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Abstract

We show that the compressed suffix array and the
compressed suffix tree of a string T can be built in
O(n) deterministic time using O(n log σ) bits of space,
where n is the string length and σ is the alphabet
size. Previously described deterministic algorithms
either run in time that depends on the alphabet size
or need ω(n log σ) bits of working space. Our result
has immediate applications to other problems, such as
yielding the first deterministic linear-time LZ77 and
LZ78 parsing algorithms that use O(n log σ) bits.

1 Introduction

In the string indexing problem we pre-process a string
T , so that for any query string P all occurrences of P in
T can be found efficiently. Suffix trees and suffix arrays
are two most popular solutions of this fundamental
problem. A suffix tree is a compressed trie on suffixes of
T ; it enables us to find all occurrences of a string P in T
in time O(|P |+occ) where occ is the number of times P
occurs in T and |P | denotes the length of P . In addition
to indexing, suffix trees also support a number of other,
more sophisticated, queries. The suffix array of a string
T is the lexicographically sorted array of its suffixes.
Although suffix arrays do not support all queries that
can be answered by the suffix tree, they use less space
and are more popular in practical implementations.
While the suffix tree occupies O(n log n) bits of space,
the suffix array can be stored in n log n bits.

During the last twenty years there has been a
significant increase in interest in compressed indexes,
i.e., data structures that keep T in compressed form and
support string matching queries. The compressed suffix
array (CSA) [19, 13, 38] and the compressed suffix tree
(CST) [39] are compressed counterparts of the suffix
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array and the suffix tree respectively. A significant
part of compressed indexes relies on these two data
structures or their variants. Both CSA and CST can
be stored in O(n log σ) bits or less; we refer to e.g. [6]
or [32] for an overview of compressed indexes.

It is well known that both the suffix array and
the suffix tree can be constructed in O(n) time [28,
42, 43, 23]. The first algorithm that constructs the
suffix tree in linear time independently of the alphabet
size was presented by Farach [12]. There are also
algorithms that directly construct the suffix array of
T in O(n) time [22, 24]. If the (uncompressed) suffix
tree is available, we can obtain CST and CSA in O(n)
time. However this approach requires O(n log n) bits of
working space. The situation is different if we want to
construct compressed variants of these data structures
using only O(n log σ) bits of space. Within this space
the algorithm of Hon et al. [21] constructs the CST in
O(n logε n) time for an arbitrarily small constant ε > 0.
In the same paper the authors also showed that CSA can
be constructed in O(n log log σ) time. The algorithm of
Okanohara and Sadakane constructs the CSA in linear
time, but needs O(n log σ log log n) bits of space [36].
Belazzougui [1] described randomized algorithms that
build both CSA and CST in O(n) time and O(n log σ)
bits of space. His approach also provides deterministic
algorithms with runtime O(n log log σ) [2]. In this paper
we show that randomization is not necessary in order to
construct CSA and CST in linear time. Our algorithms
run in O(n) deterministic time and require O(n log σ)
bits of space.

Suffix trees, in addition to being an important part
of many compressed indexes, also play an important
role in many string algorithms. One prominent example
is Lempel-Ziv parsing of a string using O(n log σ) bits.
The best previous solutions for this problem either take
O(n log log σ) deterministic time or O(n) randomized
time [25, 9]. For instance Köppl and Sadakane [25]
showed how we can obtain LZ77- and LZ78-parsing for
a string T in O(n) deterministic time and O(n log σ)
bits, provided that the CST of T is constructed. Thus
our algorithm, combined with their results, leads to the
first linear-time deterministic LZ-parsing algorithm that



needs O(n log σ) bits of space.
Overview. The main idea of our approach is the

use of batch processing. Certain operations, such as
rank and select queries on sequences, are a bottleneck
of previous deterministic solutions. Our algorithms are
divided into a large number of small tasks that can be
executed independently. Hence, we can collect large
batches of queries and answer all queries in a batch.
This approach speeds up the computation because, as
will be shown later, answering all queries in a batch
takes less time than answering the same set of queries
one-by-one. For example, our algorithm for generating
the Burrows-Wheeler Transform of a text T works as
follows. We cut the original text into slices of ∆ =
logσ n symbols. The BWT sequence is constructed
by scanning all slices in the right-to-left order. All
slices are processed at the same time. That is, the
algorithm works in ∆ steps and during the j-th step,
for 0 ≤ j ≤ ∆ − 1, we process all suffixes that start
at position i∆ − j − 1 for all 1 ≤ i ≤ n/∆. Our
algorithm maintains the sorted list of suffixes and keeps
information about those suffixes in a symbol sequence
B. For every suffix Si = T [i∆−j−1..] processed during
the step j, we must find its position in the sorted list of
suffixes. Then the symbol T [i∆ − j − 2] is inserted at
the position that corresponds to Si in B. Essentially we
can find the position of every new suffix Si by answering
a rank query on the sequence B. Details are given
in Section 2. Next we must update the sequence by
inserting the new symbols into B. Unfortunately we
need Ω(log n/ log log n) time in general to answer rank
queries on a dynamic sequence [15]. Even if we do not
have to update the sequence, we need Ω(log log σ) time
to answer a rank query [7]. In our case, however, the
scenario is different: There is no need to answer queries
one-by-one. We must provide answers to a large batch
of n/∆ rank queries with one procedure. In this paper
we show that the lower bounds for rank queries can be
circumvented in the batched scenario: we can answer
the batch of queries in O(n/∆) time, i.e., in constant
time per query. We also demonstrate that a batch of
n/∆ insertions can be processed in O(n/∆) time. This
result is of independent interest.

