needed:

• A hash table with space for H words (where H = nextPrime(2n)) keeps in its component
word the source word, in posInVoc the rank (or position) of the word in the ordered
vocabulary, and in freq its frequency.

• posInHT is an n-element vector. posInTH [i] points to the entry in the hash table that
stores the ith most frequent word in the vocabulary.

• Array top contains F elements, where F is the maximum frequency. Each position
implicitly represents a frequency value, that is, top[f] is associated to words with
frequency equal to f . For each possible frequency, vector top keeps a pointer to the
entry in posInHT that points to the first (top) word with that frequency. If there are no
words of frequency fi, then top[fi] will point to the position of the first word j such that
fj < fi.

A variable zeroNode is also needed to indicate the first free position in the vocabulary, that
is, the position in posInHT where the next new word will be inserted.

One concern is how to estimate F in a dynamic setup. It can be estimated heuristically using
Heaps’ Law [12]. Alternatively, in order to avoid vector top using up much more space than
necessary, it can be implemented as a growing array that reallocates dynamically, doubling its
size each time. It is also possible to substitute vector top by more sophisticated solutions [14].

To have an idea of the spaces involved, we present an example considering a text of 1
Gbyte from our experiments in Section 5. In this case, the highest frequency of a word is
F = 8, 205, 778. Therefore the space requirements to keep vector top is 8, 205, 778× 4 bytes
≈ 31 Mbytes, which is perfectly reasonable for current computers, although it can be reduced
to ≈ 20 Mbytes with the aforementioned improvements.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

8 BRISABOA ET AL.

ABABBCCC

zeroNode = 3

7 53
0 4321

0023
4321

BAC
021
323

87654321

3
0

ABABBCCCD

zeroNode = 4

7 153
0 4321

BACD
0213

3231
87654321

0023
4321

4
0

ABABBCCCDD

7 153
0 4321

zeroNode = 4

BACD
0213
3232

87654321

0024
4321

4
0

zeroNode = 3

7 35
0 4321

posInHT

0013
4321

BAC

012
322

87654321

3
0

posInVoc

top

word

freq

ABABBCC

h
a

s
h

ta
b

le
g

ro
u

p
s

w
o

rd
s

Figure 2. Transmission of words C, C, D and D having transmitted ABABBC earlier.

2.3.2. Receiver’s data structures

The structures for the receiver are even simpler than those of the sender. The following three
vectors are needed:

• A word vector that keeps the source words sorted by frequency. Its size is n.
• A freq vector that keeps the frequency of each word. That is, freq[i] = f , if the number

of occurrences of the word stored in word[i] is f . As the array word, this vector can keep
up to n elements.

• Array top. As in the sender, this array gives, for each possible frequency, the word position
of the first word with that frequency. It also has F positions.

The variable zeroNode is also maintained by the receiver. The structures needed by the
receiver are illustrated in Figure 3.

2.4. Sender and receiver processes

When the sender reads a word si, it uses the hash function to obtain its position p in the hash
table, so that hash(si) = p and therefore word[p] = si. After reading f = freq[p], it increments
freq[p]. The position of si in the vocabulary array is obtained as i = posInV oc[p], so that
codeword Ci is computed and sent. Now, word si must be promoted to the next block. For this
sake, the sender algorithm finds the head of its block j = top[f] and the corresponding position
h of the word in the hash table h = posInHT [j]. Now, it is necessary to swap words i and j in
vector posInHT . The swapping requires exchanging posInHT [j] = h with posInHT [i] = p,
setting posInV oc[p] = j and posInV oc[h] = i. Once the swapping is done, j is promoted to
the next block by setting top[f] = j + 1. If si turns out to be a new word, the sender will
set word[p] = si, freq[p] = 0, and posInV oc[p] = zeroNode. Then the above procedure is
followed with f = 0. Finally zeroNode is also increased.

The receiver works very similarly to the sender, and it is even simpler. Its algorithm pseudo-
code, plus the one of the sender, are shown in Figure 4. Figures 2 and 3 give an example of

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 9

c0A#c1B#c0c1c1c2C#c2

zeroNode = 3

0013

4321
top

CAB

3 22

543210

word

freq

3

0

w
o

rd
s

b
lo

c
k
s

zeroNode = 3

0023

4321

ACB

3 23

543210

3

0
zeroNode = 4

0023

4321

DACB

3 123

543210

4

0
zeroNode = 4

0024

4321

DACB

3 223

543210

4

0

c0A#c1B#c0c1c1c2C#c2c2 c0A#c1B#c0c1c1c2C#c2c2c3D# c0A#c1B#c0c1c1c2C#c2c2c3D#c3

Figure 3. Reception of c2, c2, c3D# and c3 having received c0A#c1B#c0c1c1c2C# previously.

Sender main algorithm ()
(1) Initialize vocabulary structures, zeroNode ← 0;
(2) for i ← 1 to n− 1 do top[i] ← 0;
(3) for each new symbol i do

(4) read si from text;
(5) p ← fhash(si);
(6) if word[p] = Null (si 6∈ word) then

(7) i ← zeroNode;
(8) send (encode(i));
(9) send si in plain form;
(10) else

(11) i ← posInV oc[p];
(12) send (encode(i));
(13) update();

Sender update ()
(1) if i =zeroNode then // new word
(2) word[p] ← si;
(3) freq[p] ← 0;
(4) posInV oc[p] ← zeroNode ;
(5) posInHT [zeroNode] ← p;
(6) zeroNode ← zeroNode +1;
(7) f ← freq[p];
(8) freq[p] ← freq[p] + 1;
(9) j ← top[f];
(10) h ← posInHT [j];
(11) swap (posInHT [i], posInHT [j]);
(12) posInV oc[p] ← j;
(13) posInV oc[h] ← i;
(14) top[f] ← j + 1;

