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Abstract

We present a Boyer-Moore approach to string matching over LZ78 and LZW compressed
text. The idea is to search the text directly in compressed form instead of decompressing
and then searching it. We modify the Boyer-Moore approach so as to skip text using the
characters explicitly represented in the LZ78/LZW formats, modifying the basic technique where
the algorithm can choose which characters to inspect. We present and compare several solutions
for single and multipattern search. We show that our algorithms obtain speedups of up to
50% compared to the simple decompress-then-search approach. Finally, we present a public
tool, LZgrep, which uses our algorithms to offer grep-like capabilities searching directly files
compressed using Unix’s Compress, a LZW compressor. LZgrep can also search files compressed
with Unix gzip, using new decompress-then-search techniques we develop, which are faster than
the current tools. This way, users can always keep their files in compressed form and still search
them, uncompressing only when they want to see them.

Keywords: Text searching, compressed pattern matching, Lempel-Ziv format, direct search on
compressed text.

Introduction

Perhaps one of the most recurrent subproblem appearing in every application is the need to find
the occurrences of a pattern string inside a large text. The string matching problem lies at the
kernel of applications such as information retrieval and management, computational biology, signal
processing, databases, knowledge discovery and data mining, just to name a few. Text searching
tools such as grep are extremely popular and routinely used in everyday’s life.

Formally, the string matching problem is defined as, given a pattern P = p1 . . . pm and a text
T = t1 . . . tu, both sequences over an alphabet Σ of size σ, find all the occurrences of P in T , that is,
return the set {|x|, T = xPy}. There are dozens of string matching algorithms [10, 35]. The most
successful in practice are those algorithms capable of skipping text characters without inspecting
them all. This includes the Boyer-Moore [6] and the BDM [10] families.

In order to save space, it is usual to store the text in compressed form. Text compression [5]
tries to exploit the redundancies of the text in order to represent it using less space. Compression is
not only appealing for saving space, but also for saving disk and network transmission time. CPU
speeds have been doubling every 18 months, while disk transfer times have stayed basically the
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same for 10 years. This makes more and more appealing to save transmission time, even if it has
to be paid with some CPU time for decompression.

There are many different compression schemes, among which the Ziv-Lempel family [46, 47, 42]
is the most popular in practice because of its good compression ratios combined with efficient
compression and decompression performance. As a matter of fact, most of the popular text and
general-purpose compression packages in use are based on this family, for example zip, pkzip, winzip,
arj, gzip, compress, and so on. The only relatively popular alternative is bzip2, based on Burrows-
Wheeler [7], which compresses more than Ziv-Lempel approaches but is much slower at compression
and decompression. Other compression formats, especially lossy ones, are used on images, video
and multimedia data.

One problem that arises when searching a text document that is compressed is that one must
decompress it first. This has been the usual approach for long time. Indeed, existing tools like Unix
zgrep are shorthands for this decompress-then-search approach. However, in recent years, it has
been shown that it is possible to speed up this process by searching the text directly in compressed
form.

The compressed matching problem [3] is defined as the task of performing string matching
in a compressed text without decompressing it. Given a text T , a corresponding compressed
string Z = z1 . . . zn, and a pattern P , the compressed matching problem consists in finding all
occurrences of P in T , using only P and Z. A naive algorithm consists of first decompressing Z

and then performing standard string matching. A smarter algorithm processes Z directly without
decompressing it.

Many algorithms for compressed pattern matching have been proposed in the last decade. Many
of them, however, work over compression formats that are not widely used, despite being convenient
for efficient search. This reduces their possibility of becoming a tool of general use. There are, on
the other hand, a few proposals about searching over Ziv-Lempel compressed text. Good worst-case
complexities have been achieved, and there exist practical implementations able to search in less
time than that needed for decompression plus searching.

However, Boyer-Moore techniques have never been explored for searching compressed text.
Our work points in this direction. We present an application of Boyer-Moore techniques for string
matching over LZ78/LZW compressed texts. The worst-case complexity of the resulting algorithms
is not competitive. However, in practice our algorithms are faster than all previous work, and beat
the best decompress-then-search approach by up to 50%. We extend our techniques to search for
multiple patterns simultaneously.

Using the algorithms developed in this article, we have built LZgrep, a compressed text searching
tool that provides grep-like capabilities when directly searching over files compressed with Unix
compress program, which is public. LZgrep also searches files compressed with gzip, a public LZ77
based compressor. LZgrep is faster than zgrep and resorts to it when the the pattern is more
complex than simple string(s), so it can be safely used as a replacement of zgrep. LZgrep can be
freely downloaded for noncommercial purposes from www.dcc.uchile.cl/∼gnavarro/software.
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Related Work

One of the most successful approaches to searching compressed text is oriented to natural language.
Huffman coding [16] on words, that is, considering the text words instead of characters as the
source symbols, has been shown to yield compression ratios1 of 25%–30% [29]. Moreover, those
compressed text can be searched extremely fast, sometimes several times faster than searching the
uncompressed text [30]. This approach fits very well in the usual information retrieval scenarios
and merges very well with inverted indices [43, 33]. It is, however, difficult to use this technology
out of this scenario. On the one hand, the texts have to contain natural language, as the approach
does not work for general texts such as DNA, proteins, music, oriental languages and even some
agglutinating languages. On the other hand, the overhead posed by considering the set of words as
the source symbols is alleviated only for very large files (10 MB or more). Hence, the approach is not
well suited to compress individual files that can be independently stored, managed, and transferred,
but to a well-organized text collection with a strict control that maintains a centralized vocabulary
upon insertions, deletions and updates of the files in the collection. This is, for example, the model
of glimpse [26]. In this work we aim at a more oblivious method where files can be managed
independently.