Data structures that answer batches of rank queries
and support batched updates are described in Sec-
tions 3, A.2, and A.3. This is the most technically
involved aspect of our result. In Section 3 we show
how answers to a large batch of queries can be pro-
vided. In Section A.2 we describe a special labeling
scheme that assigns monotonously increasing labels to
elements of a list. We conclude this portion in Sec-
tion A.3 where we show how the static data structure
can be dynamized. Next we turn to the problem of con-

structing the compressed suffix tree. First we describe a
data structure that answers partial rank queries in con-
stant time and uses O(n log log σ) additional bits in Sec-
tion A.4; unlike previous solutions, our data structure
can be constructed in O(n) deterministic time. This
result is plugged into the algorithm of Belazzougui [1]
to obtain the suffix tree topology in O(n) deterministic
time. Finally we show how the permuted LCP array
(PLCP) can be constructed in O(n) time, provided we
already built the suffix array and the suffix tree topol-
ogy; the algorithm is described in Section 5. Our al-
gorithm for constructing PLCP is also based on batch
processing of rank queries. To make this paper self-
contained we provide some background on compressed
data structures and indexes in Section A.1.

We denote by T [i..] the suffix of T starting at
position i and we denote by T [i..j] the substring of
T that begins with T [i] and ends with T [j], T [i..] =
T [i]T [i+1] . . . T [n−1] and T [i..j] = T [i]T [i+1] . . . T [j−
1]T [j]. We assume that the text T ends with a special
symbol $ and $ lexicographically precedes all other
symbols in T . The alphabet size is σ and symbols
are integers in [0..σ − 1] (so $ corresponds to 0). In
this paper, as in the previous papers on this topic, we
use the word RAM model of computation. A machine
word consists of log n bits and we can execute standard
bit operations, addition and subtraction in constant
time. We will assume for simplicity that the alphabet
size σ ≤ n1/4. This assumption is not restrictive
because for σ > n1/4 linear-time algorithms that use
O(n log σ) = O(n log n) bits are already known.

2 Linear Time Construction of the
Burrows-Wheeler Transform

In this section we show how the Burrows-Wheeler
transform (BWT) of a text T can be constructed inO(n)
time using O(n log σ) bits of space. Let ∆ = logσ n. We
can assume w.l.o.g. that the text length is divisible
by ∆ (if this is not the case we can pad the text T
with dn/∆e∆ − n $-symbols). The BWT of T is a
sequence B defined as follows: if T [k..] is the (i+ 1)-th
lexicographically smallest suffix, then B[i] = T [k − 1]1.
Thus the symbols of B are the symbols that precede
the suffixes of T , sorted in lexicographic order. We
will say that T [k − 1] represents the suffix T [k..] in B.
Our algorithm divides the suffixes of T into ∆ classes
and constructs B in ∆ steps. We say that a suffix S
is a j-suffix for 0 ≤ j < ∆ if S = T [i∆ − j − 1..]
for some i, and denote by Sj the set of all j-suffixes,

1So B[0] has the lexicographically smallest suffix (i + 1 = 1)

and so on. The exact formula is B[i] = T [(k − 1)modn]. We will
write B[i] = T [k − 1] to avoid tedious details.



Sj = {T [i∆ − j − 1..] | 1 ≤ i ≤ n/∆ }. During the
j-th step we process all j-suffixes and insert symbols
representing j-suffixes at appropriate positions of the
sequence B.

Steps 0− 1. We sort suffixes in S0 and S1 by con-
structing a new text and representing it as a sequence of
n/∆ meta-symbols. Let T1 = T [n− 1]T [0]T [1] . . . T [n−
2] be the text T rotated by one symbol to the right and
let T2 = T [n − 2]T [n − 1]T [0] . . . T [n − 3] be the text
obtained by rotating T1 one symbol to the right. We
represent T1 and T2 as sequences of length n/∆ over
meta-alphabet σ∆ (each meta-symbol corresponds to a
string of length ∆). Thus we view T1 and T2 as se-
quences of meta-symbols; see Fig. 1.