Receiver main algorithm ()
(1) Initialize vocabulary structures, zeroNode ← 0;
(2) for i ← 1 to n− 1 do top[i] ← 0;
(3) for each new codeword Ci do

(4) i ← decode(Ci);
(5) if i =zeroNode then

(6) receive si in plain form;
(7) output si;
(8) else

(9) output word[i];
(10) update();

Receiver update ()
(1) if i =zeroNode then // new word
(2) word[i] ← si;
(3) freq[i] ← 0;
(4) zeroNode ← zeroNode +1;
(5) f ← freq[i];
(6) freq[i] ← freq[i] + 1;
(7) j ← top[f];
(8) swap (freq[i], freq[j]);
(9) swap (word[i], word[j]);
(10) top[f] ← j + 1;

Figure 4. Pseudo-code for sender and receiver processes in DETDC.

how the sender encodes the sequence of words ABABBCCDD and how the receiver decodes
them.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

10 BRISABOA ET AL.

3. Dynamic (s, c)-Dense Codes

3.1. (s,c)-Dense Codes

End-Tagged Dense Code uses 2b−1 digits, from 0 to 2b−1 − 1, for the bytes that do not end a
codeword (continuers), and the other 2b−1 digits, from 2b−1 to 2b − 1, for the last byte of the
codeword (stoppers)†. Instead of using a fixed number of stoppers and continuers, (s, c)-Dense
Code [6] adapts their number to the word frequency distribution in the corpus.

Definition 2. Given source symbols with nonincreasing probabilities {pi}0≤i<n, the
corresponding (s, c)-Dense Code (SCDC) for the symbol in position i has k bytes (k ≥ 1),
for the k that satisfies:

s
ck−1 − 1

c− 1
≤ i < s

ck − 1

c− 1
Thus, the codeword corresponding to source symbol i is formed by k−1 digits in base c added

to s, and a final base-s digit. If k = 1 then the codeword is simply the stopper i. Otherwise the
codeword is formed by the number ⌊x/s⌋ written in base c, and adding s to each digit, followed

by x mod s, where x = i− sck−1−s
c−1 .

That is, using symbols of b = 8 bits, the encoding process can be described as follows:

• One-byte codewords from 0 to s− 1 are given to the first s words in the vocabulary.
• Words ranked from s to s + sc − 1 are sequentially assigned two-byte codewords. The

first byte of each codeword has a value in the range [s, s + c− 1] and the second in range
[0, s− 1].

• Words from s + sc to s + sc + sc2 − 1 are assigned tree-byte codewords, and so on.

Example 3.1. The codes assigned to symbols i ∈ 0 . . . 15 by a (2,3)-Dense Code are as follows:
〈0〉, 〈1〉, 〈2:0〉, 〈2:1〉, 〈3:0〉, 〈3:1〉, 〈4:0〉, 〈4:1〉, 〈2:2:0〉, 〈2:2:1〉, 〈2:3:0〉, 〈2:3:1〉, 〈2:4:0〉, 〈2:4:1〉,
〈3:2:0〉, and 〈3:2:1〉. ⊓⊔

It is clear from Definition 2 that ETDC is a (2b−1,2b−1)-Dense Code and therefore SCDC is
a generalization of ETDC that can obtain better compression by adjusting s and c to the text
distribution. As in ETDC, the code does not depend on the exact symbol probabilities, just
on their ordering by frequency.

The problem now consists of finding the s and c values (assuming a fixed b where 2b = s+ c)
that minimize the size of the compressed text for a specific word frequency distribution. A
discussion on how to obtain the values that minimize the size of the compressed text for a
specific word frequency distribution can be found in [6, 10].

The encoding and decoding algorithms are the same as those of ETDC, taking into account
that s and c depend on the text (while with ETDC, both are always 128). Thus on-the-fly
encode and decode algorithms are also available.

†For generality, we will keep considering bytes of b bits, not only 8.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 11

SCDC has only 0.2 percentage points of excess over the optimal PH code, improving upon
ETDC by 0.7 percentage points and TH by 3.2 points. SCDC is simpler to build than Huffman
Codes as well, and code generation is 45% faster than that of Huffman codes, although a little
bit slower than ETDC (which is 60% faster than Huffman coding) because multiplications and
divisions cannot be translated into faster bit shifts. To all these properties of SCDC, we have
to add, as in the case of ETDC, all the search capabilities of TH.

As ETDC, SCDC has concepts in common with previous existing codes to compress integers.
Golomb code [11] is a bit-oriented code, instead of byte-oriented, but it is also parameterized.
Like SCDC, Golomb code has a parameter (sometimes called k), which is computed to best
adapt the code to the distribution of the source symbols.

3.2. Towards Dynamic (s,c)-Dense Codes (DSCDC)

The main difference with respect to DETDC is that, at each step of the compres-
sion/decompression processes, it is mandatory not only to maintain the vocabulary sorted,
but also to check whether the current value of s (and c) remains well tuned or if it should
change.

The update() algorithm that maintains the list of words sorted by frequency is the same used
in the case of DETDC. In addition, the test for a possible change of s has to be performed
after calling this update process.

Both encoder and decoder start with s = 256. This s value is optimal for the first 255 words
of the vocabulary, because it permits to encode all of them with just one byte. When the 256th

word arrives, s has to be decreased by 1 since a two-byte codeword is needed. From this point
on, s and c values are modified depending on the word frequency distribution.

We present next a heuristic technique to keep well tuned the values of s and c. Other
heuristics that work well in most cases are described in [10].