Several other approaches have been proposed to search texts compressed under different formats,
some existing and some specifically designed for searching. Some examples are: different variations
of Byte-Pair encoding [25, 39], classical Huffman encoding [28, 22], modified variants of Ziv-Lempel
[36, 21], and even general systems that abstract many formats [18]. A few of these approaches
are good in practice, in particular a Boyer-Moore based strategy over Byte-Pair encoding [39].
These approaches are interesting. However, their main weakness is that in practice most people
use Ziv-Lempel compression methods, and this makes up a barrier for the general adoption of these
methods.

Searching Ziv-Lempel compressed texts is, however, rather more complex. The compression is
based on finding repetitions in the text and replacing them with references to previous occurrences.
The text is parsed as a sequence of “blocks”, each of which is built by referencing previous blocks.
Hence the pattern can appear in different forms across the compressed text, possibly split into two
or more blocks. In LZ78/LZW the blocks can only be a previous block plus one character, while
in LZ77 they can be any previous text substring.

The first algorithm to search Ziv-Lempel compressed text [4] is able to search for single patterns
in the LZ78 format. It was later extended to search for multiple patterns on LZW [19]. These
algorithms have good worst-case complexities but are rather theoretical. Algorithms with a more
practical flavor, based on bit parallelism, were proposed later for LZ78/LZW [36, 20]. Other
algorithms for different specific search problems over LZ78/LZW have been presented [13, 17, 31].

Searching LZ77 compressed text has been even harder. The only search technique [11] is a
randomized algorithm to determine whether a pattern is present or not in the text. Later studies
[36] gave more evidence that LZ77 is difficult to handle.

Note that Boyer-Moore techniques, which have been successful in other formats, had not been
applied to Ziv-Lempel compression. This was done for the first time in the earlier version of this
work [37]. In that paper it was shown that the Boyer-Moore approach was superior to previous

1The size of the compressed text as a percentage of the uncompressed text.
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techniques. All those implementations were carried out over a simulated compression format, for
simplicity. Our aim in this paper is to describe and extend those Boyer-Moore techniques, and
show that they can be implemented over a real LZW compression format (Unix compress) to yield
an efficient grep-like compressed text search tool that can be easily and widely used.

Basic Concepts

Table 1 gives a reminder of the notation we use for the rest of the paper.

Letter Meaning

T Uncompressed text of length u, T = t1t2 . . . tu.
u Length of uncompressed text, in characters (or “letters”).
Z Compressed text of n elements, Z = z1z2 . . . zn

(in LZ78/LZW each zi is actually a block, called bi).
n Length of compressed text, measured in elements.
P Pattern to search for (uncompressed), of length m.
m Length of search pattern, measured in characters.
Σ Alphabet T and P are drawn on.
σ Number of different symbols in Σ, σ = |Σ|.
r In multipattern search, number of patterns sought, P 1 . . . P r.

Table 1: Notation.

The Ziv-Lempel Compression Formats LZ78 and LZW

The general idea of Ziv-Lempel compression is to replace substrings in the text by a pointer to a
previous occurrence thereof. If the pointer takes less space than the string it is replacing, com-
pression is obtained. Different variants over this type of compression exist [5]. We are particularly
interested in the LZ78/LZW format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [47]) is based on a dictio-
nary of blocks, in which we add every new block computed. At the beginning of the compression,
the dictionary contains a single block b0 of length 0. The current step of the compression is as
follows: if we assume that a prefix T1...j of T has been already compressed in a sequence of blocks
Z = b1 . . . br, all them in the dictionary, then we look for the longest prefix of the rest of the
text Tj+1...u which is a block of the dictionary. Once we found this block, say bs of length ℓs, we
construct a new block br+1 = (s, Tj+ℓs+1), we write the pair at the end of the compressed file Z, i.e
Z = b1 . . . brbr+1, and we add the block to the dictionary. It is easy to see that this dictionary is
prefix-closed (that is, any prefix of an element is also an element of the dictionary) and a natural
way to represent it is a trie.

We give as an example the compression of the word ananas in Figure 1. The first block is (0, a),
and next (0, n). When we read the next a, a is already the block 1 in the dictionary, but an is not
in the dictionary. So we create a third block (1, n). We then read the next a, a is already the block
1 in the dictionary, but as do not appear. So we create a new block (1, s).
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Figure 1: Compression of the word ananas with the algorithm LZ78.

The compression algorithm efficient in practice if the dictionary is stored as a trie data structure,
which allows rapid searching of the new text prefix (for each character of T we move once in the
trie). The decompression needs to build the same dictionary (the pair that defines the block r

is read at the r-th step of the algorithm), although this time it is not convenient to have a trie,
and an array implementation is preferable. Compared to LZ77, the compression is rather fast but
decompression is slow.

Let us detail a bit the decompression process. We read block br = (b, c), so we know that the
last character of block br is c. Now we go to our stored block b = (b′, c′) and then know that the
next-to-last character of the block is c′. Now we go to the stored block b′ = (b′′, c′′) and know
that the character preceding c′ is c′′, and so on until we reach block b0 and we have found all the
characters of the block. We refer to the sequence br, b, b

′, b′′ . . . as a referencing chain.
Many variations on LZ78 exist, which deal basically with the best way to code the pairs in the

compressed file, or with the best way to cope with limited memory for compression [27, 12]. A
particularly interesting variant is from Welch, called LZW [42]. In this case, the extra character
(second element of the pair) is not coded, but it is taken as the first character of the next block (the
dictionary is started with one block per character). LZW is used by Unix’s Compress program.
Figure 2 shows the LZW compression of the word ananas.