Let T3 = T1 ◦ T2 denote the concatenation of T1

and T2. To sort the suffixes of T3, we sort the meta-
symbols of T3 and rename them with their ranks. Since
meta-symbols correspond to (log n)-bit integers, we can
sort them in time O(n) using radix sort. Then we apply
a linear-time and linear-space suffix array construction
algorithm [22] to T3. We thus obtain a sorted list of
suffixes L for the meta-symbol sequence T3. Suffixes of
T3 correspond to the suffixes from S0∪S1 in the original
text T : the suffix T [i∆ − 1..] corresponds to the suffix

of S0 starting with meta-symbol T [i∆− 1]T [i∆] . . . in

T3 and the suffix T [i∆− 2 . . .] corresponds to the suffix

of S1 starting with T [i∆− 2]T [i∆− 1] . . . . Since we

assume that the special symbol $ is smaller than all
other symbols, this correspondence is order-preserving.
Hence by sorting the suffixes of T3 we obtain the sorted
list L′ of suffixes in S0∪S1. Now we are ready to insert
symbols representing j-suffixes into B: Initially B is
empty. Then the list L′ is traversed and for every suffix
T [k..] that appears in L′ we add the symbol T [k− 1] at
the end of B.

When suffixes in S0 and S1 are processed, we need
to record some information for the next step of our
algorithm. For every suffix S ∈ S1 we keep its position
in the sorted list of suffixes. The position of suffix
T [i∆ − 2..] is stored in the entry W [i] of an auxiliary
array W , which at the end of the j-th step will contain
the positions of the suffixes T [i∆ − j − 1..]. We also
keep an auxiliary array Acc of size σ: Acc[a] is equal to
the number of occurrences of symbols i ≤ a − 1 in the
current sequence B.

Step j for j ≥ 2. Suppose that suffixes from
S0, . . ., Sj−1 are already processed. The symbols
that precede suffixes from these sets are stored in the
sequence B; the k-th symbol B[k] in B is the symbol
that precedes the k-th lexicographically smallest suffix
from ∪j−1

t=0St. For every suffix T [i∆ − j..], we know its
position W [i] in B. Every suffix Si = T [i∆−j−1..] ∈ Sj

can be represented as Si = aS′i for some symbol a and
the suffix S′i = T [i∆ − j..] ∈ Sj−1. We look up the
position ti = W [i] of S′i and answer rank query ri =
ranka(ti, B). We need Ω(log log σ

log logn ) time to answer a

single rank query on a static sequence [7]. If updates
are to be supported, then we need Ω(log n/ log log n)
time to answer such a query [15]. However in our case
the scenario is different: we perform a batch of n/∆
queries to sequence B, i.e., we have to find ri for all ti.
During Step 2 the number of queries is equal to |B|/2
where |B| denotes the number of symbols in B. During
step j the number of queries is |B|/j ≥ |B|/∆. We
will show in Section 3 that such a large batch of rank
queries can be answered in O(1) time per query. Now
we can find the rank pi of Si among ∪jt=1St: there are

exactly pi suffixes in ∪jt=1St that are smaller than Si,
where pi = Acc[a]+ri. Correctness of this computation
can be proved as follows.

Proposition 2.1. Let Si = aS′i be an arbitrary suffix
from the set Sj. For every occurrence of a symbol a′ < a
in the sequence B, there is exactly one suffix Sp < Si in

∪jt=1St, such that Sp starts with a′. Further, there are

exactly ri suffixes Sv in ∪jt=1St such that Sv ≤ Si and
Sv starts with a.

Proof. Suppose that a suffix Sp from St, such that
j ≥ t ≥ 1, starts with a′ < a. Then Sp = a′S′p for
some S′p ∈ St−1. By definition of the sequence B, there
is exactly one occurrence of a′ in B for every such S′p.
Now suppose that a suffix Sv ∈ St, such that j ≥ t ≥ 1,
starts with a and Sv ≤ Si. Then Sv = aS′v for S′v ∈ St−1

and S′v ≤ S′i. For every such S′v there is exactly one
occurrence of the symbol a in B[1..ti], where ti is the
position of S′i in B.

The above calculation did not take into account the
suffixes from S0. We compute the number of suffixes
Sk ∈ S0 such that Sk < Si using the approach of
Step 0 − 1. Let T1 be the text obtained by rotating T
one symbol to the right. Let T ′ be the text obtained
by rotating T j + 1 symbols to the right. We can
sort suffixes of S0 and Sj by concatenating T1 and T ′,
viewing the resulting text T ′′ as a sequence of 2n/∆
meta-symbols and constructing the suffix array for T ′′.
When suffixes in S0 ∪ Sj are sorted, we traverse the
sorted list of suffixes; for every suffix Si ∈ Sj we know
the number qi of lexicographically smaller suffixes from
S0.

We then modify the sequence B: We sort new
suffixes Si by oi = pi + qi. Next we insert the symbol
T [i∆ − j − 1] at position oi − 1 in B (assuming the
first index of B is B[0]); insertions are performed in
increasing order of oi. We will show that this procedure

3



T1 = T [n− 1] . . . T [∆− 2] T [∆− 1] . . . T [2∆− 2] T [2∆− 1] . . . T [3∆− 2] T [3∆− 1] . . . . . .

T2 = T [n− 2] . . . T [∆− 3] T [∆− 2] . . . T [2∆− 3] T [2∆− 2] . . . T [3∆− 3] T [3∆− 2] . . . . . .

