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Abstract

We present nrgrep (“nondeterministic reverse grep”), a new pattern matching tool designed
for efficient search of complex patterns. Unlike previous tools of the grep family, such as agrep
and Gnu grep, nrgrep is based on a single and uniform concept: the bit-parallel simulation
of a nondeterministic suffix automaton. As a result, nrgrep can find from simple patterns to
regular expressions, exactly or allowing errors in the matches, with an efficiency that degrades
smoothly as the complexity of the searched pattern increases. Another concept fully integrated
into nrgrep and that contributes to this smoothness is the selection of adequate subpatterns for
fast scanning, which is also absent in many current tools. We show that the efficiency of nrgrep
is similar to that of the fastest existing string matching tools for the simplest patterns, and by
far unpaired for more complex patterns.

Key words: Online string matching, regular expression searching, approximate string match-
ing, grep, agrep, BNDM.

1 Introduction

The purpose of this paper is to present a new pattern matching tool which we have coined nrgrep,
for “nondeterministic reverse grep”. Nrgrep is aimed at efficient searching for complex patterns
inside natural language texts, but it can be used in many other scenarios.

The pattern matching problem can be stated as follows: given a text T} , of n characters and a
pattern P, find all the positions of T' where P occurs. The problem is basic in almost every area of
computer science and appears in many different forms. The pattern P can be just a simple string,
but it can also be, for example, a regular expression. An “occurrence” can be defined as exactly or
“approximately” matching the pattern.

In this paper we concentrate on online string matching, that is, the text cannot be indexed.
Online string matching is useful for casual searching (i.e. users looking for strings in their files
and unwilling to maintain an index for that purpose), dynamic text collections (where the cost
of keeping an up-to-date index is prohibitive, including the searchers inside text editors and Web
interfaces'), for not very large texts (up to a few hundred megabytes) and even as internal tools
of indexed schemes (as agrep [29] is used inside glimpse [15] or cgrep [17] is used inside compressed
indexes [21]).
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There is a large class of string matching algorithms in the literature (see, for example, [26, 8, 4])
but not all of them are practical. There is also a wide variety of fast online string matching tools
in the public domain, most prominently the grep family. Among these, Gnu grep and Wu and
Manber’s agrep [29] are widely known and currently considered as the fastest string matching tools
in practice. Another distinguishing feature of these software systems is their flexibility: they can
search not only for simple strings, but they also permit classes of characters (that is, a pattern
position matches a set of characters), wild cards (a pattern position that matches an arbitrary
string), regular expression searching, multipattern searching, etc. Agrep also permits approximate
searching: the pattern matches the text after performing a limited number of alterations on it.

The algorithmic principles behind agrep are diverse [30]. Exact string matching is done with
the Horspool algorithm [12], a variant of the Boyer-Moore family [6]. The speed of the Boyer-
Moore string matching algorithms comes from their ability to “skip” (i.e. not inspect) some text
characters. Agrep deals with more complex patterns using a variant of Shift-Or [2], an algorithm
exploiting “bit-parallelism” (a concept that we explain later) to simulate nondeterministic automata
(NFA) efficiently. Shift-Or, however, cannot skip text characters. Multipattern searching is treated
with bit-parallelism or with a different algorithm depending on the case. As a result, the search
performance of agrep varies sharply depending on the type of search pattern, and even slight
modifications to the pattern yield widely different search times. For example, the search for the
string "algorithm" is 7 times faster than for "[Aa]lgorithm" (where "[Aal" is a class of characters
that matches "A" and "a", which is useful to detect the word either starting a sentence or not). In
the first case agrep uses Horspool’s algorithm and in the second case it uses Shift-Or. Intuitively,
there should exist a more uniform approach where both strings could be efficiently searched for
without a significant difference in the search time.

An answer to this challenge is the BNDM algorithm [22, 23]. BNDM is based on a previous
algorithm, BDM (for “backward DAWG matching”) [9, 8]. The BDM algorithm (to be explained
later) uses a “suffix automaton” to detect substrings of the pattern inside a text window (the Boyer-
Moore family detects only suffixes of the pattern). As the Boyer-Moore algorithms, BDM can also
skip text characters. In the original BDM algorithm the suffix automaton is made deterministic.
BNDM is a recent version of BDM that keeps the suffix automaton in nondeterministic form by
using bit-parallelism. As a result, BNDM can search for complex patterns and still keep a search
efficiency close to that of simple patterns. It has been shown experimentally [22, 23] that the
BNDM algorithm is by far the fastest one to search for complex patterns. BNDM has been later
extended to handle regular expressions [24].

Nrgrep is a pattern matching tool built over the BNDM algorithm (hence the name “nondeter-
ministic reverse grep”, since BNDM scans windows of the text in reverse direction). However, there
is a gap between a pattern matching algorithm and a real software. The purpose of this work is to
fill that gap. We have classified the allowed search patterns in three levels:

Simple patterns: a simple pattern is a sequence of m classes of characters (note that a single
character is a particular case of a class). Its distinguishing feature is that an occurrence of a
simple pattern has length m as well, as each pattern position matches one text position.

Extended patterns: an extended pattern adds to simple patterns the ability to characterize indi-
vidual classes as “optional” (i.e. they can be skipped when matching the text) or “repeatable”



(i.e. they can appear consecutively a number of times in the text). The purpose of extended
patterns is to capture the most commonly used extensions of the normal search patterns so
as to develop specialized pattern matching algorithms for them.

Regular expressions: a regular expression is formed by simple classes, the empty string, or the
“concatenation”, “union” or “repetition” of other regular expressions. This is the most general
type of pattern we can search for.

We develop a different pattern matching algorithm (with increasing complexity) for each type of
pattern, so simpler patterns are searched for with simpler and faster algorithms. The classification
has been made having in mind the typical search needs on natural language, and it would be
different, say, for DNA searching. We have also this in mind when we design the error model for
approximate searching. “Approximate searching” or “searching allowing errors” means that the
user gives an error threshold k and the system is able to find the pattern in the text even if it
is necessary to perform k or less “operations” in the pattern to match its occurrence in the text.
The operations typically permitted are the insertion, deletion and substitution of single characters.
However, transposition of adjacent characters is an important typing error [14] that is normally
disregarded because it is difficult to deal with. We allow the four operations in nrgrep, although
the user can specify a subset of them.

An important aspect that deserves attention in order to obtain the desired “smoothness” in
the search time is the selection of an optimal subpattern to scan the text. A typical case is an
extended pattern with a large and repeatable class of characters close to one end. For technical
reasons that will be made clear later, it may be very expensive to search for the pattern as is, while
pruning the extreme of the pattern that contains the class (and verifying the potential occurrences
found) leads to much faster searching. Some tools (such as Gnu grep for regular expressions) try to
apply some heuristics of this type, but we provide a general and uniform subpattern optimization
method that works well in all cases and, under a simplified probabilistic model, yields the optimal
search performance for that pattern. Moreover, the selected subpattern may be of a simpler type
than the whole pattern and a faster search algorithm may be possible. Detecting the exact type
of pattern given by the user (despite the syntax used) is an important issue that is solved by the
pattern parser.

We have followed the philosophy of agrep in some aspects, such as the record-oriented way
to present the results and most of the pattern syntax features and search options. The main
advantages of nrgrep over the grep family are uniformity in design, smoothness in search time,
speed when searching for complex patterns, powerful extended patterns, improved error model for
approximate searching, and subpattern optimization.

In this paper we start by explaining the concepts of bit parallelism and searching with suffix
automata. Then we explain how these are combined to search for simple patterns, extended patterns
and regular expressions. We later consider the approximate search of these patterns. Finally, we
present the nrgrep software and show some experimental results on it. Despite that the algorithmic
aspects of the paper borrow from our previous work in some cases [22, 23, 24, 25], the paper has
some novel and nontrivial algorithmic contributions, such as

e searching for extended patterns, which implies the bit parallel simulation of new types of
restricted automata;



e approximate searching allowing transpositions for the three types of patterns, which has never
been considered under the bit-parallel approach; and

e algorithms to select optimal search subpatterns in the three types of patterns.

The nrgrep tool is freely available under a Gnu license from
http://www.dcc.uchile.cl/ gnavarro/pubcode/.

2 Basic Concepts

We define in this section the basic concepts and notation needed throughout the paper.

2.1 Notation

We consider that the text is a sequence of n characters, T = t;...t,, where t; € X. X is the
alphabet of the text and its size is denoted |X| = o. In the simplest case the pattern is denoted
as P = p;...pm, a sequence of m characters p; € ¥, in which case it specifies the single string
P1-..Pm-. More general patterns specify a finite or infinite set of strings.

We say that P matches T at position ¢ whenever there exists a j > 0 such that ¢;...¢;;; belongs
to the set of strings specified by the pattern. The substring ¢;...%;,1; is called an “occurrence” of
P in T. Qur goal is to find all the text positions that start a pattern occurrence.

The following notation is used for strings. S; ; denotes the string s;s;11 ...s;. In particular,
Si..; = € (the empty string) if ¢ > j. A string X is said to be a prefix, suffix and factor (or
substring), respectively, of XY, Y X and YXZ, for any Y and Z.

We use some notation to describe bit-parallel algorithms. We use exponentiation to denote
bit repetition, e.g. 031 = 0001. We denote as by...b; the bits of a mask of length ¢, which is
stored somewhere inside the computer word of fixed length w (in bits). We use C-like syntax for
operations on the bits of computer words, i.e. “|” is the bitwise-or, “&” is the bitwise-and, “~”
is the bitwise-xor, “~” complements all the bits, and “<<” moves the bits to the left and enters
zeros from the right, e.g. bgby_1...b3by << 3 = by_3...b2b1000. We can also perform arithmetic
operations on the bits, such as addition and subtraction, which operate the bits as the binary
representation of a number, for instance b;...5,10000 — 1 =b,...b,01111.

In the following we show that the pattern can be a more complex entity, matching in fact a set
of different text substrings.

2.2 Simple Patterns

We call a “simple” pattern a sequence of characters or classes of characters. Let m be the number
of elements in the sequence, then a simple pattern P is written as P = py...pmy, where p; C X.
We say that P matches at text position ¢+ 1 whenever ¢; € p; for ¢ € 1...m. The most important
feature of simple patterns is that they match a substring of the same length m in the text.

We use the following notation to describe simple patterns: we concatenate the elements of the
sequence together. Simple characters (i.e. classes of size 1) are written down directly, while other
classes of characters are written in square brackets. The first character inside the square brackets



can be """, which means that the class is exactly the complement of what is specified. The rest
is a simple enumeration of the characters of the class, except that we allow ranges: "z-y" means
all the characters between « and y inclusive (we assume a total order in ¥, which is in practice the
ASCII code). Finally, the character "." represents a class equal to the whole alphabet and "#"
represents the class of all separators (i.e. non alphanumeric characters). Most of these conventions
are the same used in Unix software. Some examples are:

e "[Aa]lmerican", which matches "American" and "american";
e "["\n]Begin", which finds "Begin" if it is not preceded by a line break;
e "../../197[0-9]", which matches any date in the 70’s;

e ".e["a-zA-Z_]t#", which permits any character in the first position, then "e", then anything
except a letter or underscore in the third position, then "t", and finishes with a separator.

Note that we have used "\n" to denote the newline. We also use "\t" for the tab, "\xHH" for
the character with hex ASCII code HH, and in general "\C" to interpret any character C' literally
(e.g. the backslash character itself, as well as the special characters that follow).

It is possible to specify that the pattern has to appear at the beginning of a line by preceding
it with """ or at the end of the line by following it with "$". Note that this is not the same as
adding the newline preceding or following the pattern because the beginning/end of the file signals
also the beginning/end of the line, and the same happens with records when the record delimiter
is not the end of line.

2.3 Extended Patterns

In general, an extended pattern adds some extra specification capabilities to the simple pattern
mechanism. In this work we have chosen some features which we believe are the most interesting
for typical text searching. The reason to introduce this intermediate-level pattern (between simple
patterns and regular expressions) is that it is possible to devise specialized search algorithms for
them which can be faster than those for general regular expressions. The operations we permit for
extended patterns are: specify optional classes (or characters), and permit the repetition of a class
(or character). The notation we use is to add a symbol after the affected character or class: "?"
means an optional class, "*" means that the class can appear zero or more times, and "+" means
that it can appear one or more times. Some examples are:

e "colou?r", which matches "color" and "colour";

o "[a-zA-Z\_][a-zA-Z\_0-9]1*", which matches valid variable names in most programming
languages (a letter followed by letters or digits);

e "Latin#+America", which matches "Latin" and "America" separated by one or more sepa-
rator characters (e.g. spaces, tabs, etc.).



2.4 Regular Expressions

A regular expression is the most sophisticated pattern that we allow to search for, and it is in general
considered powerful enough for most applications. A regular expression is defined as follows.

e Basic elements: any character and the empty string (¢) are regular expressions matching
themselves.

e Parenthesis: if e is a regular expression then so is (e), which matches the same strings. This
is used to change precedence.

e Concatenation: if e; and ey are regular expressions, then e; - e5 is a regular expression that
matches a string z iff # can be written as # = yz, where e; matches y and e, matches z.

e Union: if e; and e, are regular expressions, then e e, is a regular expression that matches a
string z iff e; or e; match z.

e Kleene closure: if e is a regular expression then ex is a regular expression that matches a
string z iff, for some n,  can be written as # = #; ..., and e matches each string z;.