In this paper we focus on LZW. However, the techniques are easily translated from/to LZ78,
as these are just coding variants. The final character of LZ78, which is implicit in LZW, can be
readily obtained by keeping count of the first character of each block (which is copied directly from
the referenced block) and then looking at the first character of the next block.

Character-Skipping String Matching Algorithms

There are several string matching algorithms able to skip text positions without actually inspecting
them. These are actually the fastest algorithms. In practice, the best algorithms come from two
families: Boyer-Moore and Backward-DAWG-Matching algorithms.

The Boyer-Moore (BM) family of text searching algorithms proceed by sliding a window of
length m over the text. The window is a potential occurrence of the pattern in the text. The text
inside the window is checked against the pattern usually from right to left (although not always).
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Figure 2: Compression of the word ananas with the algorithm LZW.

If the whole window matches then an occurrence is reported. To shift the window, a number of
criteria are used, which try to balance between the cost to compute the shift and the amount of
shifting obtained. Two main techniques are used:

Occurrence heuristic: pick a character in the window and shift the window forward the minimum
necessary to align the selected text character with the same character in the pattern. Horspool
[15] uses the m-th window character and Sunday [40] the (m + 1)-th (actually outside the
window). These methods need a table d that for each character gives its last occurrence in
the pattern (the details depend on the versions). The Simplified BM (SBM) method [6] uses
the character at the position that failed while checking the window, which needs a larger table
indexed by window position and character.

Match heuristic: if the pattern was compared from right to left, some part of it has matched the
text in the window, so we precompute the minimum shift necessary to align the part that
matched with a previous pattern area. This requires a table of size m that for each pattern
position gives that last occurrence of Pi...m in P1...m−1. This is used in the original Boyer and
Moore method [6].

The case of multiple patterns is handled by building d tables that permit the minimum jump
over the set of all the patterns. This table is usually built over more than one character to enable
larger shifts [44]. An alternative is to extend the original Boyer-Moore method [8]. A trie is built
over the set of reversed patterns, and instead of comparing right-to-left the text window and the
pattern, the window characters are used to enter the trie of patterns. The trie nodes have the
precomputed shifts.

The Backward-DAWG-Matching (BDM) family gives better algorithms than the BM family
when the pattern is long or the alphabet is small. Some prominent members of this family are BDM
itself [9], BNDM [34] and BOM [2]. Multipattern versions of these algorithms include MultiBDM
[10] and SBOM [35].
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Currently, the fastest single-pattern matching algorithms are Horspool and BOM. In the case
of multipattern matching, the best in practice are the method of Wu and Manber (WM) [44] and
SBOM.

Decompressing and Searching

Before getting into the direct search algorithms developed, let us study in some depth which would
be the best option if we decided to decompress the text and then search it. This would be our main
competitor.

Our experiments, in the whole paper, measure user plus system time over an Intel PIV 1.6
GHz, with 256 MB RAM and local disk, running Linux RedHat 8.0, compiling using gcc 3.2 and
full optimization. We have used two 10 MB texts: WSJ is English text obtained from 1987 Wall
Street Journal articles (from TREC-3 [14]), while DNA is Homo Sapiens DNA obtained from
Genbank (www.ncbi.nlm.nih.gov). Patterns were randomly chosen from the text, averaging over
100 patterns.

WSJ was compressed to 38.75% of its original size using compress and 33.57% using gzip. DNA,
on the other hand, was compressed to 27.91% of its original size using compress and 30.43% with
gzip.

Note that, if we are willing to apply a decompress-then-search approach, then there is no
reason to use an LZ78/LZW format. Rather, LZ77 is faster to decompress (although for some
types of text LZW compresses better). Since our goal is to provide a free tool, we have chosen
gzip/gunzip as our LZ77 compressor (gzip produces files with .gz extension). Likewise, we have
chosen compress/uncompress as our LZW compressor (compress produces files with .Z extension).
The source code of these two programs are freely available, and they are the most popular in the
Unix world. Our aim is to modify the decompressor so that it performs pattern matching on the
uncompressed text instead of outputting it.

There exist several versions of uncompress, all of which handle the same .Z format. Moreover,
gunzip is able to decompress this format as well. Interestingly, among all the variants we found,
gunzip was the fastest. The reason is that uncompress obtains the characters of a block in reverse
order, and then has to output them reversed again so as to get the correct order. On the other
hand, gunzip obtains them in reverse order and stores them in reverse order, so the output can be
done directly with a machine instruction.

In order to uncompress LZ77, on the other hand, gunzip stores the text already uncompressed
and, given a new block, copies the referenced text substring at the end of the uncompressed text.
This is faster than decompressing LZW format.

We have modified the decompression code of gunzip, both for LZW and for LZ77. These are
called DW and D77 in our experiments. Over each format, we have implemented different plain
text search algorithms over the uncompressed buffer. Unlike a usual decompression work, we do
not write the buffer to the output, but rather use it for searching.

We have implemented the best two search algorithms we are aware of: BM-Horspool [15] and
BOM [2], so as to obtain techniques DW-BM, D77-BM, DW-BOM and D77-BOM. We have also
tried KMP algorithm [23] over LZW, obtaining DW-KMP. Although KMP algorithm by itself is far
from being competitive, it examines text characters in a forward-only fashion, always advancing.

7



This is interesting because there is no need to actually write the uncompressed characters in the
buffer. On the other hand, LZ77 needs to write the buffer for uncompressing, so there was no
advantage in combining it with KMP.

In order to simulate the behavior of zgrep, we also implemented DW-grep and D77-grep, which
output the buffer and use it as an input to grep. We used, however, agrep [45] rather than GNU
grep, as it was faster.