Figure 1: T1 and T2 as sequences of meta-symbols (shown in boxes).

also takes O(1) time per update for a large batch of
insertions. Finally we record the position of every new
suffix from Sj in the sequence B. Since the positions of
suffixes from Sj−1 are not needed any more, we use the
entry W [i] of W to store the position of T [i∆− j− 1..].
The array Acc is also updated.

When Step ∆ − 1 is completed, the sequence B
contains n symbols and B[i] is the symbol that pre-
cedes the (i + 1)-th smallest suffix of T . Thus we ob-
tained the BWT of T . Step 0 of our algorithm uses
O((n/∆) log n) = O(n log σ) bits. For all the following
steps we need to maintain the sequence B and the ar-
ray W . B uses O(log σ) bits per symbol and W needs
O((n/∆) log n) = O(n log σ) bits. Hence our algorithm
uses O(n log σ) bits of workspace. Procedures for query-
ing and updating B are described in the following sec-
tion. Our result can be summed up as follows.

Theorem 2.1. Given a string T [0..n − 1] over an al-
phabet of size σ, we can construct the BWT of T in
O(n) deterministic time using O(n log σ) bits.

3 Batched Rank Queries on a Sequence

In this section we show how a batch of m rank queries
for n

log2 n
≤ m ≤ n can be answered in O(m) time on a

sequence B of length n. We start by describing a static
data structure. A data structure that supports batches
of queries and batches of insertions will be described
later. We will assume σ ≥ log4 n; if this is not the case,
the data structure from [14] can be used to answer rank
queries in time O(1).

Following previous work [17], we divide B into
chunks of size σ (except for the last chunk that contains
at most σ symbols). For every symbol a we keep
a binary sequence Ma = 1d101d20 . . . 1df where f is
the total number of chunks and di is the number of
occurrences of a in the chunk. We keep the following
information for every chunk C. Symbols in a chunk C
are represented as pairs (a, i): we store a pair (a, i) if
and only if C[i] = a. These pairs are sorted by symbols
and pairs representing the same symbol a are sorted
by their positions in C; all sorted pairs from a chunk
are kept in a sequence R. The array F consists of σ
entries; F [a] contains a pointer to the first occurrence
of a symbol a in R (or null if a does not occur in C). Let

Ra denote the subsequence of R that contains all pairs
(a, ·) for some symbol a. If Ra contains at least log2 n
pairs, we split Ra into groups Ha,r of size Θ(log2 n).
For every group, we keep its first pair in the sequence
R′. Thus R′ is also a subsequence of R. For each pair
(a′, i′) in R′ we also store the partial rank of C[i′] in C,
rankC[i′](i

′, C).
All pairs in Ha,r are kept in a data structure Da,r

that contains the second components of pairs (a, i) ∈
Ha,r. Thus Da,r contains positions of Θ(log2 n) con-
secutive symbols a. If Ra contains less than log2 n
pairs, then we keep all pairs starting with symbol a
in one group Ha,0. Every Da,r contains O(log2 n) el-
ements. Hence we can implement Da,r so that prede-
cessor queries are answered in constant time: for any
integer q, we can find the largest x ∈ Ha,r satisfying
x ≤ q in O(1) time [16]. We can also find the number of
elements x ∈ Ha,r satisfying x ≤ q in O(1) time. This
operation on Ha,r can be implemented using bit tech-
niques similar to those suggested in [34]; details are to
be given in the full version of this paper.

Queries on a Chunk. Now we are ready to
answer a batch of queries in O(1) time per query.
First we describe how queries on a chunk can be
answered. Answering a query ranka(i, C) on a chunk
C is equivalent to counting the number of pairs (a, j)
in R such that j ≤ i. Our method works in three
steps. We start by sorting the sequence of all queries
on C. Then we “merge” the sorted query sequence
with R′. That is, we find for every ranka(i, C) the
rightmost pair (a, j′) in R′, such that j′ ≤ i. Pair (a, j′)
provides us with an approximate answer to ranka(i, C)
(up to an additive O(log2 n) term). Then we obtain
the exact answer to each query by searching in some
data structure Da,j . Since Da,j contains only O(log2 n)
elements, the search can be completed in O(1) time. A
more detailed description follows.

Suppose that we must answer v queries
ranka1(i1, C), ranka2(i2, C), . . ., rankav (iv, C) on
a chunk C. We sort the sequence of queries by pairs
(aj , ij) in increasing order. This sorting step takes
O(σ/ log2 n+ v) time, where v is the number of queries:
if v < σ/ log3 n, we sort in O(v log n) = O(σ/ log2 n)
time; if v ≥ σ/ log3 n, we sort in O(v) time using radix



sort (e.g., with radix
√
σ). Then we simultaneously

traverse the sorted sequence of queries and R′; for each
query pair (aj , ij) we identify the pair (at, pt) in R′

such that either (i) pt ≤ ij ≤ pt+1 and aj = at = at+1

or (ii) pt ≤ ij , aj = at, and at 6= at+1. That is,
we find the largest pt ≤ ij such that (aj , pt) ∈ R′

for every query pair (aj , ij). If (at, pt) is found, we
search in the group Hat,pt that starts with the pair
(at, pt). If the symbol aj does not occur in R′, then
we search in the leftmost group Haj ,0. Using Dat,pt