We follow the same syntax (with the precedence order % , -, | ) except that we use square
brackets to abbreviate (z1|zsa|...|z,) = [2122...2,] (where the z; are characters), we omit the
concatenation operator (-), we add the two operators e+ = eex and e? = (ele) and we use the
empty string to denote €, e.g. "a(bl)c" denotes a(ble)c. These arrangements make the extended
patterns to be a particular case of regular expressions. Some examples are:

e "doglcat", which matches "dog" and "cat";

e "((Dr. |Prof. |Mr.)#)*Knuth", which matches "Knuth" preceded by a sequence of titles.

3 Pattern Matching Algorithms

We explain in this section the basic string and regular expression search algorithms our software
builds on.

3.1 Bit Parallelism and the Shift-Or Algorithm

In [2], a new approach to text searching was proposed. It is based on bit-parallelism [1]. This
technique consists in taking advantage of the intrinsic parallelism of the bit operations inside a
computer word. By using cleverly this fact, the number of operations that an algorithm performs
can be cut down by a factor of at most w, where w is the number of bits in the computer word.
Since in current architectures w is 32 or 64, the speedup is very significant in practice.

Figure 1 shows a non-deterministic automaton that searches for a pattern in a text. Classical
pattern matching algorithms, such as KMP [13], convert this automaton to a deterministic form
and achieve O(n) worst case search time. The Shift-Or algorithm [2], on the other hand, uses
bit-parallelism to simulate the automaton in its non-deterministic form. It achieves O(mn/w)



worst-case time, i.e. an optimal speedup over a classical O(mn) simulation. For m < w, Shift-Or
is twice as fast as KMP because of better use of the computer registers. Moreover, it is easily
extended to handle classes of characters.

>

m b c d e f g
@D DD~ -0

Figure 1: A nondeterministic automaton (NFA) to search for the pattern P = "abcdefg" in a text.

3.1.1 Text Scanning

We present now the Shift-And algorithm [30], which is an easier to explain (though a little less
efficient) variant of Shift-Or. Given a pattern P = pips...pm, p; € ¥ and a text T = t1t5.. .1,
t; € 3, the algorithm builds first a table B which for each character stores a bit mask b,, ...b;. The
mask in B[c] has the i-th bit set if and only if p; = ¢. The state of the search is kept in a machine
word D = d,,...d;, where d; is set whenever pip, ...p; matches the end of the text read up to
now (another way to see it is to consider that d; tells whether the state numbered ¢ in Figure 1 is
active). Therefore, we report a match whenever d,, is set.

We set D = 0™ originally, and for each new text character t;, we update D using the formula

D' «— ((D<<1)|0™ 1) & B[t]

The formula is correct because the i-th bit is set if and only if the (¢ — 1)-th bit was set for
the previous text character and the new text character matches the pattern at position ¢. In other
words, t;_;41...t; = p1...p; ifand only if ¢;_;11...¢;_1 = p1...p;i—1 and t; = p;. Again, it is
possible to relate this formula to the movement that occurs in the NFA for each new text character:
each state gets the value of the previous state, but this happens only if the text character matches
the corresponding arrow. Finally, the “| 0™~11” after the shift allows a match to begin at the
current text position (this operation is saved in the Shift-Or, where all the bits are complemented).
This corresponds to the self-loop at the initial state of the automaton.

The cost of this algorithm is O(n). For patterns longer than the computer word (i.e. m > w),
the algorithm uses [m/w] computer words for the simulation (not all them are active all the time),
with a worst-case cost of O(mn/w) and still an average case cost of O(n).

3.1.2 Classes of Characters and Extended Patterns

The Shift-Or algorithm is not only very simple, but it also has some further advantages. The most
immediate one is that it is very easy to extend to handle classes of characters, where each pattern
position may not only match a single character but a set of characters. If p; is the set of characters
that match the position 7 in the pattern, we set the i-th bit of B|c] for all ¢ € p;. No other change
is necessary to the algorithm. In [2] they show also how to allow a limited number k of mismatches
in the occurrences, at O(nmlog(k)/w) cost.



This paradigm was later enhanced [30] to support allow wild cards, regular expressions, ap-
proximate search with nonuniform costs, and combinations of them. Further development of the
bit-parallelism approach for approximate string matching yielded some of the fastest algorithms for
short patterns [3, 18]. In most cases, the key idea was to simulate an NFA.

Bit-parallelism has become a general way to simulate simple NFAs instead of converting them
to deterministic automata. This is how we use it in nrgrep.

3.2 The BDM Algorithm

The main disadvantage of Shift-Or is its inability to skip characters, which makes it slower than
the algorithms of the Boyer-Moore [6] or the BDM [9, 8] families. We describe in this section the
BDM pattern matching algorithm, which is able to skip some text characters.

BDM is based on a suffiz automaton. A suffiz automaton on a pattern P = p;py...py, is an
automaton that recognizes all the suffixes of P. A nondeterministic version of this automaton has
a very regular structure and is shown in Figure 2. In the BDM algorithm [9, 8], this automaton is
made deterministic.

€ e € € € |
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Figure 2: A nondeterministic suffix automaton for the pattern P = "abcdefg". Dashed lines

represent e-transitions (i.e. they occur without consuming any input).

A very important fact is that this automaton can be used not only to recognize the suffixes of
P, but also factors of P. Note that there is a path labeled by z from the initial state if and only if
z is a factor of P. That is, the NFA will not run out of active states as long as it has read a factor
of P.

The suffix automaton is used to design a simple pattern matching algorithm. This algorithm
runs in O(mn) time in the worst case, but it is optimal on average (O(nlog, m/m) time). Other
more complex variations such as TurboBDM [9] and MultiBDM [8, 27] achieve linear time in the
worst case.

To search for a pattern P = pips...py in a text T = t1ty...1,, the suffix automaton of
P" = ppmpPm—1...p1 (i.e the pattern read backwards) is built. A window of length m is slid along
the text, from left to right. The algorithm searches backward inside the window for a factor of
the pattern P using the suffix automaton, i.e. the suffix automaton of the reverse pattern is fed
with the characters in the text window read backward. This backward search ends in two possible
forms:

1. We fail to recognize a factor, i.e we reach a window character ¢ that makes the automaton run
out of active states. This means that the suffix of the window we have read is not anymore
a factor of P. Figure 3 illustrates this case. We then shift the window to the right, its
starting position corresponding to the position following the character o (we cannot miss an



occurrence because in that case the suffix automaton would have found a factor of it in the

window).
Window
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Figure 3: Suffix automaton search.

2. We reach the beginning of the window, therefore recognizing the pattern P since the length-m
window is a factor of P (indeed, it is equal to P). We report the occurrence, and shift the
window by one position.

3.3 Combining Shift-Or and BDM: the BNDM Algorithm

We describe in this section the BNDM pattern matching algorithm [22]. This algorithm, a com-
bination of Shift-Or and BDM, has all the advantages of the bit-parallel forward scan algorithm,
and in addition it is able to skip some text characters like BDM.

Instead of making the automaton of Figure 2 deterministic, BNDM simulates it using bit-
parallelism. The bit-parallel simulation works as follows. Just as for Shift-And, we keep the state
of the search using m bits of a computer word D = d,,, ...d;. Each time we position the window in
the text we initialize D = 1™ (this corresponds to the e-transitions) and scan the window backward.
For each new text character read in the window we update D. If we run out of 1’s in D then there
cannot be a match and we suspend the scanning and shift the window. If, on the other hand, we
can perform m iterations, then we report the match.

We use a table B which for each character c¢ stores a bit mask. This mask sets the bits
corresponding to the positions where the reversed pattern has the character ¢ (just as in the Shift-
And algorithm). The formula to update D is

D' «+ (D & B[tj]) << 1

BNDM is not only faster than Shift-Or and BDM (for about 5 < m < 100), but it can accom-
modate all the extensions mentioned in Section 2. In particular, it can easily deal with classes of
characters by just altering the preprocessing, and it is by far the fastest algorithm to search for
this type of patterns [22, 23].



Note that this type of search is called “backward” scanning because the text characters inside
the window are read backwards. However, the search progresses from left to right in the text as
the window is shifted. There have been other (few) attempts to skip characters under a Shift-Or
approach, for example [10].

3.4 Regular Expression Searching

Bit-parallelism has been successfully used to deal with regular expressions. Shift-Or was extended
in two ways [30, 24, 25] to deal with this case, first using the Thompson [28] and later Glushkov’s
[6] constructions of NFAs from the regular expression. Figure 4 shows both constructions for the
pattern "abcd(dle) (elf)de".
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Figure 4: Thompson’s (top) and Glushkov’s (bottom) resulting NFAs for the regular expression
"abcd(dle) (elf)de".

Given a regular expression with m positions (each character/class defines a new position),
Thompson’s construction produces an automaton of up to 2m states. Its advantage is that the
states of the resulting automaton can be arranged in a bit mask so that all the transitions move
forward except the e-transitions. This is used [30] for a bit-parallel simulation which moves the bits
forward (as for the simple Shift-Or) and then applies all the moves corresponding to e-transitions.
For this sake, a table F mapping from bit masks to bit masks is precomputed, so that E[z] yields
a bit mask where z has been expanded with all the e-moves. The code for a transition is therefore

D +— ((D<<1)|0°'1) & Blt;]
D +— E[D]

We have used s as the number of states in the Thompson automaton, where m < s < 2m.
The main problem is that the F table has 2° entries. This is handled by splitting the argument
horizontally, so for example if s = 32 then two tables E; and E3 can be created which receive
half masks and deliver full masks with the e-expansion of only the bits of their half (of course
the e-transitions can go to the other half, this is why they deliver full masks). In this way the
amount of memory required is largely reduced at the cost of two operations to build the real F
value. This takes advantage of the fact that, if a bit mask z is split in two halves z = yz, then

Elyz] = E[y0] | B[0¥l2].
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Glushkov’s construction has the advantage of producing an automaton with exactly m+1 states,
which can as low as half the states generated by Thompson’s construction. On the other hand,
the structure of arrows is not regular and the trick of forward shift plus e-moves cannot be used.
Instead, it has another property: all the arrows leading to a given state are labeled by the same
character or class. This property has been used recently [25] to provide a space-economical bit
parallel simulation where the code for a transition is:

D «— T[D] & B[t;]

where T is a table that receives a bit map D of states and delivers another bit map of states
reachable from states in D, no matter by which characters. The e-transitions do not have to be
dealt with because Glushkov’s construction does not produce them. The T table can be horizontally
partitioned as well.

It has been shown [25] that a bit-parallel implementation of Glushkov’s construction is faster
than one of Thompson’s, which should be clear since in general the tables obtained are much smaller.
An interesting improvement, possible thanks to bit parallelism, is that classes of characters can be
dealt with the normal mechanism used for simple patterns, without generating one state for each
alternative.

On the other hand, a deterministic automaton (DFA) can be built from the nondeterministic
one. It is not hard to see that indeed the previous constructions simulate a DFA, since each
state of the DFA can be seen as a set of states of the NFA, and each possible set of states of the
NFA is represented by a bitmask. Normally the DFA takes less space because only the reachable
combinations are generated and stored, while for direct access to the tables we need to store in
the bit-parallel simulations all the possible combinations of active and inactive states. On the
other hand, bit-parallelism permits extending regular expressions with classes of characters and
other features (e.g. approximate searching), which is difficult otherwise. Furthermore, Glushkov’s
construction permits not storing a table of states X characters, of worst case size O(2™0) in the
case of a DFA, but just the table T' of size O(2™). Finally, in case of space problems the technique
of splitting the bitmasks can be applied.

Therefore, we use the bit-parallel simulation of Glushkov’s automaton for nrgrep. After the
update operation and we check whether a final state of D is reached (this means just an and
operation with the mask of final states). Describing Glushkov’s NFA construction algorithm [5] is
outside the scope of this paper, but it takes O(m?) time. The result of the construction can be
represented as a table Blc|, which yields the states reached by character ¢ (no matter from where),
and a table Follow[i], which yields the bitmask of states activated from state ¢, no matter by which
character. From Follow, the deterministic version T' can be built in O(2™) worst case time with
the following procedure:

T0] +— ©
for :€0...m
for j€0...20 -1
T[2°4 j] +— Follow[i] | T[j]

A backward search algorithm for regular expressions is also possible [24, 25] and in some cases
the search is much faster than a forward search. The idea is as follows. First, we compute the
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length of the shortest path from the initial to a final state (using a simple graph algorithm). This
will be the length of the window in order not to lose any occurrence. Second, we reverse all the
arrows of the automaton, make all the states initial, and take as the only final state the original
initial state. The resulting automaton will have active states as long as we have read a reverse
factor of a string matching the regular expression, and will reach its final state when we read in
particular a reverse prefix. Figure b illustrates the result.

Figure 5: An automaton recognizing reverse prefixes of "abcd(dl|e) (elf)de", based on the
Glushkov construction of Figure 4.