3.3. Tuning the s and c values

The simplest approach to keep the s and c values well tuned as the compression/decompression
progresses is based on comparing the size of the compressed text depending on the s and c
values used to encode it.

The general idea is to compare the number of bytes that the compressed text, up to including
word wi, would occupy if it were encoded using s − 1, s, and s + 1. If that number becomes
smaller by using either s−1 or s+1 instead of s, then the compressor switches to the new value
of s from this point on. Therefore, in each step of the compression/decompression process, the
value of s changes at most by one.

Three variables are needed: prev, curr, and next. Variable prev stores the size of the
compressed text assuming that s− 1 was used in the encoding/decoding process. In the same
way, curr and next accumulate the size of the compressed text, assuming that it was encoded
using the current s and s+1, respectively. At the beginning, the three variables are initialized
to zero. Each time a word wi is processed, prev, curr, and next are increased as follows: Let
countBytes(i) be the function that computes the number of bytes needed to encode the ith

word of the vocabulary. Then, the three variables are increased as follows:

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

12 BRISABOA ET AL.

• prev ← prev + countBytes(s− 1, i)
• curr ← curr + countBytes(s, i)
• next← next + countBytes(s + 1, i)

A change of the s value takes place either if prev < curr or if next < curr. If prev < curr,
then s−1 will become the new value of s (s← s−1). On the other hand, if next < curr, then
s will be increased (s← s + 1).

Therefore, we can easily decide in which direction s should be modified. Each time s changes,
the values prev, curr, and next are initialized again, and then the process continues. This
initialization depends on the change of s that took place.

In order to keep the history of the process, we do not initialize the three values to zero, but
we use the previous values. Of course, one of the three values (either prev or next, depending
on the direction of the change of s) is unknown and it is set to the same value of curr. That
is:

- If s is increased then prev ← curr and curr ← next (next does not change).

10 6 5 → 6 5 5
prev curr next prev curr next

- If s is decreased then next← curr and curr ← prev (prev does not change).

20 21 23 → 20 20 21
prev curr next prev curr next

There are other alternatives for this basic algorithm. For example, it would be possible to
use an ε value as a threshold for the change in s. That is, the value of s would change only if
prev + ε < curr or next + ε < curr. In this way, fewer changes would take place, but in our
experiments the differences were negligible.

Another possible choice would be to initialize the three variables prev, curr, and next to
zero when s changes. This choice would make the algorithm free from the previous history.
This approach can be interesting in natural language documents where the vocabulary, and
consequently its frequency distribution, changes frequently along the text. However, our
experiments showed again that the differences in compression ratio were less than 0.01%.

Checking whether s and c should change is carried out by CheckAndUpdateS() algorithm.
The pseudo-code of this algorithm and the one of countBytes() are shown in Figure 5.
Notice that countBytes() is called at least twice in each execution of the CheckAndUpdateS()
algorithm. The cost of countBytes() depends on the maximum codeword length, so its overall
cost is proportional to the number of output symbols. This shows that s and c can be
maintained well tuned without altering the overall complexity.

Figure 6 shows how the s value evolves in practice as compression progresses (the collections
are described in Section 5). It can be seen that the dynamic encoder adapts the s value rapidly
in order to reduce the codeword length. Therefore, the s value falls from 256 to 129 (recall that
b = 8) when the first 16, 512 words are processed. When n > 16, 512, three-byte codewords are
needed, therefore the s value is increased. Fluctuations of s beyond that point depend on the
word distribution.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 13

CheckAndUpdateS Algorithm (s, c, i)
(1) prev ← countBytes (s− 1, i);
(2) s0 ← countBytes (s, i);
(3) if prev < s0 then

(4) s ← s− 1; //s is decreased
(5) c ← c + 1;
(6) next ← s0;
(7) s0 ← prev;
(8) else

(9) next ← countBytes (s + 1, i);
(10) if next < s0 then
(11) s ← s + 1; //s is increased
(12) c ← c− 1;
(13) prev ← s0;
(14) s0 ← next;

countBytes Algorithm (si, ipos)
(1) k ← 1;
(2) last ← si;
(3) pow ← si;
(4) ci ← 256 − si;
(5) while last ≤ ipos do

(6) pow ← pow × ci;
(7) last ← last + pow;
(8) k ← k + 1;

Figure 5. countBytes and CheckAndUpdateS algorithms.

0 50 100 150 200 250

150

200

250

n (×1000)

s
va

lu
e

0 200 400 600 800

150

200

250

n (×1000)

s
va

lu
e

s=129 s=129

Ap Newswire corpus ALL corpus

Figure 6. Evolution of s as the vocabulary grows.

4. Block-wise Versions of Dense Codes

A natural choice to cope with the real-time scenario is to cut the text into blocks that can
be compressed separately using a semi-static compressor. This solution is simple and likely to
provide efficient decompression and searching. The idea behind this technique is, on the one
hand, that it can adapt better to different distributions on different parts of the text, and on
the other hand, that the codewords used in each block are shorter on average, since there are
fewer different words in each block than in the whole text.

However, it is not obvious whether or not this is a good idea. If the blocks have to be too large
to provide good compression, due to the burden of storing the local vocabulary, the real-time
nature of the scheme might be questionable. We performed several studies in this line, and we
found that the simple approach of cutting the text into blocks, and compressing them with a
semistatic approach, does not obtain good results, as it can be seen in Table I (the collections
are described in Section 5). As shown, using a simple block-wise compressor represents a
severe restriction for real-time transmission, since to achieve competitive compression ratios

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

14 BRISABOA ET AL.

Table I. Compression ratio (in percentage) of a semistatic block-wise ETDC with different block
sizes (in Mbytes) vs ETDC and DETDC.