(resp. Dat,0), we find the largest position xt ∈ Hat,pt

such that xt ≤ ij . Thus xt is the largest position in
C satisfying xt ≤ ij and C[xt] = aj . We can then
compute rankat(xt, C) as follows: Let n1 be the partial
rank of C[pt], n1 = rankC[pt](pt, C). Recall that we
explicitly store this information for every position in
R′. Let n2 be the number of positions i ∈ Hat,pt

satisfying i ≤ xt. We can compute n2 in O(1) time
using Dat,pt . Then rankaj (xt, C) = n1 + n2. Since
C[xt] is the rightmost occurrence of aj up to C[ij ],
rankaj (ij , C) = rankaj (xt, C). The time needed to

traverse the sequence R′ is O(σ/ log2 n) for all the
queries. Other computations take O(1) time per query.
Hence the sequence of v queries on a chunk is answered
in O(v + σ/ log2 n) time.

Global Sequence. Now we consider the global
sequence of queries ranka1(i1, B), . . ., rankam(im, B).
First we assign queries to chunks (e.g., by sorting all
queries by (bi/σc+ 1) using radix sort). We answer the
batch of queries on the j-th chunk in O(mj + σ/ log2 n)
time where mj is the number of queries on the j-th
chunk. Since

∑
mj = m, all m queries are answered

in O(m + n/ log2 n) = O(m) time. Now we know the
rank nj,2 = rankaj (i

′
j , C), where i′j = ij − bi/σcσ is the

relative position of B[ij ] in its chunk C.
The binary sequences Ma allows us reduce rank

queries on B to rank queries on a chunk C. All
sequences Ma contain n + bn/σcσ bits; hence they use
O(n) bits of space. We can compute the number of
occurrences of a in the first j chunks in O(1) time
by answering one select query. Consider a rank query
rankaj (ij , B) and suppose that nj,2 is already known.
We compute nj,1, where nj,1 = select0(bij/σc,Maj ) −
bij/σc is the number of times aj occurs in the first
bij/σc chunks. Then we compute rankaj (ij , B) = nj,1 +
nj,2.

Theorem 3.1. We can keep a sequence B[0..n−1] over
an alphabet of size σ in O(n log σ) bits of space so that a
batch of m rank queries can be answered in O(m) time,
where n

log2 n
≤ m ≤ n.

The static data structure of Theorem 3.1 can be dy-
namized so that batched queries and batched insertions

are supported. Our dynamic data structures supports
a batch of m queries in time O(m) and a batch of m
insertions in amortized time O(m) for any m that sat-
isfies n

logσ n
≤ m ≤ n. We describe the dynamic data

structure in Sections A.2 and A.3.

4 Building the Suffix Tree

Belazzougui proved the following result [1]: if we are
given the BWT B of a text T and if we can report all the
distinct symbols in a range of B in optimal time, then
in O(n) time we can: (i) enumerate all the suffix array
intervals corresponding to internal nodes of the suffix
tree and (ii) for every internal node list the labels of its
children and their intervals. Further he showed that, if
we can enumerate all the suffix tree intervals in O(n)
time, then we can build the suffix tree topology [39] in
O(n) time. The algorithms need only O(n) additional
bits of space. We refer to Lemmas 4 and 1 and their
proofs in [1] for details.

In Section A.4 we show that a partial rank data
structure can be built in O(n) deterministic time. This
can be used to build the desired structure that reports
the distinct symbols in a range, in O(n) time and using
O(n log log σ) bits. The details are given in Section A.5.
Therefore, we obtain the following result.

Lemma 4.1. If we already constructed the BWT of a
text T , then we can build the suffix tree topology in O(n)
time using O(n log log σ) additional bits.

In Section 5 we show that the permuted LCP array
of T can be constructed in O(n) time using O(n log σ)
bits of space. Thus we obtain our main result on
building compressed suffix trees.

Theorem 4.1. Given a string T [0..n − 1] over an al-
phabet of size σ, we can construct the compressed suffix
tree of T in O(n) deterministic time using O(n log σ)
additional bits.

5 Constructing the Permuted LCP Array

The permuted LCP array is defined as PLCP [i] = j if
and only if SA[r] = i and the longest common prefix
of T [SA[r]..] and T [SA[r − 1]..] is of length j. In other
words PLCP [i] is the length of the longest common
prefix of T [i..] and the suffix that precedes it in the
lexicographic ordering. In this section we show how the
permuted LCP array PLCP [0..n − 1] can be built in
linear time.

Preliminaries. For i = 0, 1, . . . , n let `i =
PLCP [i]. It is easy to observe that `i ≤ `i+1 + 1: if
the longest common prefix of T [i..] and T [j..] is q, then
the longest common prefix of T [i + 1..] and T [j + 1..]
is at least q − 1. Let ∆′ = ∆ log log σ for ∆ = logσ n.

5



By the same argument `i ≤ `i+∆′ + ∆′. To simplify the
description we will further assume that `−1 = 0. It can
also be shown that

∑n−1
i=0 (`i − `i−1) = O(n).