We apply the same BNDM technique of reading backwards the text window. If the automaton
runs out of active states, then no factor of an occurrence of the pattern is present in the window
and we can shift the window, aligning its beginning to one position after the one that caused the
mismatch. If, on the other hand, we reach the beginning of the window in the backward scan, we
cannot guarantee that an occurrence has been found. When searching for a simple string, the only
way to reach the window beginning is to have read the whole pattern. Regular expressions, on the
other hand, can have occurrences of different length, and all we know is that we have matched a
factor. There are in fact two choices.

e The final state of the automaton is not active; which means that we have not read a prefix
of an occurrence. In this case we shift the window by one position and resume the scanning.

e The final state of the automaton is active. Since we have found a pattern prefix, we have to
perform a forward verification starting at the window initial position until either we find an
occurrence or the automaton runs out of active states.

So we need, apart from the reversed automaton, also the normal automaton (without initial
self-loop, as in Figure 4) for the verification of potential occurrences.

An extra complication comes from the fact that the NFA with reverse arrows does not have the
property that all arrows leading to a state are labeled by the same character. Rather, all the arrows
leaving a state are labeled by the same character. Hence the simulation can be done as follows

D «— TE[D & B[t;]]

where T® corresponds to the reverse arrows but B is that of the forward automaton [25].

3.5 Approximate String Matching

Approximate searching means finding the text substrings that can be converted into the pattern
by performing at most k “operations” on them. Permitting a limited number k of such differences
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(also called errors) is an essential tool to recover from typing, spelling and OCR (optical character
recognition) errors. Despite that approximate pattern matching can be reduced to a problem of
regular expression searching, the regular expression grows exponentially with the number of allowed
errors (or differences).

A first design decision is what should be taken as an error. Based on existing surveys [14, 19],
we have chosen the following four types of errors: insertion of characters, deletion of characters, re-
placement of a character by another character, and exchange of adjacent characters (transposition).
These errors are symmetric in the sense that one can consider that they occur in the pattern or in
the text and the result is the same. Traditionally, only the first three errors have been permitted
because transposition, despite being recognized as a very important source of errors, is harder to
handle. However, the problem is known to grow very fast in complexity as k increases, and since
a transposition can only be simulated with two errors of the other kind (i.e. an insertion and a
deletion), we would need to double k in order to obtain a similar result. One of the algorithmic
contributions of nrgrep is a bit-parallel algorithm for permitting the transpositions together with
the other types of errors. This permits us searching with smaller k& values and hence obtain faster
searching with similar (or better) retrieval results.

Approximate searching is characterized by the fact that no known search algorithm is the best
in all cases [19]. From the wealth of existing solutions, we have selected those that adapt best to
our goal of flexibility and uniformity. Three main ideas can be used.

3.5.1 Forward Searching

The most basic idea that is well suited to bit parallelism [30] is to have k + 1 similar automata,
representing the state of the search when zero to k errors have occurred. Apart from the normal
arrows inside each automaton, there are arrows going from automaton ¢ to ¢ + 1 corresponding to
the different errors. The original approach [30] did not consider transpositions, which have been
dealt with later [16].

Figure 6 shows an example with ¥ = 2. Let us first focus on the big nodes and solid/dashed
lines. Apart from the normal forward arrows we have three types of arrows that lead from each
row to the next one (i.e. increment the number of errors): vertical arrows, which represent the
insertion of characters in the pattern (since they advance in the text but not in the pattern);
diagonal arrows, which represent replacement of the current text character by a pattern character
(since they advance in the text and in the pattern); and dashed diagonal arrows (e-transitions),
which represent deletion of characters in the pattern (since they advance in the pattern without
consuming any text input). The remaining arrows (the dotted ones) represent transpositions, which
permit reading the next two pattern characters in the wrong order and move to the next row. This
is achieved by means of “temporary” states, which we have drawn as smaller circles.

If we disregard the transpositions, there are different ways to simulate this automaton in O(1)
time when it fits in a computer word [3, 18], but no bit parallel solution has been presented to
account for the transpositions. This is one of our contributions and is explained later in the paper.
We extend a simpler bit parallel simulation [30], which takes O(k) time per text character as long
as m = O(w). The technique stores each row in a machine word, Ry... Ry, just as we did for
Shift-And in Section 3.1. The bitmasks R; are initialized to 0™~*1* to account for % possible initial

deletions in the pattern. The update procedure to produce R’ upon reading text character ¢; is as
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O errors

2 errors

Figure 6: A nondeterministic automaton accepting the pattern "abcd" with at most 2 errors.
Unlabeled solid arrows match any character, while the dashed (not dotted) lines are e-transitions.

follows:

R6 — ((Ro << 1) | Om_ll) & B[tj]
for 1€1...%k do
R, +— ((Ri<<1l) & B[t]) | Ri-1 | (Rici<<1l) | (Ri_;<<1)

where of course many coding optimizations are possible (and are done in nrgrep) but make the code
less clear. In particular, using the complemented version of the representation (as in Shift-Or) is a
bit faster.

The rationale of the procedure is as follows. Rg has the same update formula as for the Shift-
And algorithm. For the others, the update formula is the or of four possible facts. The first one
corresponds to the normal forward arrows (note that there is no initial self-loop for them, only for
Ry). The second one brings 1’s (state activations) from the upper row at the same position, which
corresponds to a vertical arrow, i.e. an insertion. The third one brings 1’s from the upper row at
the previous positions (this is obtained with the left shift), corresponding to a diagonal arrow, i.e.
a replacement. The fourth one is similar but it works on the newer value of the previous row (R;_,
instead of R;_1), and hence it corresponds to an e-transition, i.e. a deletion.

A match is detected when Ry & 10™~! is not zero. It is not hard to show that whenever the
final state of R; is active, the final state of R} is active too, so it suffices to consider R} as the only
final state.

3.5.2 Backward Searching

Backward searching can be easily adapted from the forward searching automaton following the
same techniques used for exact searching [22, 23]. That is, we build the automaton of Figure 6 on
the reverse pattern, consider all the states as initial ones, and consider as the only final state the
first node of the last row. This will recognize all the reverse prefixes of P allowing at most k errors,
and will have active states as long as some factor of P has been seen (with at most k errors).
Some observations are of interest. First, note that we will never shift the window before exam-
ining at least k41 characters (since we cannot make k errors before that). Second, the length of the
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window has to be that of the shortest possible match, which, because of deletions in the pattern,
is of length m — k. Third, just as it happens with regular expressions, the fact that we arrive to
the beginning of the window with some active states in the automaton does not immediately mean
that we have an occurrence, so we have to check the text for a complete occurrence starting at the
window beginning.

It has been shown [19] that this algorithm takes time O(k(k + log, m)/(m — k)) for m < w.

3.5.3 Splitting into £ + 1 Subpatterns

A well known property [30, 19] establishes that, under the model of insertions, deletions, and
replacements, if the pattern is cut in k£ + 1 contiguous pieces, then at least one of the pieces occurs
unchanged inside any occurrences with k errors or less. This is easily verified because each operation
can alter at most one piece. So the technique consists of performing a multipattern searching for
the pieces without errors, and checking the text surrounding the occurrences of each piece for a
complete approximate occurrence of the whole pattern. This leads to the fastest algorithms for low
error levels [20, 19].

The property is not true if we add the transposition, because this operation can alter two
contiguous pieces at the same time. Much better than splitting the pattern in 2k + 1 pieces is to
split it in k + 1 pieces and leave one unused character between each pair of pieces [19]. Under this
partition a transposition can alter at most one piece.

We are now confronted with a multipattern search problem. This can be solved with a very
simple modification of the single pattern backward search algorithm [22, 23]. Consider the pattern
"abracadabra" searched with two errors. We split it in "abr", "cad" and "bra". Figure 7 depicts
the automaton used for backward searching of the three pieces. This is implemented with the same
bit parallel mechanism as for a single pattern, except that (1) there are more final states; and
(2) an extra bit mask is necessary to avoid propagating 1’s by the missing arrows. This extra bit
mask is implemented at no cost by removing the corresponding 1’s from the B mask during the
preprocessing. Note that for this to work we need that all the pieces have the same length.

O Q- QOO0 0000
Figure 7: An automaton recognizing reverse prefixes of selected pieces of "abracadabra".

4 Searching for Simple Patterns

Nrgrep directly uses the BNDM algorithm when it searches for simple patterns. However, some
modifications are necessary to convert the pattern matching algorithm into a search software.

4.1 Record Oriented Output

The first issue to consider is what will we report from the results of the search. Printing the text
positions 7 where a match occurs is normally of little help for the user. Printing the text portion
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that matched (i.e. the occurrence) does not help much either, because this is equal to the pattern
(at least if no classes of characters are used). We have followed agrep’s philosophy: the most useful
way to present the result is to print a context of the text portion that matched the pattern.

This context is defined as follows. The text is considered to be a sequence of records. A user-
defined record delimiter determines the text positions where a new record starts. The text areas
until the first record separator and after the last record separators are considered records as well.
When a pattern is found in the text, the whole record where the occurrence lies is printed. If
the occurrence overlaps with or contains a record delimiter then it is not considered a pattern
occurrence.

The record delimiter is by default the newline character, but the user can specify any other
simple pattern as a record delimiter. For example, the string "“From " can be used to delimit
e-mail messages in a mail archive, therefore being able to retrieve complete e-mails that contain a
given string. The system permits to specify whether the record delimiter should be contained in
the next or in the previous record. Moreover, nrgrep permits to specify an extra record separator
when the records are printed (e.g. add another newline).

It should be clear by now that searching for longer strings is faster than for shorter ones. Since
record delimiters tend to be short strings, it is not a good idea to delimit the text records first and
then search for the pattern inside each record. Rather, we prefer to search for the pattern in the
text without any consideration for record separators and, when the pattern is found, search for the
next and previous record delimiters. At this time we may determine that the occurrence overlaps
a record delimiter and discard it. Note that we have to be able to search for record delimiters
forward and backward. We use the same BNDM algorithm to search for record delimiters.

There are some nrgrep options, however, that make it necessary a record-wise traversal: printing
record numbers or printing records that do not contain the pattern. In this case we advance in the
file by delimiting the records first and then searching for the pattern inside each record.

4.2 Text Buffering

Text buffering is necessary to cope with large files and to achieve optimum performance. For
example, in nrgrep the buffer size is set to 64 Kb because it fits well the cache size of many
machines, but this default can be overriden by the user. To avoid complex interactions between
record limits and buffer limits, we discard the last incomplete record each time we read a new
buffer from disk. The “discarded” partial record is moved to the beginning of the buffer before
reading more text at the next buffer loading. If a record is larger than the buffer size then an
artificial record delimiter is inserted to correct the situation (and a warning message is printed).
Note that this also requires the ability to search for the record delimiter in backward direction.
This technique works well unless the record size is large compared to the buffer size, in which case
the user should enlarge the buffer size using the appropriate option.

4.3 Contexts

Another capability of nrgrep is context specification. This means that the pattern occurrence has
to be surrounded by certain characters in order to be considered as such. For example, one may
specify that the pattern should match as a whole word (i.e. surrounded by separators), or a whole
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record (i.e. surrounded by record delimiters). However, it is not just a matter of adding the
context strings at the ends of the pattern because, for example, a word may be in the beginning of
a record and hence the separator may be absent. We solve this by checking each occurrence found
to determine that the required string is present before/after the occurrence or that we reached the
beginning/end of the record.

This seems trivial for a simple pattern because its length is fixed, but for more complex patterns
(such as regular expressions) where there may be many different occurrences in the same text area,
we need a way to discard possible occurrences and still check for other ones that are basically in
the same place. For example, the search for "axba*" as a whole word should match in the text
"aaa aabaa aaa". Despite that "b" alone is an occurrence of the pattern that does not fit the
whole word criterion, the occurrence can be extended to another one that does. We return to this
issue later.

4.4 Subpattern Filter

The BNDM algorithm is designed for the case m < w. Otherwise, we have in principle to simulate
the algorithm using many computer words. However, as shown in [22, 23], it is much faster to prune
the pattern to its first w characters, search for that subpattern, and try to extend its occurrences to
an occurrence of the complete pattern. This is because, for reasonably large w, the probability of
finding a pattern of length w is low enough to make the cost of unnecessary verifications negligible.
On the other hand, the benefit of a possible shift of length m > w would be cancelled by the need
to update [m/w] computer words per text character read.

Hence we select a contiguous subpattern of w characters (or classes, remember that a class
needs also one bit, the same as a character) and search for it. Its occurrences are verified with the
complete pattern prior to checking records and contexts.

The main point is which part of the pattern to search for. In the abstract algorithms of [22, 23],
any part is equally good or bad because a uniformly distributed model is assumed. In practice,
different characters have different probabilities, and some pattern positions may have classes of
characters, whose probability is the sum of those of the individual characters. This in fact is
farther reaching than the problem of the limit w in the length of the pattern: even in a short
pattern we may prefer not to include a part of the pattern in the fast scanning part. This is
discussed in detail in the next subsection.

4.5 Selecting the Optimal Scanning Subpattern

Let us consider the pattern "hello...a". Pattern positions 6 to 8 match all the alphabet, which
means that the search with the nondeterministic automaton inside the window will examine at least
four window positions (even in a text window like "xxxxxxxxx") and will shift at most by 6, so the
average number of comparisons per character is at the very best 2/3. If we take the subpattern
"hello" then we can have an average much closer to 1/5 operations per text character.