0.5 Mb 1 Mb 2 Mb 5 Mb 10 Mb 15 Mb etdc detdc

CR 39.26 36.80 35.21 33.50 32.58 32.28 31.94 31.99
AP 42.07 39.35 37.45 35.60 34.57 34.12 32.90 32.91
ALL 41.53 39.04 37.33 35.55 34.58 34.13 33.66 33.66

the sender should have to delay the transmission of the compressed text until the available
text reaches a considerable size (recall the scenarios depicted in Section 1).

In [9], some techniques to store the vocabulary of each block in the form of a short prelude
were shown. However, in this work it is assumed that the sender and the receiver share the
entire vocabulary, and therefore the prelude only provides information about which words,
from the general vocabulary, are present in the block, in addition to some information needed
for the encoding. Yet, in the case of a dynamic scenario, it is necessary to send new words
(or separators), which were not known until then, as compression progreses. Therefore further
development is required to profit from this research line.

5. Experimental Results

We used a large text collection from trec-2
‡, namely AP Newswire 1988 (AP), as well as from

trec-4, namely Congressional Record 1993 (CR). As a small collection we used the Calgary
corpus§ (CALGARY). We created two larger corpora ALL FT and ALL by aggregating several
texts from trec-2, trec-4 and the Calgary corpus. We used the spaceless word model [17]
to create the vocabulary, that is, if a word was followed by a space, we just encoded the word,
otherwise both the word and the separator were encoded.

We empirically compared the compression ratio and compression/decompression speed of
DETDC and DSCDC against our own implementation of a dynamic word-based byte-oriented
Plain Huffman (DPH)¶, Gzip‖, a Ziv-Lempel compressor with performance very similar to
zip [24], Bzip2 ∗∗, a block sorting compressor [7] and an arithmetic encoder coupled with a
word-based modeler [8]. Finally, as a baseline, we included dynamic (DVyte) and semistatic
(SVbyte) implementations of a variable byte code [9, 21]. DVbyte and SVbyte do not use any

‡http://trec.nist.gov
§ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.
¶Open-source implementations of DETDC, DSCDC and DPH, as well as pseudo-codes for their compression
and decompression processes, are available at http://rosalia.dc.fi.udc.es/codes/.
‖http://www.gzip.org/.
∗∗http://www.bzip.org/.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 15

statistical information of the text in order to obtain a good compression ratio. They just assign
the first codeword to the first word in the text, the second codeword to the second distinct
word in the text, and so on. As shown later, this yields worse compression ratio than ETDC
and DETDC, but better compression times. Tables show the default compression setting of
Gzip. ETDC, SCDC, and PH, the semistatic counterparts of DETDC, DSCDC, and DPH
respectively, were also included in the comparisons to discuss the effects of dynamism.

An isolated Intel R©Pentium R©-IV 3.00 GHz system (16Kb L1 + 1024Kb L2 cache), with 4
GB dual-channel DDR-400Mhz RAM was used in our tests. It ran Debian GNU/Linux (kernel
version 2.4.27). The compiler used was gcc version 3.3.5 and -O9 compiler optimizations were
set. Time results measure cpu user time in seconds.

5.1. Compression ratio, compression and decompression time

Table II (a) shows the compression ratios obtained when compressing the different corpora. As
expected, Bzip2 yields the best compression ratio. Gzip obtains the worst compression ratio in
medium size texts, while in the shortest and largest texts, both versions of the Vbyte code are
the worst ones. Arithmetic compression also obtains good results (1-2 percentage points over
Bzip2). Our techniques compress more than Gzip except in small collections (CALGARY),
where the vocabulary size is still significant compared to the text size. DPH, which generates
optimal prefix-free codes, overcomes DSCDC by less than 0.3 percentage points, and DETDC
loses around 0.6 percentage points with respect to DSCDC. It is important to note the gain in
compression achieved by DETDC and ETDC with respect to DVbyte and SVbyte respectively;
the use of a statistical model results in 3-11 percentage points of improvement, depending on
the size of the text. Finally, it is also interesting to point out that adding dynamism to PH,
ETDC, and SCDC involves only a slightly loss of compression ratio. In most cases, such a loss
is less than 0.1 percentage points.

Table II (b) shows compression times. As expected, DVbyte is the fastest alternative, since
it does not compute statistics of the source text nor performs vocabulary permutations during
the compression process. Yet, DETDC is also very fast, obtaining much better compression.

DSCDC is slightly slower than DETDC due to the need of maintaining parameters s and c
well tuned. DPH also obtains good performance, but it is overcome by the dense compressors
because of the complexity of dynamically maintaining a well-formed byte-oriented Huffman
tree. Bzip2, Arith, and Gzip are significantly slower than the rest of the techniques.

Comparing the dynamic techniques against their semistatic counterparts (PH, ETDC, SCDC
and SVbyte), it can be observed that performing only one pass over the text to compress
makes dynamic techniques faster. In fact, DETDC is around 30% faster than ETDC, whereas
DSCDC is around 20% faster than SCDC. DPH is also able to overcome PH in compression
speed. However, since DPH might have to update a higher Huffman tree for each source word,
gaps (in compression speed) between DPH and PH decrease as the size of the collection grows.
The case of SVbyte is even worse, losing around 50% of speed, since it wastes its advantage (it
does not have to sort the vocabulary) writing a bigger output file.

Table II (c) shows decompression times. We remark that Gzip is regarded as a very efficient
technique for decoding. However, dynamic dense codes still obtain good times. DETDC has a
decompression performance similar to that of Gzip (except in corpus ALL). DSCDC pays the

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

16 BRISABOA ET AL.

Table II. Compression Ratio (in percentage) and, compression and decompression times (in seconds).