We will denote by B the BWT sequence of T ; B
denotes the BWT of the reversed text T = T [n−1]T [n−
2] . . . T [1]T [0]. Let p be a factor (substring) of T and
let c be a character. The operation extendright(p, c)
computes the suffix interval of pc in B and the suffix
interval of pc in B provided that the intervals of p
and p are known. The operation contractleft(cp)
computes the suffix intervals of p and p provided that
the suffix intervals of factors cp and cp are known2. It
was demonstrated [41, 4] that both operations can be
supported by answering O(1) rank queries on B and B.

Belazzougui [1] proposed the following algorithm
for consecutive computing of `0, `1, . . ., `n. Suppose
that `i−1 is already known. We already know the rank
ri−1 of T [i − 1..], the interval of T [i − 1..i + `i−1 − 1]
in B, and the interval of T [i− 1..i+ `i−1 − 1] in B.
We compute the rank ri of T [i..]. If ri−1 is known,
we can compute ri in O(1) time by answering one
select query on B; see Section A.1. Then we find
the interval [rs, re] of T [i..i + `i−1 − 1] in B and
the interval [r′s, r

′
e] of T [i..i+ `i−1 − 1] in B. These

two intervals can be computed by contractleft. In
the special case when i = 0 or `i−1 = 0, we set
[rs, re] = [r′s, r

′
e] = [0, n − 1]. Then for j = 1, 2, . . .

we find the intervals for T [i..i + (`i−1 − 1) + j] and
T [i..i+ (`i−1 − 1) + j]. Every following pair of intervals
is found by operation extendright. We stop when the
interval of T [i..i + `i−1 − 1 + j] is [rs,j , re,j ] such that
rs,j = ri. For all j′, such that 0 ≤ j′ < j, we have
rs,j′ < ri. It can be shown that `i = `i−1 + j − 1; see
the proof of [1, Lemma 2]. Once `i is computed, we
increment i and find the next `i in the same way. All `i
are computed by O(n) contractleft and extendright

operations.
Implementing contractleft and extendright.

We create the succinct representation of the suffix tree
topology both for T and T ; they will be denoted by
T and T respectively. We keep both B and B in the
data structure that supports access in O(1) time. We
also store B in the data structure that answers select
queries in O(1) time. The array Acc keeps information
about accumulated frequencies of symbols: Acc[i] is
the number of occurrences of all symbols a ≤ i − 1
in B. Operation contractleft is implemented as
follows. Suppose that we know the interval [i, j] for
a factor cp and the interval [i′, j′] for the factor cp.
We can compute the interval [i1, j1] of p by finding l =

2Throughout this paper reverse strings are overscored. Thus p
and pc are reverse strings of p and pc respectively.

selectc(i−Acc[c], B) and r = selectc(j−Acc[c], B). Then
we find the lowest common ancestor x of leaves l and
r in the suffix tree T . We set i1 = leftmost leaf(x)
and j1 = rightmost leaf(x). Then we consider the
number of distinct symbols in B[i1..j1]. If c is the
only symbol that occurs in B[i1..j1], then all factors
p in T are preceded by c. Hence all factors p in T
are followed by c and [i′1, j

′
1] = [i′, j′]. Otherwise we

find the lowest common ancestor y of leaves i′ and j′

in T . Then we identify y′ = parent(y) in T and let
i′1 = leftmost leaf(y′) and j′1 = rightmost leaf(y′).
Thus contractleft can be supported in O(1) time.

Now we consider the operation extendright. Sup-
pose that [i, j] and [i′, j′] are intervals of p and p in
B and B respectively. We compute the interval of
pc by using the standard BWT machinery. Let i′1 =
rankc(i

′−1, B)+Acc[c] and j′1 = rankc(j
′, B)+Acc[c]−1.

We check whether c is the only symbol in B[i′..j′]. If
this is the case, then all occurrences of p in T are pre-
ceded by c and all occurrences of p in T are followed
by c. Hence the interval of pc in B is [i1, j1] = [i, j].
Otherwise there is at least one other symbol besides c
that can follow p. Let x denote the lowest common an-
cestor of leaves i and j. If y is the child of x that is
labeled with c, then the interval of pc is [i1, j1] where
i1 = leftmost leaf(y) and j1 = rightmost leaf(y).

We can find the child y of x that is labeled with c
by answering rank and select queries on two additional
sequences, L and D. The sequence L contains labels
of children for all nodes of T ; labels are ordered
by nodes and labels of the same node are ordered
lexicographically. We encode the degrees of all nodes in
a sequence D = 1d101d20 . . . 1dn , where di is the degree
of the i-th node. We compute v = select0(x,D) − x,
p1 = rankc(v, L), p2 = selectc(p1 +1, L), and j = p2−v.
Then y is the j-th child of x. The bottleneck of
extendright are the computations of p1, i′1, and j′1
because we need Ω(log log σ

log logn ) time to answer a rank

query on L (resp. on B); all other calculations can be
executed in O(1) time.

Our Approach. Our algorithm follows the tech-
nique of [1] that relies on operations extendright and
contractleft for building the PLCP. We implement
these two operations as described above; hence we will
have to perform Θ(n) rank queries on sequences L and
B. Our method creates large batches of queries; each
query in a batch is answered in O(1) time using Theo-
rem 3.1.