We have designed a general algorithm that, under the assumption that the text characters are
independent, finds the best search subpattern in O(m?®) worst case time (although in practice it
is closer to O(m?logm)). This is a modest overhead in most practical text search scenarios. The
algorithm is tailored to the BDM/BNDM search technique and works as follows.
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First, we build an array prob[1...m], which stores the sum of the probabilities of the characters
participating in the class of each pattern position. Nrgrep stores an array of English letter prob-
abilities, but this can be tailored to other purposes and the final scheme is robust with respect to
changes in those probabilities from one language to another. The construction of prob takes O(mo)
time in the worst case.

Second, we build an array pprob[l...m,1...m], where pprob[i,£] stores the probability of
matching the subpattern F; ;¢ 1. This is computed in O(mZ) time by dynamic programming, as
follows

pprobli,0] «— 1 , pprob[i,£+1] «— prob[i] X pprob[i+ 1,{]

for increasing £ values.

Third, we build an array mprob[l...m,1...m,1...m], where mprob|i, j, £] gives the probability
of matching any pattern substring of length £ in P; ;_;. This is computed in O(m3) time by
dynamic programming using the formulas

mprob[i, 7,0] — 1
(£>0) mprobli,i+£—1,4] «— 0
(€>0,-i>  mprobfi,j,f]  — 1 (1 pprobli,)(1 - mprobfi+1,5,4)

for decreasing 7 values. Note that we have used the formula for the union of independent events
Pr(AUB)=1-(1- Pr(A))(1- Pr(B)).

Finally, the average cost per character associated to a subpattern P; ; is computed with the
following rationale. With probability 1 we inspect one window character. If any pattern position
in the range 7...j matches the window character read, then we read a second character (recall
Section 3.2). If any consecutive pair of pattern positionsin 4. ..Jj matches the two window characters
read, then we read a third character, and so on. This is what we have computed in mprob. The
expected number of window characters to read is therefore

peost[i, j] +— mprob[i, j, 0]+ mprob[i, j, 1]+ ...+ mprob[i, j,j — i] (1)

In the BDM/BNDM algorithm, as soon as the window suffix read ceases to be found in the
pattern, we shift the window to the position following the character that caused the mismatch. A
simplified computation considers that the above pcost[i, j] (which is an average) can be used as a
fixed value, and therefore we approximate the real average number of operations per text character
as

peost[i, j]
j—1i—pcost[i,j]+1

OPS[i,j] —

which is the average number of characters inspected divided by the shift obtained. Once this is
obtained we select the (¢,7) pair that minimizes the work to do. We also avoid considering cases
where j — i > w. The total time needed to obtain this has been O(m?).

The amount of work is reduced by noting that we can check the ranges in increasing order of
i values, and therefore we do not need the first coordinate of mprob (which can be independently
computed for each 7). Moreover, we start by considering maximum j, since in practice longer
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Figure 8: A nondeterministic automaton accepting the pattern "abc?d?efg?h".

subpatterns tend to be better than shorter ones. We keep the best value found up to now and
avoid considering ranges (%,j) which cannot be better than the current best solution even for
peost[i, j] = 1 (note that since ¢ is tried in ascending order and j in descending order, the whole
pattern is tried first). This reduces the cost to O(m?logm) in practice.

As a result of this procedure we not only obtain the best subpattern to search for (under a
simplified cost model) but also a hint of how many operations per character will we perform. If
this number is larger than 1, then it is faster and safer to switch to plain Shift-Or. This is precisely
what nrgrep does.

5 Searching for Extended Patterns

As explained in Section 2, we have considered optional and repeatable (classes of) characters as
the features allowed in our extended patterns. Each of these features is treated in a different way
and all are integrated in an automaton which is more general than that of Figure 1. Over this
automaton we later apply the general forward and backward search machinery.

5.1 Optional Characters

Let us consider the pattern "abc?d?efg?h". A nondeterministic automaton accepting that pattern
is drawn in Figure 8.

The figure is chosen so as to show that multiple consecutive optional characters could exist.
This outrules the simplest solution (which works when that does not happen): one could set up a
bit mask O with ones in the optional positions (in our example, O = 01001100), and let the ones
in previous states of D propagate to them. Hence, after the normal update to D, we could perform

D «+— D|({(D<<1)&O0)

For example, this works if we have read "abcdef" (D = 00100000) and the next text character is
"h", since the above operation would convert D to 01100000 before operating it against B["h”] =
10000000. However, it does not work if the text is "abefgh", where both consecutive optional
characters have been omitted.

A general solution needs to propagate each active state in D so as to flood all the states ahead
it that correspond to optional characters. In our example, we would like that when D is 00000010
(and in general whenever its second bit is active), it becomes 00001110 after the flooding.

This is achieved with three masks, A, I and F, marking different aspects of the states related to
optional characters. More specifically, the i-th bit of A is set if this position in P is optional; that
of I is set if this is the position of the first optional character of a block (of consecutive optional
characters); and that of F' is set if this is the position after the last optional character of a block.
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Figure 9: A nondeterministic automaton accepting the pattern "abc+def*gh".

In our example, A = 01001100, / = 01000100 and F = 10010000. After performing the normal
transition on D, we do as follows

Df «+— D|F
D «— D| (A& ((~(Df-1))" Df))

whose rationale is as follows. The first line adds a 1 at the positions following optional blocks in
D. In the second line we add some active states to D. Since the states to add are and-ed with
A, let us just consider what happens inside a specific optional block. The effect that we want is
that the first 1 (counting from the right) floods all the block bits to the left of it. We subtract /
from Df, which is equivalent to subtracting 1 at each block. This subtraction cannot propagate
its effect outside the block because there is a 1 (coming from “|F” in Df) after the highest bit
of the block. The effect of the subtraction is that all the bits until the first 1 (counting from
the right) are reversed (e.g. 1000000 — 1 = 0111111), and the rest are unchanged. In general,
bpby_1...b,-y10* —1 = byby_1...b,_,01?. When this is reversed by the “~” operation we get
~by ~by_q... ~by_y10®. Finally, when this is zor-ed with the same Df = b;b,_1...b,_,10% we
get 12-v+1pz+1,

This is precisely the effect we wanted: the last 1 flooded all the bits to the left. That 1 itself
has been converted to zero, however, but it is restored when the result is or-ed with the original D.
This works even if the last active state in the optional block is the leftmost bit of the block. Note
that it is necessary to and with A at the end to filter out the bits of F' that survive the process
whenever the block is not all zeros. On the other hand, it is necessary to or Df with F because a
block of all zeros would propagate the “—” operation outside its limits.

Note that we could have a border problem if there are optional characters at the beginning of
the pattern. As seen later, however, this cannot happen when we select the best subpattern for
fast scanning, but it has to be dealt with when verifying the whole pattern.

5.2 Repeatable Characters

There are two kinds of repeatable characters, marked in the syntax by "*" (zero or more repetitions)
and "+" (one or more repetitions). Each of them can be simulated using the other since a4+ = aax
and ax = a+7?. For involved technical reasons (that are related, for example, to the ability to build
easily the masks for the reversed patterns and border conditions for the verification) we preferred
the second choice, despite that it uses one more bit than necessary for the "*" operation. Figure 9
shows the automaton for "abc+def*gh".

The bit-parallel simulation of this automaton is more straightforward than for the optional
characters. We just need to have a mask S|c] that for each character c tells which pattern positions
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can remain active when we read character c. In the above example, S[”c¢”] = 00000100 and S["£”] =
00100000. The e-transition is handled with the mechanism for optional characters. Therefore a
complete simulation step permitting optional and repeatable characters is as follows.

D +—— ((D<<1)|0™ 1) & B[t;]) | (D & S[t;])
Df «— D|F
D «+— D|(A& ((~(Df-1))" Df))

5.3 Forward and Backward Search

Our aim is to extend the approach used for simple patterns to patterns containing optional symbols.
Forward scanning is immediate once we learn how to simulate the different automata using bit
parallelism. We just have to add an initial self-loop to enable text scanning (this is already done
in the last formula). We detect the final positions of occurrences and then check the surrounding
record and context conditions.

Backward searching needs, in principle, just to obtain an automaton that recognizes reverse
factors of the pattern. This is obtained by building exactly the same automaton of the forward
scan (without initial self-loop) on the reverse pattern, and letting all the states be initial (i.e.
initializing D with all active states). However, there are some problems to deal with, all of them
deriving from the fact that the occurrences have variable length now.

Since the occurrences do not have a fixed length, we have to compute the minimum length
of a possible match of the pattern (e.g. 7 in the example "abc+def*gh") and use this value as
the width of the search window in order not to lose any potential occurrence. As before, we set
up an automaton that recognizes all the reverse factors of the automaton and use it to traverse
the window backward. Because the occurrences are not all of the same length, the fact that we
arrive to the beginning of the window does not immediately imply that the pattern is present. For
example, a 7-length text window could be "cdefffg". Despite that this is a factor of the pattern
and therefore we would reach the window beginning, no pattern occurrence starts in the beginning
of the window.

Therefore, each time we arrive to the beginning of the window we have to check that the initial
state is active and then run a forward verification from the window beginning on, until either we
find a match (i.e. the last automaton state is activated) or we determine that no match can start
at the window position under consideration (i.e. the automaton runs out of active states). The
automaton used for this forward verification is the same as for forward scanning, except that the
initial self-loop is absent. However, as we see next, verification is in fact a little more complicated
and we mix it with the rest of verifications that are needed on every occurrence (surrounding record,
context, etc.).

5.4 Verifying Occurrences

In fact, the verification is a little different since, as we see in the next subsection, we select a subpat-
tern for the scanning (as before, this is necessary if the pattern has more than w characters/classes,
but can also be convenient on shorter patterns). Say that P = P;.SPs, where S is the subpattern
that has been selected for fast text scanning. Each time the backward search determines that a
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given text position is a potential start point for an occurrence of S, we obtain the surrounding
record and check, from the candidate text position, the occurrence of SP, in forward direction
and P; in backward direction (do not confuse forward/backward scanning with forward/backward
verification!).

When we had a simple pattern, this just needed to check that each text character belonged
to the corresponding pattern class. Since the occurrences have variable length, we need to use
pre-built automata for SP, and for the reversed version of P;. These automata do not have the
initial self-loop. However, this time we need to use a multi-word bit-parallel simulation, since the
patterns could be longer than the computer word.

Note also that, under this scenario, the forward scanning also needs verification. In this case
we find a guaranteed end position of S in the text (not a candidate one as for backward searching).
Hence we check, from that final position, P, in forward direction and P;.S in backward direction.
Note that we need to check S again because the automaton cannot tell where is the beginning of
S, and there could be various beginning positions.

A final complication is introduced by record limits and context conditions. Since we require
that a valid occurrence lies totally inside a record, we should submit for verification the smallest
possible occurrence. For example, the pattern "b[ab]*cde?" has many occurrences in the text
record "bbbcdee", and we should report "becd" in order to guarantee that no valid occurrence will
be missed. However, it is possible that the context conditions require the presence of certain strings
immediately preceding or following the occurrence. For example, if the context condition tells that
the occurrence should begin a record, then the minimal occurrence "bed" would not qualify, while
"bbbcde" would do.

Fortunately, context conditions about the initial and final positions of occurrences are indepen-
dent, and hence we can check them separately. So we treat the forward and backward parts of the
verification separately. For each one, we traverse the text and find all the positions that represent
the beginning (or ending) of occurrences and submit them to the context checking mechanism until
one is accepted, the record ends, or the automaton runs out of active states.

5.5 Selecting a Good Search Subpattern

As before, we would like to select the best subpattern for text scanning, since we have anyway
to check the potential occurrences. We want to apply an algorithm similar to that for simple
patterns. However, this time the problem is more complicated because there are more arrows in
the automaton.

We compute prob as before, adding another array sprob[l...m], which is the probability of
staying at state ¢ via the S[c] array. The major complication is that a factor of length ¢ starting
at pattern position ¢ does not necessarily finish at pattern position ¢ + £ — 1. Therefore, we fill
an array pprob[l...m,1...m,1...L], where L is the minimum length of an occurrence of P (at
most m) and pprob[i, j, £] is the sum of the probabilities of all the factors of length ¢ that start at
position ¢ and do not reach after pattern position j. In our example "abc+def*gh", pprob[3, 6,4]
should account for "cccec", "ccced", "ccede", "cecdef"” and "cdeff".
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This is computed as

pprobli,i—1,4] +— 0
(1<§)  porobfij,0] — 1
(i<jAL>0) pprobli,j,£] <+— probli] x pprobli+1,j,£— 1]
+ sprobli] x pprob[i,j,{— 1]
+ (if i—th bit of A is set) pprob[i+ 1,7,/

which is filled for decreasing i and increasing £ in O(m?) time. Note that we are simplifying the
computation of probabilities, since we are computing the probability of a set of factors as the sum
of the individual probabilities, which is only true if the factors are disjoint.

Similarly to pprob[i, j, £] we have mprob[i, j, £] as the probability of any factor of length £ starting
at position ¢ or later and not surpassing position j. This is trivially computed from pprob as for
simple patterns.