(a) Compression ratio

Corpus Size KB Gzip dph detdc dscdc DVbyte ph etdc scdc SVbyte Arith Bzip2

CALGARY 2,081 36.95 46.55 47.73 46.81 55.18 46.24 47.40 46.61 53.16 34.68 28.92
CR 49,888 33.29 31.10 31.99 31.33 34.83 31.06 31.94 31.29 34.83 26.30 24.14
AP 244,760 37.32 32.09 32.91 32.36 36.96 32.07 32.90 32.35 36.95 27.94 27.25
ALL FT 577,704 34.94 31.71 32.54 31.85 41.59 31.70 32.53 31.84 41.59 27.85 25.87
ALL 1,055,391 35.09 32.85 33.66 33.03 45.00 32.83 33.66 33.02 45.00 27.98 25.98

(b) Compression time

Corpus Gzip dph detdc dscdc DVbyte ph etdc scdc SVbyte Arith Bzip2

CALGARY 0.34 0.12 0.09 0.11 0.07 0.16 0.16 0.16 0.15 0.41 0.70
CR 7.47 2.78 2.16 2.41 1.66 3.07 3.07 3.05 2.92 7.62 17.58
AP 39.09 15.13 11.91 13.39 8.791 16.21 16.55 16.38 16.05 39.65 85.69
ALL FT 85.05 35.79 28.20 31.52 20.44 37.90 39.27 38.70 38.25 93.58 208.58
ALL 160.01 71.54 55.31 61.35 39.55 72.77 75.58 75.20 73.78 171.56 375.55

(c) Decompression time

Corpus Gzip dph detdc dscdc DVbyte ph etdc scdc SVbyte Arith Bzip2

CALGARY 0.04 0.07 0.04 0.05 0.03 0.04 0.03 0.04 0.03 0.38 0.30
CR 0.94 1.83 0.94 1.10 0.63 0.62 0.59 0.67 0.62 6.57 7.14
AP 5.19 10.24 5.27 6.10 3.67 3.29 3.34 3.46 3.44 33.89 37.75
ALL FT 11.38 24.01 12.63 14.56 8.52 7.60 7.54 7.96 8.13 80.29 85.11
ALL 21.05 50.82 25.27 28.62 17.45 14.26 14.56 15.08 16.96 147.15 156.18

extra cost of maintaining the values of s and c tuned (as well as a slightly slower decoding
algorithm) and is overcome by DETDC by around 10%. DPH, due to its complex update
algorithm, is about two times slower than DETDC and DSCDC. Finally, DVbyte is faster than
Gzip, DETDC and DSCDC. More precisely, it is around 40% faster than DETDC, again due
to its simplicity.

As expected [6], the semistatic techniques obtain the best decompression times. The
arithmetic compressor and Bzip2 are by far the slowest techniques.

To sum up, DETDC is easier to program, compresses more and faster than Gzip, being also
very fast at decompression. Yet, DETDC requires more memory than Gzip. We used the ALL
corpus to test the memory consumption of DETDC and DSCDC compared to that of Gzip. In
compression, DETDC and DSCDC consume around 90 Mbytes, whereas Gzip only consumes
720 Kbytes. Decompression depicts a similar situation: dense compressors consume 60 Mbytes
and Gzip uses 520 Kbytes. Note, however, that Gzip cannot profit from using more memory, as
that could only be used to enlarge the window size, and this is chosen to be generally optimal
(a longer window requires longer pointers in the compressed text). Thus there is no really a

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 17

0

15

30

45

60

75

90

105

120

135

150

165

180

195

375

D
e
c
o
m

p
re

s
s
io

n
T

im
e
 (

s
e
c
.)

C
o
m

p
re

s
s
io

n
 R

a
ti
o
 (

%
)

C
o
m

p
re

s
s
io

n
T

im
e
 (

s
e
c
.)

B
z
ip

2

A
ri
th

S
C

D
C

E
T

D
C

P
H

S
V

b
y
te

D
S

C
D

C

D
E

T
D

C

D
P

H

G
z
ip

D
V

b
y
te

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

0

5

10

15

20

25

30

35

40

45

50

145

160

B
z
ip

2

A
ri
th

S
C

D
C

E
T

D
C

P
H

S
V

b
y
te

D
S

C
D

C

D
E

T
D

C

D
P

H

G
z
ip

D
V

b
y
te

B
z
ip

2

A
ri
th

S
C

D
C

E
T

D
C

P
H

S
V

b
y
te

D
S

C
D

C

D
E

T
D

C

D
P

H

G
z
ip

D
V

b
y
te

Figure 7. Compression ratio (left), compression time (middle) and decompression time (right).

compression ratio versus memory space tradeoff. In current computers, the space required by
the dense coders is perfectly affordable.

The good features inherited from ETDC make DETDC an interesting choice for dynamic
compression of natural language texts. DSCDC is also a good alternative to Gzip. It compresses
faster than Gzip and its compression ratio is much better. DVbyte is a very fast alternative,
but its compression ratios make DETDC a better choice to obtain a good balance between
space and time. An overall comparison among all the discussed compression techniques is given
in Figure 7.

6. Searching compressed and uncompressed text

We performed multi-pattern searches for randomly chosen patterns over both the compressed
and uncompressed versions of collection ALL. We present results for four search algorithms
that work over compressed text and four well-known algorithms for searching plain text.

The first technique works over text compressed with ETDC and SCDC. We use our own
implementation of Set-Horspool algorithm [13, 18], with the small modification needed to deal
with ETDC and SCDC [6, 10] (namely, it is necessary to verify that the character that precedes
an occurrence is actually a stopper, as in a dense code a codeword can be a suffix of a longer
codeword). In this case, the search patterns are first encoded and then directly searched for in
the compressed text. Results regarding searches over text compressed with PH are not included
here as they are known to be much worse than those on ETDC and SCDC [6].