During the pre-processing stage we create the ma-
chinery for supporting operations extendright and
contractleft. We compute the BWT B of T and the
BWT B for the reverse text T . We also construct the
suffix tree topologies T and T . When B is constructed,



we record the positions in B that correspond to suffixes
T [i · ∆′..] for i = 0, . . . , bn/∆′c. PLCP construction is
divided into three stages: first we compute the values
of `i for selected evenly spaced indices i, i = j ·∆′ and
j = 0, 1,. . .,bn/∆′c. We use a slow algorithm for com-
puting lengths that takes O(∆′) extra time for every
`i. During the second stage we compute all remaining
values of `i. We use the method from [1] during Stage
2. The key to a fast implementation is “parallel” com-
putation. We divide all lengths into groups and assign
each group of lengths to a job. At any time we process
a list containing at least 2n/ log2 n jobs. We answer
rank queries in batches: when a job Ji must answer a
slow rank query on L or B, we pause Ji and add the
rank query to the corresponding pool of queries. When
a pool of queries on L or the pool of queries on B con-
tains n/ log2 n items, we answer the batch of queries
in O(n/ log2 n) time. The third stage starts when the
number of jobs becomes smaller than 2n/ log2 n. All
lengths that were not computed earlier are computed
during Stage 3 using the slow algorithm. Stage 2 can
be executed in O(n) time because rank queries are an-
swered in O(1) time per query. Since the number of
lengths that we compute during the first and the third
stages is small, Stage 1 and Stage 3 also take time O(n).
A more detailed description follows.

Stage 1. Our algorithm starts by computing `i for
i = j · ∆′ and j = 0, 1, . . . , bn/∆′c. Let j = 0 and
f = j∆′. We already know the rank rf of Sf = T [j∆′..]
in B (rf was computed and recorded when B was
constructed). We can also find the starting position f ′ of
the suffix S′ of rank rf −1, S′ = T [f ′..]. Since f ′ can be
found by employing the function LF at most ∆′ times,
we can compute f ′ in O(∆′) time; see Section A.13.
When f and f ′ are known, we scan T [f..] and T [f ′..]
until the first symbol T [f + pf ] 6= T [f ′ + pf ] is found.
By definition of `j , `0 = pf − 1. Suppose that `s∆′

for s = 0, . . ., j − 1 are already computed and we
have to compute `f for f = j∆′ and some j ≥ 1. We
already know the rank rf of suffix T [f..]. We find f ′ such
that the suffix T [f ′..] is of rank rf − 1 in time O(∆′).
We showed above that `f ≥ `(j−1)∆′ − ∆′. Hence the
first of symbols in T [f..] and T [f ′..] are equal, where
of = max(0, `(j−1)∆′ − ∆′). We scan T [f + of ..] and
T [f ′ + of ..] until the first symbol T [f + of + pf ] 6=
T [f ′ + of + pf ] is found. By definition, `f = of + pf .
Hence we compute `f inO(∆′+pf ) time for f = j∆′ and
j = 1, . . ., bn/∆′c. It can be shown that

∑
f pf = O(n).

Hence the total time needed to compute all selected `f
is O((n/∆′)∆′ +

∑
f pf ) = O(n). For every f = j∆′

we also compute the interval of T [j∆′..j∆′ + `f ] in B

3A faster computation is possible, but we do not need it here.

∆ ∆ ∆

J0 J1 Ji

`0 `1 . . . `∆−1

Ql
Qb

J1 : rank(j1, a1) Ji : rank(ji, ai)

Figure 2: Computing lengths during Stage 2. Groups
corresponding to paused jobs are shown shaded by
slanted lines. Only selected groups are shown. The i-th
job Ji is paused because we have to answer a rank query
on B; the job J1 is paused because we have to answer
a rank query on L. When Ql or Qb contains n/ log2 n
queries, we answer a batch of rank queries contained in
Ql or Qb.

and the interval of T [j∆′..j∆′ + `f ] in B. We show in
Section A.6 that all needed intervals can be computed
in O(n) time.

Stage 2. We divide `i into groups of size ∆′ − 1
and compute the values of `k in every group using a
job. The i-th group contains lengths `k+1, `k+2, . . .,
`k+∆′−1 for k = i∆′ and i = 0, 1, . . .. All `k in the i-th
group will be computed by the i-th job Ji. Every Ji is
either active or paused. Thus originally we start with a
list of n/∆′ jobs and all of them are active. All active
jobs are executed at the same time. That is, we scan the
list of active jobs, spend O(1) time on every active job,
and then move on to the next job. When a job must
answer a rank query, we pause it and insert the query
into a query list. There are two query lists: Ql contain
rank queries on sequence L and Qb contains rank queries
on B. When Ql or Qb contains n/ log2 n queries, we
answer all queries in Ql (resp. in Qb). The batch of
queries is answered using Theorem 3.1, so that every
query is answered in O(1) time. Answers to queries are
returned to jobs, corresponding jobs are re-activated,
and we continue scanning the list of active jobs. When
all `k for i∆′ ≤ k < (i + 1)∆′ are computed, the i-th
job is finished; we remove this job from the pool of jobs
and decrement by 1 the number of jobs. See Fig. 2.