Finally, we compute the average cost per character as before. We consider subpatterns from
length min(m, w) until a length that is so short that we will always prefer the best solution found
up to now. For each subpattern considered we compute the expected cost per window as the sum
of the probabilities of the subpatterns of each length, i.e.

peost[i, j] +— mprob[i, j, 0]+ mprob[i, j, 1]+ ...+ mprob[i, j,j — i]

and later obtain the cost per character as pcost[i, j]/(£ — pcost[i, j] + 1), where £ is the minimum
length of an ocurrence of the interval (7, 7).

As for simple patterns, we fill pprob and mprob in lazy form, together with the computation of
the best factor. This makes the expected cost of the algorithm closer to O(m?logm) than to the
worst case O(m?) (really O(m? min(m, w))).

Note that it is not possible (because it is not optimal) to select a subpattern that starts or
ends with optional characters or with "*". If it happens that the best subpattern gives one or
more operations per text character, we switch to forward searching and select the first min(m, w)
characters of the pattern (excluding initial and final "?"’s or "*"’s).

In particular, note that it is possible that the scanning subpattern selected has not any optional
or repeatable character. In this case we use the scanning algorithm for simple patterns, despite
that at verification time we use the checking algorithm of extended patterns.

6 Searching for Regular Expressions

The most complex patterns that nrgrep can search for are regular expressions. For this sake, we use
the technique explained in Section 3.4 [24, 25], both for forward and backward searching. However,
some aspects need to be dealt with in a real software.

6.1 Space Problems

The first problem is space, since the T table needs O(2™) entries and this can be unmanageable for
long patterns. Despite that we expect that the patterns are not very long in typical text searching,
some reasonable solution has to be provided when this is not the case.
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We permit the user to specify the amount of memory that can be used for the table, and split
the bitmasks in as many parts as needed to meet the space requirements. Since we do not search
for masks longer than w bits, it is in fact unlikely that the text scanning part needs more than 3
or 4 table accesses per text character. Attending to the most common alternatives, we developed
separate code for the cases of 1 and 2 tables, which permits much faster scanning since register
usage is enabled.

6.2 Subpattern Filtering

As for simple and extended patterns, we select the best subpattern for the scanning phase, and
check all the potential occurrences for complete occurrences and for record and context conditions.
This means, according to Section 3.4, that we need a forward and a backward automaton for the
selected subpattern, and that we also need forward and backward verification automata to check
for the complete occurrence. An exception is when, given the result of selecting the best factor,
we prefer to use forward scanning, in which case only that automaton is needed (but the two
verification automata are still necessary). All the complications addressed for extended patterns
are present on regular expressions as well, namely, those derived from the fact that the occurrences
may have different lengths.

It may also happen that, after selecting the search subpattern, it turns out to be just a simple
or an extended pattern, in which case the search is handled by the appropriate search algorithm,
which should be faster. The verification is handled as a general regular expression. Note that
heuristics like those of Gnu Grep, which tries to find a literal string inside the regular expression
in order to use it as a filter, are no more than particular cases of our general optimization method.
This makes our approach much smoother than others. For example Gnu Grep will be much faster
to search for "c+(aaaaa|bbbbb)c+" (where the strings "caaaaac" and/or "cbbbbbc" can be used
to filter the search) than for "c+[ab] [ab] [ab] [ab] [ablc+", while the difference should not be as
large.

Regarding optimal use of space (and also because accessing smaller tables is faster) we use a
state remapping function. When a subset of the states of the automaton is selected for scanning
we build a new automaton with only the necessary states. This reduces the size of the tables.

What is left is to explain how we select the best factor to search for. This is much more complex
on regular expressions than on extended patterns.

6.3 Selecting an Optimal Necessary Factor

The first nontrivial task on a regular expression is to determine what is a necessary factor, which
is defined as a subexpression that has to match inside every occurrence of the whole expression.
For example, "fgh" is not a necessary factor of "ab(cde|fghi) jk", but "cd|fgh" is. Note that
any range of states is a necessary factor in a simple or extended pattern.

Determining necessary subexpressions is complicated if we try to do it using just the automaton
graph. We rather make use of the syntax tree of the regular expression as well. The main trouble
is caused by the “|” operator, which forces us to choose one necessary factor from each branch.
We simplify the problem by fixing the minimum occurrence length and searching for a necessary
factor of that length on each side. In our previous example, we could select "cd|fg" or "de|hi",
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for example, but not "cd|fgh". However, we are able to take the whole construction, namely
"cde|fghi".

The procedure is recursive and aims at finding the best necessary factor of minimum length ¢
provided we already know (we consider later the computation of these data)

e wlens[0...m], where wlens[i] is the minimum length of a path from ¢ to a final state;

e mark, markf[0...m,0...L], where mark[i, £] is the bitmask of all the states reachable in ¢

steps from state ¢, and markf sets the corresponding final states;

e cost[0...m,0...L], where cost[i, £] is the average cost per character if we search for all the
paths of length £ leaving from state 3.

The method starts by analyzing the root operator of the syntax tree. Depending on the type
of operand, we do as follows.

Concatenation: choose the best factor (minimum cost) among both sides of the expression. Note
that factors starting in the left side can continue to the right side, but we are deciding about
where the initial positions are.

Union: choose the best factor from each side and take the union of the states. The average cost is
the maximum over the two sides (not the sum, since the cost is related to the average number
of characters to inspect).

One or more repetition (+): the minimum is one repetition, so ignore the node and treat the
subtree.

Zero or more repetitions (?,*): the subtree cannot contain a necessary factor since it does not
need to appear in the occurrences. Nothing can be found starting inside it. We assign a high
cost to the factors starting inside the subexpression to make sure that it is not chosen in a
concatenation, and that a union containing it will be equally undesirable.

Simple character or class (tree leaf): there is only one possible initial position, so choose it
unless its wlens value is smaller than £.

The procedure delivers a set of selected states and the proper initial and final states for the se-
lected subautomaton. It also delivers a reasonable approximation of the average cost per character.

The rest of the work is to obtain the input for this procedure. The ideas are similar as for ex-
tended patterns, but the techniques need to make heavier use of graph traversal and are more expen-
sive. For example, just computing wlens and L = wlens[initial state], i.e. shortest paths from any
state to a final state, we need a Floyd-like algorithm that takes O(Lm?®/w) = O(min(m3, m*/w))
time.

Arrow probabilities prob are loaded as before, but pprob[i, £] now gives the total probability of
all the paths of length £ leaving state ¢, and it includes the probability of reaching 7 from a previous
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state. In Glushkov’s construction, all the arrows reaching a state have the same label, so pprob is
computed for increasing £ using the formulas

pprob[i,0] +— 1
pprobli, 1] «— prob[i]

(£>2) pprobli,£] «— probli] x Z pprob[j, £ — 1]
7, (:,J)ENFA

This takes O(Lm?) = O(min(m?, m?w)) time. At the same time we compute the mark, markf
masks, at a total cost of O(min(m?, m*/w)):

mark[z, 0], mark f[z, 0] omtt

P
mark[i, 1], markf[i,1] +— 0™ 107!
(£>2) mark]s, (] «— mark[i,{—1] U U mark[j, £ — 1]
5(7)ENFA
(£ > 2) mark f[i, {] — U markflie-1]
5(7)ENFA

for increasing ¢ values. Once pprob is computed, we build mprob[0...m,0...L,0...L], so that
mprob[i, £, {'] is the probability of any path of length ¢’ inside the area mark[i, £]. This is computed
in O(L?>m?) = O(min(m*, m?w?)) time with the formulas:

(' > £) mprob[i, £,{] «— 0
mprob[i, £,0] +— 1
(0< € <) mprobli,£,¢] +— 1— (1— pprobi,£]) H (1 — mprob[j,£— 1,£7)
7, (:,J)ENFA

3 mw?))

Finally, the search cost is computed as always using mprob, in O(L?m) = O(min(m
time.

Again, it is possible that the scanning subpattern selected is in fact a simpler type of pattern,
such as a simple or extended one. In this case we use the appropriate scanning procedure, which
should be faster.

Another nontrivial possibility is that even the best necessary factor is too bad (i.e. it has a
high predicted cost per character). In this case we select from the initial state of the automaton a
subset of it that fits in the computer word (i.e. at most w states), intended for forward scanning.
Since all the occurrences found with this automaton will have to be checked, we would like to
select the subautomaton that finds the least possible spurious matches. If m < w then we use
the whole automaton, otherwise we try to minimize the probability of getting outside the set of
selected states. To compute this, we consider that the probability of reaching a state is inversely
proportional to its shortest path from the initial state. Hence we add states farther and farther
from the root until we have w states. All this takes O(m?) time.

This probabilistic assumption is of course simplistic, but an optimal solution is quite hard and
at this point we know that the search will be costly anyway.
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6.4 Verification

A final nontrivial problem is how to determine which states should be present in the forward and
backward verification automata once the best scanning subautomaton is selected. Since we have
chosen a necessary factor, we know for sure that the automaton is “cut” in two parts by the
necessary factor. If we have chosen a backward scanning, then the verifications start from the
initial states of the scanning automaton, otherwise they start from its final states.

Figure 10 illustrates these automata for the pattern "abcd(dle) (elf)de", where we have se-
lected "d(dle) (el£)" as our scanning subexpression. This corresponds to the states {3,4,5,6,7}
of the original automaton. The selected arrows and states are in boldface in the figure (note that ar-
rows leaving from the selected subautomaton are not selected). Depending on whether the selected
subautomaton is searched with backward or forward scanning, we know the text position where
its initial or final states, respectively, were reached. Hence, in backward scanning the verification
starts from the initial states of the subautomaton, while it starts from the final states in case of
forward scanning. We need two full automata: the original one and one with the arrows reversed.

Backward scanning

Backward verification automaton
(reverse arrows)

Forward scanning

Forward verification automaton

Backward verification automaton
(reverse arrows)

Figure 10: Forward and backward verification automata corresponding to forward and backward
scanning of the automaton for "abcd(dle) (e|f)de". The shaded states are the initial ones for
verification. In practice we use the complete automaton because “cutting-oft” the exact verification
subautomaton is too complicated.

There is, however, a complication when verifying a regular expression in this scheme. Assume
the search pattern is AX B|CY D, for strings A, B, C, D, X and Y. The algorithm could select
XY as the scanning subpattern. Now, in the text AX D, the backward verification for A|C' would
find A and the forward verification for B|D would find D, and therefore an occurrence would be
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incorrectly triggered. Worse than that, it could be the case that X = Y, so there is no hope in
distinguishing what to check based on the initial states of the scanning automaton.

The problem, which does not appear in simpler types of patterns, is that there is a set of initial
states for the verification. The backward and forward verifications tell us that some state of the
set can be extended to a complete occurrence, but there is no guarantee that there is a single state
in that set that can be extended in both directions. To overcome this problem we check the initial
states one by one, instead of using a set of initial states and doing just one verification.

7 Approximate Pattern Matching

All the previous algorithms permit specifying a flexible search pattern, but they do not allow any
difference between the pattern specified and its occurrence in the text. We now consider the problem
of permitting at most k insertions, deletions, replacements or transpositions in the pattern.

We let the user to specify that only a subset of the four allowed errors are permitted. However,
designing one different search algorithm for each subset was impractical and against the spirit of
a uniform software. So we have considered that our criterion of permitting these four types of
errors would be the most commonly preferred in practice and have a unique scanning phase under
this model (as all the previous algorithms, we have a scanning and a verification phase). Only at
the verification phase, which is hopefully executed a few times, we take care of only applying the
permitted operations. Note that we cannot miss any potential match because we scan with the
most permissive error model. We also wrote in nrgrep specialized code for £k = 1 and k& = 2, which
are the most common cases and using a fixed k permits better register usage.

7.1 Simple Patterns

We make use of the three techniques described in Section 3.5, choosing the one that promises to
be the best.

7.1.1 Forward and Backward Searching

In forward searching, k + 1 similar rows corresponding to the pattern are used. There exists a
bit-parallel algorithm to simulate the automaton in case of k insertions, deletions and replacements
[30], but despite that the automaton that incorporates transpositions has been depicted [16] (see
Figure 6), no bit parallel formula for the complete operation has been shown. We do that now.

We store each row in a machine word, Ry ... Ry, just as for the base technique. The temporary
states are stored as T} ...T%. The bitmasks R; are initialized to 0™*1¢ as before, while all the T;
are initialized to 0™. The update procedure to produce R’ and T’ upon reading text character ¢;
is as follows:

R6 — ((Ro << 1) | Om_ll) & B[tj]
for t€1...k do
R «+— ((Ri<<1l) & B[t;]) | Ri1 | (Ri-i<<1l) | (Rl_;<<1)
| (@ & (Blt] << 1))
T! «— (Ri-1<<2) & Blt]

1

28



The rationale of the procedure is as follows. The first three lines are as for the base technique
without transpositions. The second line of the formula for R} corresponds to transpositions. Note
that the new 7" value is computed accordingly to the old R value, so it is 2 text positions behind.
Once we compute the new bitmasks R’ for text character t;, we take those old R masks that were
not updated with ¢;, shift them in two positions (aligning them for the position ¢;1; and killing the
states that do not match ¢;). This is equivalent to processing two characters: ¥ ¢;. At the next
iteration (t;11), we shift left the mask B[t;,] and kill the states of T that do not match. The net
effect is that, at iteration j + 1, we are or-ing R with

Ti(3+1) & (Bltja] << 1) = (Ria(f) << 2) & B[t;]) & (Bltj11] << 1)
= (((Riea(j) << 1) & Bltjn]) << 1) & B[t;]

which corresponds to two forward transitions with the characters ¢;,1%;. If those characters matched
the text, then we permit the activation of R}.