On the other hand, we consider searches over text compressed with DETDC. Since the
codewords generated by DETDC might vary each time a source word is input, a Boyer-Moore
type search is not suitable. In practice, searching text compressed with DETDC (and also with
DSCDC) consists in simulating the decompression process (just without emitting the source
words), so that all bytes in the compressed file are processed. This is the reason why we call
it all-bytes. Basically, the searcher processes the whole file one codeword at a time keeping

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

18 BRISABOA ET AL.

track of the codewords associated to the searched patterns along the compressed text, and
reporting their occurrences. In DETDC, the searcher might only be interested in counting
the occurrences of the patterns (for example to classify documents) or might be interested in
displaying an uncompressed context around each occurrence. If local decompression is needed,
the searcher must not only search for the patterns, but also be able to rebuild the vocabulary
of the decompressor. This variant is marked as all-bytes + dec in the experiments. We do not
include search times for DSCDC nor for DPH since, just as they are slower than DETDC at
decompression, they also obtain worse results at searches.

The fourth search tool included in our comparison is author’s implementation of LZgrep [19].
LZgrep permits searching text compressed with LZ77/LZ78/LZW formats [24, 25] faster than
performing decompression plus searching. In our experiments, we were aiming at using the
best alternative for decompression and searching. Since LZ77 is the fastest Ziv-Lempel variant
at decompression, applying LZgrep over text compressed with a LZ77-based technique such as
Gzip, is the fastest choice. Therefore, LZgrep was run over text compressed with Gzip -9 ††.

Four different algorithms were tested to search the uncompressed text: i) our own
implementation of Set-Horspool algorithm, ii) author’s implementation of Set Backward Oracle
Matching algorithm (SBOM) [1], iii) author’s implementation of Simplified Set Backward
Oracle Matching algorithm (SSBOM) [18] and iv) the agrep‡‡ software [23, 22], a fast pattern-
matching tool which allows, among other things, searching a text for multiple patterns. Agrep
searches the text and returns those chunks containing one or more search patterns. The default
chunk is a line, and the default chunk-separator is the newline character. Once the first search
pattern is found in a chunk, agrep skips processing the remaining bytes in the chunk. This
speeds up agrep searches when a large number of patterns is sought. However, it does not
give the exact positions or counts of the search patterns. To make a fairer comparison, in our
experiments, we also tried agrep with the reversed patterns, which are less likely to be found.
This maintains essentially the same statistics of the searched patterns and reflects better the
real search cost of agrep.

By default, the search tools compared in our experiments (except agrep and LZgrep) run in
silent mode, and count the number of occurrences of the patterns in the text. Both agrep and
LZgrep were forced to use these two options by setting the parameters -s -c.

To choose the search patterns, we considered the vocabulary associated to corpus ALL. From
that vocabulary, we skipped both the stopwords (prepositions, articles, etc.) and the separators
(sequences of non-alphanumerical characters), as these are almost never search targets. Yet,
with the aim of avoiding the search for misspellings, we also skipped words appearing only once
in the text. As a result, we obtained a list of candidate patterns. Then, following the model [17]
where each vocabulary word was sought with uniform probability, we extracted 100 sets with
K words of length L at random from the list of candidate patterns. As it is shown in Table III,
we consider lengths L = 5, 10, and > 10, and each set can consist of K = 5, 10, 35, 50, 100,
200, 400, and 1000 patterns. Therefore, for each pair (Li,Kj), the values shown in Table III

††Searching or decompressing text compressed with Gzip is more efficient as less data has to be processed.
Therefore, using Gzip -9 at compression yields the best search/decompression times.
‡‡ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 19

Table III. Multi-pattern search times over corpus ALL (in seconds).

Search type length of number of patterns
pattern 5 10 25 50 100 200 400 1000

5 0.645 0.764 1.158 1.807 2.497 3.223 3.485 3.902
ETDC 10 0.681 0.794 1.137 1.732 2.470 3.148 3.393 3.732

Set-Horspool > 10 0.657 0.759 1.151 1.750 2.488 3.164 3.419 3.746

5 0.609 0.701 1.017 1.584 2.283 3.289 3.826 4.528
SCDC 10 0.638 0.726 1.017 1.535 2.299 3.195 3.675 4.031

Set-Horspool > 10 0.615 0.702 0.993 1.522 2.282 3.151 3.598 4.067

5 10.484 10.541 10.557 10.471 10.667 10.557 10.643 10.660
DETDC 10 10.501 10.541 10.512 10.535 10.707 10.539 10.634 10.693

all bytes > 10 10.521 10.534 10.624 10.507 10.688 10.573 10.625 10.734

5 14.559 14.495 14.516 14.525 14.602 14.574 14.579 14.619
DETDC + dec 10 14.476 14.551 14.521 14.511 14.664 14.550 14.586 14.669

all bytes > 10 14.529 14.616 14.509 14.522 14.677 14.560 14.603 14.662

5 15.129 15.085 15.200 15.066 15.139 – – –
LZgrep -s -c 10 15.171 15.120 15.201 15.083 15.162 – – –

> 10 15.121 15.168 15.182 15.176 15.130 – – –

5 5.488 5.348 4.523 3.641 2.868 1.195 0.486 0.212
Agrep -s -c 10 2.897 3.123 3.644 3.883 3.193 2.480 1.493 0.730

default > 10 2.926 3.145 3.869 3.883 3.573 2.827 1.890 0.986

5 5.706 5.838 6.426 6.999 10.490 9.799 8.413 5.529
Agrep -s -c 10 2.824 3.019 3.530 4.620 4.764 5.031 5.477 6.478

rev. patterns > 10 2.832 3.039 3.619 4.641 4.777 5.070 5.570 6.786

5 2.065 3.194 5.491 7.469 9.143 11.138 13.262 16.456
Set-Horspool 10 1.913 2.992 4.566 5.712 6.724 8.030 9.633 12.847