Besides implementing different search algorithms, we have also included some alternatives that
evaluate how good can these schemes possibly be: DW-decode (just decoding the LZW compressed
file and following the referencing chains), DW-nosearch (just uncompressing the LZW file in mem-
ory, without searching), and D77-nosearch (just uncompressing the LZ77 file in memory, without
searching). Note that DW-decode is a lower bound to any decompress-then-search algorithm on
LZW compressed text, DW-nosearch is a lower bound to any such algorithm that writes the un-
compressed text before searching it (this excludes DW-KMP, for example), and D77-nosearch is a
lower bound to any algorithm that searches LZ77 compressed text.

Figure 3 compares the different approaches. D77-BOM is always the best decompress-then-
search choice. It is only slightly over its lower bound, D77-nosearch (and usually below DW-
nosearch). It also beats DW-KMP, which on WSJ improves upon DW-nosearch (and hence any
other DW-based competitor). However, D77-BOM is clearly slower than DW-decode, which means
that there is hope for improving upon it with a direct search algorithm. Finally, note that the D-grep
approaches are popular because they are easily implemented, yet they are far from competitive.

BM-simple: A Simple Boyer-Moore Technique

Consider Figure 4, where we have plotted a hypothetical window approach to a text compressed
using LZ78/LZW. Each LZ78/LZW block is formed by a line and a final box. The box represents
the final explicit character c of the block b = (s, c), while the line represents the implicit characters,
that is, a text that has to be obtained by resorting to previous referenced blocks (s, then the block
referenced by s, and so on).

Trying to apply a pure BM in this case may be costly, because we need to access the characters
“inside” the blocks (the implicit ones). A character at distance i to the last character of a block
needs going i blocks backward in the referencing chain, as each new LZ78/LZW block consists of
a previous one concatenated with a new letter.

Therefore we prefer to start by considering the explicit characters in the window. To maximize
the shifts, we go from the rightmost to the leftmost. We precompute a table

B(i, c) = min({i} ∪ {i − j, 1 ≤ j ≤ i ∧ Pj = c})

which gives the maximum safe shift given that at window position i the text character is c (this is
similar to the SBM table, and can be easily computed in O(m2 + mσ) time). Note that the shift
is zero if the pattern matches that window position.

As soon as one of the explicit characters permits a non-zero shift, we shift the window. Other-
wise, we have to consider the implicit characters. When unfolding a block, we obtain a new text
character (right to left) for each step backward in the referencing chain. For each such character,
if we obtain a non-zero shift we immediately advance the window and restart the whole process
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Figure 3: Comparison among decompress-then-search approaches, over LZ77 and LZW formats,
for WSJ and DNA texts.

P

T

Figure 4: A window approach over LZ78/LZW compressed text. Black boxes are the explicit
characters at the end of each block, while the lines are the implicit text that is represented by a
reference.
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with a new window. On the other hand, if after having considered all the characters we have not
obtained a non-zero shift, then we can report an occurrence of the pattern at the current window
position. The window can then be advanced by one.

The order in which blocks should be unfolded is not immediate, in particular with respect to
the last block. On the one hand, the last block can yield good shifts. On the other hand, it is
costly to reach its relevant characters, as it can only be unfolded from right to left. We consider
two choices: We can unfold the blocks right to left but leave the last block for the end, or we can
start with the last block and then unfold the others right to left. Figure 5 illustrates the evaluation
orders. In practice the first approach is usually better, so we stick to it.

T
3 2 1567 4

P

T
3 2 1456 7

P

Figure 5: Evaluation orders for the simple algorithm. We use the left one.

The algorithm can be applied on-line, that is, reading the compressed file block by block from
disk. We read zero or more blocks until the last block read finishes ahead the window, then apply
the previous procedure until we can shift the window, and start again. For each block read we
store its last character, the block it references, and its length (the latter is not available in the
compressed file but computed on the fly). We also keep the current position in the uncompressed
text.

On the other hand, the LZW format of compress specifies the maximum number of bits, x, used
for a backward reference. Once 2x blocks have been processed, it still continues generating blocks
but these cannot be referenced later. For the same reason, once we surpass the 2x blocks, we do
not store their information during the search until a mark is found in the compressed file indicating
the start of a new buffer of blocks.

Note that it is possible that the pattern is totally contained in a block, in which case the above
algorithm will unfold the block to compare its internal characters against the pattern. It is clear
that the method is efficient only if the pattern is not too short compared to the block length.

A slight improvement we apply over this scheme is a kind of “skip-loop”: instead of delaying
the shifting until we read enough blocks, try to shift with the explicit character of each new block
read. This is in practice like considering the explicit characters in left to right order. It needs more
and shorter shifts but resorts less to previously stored characters. In practice using this skip-loop
is always convenient.

BM-multichar: Multicharacter Boyer-Moore

BM-simple is expected to fail to produce good shifts when the alphabet is small (for example,
DNA). Multicharacter techniques, consisting in shifting by q-tuples of characters instead of by one
character, have been successfully applied to search uncompressed DNA [38]. Those techniques
effectively increase the alphabet size and produce longer shifts in exchange for slightly more costly
comparisons.

We have attempted such an approach for our problem. We select a number q and build the shift
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tables considering q-grams. For instance, for the pattern "abcdefg", the 3-gram "cde" considered
at the last position yields a shift of 2, while "xxx" yields a shift of 5. Once the pattern is preprocessed
we can shift using text q-grams instead of text characters. That is, if the text window is x1x2 . . . xm

we try to shift using the q-grams xm−q+1 . . . xm, then xm−q . . . xm−1, etc. until x1 . . . xq. If none of
these q-grams produces as positive shift, then the pattern matches the window. The preprocessing
takes O(m2 + mσq) time.