A match is detected as before, when Rj & 10™~! is not zero. Since we may cut w characters
from the pattern, the context conditions, and the possibility that the user really wanted to permit
only some types of errors, we have to check each match found by the automaton before reporting
it. We detail later the verification procedure.

Backward searching is adapted from this technique exactly as it is done from the basic algorithm
without transpositions. A subtle point is that we cannot consider the automaton dead until both
the R and the T masks run out of active states, since 7' can awake a dead R.

As before, we select the best subpattern to search for, which is of length at most w. The
algorithm to select the best subpattern has to account for the fact that we are allowing errors. A
good approximation is obtained by considering that any factor will be alive for k turns, and then
adding the normal expected number of window characters to read until the factor does not match.
So we add k to cost[i, j] in Eq. (1). Now it is more possible than before (for large k/m) that the
final cost per character is greater than one, in which case we prefer forward scanning.

7.1.2 Splitting into k& 4+ 1 Subpatterns

This technique can be directly adapted from previous work, taking care of leaving a hole between
each pair of pieces. For the checking of complete occurrences in candidate text areas we use the
general verification engine (we have a different preprocessing for the case of each of the k + 1 pieces
matching). Note that it makes no sense to design a forward search algorithm for this case: if the
average cost per character is more than one, this means that the probability of finding a subpattern
is so high that we will pay too much time verifying spurious matches, in which case the whole
method does not work.

The main difficulty that remains is how to find the best set of k+1 equal length pieces to search
for. We start by computing prob and pprob as in Section 4.5. The only difference is that now we
are interested only in lengths up to L = |(m — k)/(k+1) |, which is the maximum length of a piece
(the m — k comes out because there are k unused characters in the partition?). This cuts down the
cost to compute these vectors to O(m?/k).

2The numerator is in fact converted into m if no transpositions are permitted. Despite that the scanning phase will
allow transpositions anyway, the possible matches missed by converting the numerator to m all include transpositions,
which by hypothesis are not permitted.
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Now, we compute pcost[l...m,1...L], where pcost[i, (] gives the average cost per window
when searching for the factor P; ;i s—1. For this sake, we compute for each ¢ value the matrix
mprob[l...L,1...L], where mprob[{,r] is the probability of any factor of length r in P; ;s ;.
This is computed for each 4 in O(m?/k?) time as

(£ <r) mprobl,r] +— 0
mprob[{,0] +— 1
(£>7r>0) mprobll,r] «— 1— (1 —pprobli+{—r,r])(1— mprobll—1,r])

L
peost[i, ] Emprob[[, 7]
r=0

All this is computed for every i, for increasing £, in O(m®/k?) total time. The justification
for the previous formula is similar to that in Section 4.5. Now, the most interesting part is
mbest[1...m,1...k + 1], where mbest[i, s] is the expected cost per character of the best s pat-
tern pieces starting at pattern position ¢. The strings selected have the same length. Together with
mbest we have ibest|[i, s], which tells where must the first string start in order to obtain mbest.

The maximum length for the pieces is L. We try all the lengths from L to 1, until we determine
that even in the best case we cannot improve our current best cost. For each possible piece length
£ we compute the whole mbest and ibest, as follows

mbest[i,0] «— 0
(i>m—sl—(s—1)As>0) mbestli,s] 1
(i<m-sl—(s—1)As>0) mbestli,s] «— min(mbest[i+1,s],
1—(1— cost)(1 — mbest[i + £+ 1,s — 1]))
where cost = min(1, pcost[i, £]/({ — pcost[i, £] + 1))

which is computed for decreasing ¢. The rationale is that mbest[i, s] can choose whether to start
the first piece immediately or not. The second case is easy since mbest[i+ 1, s] is already computed,
and ibest[i, s| is made equal to ibest[i + 1,s]. In the first case, we have that the cost of the first
piece is cost and the other s — 1 pieces are chosen in the best way from P;i11. ,, according to
mbest[i + £+ 1,s — 1]. In this case ibest[i, s] = ¢. Note that as the total cost to search for the k
pieces we could take the maximum cost, but we obtained better results by using the model of the
probability of the union of independent events.

All this costs in the worst case O(m?), but normally the longest pieces are the best and the
cost becomes O(mk). At the end we have the best length ¢ for the pieces, the expected cost per
character in mbest[1, k + 1] and the optimal initial positions for the pieces in iy = ibest[1, k 4 1],
i1 = ibest[ig+£+1, k], io = best[i; +£+1, k—1], and so on. Finally, if mbest[1, k+1] > 1 (actually
larger than a smaller number) we know that we reach the window beginning with probability high
enough and therefore the whole scheme will not work well. In this case we have to choose among
forward or backward searching.

Summarizing the costs, we pay O(m?®/k?+m?) in the worst case and O(m?/k?+km) in practice.
Normally k is small so the cost is close to O(m?) in all cases.
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7.1.3 Verification

Finally, we explain the verification procedure. This is necessary because of the context conditions,
of the possibly restricted set of edit operations, and because in some cases we are not sure that
there is actually a match. Verification can be called from the forward scanning (in which case, in
general, we have partitioned the pattern in P = P;SP, and know that at a given text position
a match of S ends); from the backward scanning (where we have partitioned the pattern in the
same way and know that at a given text position the match of a factor of S begins); or from the
partitioning into k + 1 pieces (in which case we have partitioned P = PyS1 P ...Skt1Pe+1 and
know that at a given text position the exact occurrence of a given .S; begins).

In general, all we know about the possible match of P around text position j is that, if we
partition P = P, Pg (a partition that we know), then there should be a match of P, ending at T}
and a match of P starting at T}, and that the total number of errors should not exceed k. In
all the cases, we have precomputed forward automata corresponding to P, and Pg (the first one is
reversed because the verification goes backward). In forward and backward scanning there is just
one choice for P, and Pg, while for partitioning into k + 1 pieces there are k 4 1 choices (all of
them are precomputed).

We run the forward and backward verification from text character 7, in both directions. Fortu-
nately, the context conditions that make a match valid or invalid can be checked at each extreme
separately. So we go backward and, among all the positions where a legal match of Pr can begin,
we choose the one with minimum error level kr. Then we go forward looking for legal occurrences
of Pp with k — kg, errors. If we find one, then we report an occurrence (and the whole record is
reported). In fact we take advantage of each match found during the traversal: if we are looking
the pattern with k errors and find a legal endpoint with &’ < k, we still continue searching for
better occurrences, but now allowing just k' — 1 errors. This saves time because the verification
automaton needs just to use (k' — 1) + 1 rows.

A complicated condition can arise because of transpositions: the optimal solution may involve
transposing T; with T}, an operation that we are not permitting because we chose to split the
verification there. We solve this in a rather simple but effective way: if we cannot find an occurrence
in a candidate area, we give it a second chance after transposing both characters in the text.

7.2 Extended Patterns

The treatment for extended patterns is quite a combination of the extension from simple to extended
patterns without errors and the use of & + 1 rows or the partition into k& 4+ 1 pieces in order to
permit k errors. However, there are a few complications that deserve mention.

A first one is that the propagation of active states due to optional and repeatable characters
does not mix well with transpositions (for example, try to draw an automaton that finds "abc?de"
with one transposition in the text "...adbe..."). We solved the problem in a rather practical way.
Instead of trying to simulate a complex automaton, we have two parallel automata. The R masks
are used in the normal way without permitting transpositions (but permitting the other errors and
the optional and repeatable characters), and they are always one character behind the current text
position. Each T mask is obtained from the R mask of the previous row by processing the last two
text characters in reverse order, and its result is used for the R mask of the same row in the next
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iteration. The code to process text position j is follows (the initial values are as always)

R6 — ((Ro << 1) | Om_ll) & B[tj_l]
for 1€1...k do
R, «+— ((Ri<<1) & Btju]) | (B & S[tj-1])
| Ric1 | (Ric1<<1l) | (R, <<1) | T
Df «— R, | F
R« R | (4% ((~(Df-1) " D)
T, «— ((Rima<<1) | 0™7') & Bt;] | (R & S[t])
Df « T | F
T« T | (A& ((~(Df-1) " D)
T (T<<1) | 0™) & Blti1] | (T & Slt))

where the A, I and F masks are defined in Section 5.

A second complication is that subpattern optimization changes. For the forward and backward
automata we use the same technique for searching without errors but we add %k to the number of
processed window positions for any subpattern. So it remains to be explained how is the optimiza-
tion for the partitioning into k + 1 subpatterns.

We have prob and sprob computed in O(m) time as for normal extended patterns. A first
condition is that the k£ + 1 pieces must be disjoint, so we compute reach[l...m,1...L'], where
L'"=|(L —k)/(k+ 1)] is the maximum length of a piece as before (L is the minimum length of
a pattern occurrence as in Section 5) and reach[, £] gives the last pattern position reachable in ¢
text characters from i. This is computed in O(m?) time as reach[i, 0] = 7 and, for increasing £ > 0,

t «— reachli,{—1]+1
while (t <m A (4 & 0™7*101 £0™m)) ¢t «— t+1
reach[i, f] «— t

We then compute pprob, mprob and pcost exactly as in Section 5.5, in O(m?) time. Finally, the
selection of the best set of k + 1 subpatterns is done with mbest and ibest just as in Section 7.1.2,
the only difference being that reach is used to determine which is the first unused position if pattern
position 7 is chosen and a minimum piece length £ has to be reserved for it. The total process takes
O(m?) time.

7.3 Regular Expressions

Finally, nrgrep permits searching for regular expressions allowing errors. The same mechanisms used
for simple and extended patterns are used, namely using k+ 1 replicas of the search automaton and
splitting the pattern into k 4 1 disjoint pieces. Both adaptations present important complications
with respect to their simpler counterparts.

7.3.1 Forward and Backward Search

One problem in regular expressions is that the concept of “forward” does not immediately mean
one shift to the right. Approximate searching with k41 copies of the NFA of the regular expression
implies being able to move “forward” from row ¢ to row ¢ 4 1, as Figure 11 shows.
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0 errors

1 error

2 errors

Figure 11: Glushkov’s resulting NFAs for the search of the regular expression "abcd(dle) (e|f)de"
with two insertions, deletions or replacements. To simplify the plot, the dashed lines represent
deletions and replacements (i.e. they move by ¥ U {e}), while the vertical lines represent insertions
(i.e. they move by ).

For this sake, we use our table T, which for each state D? gives the bit mask of all the states
reachable from D in one step. The update formula upon reading a new text character ¢; is therefore

Ry +«— T[Rq & B[t4]

oldRy +— Ry

for i€1...k do
R, «— (T[R] & Blt;]) | Ri-x | T[Ri-y | Biy] | (T[T[oldRi-1] & BIt;]] & Bl[t;-1])
OldRi_l — R; 1

The rationale is as follows. Ry is computed according to the simple formula for regular expres-
sion searching without errors. For ¢ > 0, R} permits arrows coming from matching the current
character (T'[R;] & B[t;]), “vertical” arrows representing insertions in the pattern (R;_;) and “di-
agonal” arrows representing replacements (from R;_;) and deletions (from R._;), which are joined
in T[R;_1|R;_,]. Finally, transpositions are arranged in a rather simple way. In oldR we store the
value of R two positions in the past (note the way we update it to avoid having two arrays, oldR
and oldoldR), and each time we permit from that state the processing of the last two text character
in reverse order.

Forward scanning, backward scanning, and the verification of occurrences are carried out in
the normal way using this update technique. The technique to select the best necessary factor is
unaltered except that we add %k to the number of characters that are scanned inside every text
window.

3Recall that in the deterministic simulation, each bit mask of active NFA states D is identified as a state.
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7.3.2 Splitting into k& 4+ 1 Subexpressions

If we can select k+ 1 necessary factors of the regular expression as done in Section 6.3 for selecting
one necessary factor, then we can be sure that at least one of them will appear unaltered in any
occurrence with k errors or less. As before, in order to include the transpositions we need to ensure
that one character is left between consecutive necessary factors.

We first consider how, once the subexpressions have been selected, can we perform the multi-
pattern search. Each subexpression has a set of initial and final states. We reverse all the arrows
and convert the formerly initial states of all the subexpressions into final states. Since we search
for any reverse factor of the regular expression, all the states are made initial.

We set the window length to the shortest path from an initial to a final state. At each window
position, we read the text characters backward and feed the transformed automaton. Each time
we arrive to a final state we know that the prefix of a necessary subexpression has appeared. If we
happen to be at the beginning of the window then we check for the whole pattern as before. We
keep masks with the final states of each necessary factor in order to determine, from the current
mask of active states, which of them matched (recall that a different verification is triggered for
each).

Figure 12 illustrates a possible selection of two necessary factors (corresponding to k = 1) for
our running example "abcd(dle) (elf)de". These are "abc'" and "(dle) (elf)de", where the first
"d" has been left to separate both necessary factors. Their minimum length is 3, so this is the
window length to use.