> 10 1.921 2.975 4.677 5.748 6.815 8.070 9.644 13.067

5 3.796 4.784 6.020 8.174 10.934 13.290 15.996 21.688
SBOM 10 2.803 3.491 5.238 6.796 8.213 9.924 9.924 12.373

> 10 2.847 3.611 5.384 6.883 8.201 10.051 12.616 17.372

5 4.106 5.161 6.432 8.574 11.106 13.544 16.680 23.102
SSBOM 10 2.902 3.503 5.046 6.405 7.684 9.447 12.117 17.369

> 10 2.935 3.623 5.160 6.459 7.726 9.617 12.373 18.103

give the average time needed to perform 100 searches (using the same 100 sets of preselected
Kj search patterns) with each of the search techniques compared. Figure 8 summarizes the
results obtained by searching for Kj patterns of 5 bytes, in graphical form. This is less precise
but easier to visualize.

Results show that searches over text compressed with DETDC can be done much faster
than decompressing plus searching. This is actually an interesting property [19] for a dynamic
compressor. Moreover, all-bytes + dec obtains slightly better search times than LZgrep, its
main competitor in a dynamic scenario.

Of course, searches over text compressed with a dynamic compressor cannot compete against
searches over text compressed with a semistatic compressor, being also usually slower than just
searching the uncompressed text when a few patterns are sought.

As expected, searching text compressed with ETDC and SCDC is much faster than searching
the uncompressed text, and around 3-4 times faster than searching text compressed with
DETDC. Only default agrep (which skips lines where patterns are found) can overcome the
searches over ETDC and SCDC, yet this occurs when more than 100 words are searched for
and, as explained, does not reflect the real cost of a search. Closer to the real search cost of
agrep is its reversed patterns version, except when many short patterns are sought, so that

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

20 BRISABOA ET AL.

5 10 25 50 100 200 500 1000
0

2

4

6

8

10

12

14

16

18

Number of patterns

S
ea

rc
h

tim
e

(s
ec

.)

ETDC (Set−Horspool)
SCDC (Set−Horspool)
DETDC (all−bytes)
DETDC (all−bytes+dec)
LZgrep
Agrep (default)
Agrep (reversed)
Set−Horspool
SBOM
SSBOM

Figure 8. Searching for a variable number of patterns of 5 letters.

they are usually found in the text even in reverse form. Algorithms SBOM and SSBOM are
faster than agrep when the number of patterns is small, yet they become slower as the number
of patterns increases.

As expected, the use of longer patterns improves the search speed in the uncompressed text.
However, this has little effect in the search time over text compressed with ETDC and SCDC,
as in this case the searcher usually looks for codes of 2–3 bytes. In general, one-byte codes are
rarely searched for when we search for less than 400 patterns (because there are few of them,
and they usually correspond to stopwords). In the case of searches over text compressed with
DETDC, search times are independent of the length of the patterns, as they only depend on
the number of codewords in the compressed file.

If we focus on the search algorithms based on Set-Horspool, we realize that a larger number
of patterns favors the search on the compressed over the uncompressed text. The main reason
is that Horspool’s algorithm benefits from a lower probability of two characters (from the text
and the pattern) being equal. The lower this probability, the more patterns can be handled
efficiently. In the compressed version (using ETDC) of the corpus ALL, this probability is
1/119.4 ≈ 0.008, whereas in the plain version, it is 1/19.3 ≈ 0.052.

As it was introduced above, searching text compressed with DETDC can be done more
efficiently than decompressing plus searching, as it happens in LZgrep, but not as fast as just
searching the uncompressed version of the text. However, when a large number of patterns
(>100) are sought, searching DETDC becomes faster than searching the uncompressed text.
This occurs because the simple all-bytes searcher is almost independent of the number of search
patterns. The all-bytes + dec searcher that works on DETDC is around 40% slower than the
all-bytes variant. Those gaps are the result of having to perform the whole update process of
the vocabulary for each codeword that appears in the compressed text, instead of just keeping
track of the positions of the searched patterns in the vocabulary. As in DETDC, the results

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 21

60 70 80
32.5

33.0

33.5

compression time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

20 30

33.0

34.0

35.0

33.0

34.0

35.0

decompression time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

0 10 20 30 40 50 140 150 160
25

28

31

34

37

40

43

decompression time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

0 20 40 60 80 100 120 140 160 180 200 360 380
25

28

31

34

37

40

43

compression time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

SVbyte
DVbyte
PH
ETDC
SCDC
DPH
DETDC
DSCDC
gzip
Arith
bzip2

Figure 9. Space/time tradeoffs among dynamic techniques, on corpus ALL, related to compres-
sion/decompression time.

obtained with LZgrep are almost independent of the number of searched patterns and their
length. Comparing DETDC against LZgrep, we found that LZgrep is around 40-50% and 5-8%
slower than all bytes and all bytes + dec searchers, respectively.

7. Conclusions

We have addressed the problem of efficient transmission of natural language text documents.
This was done by adding dynamism to two existing word-based byte-oriented semistatic
compressors such as ETDC, and SCDC. They obtain compression ratios slightly worse than
those of their semistatic counterparts, but better compression times.

More precisely, DETDC and DSCDC enjoy several desirable features: full real-time
transmission, simplicity, good compression ratios (around 31-34%), fast compression and
decompression, and the ability to search the compressed text without decompressing (searching
simulates decompression but it is faster as the searcher does not have to output the text). The
new compressors stand out as attractive space/time trade-offs within the current state of the
art, and have the additional benefit of being very simple to program.