The method is applied to the same LZ78/LZW encoding as follows. At search time, we do not
store anymore the last character of each block but its last q-gram. This last q-gram is computed
on the fly, the format of the compressed file is the same as before. To compute it, we take the
referenced block, strip the first character of its final q-gram and append the extra character of the
new block. Then, the basic method is used except because we shift using the whole q-grams.

One complication appears when the block is shorter than q. In this case the best choice is to
pad its q-gram with the last characters of the block that appears before it (if this is done all the
time then the previous block does have a complete q-gram, except for the first blocks of the text).
However, we must be careful when this short block is referenced, since only the characters that
really belong to it must be taken from its last q-gram.

Finally, if q is not very small, the shift tables can be very large (O(σq) size). We have used
hashing from the q-grams to an integer range 0 . . . N−1 to reduce the size of the tables and to lower
the preprocessing time to O(m2 +mN). This makes it necessary to have an explicit character-wise
checking of possible matches, which is anyway required because we cannot efficiently check the first
q − 1 characters of the pattern.

We have implemented this technique using q = 4 (which is appropriate to store the q-gram in a
word of our machine), and N = 1, 017, which was experimentally found to be appropriate. We use
the skip-loop improvement.

BM-blocks: Shifting by Complete Blocks

We present now an elegant alternative to BM-multichar that is especially suited to the LZW
compression format.

The idea is that, upon reading a new block, we could shift using the whole block. However, we
cannot have an B(i, b) table with one entry for each possible block b. Instead, we precompute

J(i, ℓ) = max( {j, ℓ ≤ j < i ∧ Pj−ℓ+1...j = Pi−ℓ+1...i}

∪ {j, 0 ≤ j < ℓ ∧ P1...j = Pi−j+1...i})

that tells, for a given pattern substring of length ℓ ending at i, the ending point of its closest
previous occurrence in P (a partial occurrence trimmed at the beginning of the pattern is also
valid). The J table can be computed in O(m2) time by the simple trick of going from ℓ = 0 to
ℓ = m and using J(∗, ℓ − 1) to compute J(∗, ℓ), so that for all the cells of the form J(i, ∗) there is
only one backward traversal over the pattern.

Now, for each new block read br = (s, c), we compute its last occurrence in P , last(r). This
is accomplished as follows. We start by considering last(s), that is, the last position where the
referenced block appears in P . We check whether Plast(s)+1 = c, in which case last(r) = last(s)+1.
If this is not the case, we need to obtain the previous occurrence of bs in P , but this is also the
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previous occurrence of a pattern substring ending at last(s). So we can use the J table to obtain
all the following occurrences of bs inside P , until we find one that is followed by c (and then this is
the last occurrence of br = bsc in P ) or we conclude that last(r) = 0.

Once we have computed the last occurrence of each block inside P , we can use the information
to shift the window. However, it is possible that the last occurrence of a block br inside P is indeed
after the current position of br inside the window. In BM-simple this is solved by computing B(i, c),
that is, the last occurrence of c inside P before position i. This may require too much effort in our
case. We note that we can use J again in order to find previous occurrences of br inside P until we
find one that is at the same position of br in the window or before. If it is at the same position we
cannot shift, otherwise we displace the window. Figure 6 illustrates.

b r

P

last(r)J(last(r),|b |)r

Figure 6: Using the whole LZ78/LZW block to shift the window. If its last occurrence in P is
ahead, we use J until finding the adequate occurrence.

The blocks covered by the window are checked one by one, from right to left (excluding the
last one whose endpoint is not inside the window). As soon as one allows a shift, the window is
advanced and the process restarted. If no shift is possible, the last block is unfolded until we obtain
the contained block that corresponds exactly to the end of the window and make a last attempt
with it. If all the shifting attempts fail, the window position is reported as a match and shifted in
one. We do not attempt the alternative of unfolding the latter block first, because in this case the
internal blocks are much cheaper to process than the final block.

As before, we use a skip-loop technique. We have tried alternatives to obtain larger shifts
(namely, BM-complete [37]), as well as to avoid repeated inspections of J before displacing the
window. Yet, none of them has been competitive.

Direct Searching for Single Patterns

We compare now the best alternative of each kind, in order to obtain a recommendation on which
is the best technique for compressed pattern matching. Alternative direct search algorithms, not
based on Boyer-Moore [36, 20] were already shown to be 30% slower than our approach in earlier
work [37]. Those experiments were performed on non-standard compression formats that resembled
LZ78. Therefore, we do not believe that it is worth porting non-Boyer-Moore algorithms to the
format of compress, as we already know that these are not competitive.

Figure 7 shows the results. On English text, the best choice is clearly BM-simple. This algo-
rithm takes 8%–20% less time than D77-BOM, the best decompress-then-search approach (which
is already much better than zgrep). Moreover, it is usually better than DW-decode, thus no
decompress-then-search algorithm on LZW can possibly beat it. Other more sophisticated search
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techniques do not work well on English text, being even worse than D77-BOM. The latter is also
unbeaten for very short patterns (m = 5).

On DNA, on the other hand, the alphabet is much smaller and BM-simple does not perform
well except for rather long patterns (m ≥ 70). However, the best is, almost always by far, BM-
multichar, which usually beats DW-decode as well. This shows that no decompress-then-search
algorithm on LZW could beat BM-multichar. BM-blocks, although elegant, is only interesting in
special cases. However, note that BM-blocks is the fastest for m = 10. Overall, our techniques take
30%–50% less time than D77-BOM, the best decompress-then-search approach. Again, the latter
is by far unbeaten for m = 5.
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Figure 7: Comparison between decompress-then-search and direct searching.

We note that which is the best algorithm depends on the machine. For example, in our previous
work [37], BM-blocks was better than BM-multichar on DNA text.