Figure 12: An automaton recognizing reverse prefixes of two necessary factors of
"abcd(dle) (elf)de", based on the Glushkov construction of Figure 5. Note that there are no
transitions among subexpressions.

The difficult part is how to select k + 1 necessary and disjoint factors from a regular expression.
Disjoint means that the subautomata do not share states (this ensures that there is a character
separating them, which is necessary for transpositions). Moreover, we want the best set, and we
want that all them have the same minimum path length from an initial to a final state.

We believe that an algorithm finding the optimal choice has a time cost which grows expo-
nentially with k. We have therefore made the following simplification. Each node s is assigned a
number I, which corresponds to the length of the shortest path reaching it from the initial state.
We do not permit picking arbitrary necessary factors, but only those subautomata formed by all
the states s that have numbers ¢ < I, < ¢+ £, for some ¢ and £. This £ is the minimum window
length to search using that subautomata, and should be the same for all the necessary factors
chosen. Moreover, every arrow leaving out of the chosen subautomaton is dropped. Finally, note
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that if the ¢ values corresponding to any pair of subautomata chosen differ by more than £ then we
are sure that they are disjoint.

Figure 13 illustrates this numbering for our running example. The partition obtained in Fig-
ure 12 corresponds to choosing the ranges [0, 3] and [4, 7] as the sets of states (this corresponds to
the sets {0,1,2,3} and {4,5,6,7,8,9}). Of course the method does not permit us to choose all the
legal sets of subautomata. In this example, the necessary subautomaton {6, 7,8} cannot be picked
because it includes some, but not all, states numbered 5.

~N - - -

) ! !
| | |
| | |
5 5 6

! ! !
| | |
| | |
3 4 5

|
N - - >

}
I's 0
Figure 13: Numbering Glushkov’s NFA states for the regular expression "abcd(dle) (e|f)de".

Numbering the states is easily done by a closure process starting from the initial state in
O(Lm?/w) time, where L is the minimum length of a string matching the whole regular expression.
As before, L' = | (L — k)/(k+ 1) | is the maximum possible length of a string matching a necessary
factor.

To determine the best factors, we first compute prob, pprob, mprob and cost exactly as in
Section 6.3. The only difference is that now we are only interested in starting from sets of initial
states of the same I, number (there are L possible choices) and we are interested in analyzing
factors of length no more than L' = O(L/k). This lowers the costs to compute the previous arrays
to O((L'm)?) = O((Lm/k)?). We also make sure that we do not select subautomata that need
more than w bits to be represented.

Once we have the expected cost of choosing any possible I, value and any possible minimum
factor length £, we can apply the optimization algorithm of Section 7.1.2, since we have in fact
“linearized” the problem: thanks to our simplification, the optimization problem is similar to when
we had a single pattern and needed to extract the best set of k 4+ 1 disjoint factors from it, of a
single length £. This takes O(L?) in the worst case but should in practice be closer to O(kL).

Hence the total optimization algorithm needs O(m?*) time at worst.

8 A Pattern Matching Software

Finally, we are in position to describe the software nrgrep. Nrgrep has been developed in ANSI C
and tested on Linux and Solaris platforms. Its source code is publicly available under a Gnu license
4, We discuss now its main aspects.

*From http://www.dcc.uchile.cl/~gnavarro/pubcode/.
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8.1 Usage and Options

Nrgrep receives in the command line a pattern and a list of files to search. The syntax of the pattern
is given in Section 2. If no options are given, nrgrep searches the files in the order given and prints
all the lines where it finds the pattern. If more than one file is given then the file name is printed
prior to the lines that have matched inside it, if there is one. If no file names are given, it receives
the text from the standard input.

The default behavior of nrgrep can be modified with a set of possible options, which prefixed
by the minus sign can precede the pattern specification. Most of them are inspired in agrep:

i: the search is case insensitive;

: only whole words matching the pattern are accepted;

Hoo=

: only whole records (e.g. lines) matching the pattern are accepted;

: just counts the matches, does not print them;

: outputs the names of the files containing matches, but not the matches themselves;
: outputs the whole contents of the files containing matches;

: does not output file names;

: prints records preceded by their record number;

< B B &2 H 0

: reverse matching, reports the records that do not match.

d < delim >: sets the record delimiter to < delim >, which is "\n#" by default. A "#" at the
end of the delimiter makes it appear as a part of the previous record (default is next), so
by default the end of line is the record delimiter and is considered as a part of the previous
record;

< bufsize >: sets the buffer size, default is 64 Kb. This affects the efficiency and the possibility
of cutting very long records that do not fit in a buffer;

o

2]

< sep >: prints the string < sep > between each pair of records output;

'

< err > [idst]: allows up to < err > errors in the matches. If idst is not present the errors
permitted are (i)nsertions, (d)eletions, (s)ubstitutions and (t)ranspositions, otherwise a subset
of them can be specified, e.g. "~k 3ids";

=

: takes the pattern literally (no special characters);

==

: explains the usage and exits.

We now discuss briefly how each of these options are implemented: -i is easily carried out by
using classes of characters; -w and -x are handled using context conditions; -c, -1, =G, -h, -b and
-s are easily handled, but some changes are necessary such as stopping the search when the first
match is found for -1 and -G; -n and -v are more complicated because they force all the records to
be processed, so we first search for the record delimiters and then search for the pattern inside the
records (normally we search for the pattern and find record delimiters around occurrences only);
-d is arranged by just changing the record delimiter (it has to be a simple pattern, but classes or
characters are permitted); -k switches to approximate searching and the [idst] flags are considered
at verification time only; and -L avoids the normal parsing process and considers the pattern as a
simple string.
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Of course it is permitted to combine the options in a single string preceded by the minus sign
or as a sequence of strings, each preceded by the minus sign. Some combinations, however, make
no sense and are automatically overriden (a warning message is issued): filenames are not printed
if the text comes by the standard input; -c and -G are not compatible and -¢ dominates; -n and
-1 are not compatible and -1 dominates; -1 and -G are not compatible and -G dominates; and -G
is ignored when working on the standard input (since -G works by printing the whole file from the

shell).

8.2 Parsing the Pattern

One important aspect that we have not discussed is how is the parsing done. In principle we just
have to parse a regular expression. However, our parser module carries out some other tasks, such
as

Parsing our extended syntax: some of our operations, such as "?" and classes of characters,
are not part of the classical regular expression syntax. The result of the parsing is a syntax
tree which is not discarded, since as we have seen it is useful later for preprocessing regular
expressions.

Map the pattern to bit mask positions: the parser determines the number of states required
by the pattern and assigns the bit positions corresponding to each part of the pattern speci-
fication.

Determine type of subexpression: given the whole pattern or a subset of its states, the parser
is able to determine which type of expression is involved (simple, extended, or regular expres-
sion).

Algebraic simplification: the parser performs some algebraic simplification on the pattern to
optimize the search and reduce the number of bits needed for it.

The parsing phase operates in a top-down way. It first tries to parse an or ("|") of subex-
pressions. Each of them is parsed as a concatenation of subexpressions, each of which is a “single
expression” finished with a sequence of "*", "?" or "+" terminators, and the single expression is
either a single symbol, a class of characters or a top-level expression in parentheses. Apart from
the syntax tree, the parser produces a mapping from positions of the pattern strings to leaves of
the syntax tree, meaning that the character or class described at that pattern position must be
loaded at that tree leaf.

The second step is the algebraic simplification, which proceeds bottom-up and is able to enforce
the following rules at any level

1. If [C;] and [Cy] are classes of characters then [C4] | [C2] — [C1C3].
2. If [C] is a class, then [C] | €, ¢ | [C] — [C]7.

3. If F is any subexpression, then £ - ¢, ¢ -EF — E.
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4. If F is any subexpression, then E xx, E7%, E 4%, Ex?, E+4+?, Ex+, E?7+ — Ex, and
E?? — E?E++ — E4.

5. ¢ |e,ex, €7, e+ — e

6. A subexpression which can match the empty string and appears at the beginning or at the
end of the pattern is replaced by ¢, except when we need to match whole words or records.

To collapse classes of characters in a single node (first rule) we traverse the obtained mapping
from pattern positions to tree leaves, find those mapping to the leaves that store [C}] and [C5] and
make all them point to the new leaf that represents [C1C3].

More simplifications are possible, but they are more complicated and we chose to stop here for
the current version of nrgrep. Some interesting simplifications that may reduce the number of bits
required to represent the pattern are zwz|luwv — (z|u)w(z|v), EEx — E+ and E|E — FE
for arbitrarily complex E (right now we do that just for leaves).

After the simplification is done we assign positions in the bit mask corresponding to each
character/class in the pattern. This is easily done by traversing the leaves left to right and assigning
one bit to each leaf of the tree except to those storing ¢ instead of a class of characters. Note that
this works as expected on simple and extended patterns as well. For several purposes (including
Glushkov’s NFA construction algorithm) we need to store which are the bit positions used inside
every subtree, which of these correspond to initial and final states, and whether the empty string
matches the subexpression. All this is easily done in the same recursive traversal over the tree.

Once we have determined the bits that correspond to each tree leaf and the mapping from
pattern positions to tree leaves, we build a table of bit masks B, such that B[c] tells which pattern
positions are activated by the character ¢. This B table can be directly used for simple and extended
patterns, and it is the basis to build the DFA transitions of regular expressions.

Finally, the parser is able to tell which is the type of the pattern that it has processed. This
can be different from what the syntax used to express the pattern may suggest, for example
"a(blc)dexe(f|g)" is the simple pattern "al[bclde[fgl", which is discovered by the simplifi-
cation procedure. This is in our general spirit of not being mislead by simple problems presented in
a complicated way, which motivated us to select optimum subpatterns to search for. As a secondary
effect of simplifications, the number of bits required to represent the pattern may be reduced.

A second reason to be able to determine the real type of pattern is that the scanning subpattern
selected can be simpler than the whole pattern and hence it can admit a faster search algorithm.
For this sake we permit determining the type not only of the whole pattern but also of a selected
set of positions.

The algorithm for determining the type of pattern or subpattern starts by assuming a simple
pattern until it finds evidence of an extended pattern or a regular expression. The algorithm enters
recursively into the syntax tree of the pattern avoding entering subexpressions where no selected
state is involved. Among those that have to be entered in order to reach the selected states, it
answers “simple” for the leaves of the tree (characters, classes and €), and in concatenations it
takes the most complex type among the two sides. When reaching an internal node "7", "x" or
"+ it assumes “extended” if the subtree was just a single character, otherwise it assumes “regular
expression”. The latter is always assumed when an or ("|") that could not be simplified is found.
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8.3 Software Structure

Nrgrep is implemented as a set of modules, which permits easy enrichment with new types of
patterns. Each type of pattern (simple, extended and regular expression) has two modules to deal
with the exact and the approximate case, which makes six modules: simple, esimple, extended,
eextended, regular, eregular (the prefix "e" stands for allowing (e)rrors). The other modules
are:

basics,options,except,memio: basic definitions, exception handling and memory and I/O man-
agement functions.

bitmasks: handles operations on simple and multi-word bit masks.
buffer: implements the buffering mechanism to read files.
record: takes care of context conditions and record management.
parser: performs the parsing.

search: template that exports the preprocessing and search functions which are implemented in
the six modules described (simple, etc).

shell: interacts with the user and provides the main program.

The template search facilitates the management of different search algorithms for different
pattern types. Moreover, we remind that the scanning procedure for a pattern of a given type can
use a subpattern whose type is simpler, and hence a different scanning function is used. This is
easily handled with the template.

9 Some Experimental Results

We present now some experiments comparing the performance of nrgrep version 1.1 against that of
its best known competitors, Gnu grep version 2.4 and agrep version 3.0.

Agrep [29] uses for simple strings a very efficient modification of the Boyer-Moore-Horspool
algorithm [12]. For classes of characters and wild cards (denoted "#" and equivalent to ".*") it
uses an extension of the Shift-Or algorithm explained in Section 3.1, in all cases based on forward
scanning. For regular expressions it uses a forward scanning with the bit parallel simulation of
Thompson’s automaton, as explained in Section 3.4. Finally, for approximate searching of simple
strings it tries to use partitioning into k + 1 pieces and a multipattern search algorithm based on
Boyer-Moore, but if this does not promise to yield good results it prefers a bit-parallel forward
scanning with the automaton of k 4 1 rows (these techniques were explained in Section 3.5). For
approximate searching of more complex patterns agrep uses only this last technique.

Gnu Grep cannot search for approximate patterns, but it permits all the extended patterns and
regular expressions. Simple strings are searched for with a Boyer-Moore-Gosper search algorithm
(similar to Horspool). All the other complex patterns are searched for with a lazy deterministic
automaton, i.e. a DFA whose states are built as needed (using forward scanning). To speed up the
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search for complex patterns, grep tries to extract their longest necessary string, which is used as a
filter and searched for as a simple string. In fact, grep is able to extract a necessary set of strings,
i.e. such that one of the strings in the set has to appear in every match. This set is searched for as a
filter using a Commentz-Walter like algorithm [7], which is a kind of multipattern Boyer-Moore. As
we will see, this extension makes grep very powerful and closer to our goal of a smooth degradation
in efficiency as the pattern gets more complex.