In Figure 9, we focus on corpus ALL, showing the trade-off between compression ratio and
compression and decompression speed for most of the compressors used in our experiments.
The left part of each graphic shows an enlargement of the clump of values (within a rectangle)
that appears in the main plot.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

22 BRISABOA ET AL.

0 2 4 6 8 10 12 14 16
30

35

40

100

5 patterns. Search time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

0 2 4 6 8 10 12 14 16 18 20 22
30

35

40

100

1000 patterns. Search time (sec)

co
m

pr
es

si
on

 r
at

io
 (

%
)

ETCD (Set−Horspool)
SCDC (Set−Horspool)
DETDC (all−bytes)
DETDC (all−bytes+dec)
LZgrep
Agrep (default)
Agrep (reversed)
Set−Horspool
SBOM
SSBOM

Figure 10. Space/time tradeoffs on corpus ALL related to compression/search time when patterns of 5
letters are used.

Our empirical results showed that searches performed over text compressed with DETDC
obtain better results than those obtained with LZgrep, and therefore, they are faster than
just decompressing plus searching. Moreover, the search times obtained are independent of the
length and number of searched patterns. This fact implies that the search over text compressed
with dynamic dense codes is faster than well-known techniques that work over uncompressed
text when many patterns are searched for (>100). Figure 10 shows the trade-off between
compression ratio and search time for all the search tools used in our experiments assuming
that either 5 or 1000 patterns of 5 bytes are searched. Notice that agrep search times are
unfair when 1000 patterns are searched for, as it explained in Section 6. Indeed, already for
100 patterns, agrep times reach those of our techniques, and they would keep worsening against
ours, if the artifacts of its line-counting approach were deactivated.

As future work we are interested in the development of new dynamic codes that permit
us to search the compressed text more efficiently. We are now targeting at improving the
promising preliminary results obtained, in both decompression and searches, by Dynamic
Lightweight ETDC (DLETDC), an asymmetric version of DETDC presented in [5], and to
extend the result to SCDC. In these two asymmetric techniques, some loss of compression
effectiveness and compression speed (with respect to DETDC and DSCDC) is permitted in
order to improve decompression time and mainly search capabilities. In addition, we aim to
develop these compressors to be used in low-computational power devices such as PDAs or
mobile phones, where restrictions of memory can be found as well.

REFERENCES

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

NEW ADAPTIVE COMPRESSORS FOR N. L. TEXT 23

1. C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: a new structure for pattern matching. In
Proceedings of the 26th Annual Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM’99), LNCS 1725, pages 291–306. Springer-Verlag, 1999.

2. J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compression scheme.
Communications of the ACM, 29(4):320–330, 1986.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM, 20(10):762–
772, 1977.

4. N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Simple, fast, and efficient natural language adaptive
compression. In Proceedings of the 11th International Symposium on String Processing and Information
Retrieval (SPIRE’04), LNCS 3246, pages 230–241. Springer-Verlag, 2004.

5. N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Efficiently decodable and searchable natural language
adaptive compression. In Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’05), pages 234–241, New York City, 2005.
ACM Press.

6. N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Lightweight natural language text compression.
Information Retrieval, 10(1):1–33, 2007.

7. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994.

8. J. Carpinelli, A. Moffat, R. Neal, W. Salamonsen, L. Stuiver, A. Turpin, and I. Witten. Word,
character, integer, and bit based compression using arithmetic coding. Relevant software available at
http://www.cs.mu.oz.au/~alistair/arith_coder/, 1999.

9. J.S. Culpepper and A. Moffat. Enhanced byte codes with restricted prefix properties. In Proceedings of
the 12th International Symposium on String Processing and Information Retrieval (SPIRE’05), LNCS
3772, pages 1–12. Springer-Verlag, 2005.

10. A. Fariña. New Compression Codes for Text Databases. PhD thesis, Database Laboratory, University of
A Coruña, Spain, 2005. Available at http://coba.dc.fi.udc.es/~fari/phd/.

11. S. W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory, IT-12:399–401, 1966.
12. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Academic Press, New York,

1978.
13. R. N. Horspool. Practical fast searching in strings. Software Practice and Experience, 10(6):501–506,

1980.
14. D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180, 1985.
15. A. Moffat. Word-based text compression. Software Practice and Experience, 19(2):185–198, 1989.
16. A. Moffat and Turpin A. Compression and Coding Algorithms. Kluwer Academic Publishers, 2002.
17. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching on compressed

text. ACM Transactions on Information Systems, 18(2):113–139, 2000.
18. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search algorithms

for texts and biological sequences. Cambridge University Press, 2002.
19. G. Navarro and J. Tarhio. LZgrep: A Boyer-Moore string matching tool for Ziv-Lempel compressed

text. Software Practice and Experience (SPE), 35(12):1107–1130, 2005. Relevant software available at
http://www.dcc.uchile.cl/~gnavarro/software/lzgrep.tar.gz.

20. A. Turpin and A. Moffat. Fast file search using text compression. In Proceedings of the 20th Australian
Computer Science Conference (ACSC’97), pages 1–8, 1997.

21. H. E. Williams and J. Zobel. Compressing integers for fast file access. COMPJ: The Computer Journal,
42(3):193–201, 1999.

22. S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In Proceedings of the USENIX
Winter 1992 Technical Conference, pages 153–162, 1992.

23. S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM, 35(10):83–91,
1992.

24. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

25. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions
on Information Theory, 24(5):530–536, 1978.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 0:1–23
Prepared using speauth.cls