The case m = 5 deserves a special mention. None of our direct search algorithms have worked
well on it, being D77-BOM by far the best choice. The reason is that 5 is smaller than the length of
most blocks (the average block length is 10–12). Therefore we must “unroll” many blocks because
in many cases the window is completely inside a block. For patterns of length 10 or more there is
always at least one explicit character inside the text window.

Multipattern Matching

Let us now consider the case where we want to search for several patterns P 1, . . . , P r simultaneously,
in order to report all their occurrences. We show how the algorithms developed for single patterns
can be extended to handle multiple patterns. We start by considering the decompress-then-search
approach and then seek for better alternatives.

We have considered the cases of searching for r = 10 to 150 patterns simultaneously. Actually,
we have extended our experiments to up to r = 1000 patterns, but we do not show them because
none of our direct search approaches can compete for r > 150. Also, as this time the search times
are much higher, the overhead posed by the decompression of different formats is less important
than in the case of a single pattern.
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Decompressing and Searching

The best multipattern search algorithms on plain text are WM [44] and SBOM [35] (these are the
natural extensions of BM and BOM, respectively). So we have created decompress-then-search
variants called DW-WM, D77-WM, DW-SBOM and D77-SBOM. For the same reason we tried
KMP for single patterns, we have considered DW-AC, its multipattern extension based on Aho-
Corasick (AC) [1]. We remark that DW-AC does not require writing the uncompressed text in
memory.

To simulate the behavior of zgrep, we use again agrep instead of GNU grep. However, since
agrep also uses WM algorithm, the difference between D-grep and D-WM is just the use of a pipe
in the first case versus a direct memory buffer in the second. Thus, as one can expect, D-WM was
consistently better than D-grep. We therefore omit the experiments on D-agrep.

Figure 8 compares all the search algorithms, for r = 10 and r = 100. D77-WM is the best
on WSJ, while on DNA the best performance is disputed between D77-SBOM and DW-AC. The
latter is preferable when m is small compared to r. These result remain similar up to r = 1000 at
least.
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Figure 8: Comparison among multipattern decompress-then-search approaches.
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As it can be seen, there is not a clear simple winner as in the case of single patterns. Hence,
in order to compare against direct search methods, we have created a fictitious algorithm called
“D-BEST”, which is the best over the decompress-then-search algorithms we have tried. In the
sequel we examine direct search approaches.

Simple and Multicharacter Boyer-Moore

The first problem when trying to extend the window approach of BM-simple is that different
patterns may have different lengths. So let us align them to the right and choose the window
length as that of the shortest pattern, as illustrated in Figure 9.

T
P 1

P 2

P i

P r

Figure 9: A window approach for multipattern matching over LZ78/LZW compressed text. It is a
generalization of Figure 4.

The simplest way to extend BM-simple to handle multiple patterns is to define table B(i, c) so
that it takes into account all the patterns, that is

B(i, c) = min
k∈1...r

min({i} ∪ {i − j, 1 ≤ j ≤ i ∧ P k
j = c})

where for simplicity we consider patterns truncated to the window length in this formula.
This way, B(i, c) lets us shift the window by the minimum amount permitted among the patterns

we search for, which guarantees that no occurrence will be missed. So we read the characters as
for BM-simple, until either B(i, c) 6= 0 for some character c read at window position i, or we read
all the window. In the latter case, we must still check all our patterns against the text window one
by one in order to report occurrences, because (1) we may have left out some parts of the patterns
due to truncation, and (2) table B gives minimum shifts over the set of patterns, so no occurrence
of any particular pattern is guaranteed.

An efficiency problem of BM-simple is that, as explained, even if we have read a sequence of
characters that do not match any of our patterns, it might be that table B does not let us shift
the window. Imagine for example that we have patterns abab and baba, and read any text window
formed by a combination of a’s and b’s, say bbaa. Since B(i, a) = B(i, b) = 0 for any i, we will
always verify those text windows. We studied several alternatives to alleviate this problem. They
are all based on tracking more precisely which patterns may match. They rarely improve upon
BM-simple, and when they do, they lose anyway against decompress-then-search competitors.
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We also adapt the idea of shifting using q-grams rather than simple characters, as for BM-
multichar. We still use q = 4 and N = 1, 017. With more patterns we also tried larger N values
(and also larger q), but we obtained no improvement in doing that, up to r = 1, 000.

Shifting by Complete Blocks

We try to adapt the idea of BM-blocks to multiple patterns. However, this turns out to be rather
difficult. With a single pattern P we can compute the last occurrence of a text block inside P ,
by considering the candidate position given by the referenced block and then iterating using table
J(i, ℓ) until finding that last occurrence. Then, if the last occurrence happens to be ahead the
block, J(i, ℓ) is used again to find previous occurrences.

With multiple patterns, the last occurrence of the referenced block is still a single window
position, but it may appear in several patterns at that same position. Finding which of them can
be extended by the last character of the current block can be a time-consuming task. The same
can be said about moving from such a set of positions to the “previous” set of positions, which
might also appear in several patterns.

What we need is a data structure where every different substring of every pattern is represented
at a single place, so as to store at that place the last occurrence position in the pattern set. The
natural choice is a trie data structure where we store not only the patterns, but also every suffix
of every pattern, that is, the set of strings P k

i...m, for 1 ≤ k ≤ r and 1 ≤ i ≤ m. Since the trie data
structure stores one node for each prefix of each string stored, it follows that there will be one node
for each prefix of each suffix of every pattern, or which is the same, one node for each substring of
each pattern in the set.

Figure 10 gives an example for the pattern set formed by four words: "para", "pare", "hola"
and "arar". We have inserted the patterns and their suffixes (as shown in the top part of the
figure). We have numbered the nodes as they were created when inserting the pattern suffixes in
the trie. The dotted arrows are the so-called suffix links, connecting the node representing substring
aw to that representing substring w, where a is a single character.