The experiments were carried out over 100 Mb of English text extracted from Wall Street
Journal articles of 1987, which are part of the TREC collection [11]. Two different machines were
used: SUN is a Sun UltraSparc-1 of 167 MHz with 64 Mb RAM running Solaris 2.6, and INTEL is
an i686 of 550 MHz with 64 Mb RAM running Linux Red Hat 6.2 (kernel 2.2.14-5.0). Both are
32-bit machines (w = 32).

To illustrate the complexity of the code, we show the sizes of the sources and executables in
Table 1. The source size is obtained by summing up the sizes of all the ".c" and ".h" files. The
size of the executables is computed after running Unix’s "strip" command on them. As can be
seen, nrgrep is in general a simpler software.

Software Source size | Executable size | Executable size
(sun) (INTEL)
agrep v. 3.0 | 412.49 Kb 152.79 Kb 136.26 Kb
grep v. 2.4 | 472.65 Kb 80.91 Kb 73.83 Kb
nrgrep v 1.1 | 281.52 Kb 92.50 Kb 89.59 Kb

Table 1: Sizes of the different softwares under comparison.

The experiments were repeated for 100 different patterns of each kind. To minimize the inter-
ference of 1/0 times in our measures, we had the text in a local disk, we considered only user times
and we asked the programs to show the count of matching records only. The records were the lines
of the file. The same patterns were searched for on the same text for grep, agrep and nrgrep.

Our first experiment shows the search times for simple strings of lengths 5 to 30. Those strings
were randomly selected from the same text starting at word beginnings and taking care of including
only letters, digits and spaces. We also tested how the "-i" (case insensitive search) and "-w"
(match whole words) affected the performance, but the differences were negligible. We also made
this experiment allowing 10% and 20% of errors (i.e. £k = [0.1m| or k = |0.2m]). In the case of
errors grep is excluded from the comparison because it does not permit approximate searching.

As Figure 14 shows, nrgrep is competitive against the others, more or less depending on the
machine and the pattern length. It works better on the INTEL architecture and on moderate length
patterns rather than on very short ones. It is interesting to notice that in our experiments grep
performed better than agrep.

When searching allowing errors, nrgrep is slower or faster than agrep depending on the case.
With low error levels (10%) they are quite close, except for m = 20, where for some reason agrep
performs consistently bad on sUN. With moderate error levels (20%) the picture is more complicated
and each of them is better for different pattern lengths. This is a point of very volatile behavior
because 20% happens to be very close to the limit where splitting into k + 1 pieces ceases to be a
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good choice, and a small error estimating the probability of a match produces dramatic changes in
the performance. Depending on each pattern, a different search technique is used.

On the other hand, the search permitting transpositions is consistently worse than the one not
permitting them. This is not only because when splitting into k& + 1 pieces they may have to be
shorter to allow one free space among them, but also because even when they can have the same
length the subpattern selection process has more options to find the best pieces if no space has to
be left among them.

The behavior of nrgrep, however, is not as erratic as it seems to be. The non-monotonic behavior
can be explained in terms of splitting into k + 1 pieces. As m grows, the length of the pieces that
can be searched for grows, tending to the real m/(k + 1) value from below. For example, for k =
20% of m, we have in the case of transpositions to search for 2 pieces of length 2 when m = 5.
For m = 10 we have to search for 3 pieces of length 2, which is estimated to produce too many
verifications and then another method is used. For m = 15, however, we have to search for 4 pieces
of length 3, which has much lower probability of occurrence and recommends again splitting into
k+1 pieces. The differences between searching using or not transpositions is explained in the same
way. For m = b, we have to search for 2 pieces of length 2 no matter whether transpositions are
permitted. But for m = 10 we can search for 3 pieces of length 3 if no transpositions are permitted,
which yields much better search time for that case. We remark that permitting transpositions has
the potential of yielding approximate searching of better quality, and hence obtain the same (or
better) results using a smaller k.

Our second experiment aims at evaluating the performance when searching for simple patterns
that include classes of characters. We have selected strings as before from the text and have
replaced some random positions with a class of characters. The classes have been: upper and lower
case versions of the letter replaced (called “case” in the experiments), all the letters ([a-zA-Z],
called “letters” in the experiment) and all the characters (".", called “all” in the experiments). We
have considered pattern lengths of 10 and 20 and an increasing number of positions converted into
classes. We show also the case of length 15 and k = 2 errors (excluding grep).

As Figure 15 shows, nrgrep deals much more efficiently with classes of characters than its
competitors, worsening slowly as there are more or bigger classes to consider. Agrep yields always
the same search time (coming from a Shift-Or like algorithm). Grep, on the other hand, worsens
progressively as the number of classes grows but is independent on how big the classes are, and it
worsens much faster than nrgrep. We have included the case of zero classes basically to show the
effect of the change of agrep’s search algorithm.

Our third experiment deals with extended patterns. We have selected strings as before from the
text and have added an increasing number of operators "?", "*" or "+" to it, at random positions
(avoiding the first and last ones). For this sake we had to use the "-E" option of grep, which
deals with regular expressions, and convert F+ into E Ex for agrep. Moreover, we found no way to
express the "?" in agrep, since even allowing regular expressions, it did not permit specifying the
¢ string or the empty set (a? = (ale) = (a|0x)). We also show how agrep and nrgrep perform to
search for extended patterns allowing errors. Because of agrep’s limitations, we chose m = 8 and
k =1 errors (no transpositions permitted) for this test.

As Figure 16 shows, agrep has a constant search time coming again from Shift-Or like searching
(plus some size limitations on the pattern). Both grep and nrgrep improve as the problem becomes
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Figure 14: Search times on 100 Mb for simple strings using exact and approximate searching.
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Figure 15: Exact and approximate search times on 100 Mb for simple patterns with a varying
number of classes of characters.
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simpler, but nrgrep is consistently faster. Note that the problem is necessarily easier with the "+"
operator because the minimum length of the pattern is not reduced as the number of operators
grows. We have again included the case of zero operators to show how agrep jumps.

With respect to approximate searching, nrgrep is consistently faster than agrep, whose cost is a
kind of worst case which is reached when the minimum pattern length becomes 4. This is indeed a
very difficult case for approximate searching and nrgrep wisely chooses to do forward scanning on
that case.

Our fourth experiment considers regular expressions. It is not easy to define what is a “random”
regular expression, so we have tested 9 complex patterns that we considered interesting to illustrate
the different alternatives for the efficiency. These have been searched for with zero, one and two
errors (no transpositions permitted). Table 2 shows the patterns selected and some aspects that
explain the efficiency problems to search for them.

No. | Pattern Size Minimum % of lines that match
(#£ chars) | length £ | exactly | 1 error | 2 errors

1 American|Canadian 16 8 1.245 1.561 1.872
2 American|Canadian|Mexican 23 7 1.288 1.604 2.134
3 Amer[a-z]*can 8 7 0.990 1.309 1.693
4 Amer[a-z]*can|Can[a-z]*ian 15 6 1.245 1.731 8.733
5 Ame(il(rli)*)can 9 6 0.990 1.312 2.262
6 Am[a-z]*ri[a-z]*an 8 6 0.991 1.422 3.756
7 (Am|Ca) (er|na) (icl|di)an 14 8 1.245 1.561 1.905
8 American#*policy 15 14 0.002 0.003 0.008
9 A(mer|i)+can#*p(olilcy) 15 8 0.007 0.013 0.164

Table 2: The regular expressions searched for (written with the syntax of nrgrep). Note that some
are indeed extended patterns.

Table 3 shows the results. These are more complex to interpret than in the previous cases, and
there are important differences in the behavior of the same code depending on the machines.

For example, grep performed consistently well on INTEL, while it showed wide differences on
SUN. We believe that this comes from the fact that in some cases grep cannot find a suitable set of
filtering strings (patterns 1, 2, 4 and 7). In those cases the time corresponds to that of a forward
DFA. On the INTEL machine, however, the search times are always good.

Another example is agrep, which has basically two different times on sSUN and always the same
time on INTEL. Despite that agrep uses always forward scanning with a bit-parallel automaton, it
takes on the SUN half the time when the pattern is very short (up to 12 positions), while it is slower
for longer patterns. This difference seems to come from the number of computer words needed for
the simulation, but this seems not to be important on the INTEL machine. The approximate search
using agrep (which works only on the shorter patterns) scales in time accordingly to the number of
computer words used, although there is a large constant factor added in the INTEL machine.

Nrgrep performs well on exact searching. All the patterns yield fast search times, in general
better than those of grep on INTEL and worse on SUN. The exception is where grep does not use
filtering in the sUN machine, and nrgrep becomes much faster. When errors are permitted the
search times of nrgrep vary depending on its ability to filter the search. The main aspects that
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Figure 16: Exact and approximate search times on 100 Mb for

45

extended patterns with a varying
number of operators. Where, on SUN, Agrep is out of bounds, it takes nearly 18 seconds.



affect the search time are the frequency of the pattern and its size. When compared to agrep, nrgrep
performs always better on exact searching and better or similarly on approximate searching.

SUN
No. grep agrep nrgrep
0 errors || O errors | 1 error | 2 errors || 0 errors | 1 error | 2 errors
1 8.13 18.46 2.31 4.78 52.40
2 8.14 18.12 2.41 12.34 58.81
3 1.57 9.27 23.64 32.95 2.42 3.49 33.06
4 7.74 18.07 3.84 13.28 29.42
5 2.01 9.46 22.93 32.75 2.41 10.08 18.83
6 2.39 9.41 23.13 33.03 3.18 25.03 31.30
7 9.00 18.23 2.04 3.60 18.99
8 1.69 18.39 1.76 3.33 5.24
9 2.84 18.54 3.04 8.27 18.16
INTEL
No. grep agrep nrgrep
0 errors || O errors | 1 error | 2 errors || 0 errors | 1 error | 2 errors

1 34.87 42.43 25.16 38.33 55.82
2 34.41 42.46 28.78 42.38 58.18
3 30.86 40.12 43.34 44.86 22.90 32.48 48.04
4 35.61 41.81 33.72 45.06 50.52
5 33.81 40.34 43.43 44.78 26.01 39.78 43.84
6 34.95 39.96 43.31 45.88 27.29 43.28 58.21
7 35.27 41.13 23.87 36.51 44.23
8 28.70 42.10 23.33 32.53 35.81
9 34.18 41.59 27.61 39.44 43.42

Table 3: Search times for the selected regular expressions. There are empty cells because agrep
severely restricts the lengths of the complex patterns that can be approximately searched for.

The general conclusions from the experiments are that nrgrep is, for exact searching, competitive
against agrep and grep, while it is in general superior (sometimes by far) when searching for classes
of characters and extended patterns, exactly or allowing errors. When it comes to search for regular
expressions, nrgrep is in general, but not always, faster than grep and agrep.

One final word about nrgrep’s smoothness is worthwhile. The reader may get the impression
that nrgrep’s behavior is not as smooth as promised because it takes very different times for different
patterns, for example on regular expressions, while agrep’s behavior is much more predictable. The
point is that some of these patterns are indeed much simpler than others, and nrgrep is much faster
to search for the simpler ones. Agrep, on the other hand, does not distinguish between simple and
complicated cases. Grep does a much better job but it does not deal with the complex area of
approximate searching. Something similar happens on other cases: nrgrep had the highest variance
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when searching for patterns where classes were inserted at random points. This is because this
random process does produce a high variance in the complexity of the patterns: it is much simpler
to search for the pattern when all the classes are in one extreme (then cutting it out from the
scanning subpattern) than when they are uniformly spread. Nrgrep’s behavior simply mimics the
variance in its input, precisely because it takes time proportional to the real complexity of the
search problem.

10 Conclusions

We have presented nrgrep, a fast online pattern matching tool especially well suited for complex
pattern searching on natural language text. Nrgrep is now at version 1.1, and publicly available
under a Gnu license. Qur belief is that it can be a successful new member of the grep family. The
Free Software Foundation has shown interest in making nrgrep an important part of a new release
of Gnu grep, and we are currently defining de details.

The most important improvements of nrgrep over the other members of the grep family are:

Efficiency: nrgrep is similar to the others when searching for simple strings (a sequence of single
characters) and some regular expressions, and generally much faster for all the other types of
patterns.

Uniformity: our search model is uniform, based on a single concept. This translates into smooth
variations in the search time as the pattern gets more complex, and into an absence of obscure
restrictions present in agrep.

Extended patterns: we introduce a class of patterns which is intermediate between simple pat-
terns and regular expressions and develop efficient search algorithms for it.

Error model: we include character transpositions in the error model.

Optimization: we find the optimal subpattern to scan the text and check the potential occurrences
for the complete pattern.

Some possible extensions and improvements have been left for future work. The first one is a
better computation of the matching probability, which has a direct impact on the ability of nrgrep
for choosing the right search method (currently it normally succeeds, but not always). A second
one is a better algebraic optimization of the regular expressions, which has also an impact on the
ability to correctly compute the matching probabilities. Finally, we would also like to be able to
combine exact and approximate searching as agrep does, where parts of the pattern accept errors
and others do not. It is not hard to do this by using bit masks that control the propagation of
errors.
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