On top of each node we have drawn a list of numbers. These are the final positions where the
substring w represented by the node appears in some pattern of the set. We also include final
positions (that is, lengths) of pattern prefixes that match a suffix of w. The lists are stored in
decreasing order and without repetitions. Although we draw a hyphen to separate full occurrences
of w in the patterns from suffixes of w that match pattern prefixes, it is easy to distinguish them
anyway because the former cannot be smaller than |w| and the latter are smaller than |w|.

In Figure 10, the list of node 6 ("ar") is 4,3,2, which means that it appears in some pattern of
the set finishing at those positions. It has a suffix link to node 8 ("r"). Node 7 ("ara") occurs at
positions 4 and 3, but also its suffix of length 1 is a prefix of some pattern in the set ("arar").

It is easy to build the trie by first inserting each full pattern and then its shorter and shorter
suffixes, adding the suffix links at the same time. The lists of full substring occurrences are also
created at the time we insert the suffixes of each pattern. Finally, the final parts of the lists, of
node suffixes that match pattern prefixes, is computed by a level-wise traversal over the trie. Note
that all the suffixes of w that are prefixes of a pattern are also suffixes of aw that are prefixes of a
pattern. So, to compute the final section of the list for a node representing aw, we use the suffix link
to retrieve the final section of the list for the node representing w. The only extra action needed
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is to add |w| to the list if w itself is a prefix of some pattern. This is easily known by checking
whether the node representing string w has |w| in its list of full occurrences.

This trie is used to replace table J(i, ℓ) as follows. For each new block we first find whether
it is a substring of some pattern, by finding out which node it corresponds to. The first empty
block clearly corresponds to the root of the trie (that represents the empty string). For a new block
b = (s, c), we find out the trie node ns corresponding to block s, and see if one can follow by an
edge labeled c. If we can, then the child node nb corresponds to b, otherwise b is not a substring
of any pattern. If there is such a node nb, then we can find all the final positions where b occurs
inside any pattern, in the list associated to node nb. This list is conveniently sorted in decreasing
order so we can find the largest useful position, that is, the one not exceeding the position of b in
the current window. With this information we can determine whether a shift is possible or not.

The above technique must be slightly complicated to account for partial matches, that is, for
cases where block b does not occur inside any pattern, but its suffix matches a pattern prefix. For
each block, we do not only store its corresponding trie node, but also an indication telling whether
the block appears completely or just its suffix appears as a prefix. If b = (s, c) and s appears
partially, then b can only appear partially. To find its appropriate node nb, we try to descend from
ns by c. We can descend only if the appropriate edge exists and the child node is a prefix of some
pattern (that is, if it represents string w, then |w| must appear in its list). If we can descend, we
are done and this is a partial occurrence for b. If we cannot, it still might be that we can find a
proper node by following suffix links from bs and trying to descend by character c, under the same
condition of arriving at a node that is a pattern prefix. If we finally arrive at the root node and
still cannot descend by c, then we associate the root node to b, and can shift the window until
completely surpassing block b. A similar process is followed if ns is a complete occurrence for s, but
we cannot find a descendant by character c. Since b cannot have a complete occurrence, we use the
same mechanism of following suffix links in order to find a partial occurrence. Note that if block b

turns out to have only partial occurrences, then its occurrences in the pattern set correspond only
to the last part of the list of node nb.

The rest of the algorithm is the same as for BM-blocks on single patterns.

Direct Searching for Multiple Patterns

Figure 11 compares the different approaches to search for multiple patterns. The curves omitted fall
outside the plots. On WSJ, BM-simple is the only technique that beats D-BEST. It does so always
for 10 patterns, while for 100 patterns it wins for large enough m > 70. On DNA, BM-multichar
and BM-blocks are the only ones beating D-BEST for 10 patterns. BM-multichar wins for m ≥ 15,
while BM-blocks wins for m = 10. On 100 patterns, D-BEST is unbeaten.

Note that, although the BM-blocks idea is elegant, the overhead for constructing and managing
the trie quickly becomes dominant as m grows (the construction takes time O(rm2)). However,
the algorithm is rather attractive for small and few patterns, r = m = 10, on DNA text. This is
the only point where BM-multichar could not beat D-BEST.

The above experiment does not clearly show which is the range of r values where each algorithm
is useful. Figure 12 shows those ranges in more detail. It is shown that there is a minimum m

value where BM-simple beats D-BEST on English text, and that this value becomes more stringent
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Figure 11: Comparison among multipattern search approaches.
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as r grows. On DNA, there are minimum and maximum values among which BM-multichar beats
D-BEST, and the space among them also narrows as r grows. It is rather clear that our methods
are no longer useful for more than 150 search patterns. There are, however, several applications
where the areas where we have succeeded are of interest.
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Figure 12: The ranges of m and r values where our algorithms are superior to the decompress-
then-search approach.

LZgrep: A Direct Compressed Text Search Tool

Using the best direct search algorithms developed, we built a compressed text search tool called
LZgrep (available from www.dcc.uchile.cl/∼gnavarro/software), with the aim of replacing the
simpler but slower zgrep. LZgrep can search files compressed with Unix compress (a LZW compres-
sor) and with Unix gzip (a LZ77 compressor), both of which are public. In order to use the best
algorithm, we resort at times to a decompress-then-search approach, especially for multipattern
search and necessarily on LZ77.

For the sake of replacing zgrep, we have to be as compatible as possible with Gnu grep. In
particular, grep handles regular expressions, which we have not addressed. If LZgrep receives such
kind of unsupported patterns or is requested to use an unsupported option, it simply invokes zgrep.
This guarantees that LZgrep is faster than zgrep whenever possible, and at the same time ensures
its full functionality.

The main difference in the behavior of the search algorithms when we simulate grep is that we
do not have to output the text positions that match, but the contents of the text lines that contain
an occurrence of the pattern(s). Therefore, upon finding an occurrence, we uncompress the current
line by accessing the contiguous blocks ahead and behind until we uncompress a newline. Then we
send the uncompressed line to the standard output and shift the window to the beginning of the
next line.

Other differences in the search behavior can be obtained through the search options of grep. One
of the main changes in the search algorithms made to accommodate them was that we remember,
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for each block, the number of newlines inside it and the byte offset of the first newline with respect
to the beginning of the block. This is easily computed for each new block read.

The options and usage can be obtained by running LZgrep without arguments. We mention
here only those functionalities that deserve some note on their implementation.

Print several lines preceding and following an occurrence: We avoided uncompressing text lines
more than once, by storing the last uncompressed lines.

Print the byte offset of each line reported, counting from the beginning of the file: This is obtained
by remembering the byte offset of the current block and adjusting it as we uncompress the
text that has to be shown.

Count the number of matching lines rather than output them: Instead of uncompressing the
surrounding blocks in order to find the next newline, we skip all the blocks without newlines
that follow, and position the window right after the first newline of the next block.

Ignore upper/lower case: This is elegantly handled in the LZW format, by changing the meaning
of the initial default blocks 0–255, so that block codes corresponding to upper case letters are
mapped to their lower case versions. The result is that the uncompressed text will be seen
all as lower case. Any search pattern is mapped to lower case too.

Print also the line numbers of the lines output: This is handled by keeping the current line number,
thanks to the information maintained on the newlines inside blocks.

Output the lines that do not contain occurrences: This requires a rather inefficient handling,
which includes decompressing most of the file, so we opted for not implementing this option,
but just switching to zgrep.

It is rather difficult to choose the best search algorithm as the default. For example, we have
seen that, depending on the text type (English or DNA), the correct option changes. Worse than
that, there is no easy way to determine which is the type of the text we are going to search. Reading
the first bytes of the compressed file we can know that it was compressed using LZ77 or LZW, but
nothing else. Hence we have chosen the defaults to be the search algorithms that with higher
probability would behave reasonably well on different types of texts.

On LZW, for single pattern matching we use BM-simple. For multipattern matching we use BM-
simple until 10 patterns, DW-WM until 100 patterns and DW-SBOM for more than 100 patterns.
On LZ77, for single patterns we use D77-BOM. For multipattern matching we use D77-WM until
100 patterns, and D77-SBOM for more patterns.

In case the algorithm chosen is not the best for a particular purpose, and also in order to ease
the use of LZgrep for research purposes, we added an option that permits choosing any of the
algorithms we have considered in this work.

Conclusions

We have presented several practical algorithms for direct searching of single and multiple patterns
on LZW compressed text. Most of the research on this topic is more theoretical and involved.
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Our algorithms are much simpler and, in practice, faster than previous work. There exist some
competitive practical alternatives on other compression formats, but these formats have not (yet)
been popularized enough to make these alternatives interesting for a wide audience.

Our goal was the development of a widely applicable compressed text search tool. This is of
great interest in order to maintain all the user’s files usually in compressed form, uncompressing
them only when necessary. The growing gap between CPU and disk times makes this idea more and
more appealing as technology evolves. In order to support this scenario in a form that is comfortable
for general use, it is imperative to be able to search the compressed files directly without the need
to manually uncompress them before the search.

Such a tool, zgrep, exists at this moment in the form of a very simple script that uncompresses
the text and sends it to a pattern matching software, grep. We have shown that it is possible to be
up to 50% faster than zgrep, by searching the compressed text directly without decompression.

As a result, we have developed LZgrep, a free program2 designed to replace zgrep. LZgrep solves
a (significant) subset of the search problems addressed by grep, namely exact single and multiple
pattern searching, and it resorts to zgrep in case of an unsupported search problem. This ensures
full functionality and at the same time improved performance in the most common cases. We
note that, although we have focused on the LZW format, we have in passing obtained decompress-
then-search algorithms for the more popular LZ77 format that are much faster than zgrep, because
we avoid the overhead of communication between two unrelated programs (the decompressor and
grep). These capabilities are also incorporated into LZgrep, which makes it appealing to search
LZ77 compressed files as well.

Note that there exist currently several environments that intercept all the communication to
the file system so as to store the files in compressed form in a way that is transparent to the user. A
text search is naturally solved by decompressing the file (by means of reading it from disk) and then
searching it. Tools like LZgrep could be incorporated to those environments in order to provide a
more efficient native search over the compressed search.

It would be interesting to extend LZgrep to support more sophisticated search problems, in
particular approximate searching and regular expression searching. In the former case, we have
considered a promising search algorithm based on direct multipattern search on compressed text
[32], which we adapted to our case. However, it turned out to be not competitive when we com-
pared it against well-tuned versions of the decompress-then-search approach (in the original paper
they showed superiority against the equivalent of zgrep, based on agrep). For regular expression
searching, there exists already an algorithm [31], and it is also possible to reduce the problem
mainly to multipattern searching [41]. Yet, for the same reasons of approximate searching, we do
not believe that these would be practical against a well-tuned competitor. Thus, finding a more
practical solution to this problem remains an open issue.

Finally, we must keep up to date with the best developments in plain text searching, so as to
adapt them to compressed text searching, and also to use them on the uncompress-then-search
portions of LZgrep. There are some recent promising algorithms for multipattern searching [24].

2Use of it for commercial advantage requires explicit permission from the authors.
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