Every job Ji computes `k+1, `k+2, . . ., `k+∆′−1

for k = i∆′ using the algorithm of Belazzougui [1].
When the interval of T [i + `k..] in B and the inter-
val of T [i+ `k..] in B are known, we compute `k+1.
The procedure for computing `k+1 must execute one
operation contractleft and `k+1 − `k + 1 opera-
tions extendright. Operations contractleft and
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extendright are implemented as described above. We
must answer two rank queries on B and one rank query
on L for every extendright. Ignoring the time for these
three rank queries, extendright takes constant time.
Rank queries on B and L are answered in batches, so
that each rank query takes O(1) time. Hence every op-
eration extendright needs O(1) time. The job Ji needs
O(`i∆′+j− `i∆′ + j) time to compute `i∆′+1, `i∆′+1, . . .,
`i∆′+j . All Ji are executed in O(n) time.

Stage 3. “Parallel processing” of jobs terminates
when the number of jobs in the pool becomes smaller
than 2n/ log2 n. Since every job computes ∆′ values
of `i, there are at most 2n(log log σ/(log n log σ)) <
2n/ log n unknown values of `i at this point. We then
switch to the method of Stage 1 to compute the values
of unknown `i. All remaining `i are sorted by i and
processed in order of increasing i. For every unknown
`i we compute the rank r of T [i..] in B. For the suffix
S′ of rank r − 1 we find its starting position f ′ in T ,
S′ = T [f ′..]. Then we scan T [f ′ + `i−1 − 1..] and
T [i+`i−1−1..] until the first symbol T [f ′+`i−1+j−1] 6=
T [f + `i−1 + j−1] is found. We set `i = `i−1 + j−2 and
continue with the next unknown `i. We spend O(∆′+`i)
additional time for every remaining `i; hence the total
time needed to compute all `i is O(n+ (n/ log n)∆′) =
O(n).

Every job during Stage 2 uses O(log n) bits of
workspace. The total number of jobs in the job list does
not exceed n/∆′. The total number of queries stored at
any time in lists Ql and Qb does not exceed n/ log2 n.
Hence our algorithm uses O(n log σ) bits of workspace.

Lemma 5.1. If the BWT of a string T and the suffix
tree topology for T are already known, then we can
compute the permuted LCP array in O(n) time and
O(n log σ) bits.

6 Conclusions

We have shown that the Burrows-Wheeler Transform
(BWT), the Compressed Suffix Array (CSA), and the
Compressed Suffix Tree (CST) can be built in determin-
istic O(n) time by an algorithm that requires O(n log σ)
bits of working space. Belazzougui independently devel-
oped an alternative solution, which also builds within
the same time and space the simpler part of our struc-
tures, that is, the BWT and the CSA, but not the CST.
His solution, that uses different techniques, is described
in the updated version of his ArXiV report [2] that ex-
tends his conference paper [1].

Our results have many interesting applications.
For example, we can now construct an FM-index [13,
14] in O(n) deterministic time using O(n log σ) bits.
Previous results need O(n log log σ) time or rely on

randomization [21, 1]. Furthermore Theorem A.4.1
enables us to support the function LF in O(1) time on
an FM-index. In the extended version of this paper [29]
we also describe a new index based on these ideas.

Another application is that we can now compute the
Lempel-Ziv 77 and 78 parsings [27, 45, 46] of a string
T [0..n− 1] in deterministic linear time using O(n log σ)
bits: Köppl and Sadakane [25] recently showed that, if
one has a compressed suffix tree on T , then they need
onlyO(n) additional (deterministic) time and O(z log n)
bits to produce the parsing, where z is the resulting
number of phrases. Since z ≤ n/ logσ n, the space
is O(n log σ) bits. With the suffix tree, they need to
compute in constant time any Ψ(i) and to move in
constant time from a suffix tree node to its i-th child.
The former is easily supported as the inverse of the LF
function using constant-time select queries on B [17];
the latter is also easily obtained with current topology
representations using parentheses [35].

Yet another immediate application of our algorithm
are index data structures for dynamic document collec-
tions. If we use our compressed index, described in the
extended version of this paper [29], and apply Trans-
formation 2 from [31], then we obtain an index data
structure for a dynamic collection of documents that
uses nHk + o(n log σ) + O(n logn

s ) bits where Hk is the
k-th order entropy and s is a parameter. This index can
count how many times a query pattern P occurs in a col-
lection in O(|P | log log n+log log σ log log n) time; every
occurrence can be then reported in time O(s). An in-
sertion or a deletion of some document Tu is supported
in O(|Tu| logε n) and O(|Tu|(logε n + s)) deterministic
time respectively.

We believe that our technique can also improve
upon some of the recently presented results on bidi-
rectional FM-indices [41, 4] and other scenarios where
compressed suffix trees are used [5].
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and helpful comments.

References

[1] D. Belazzougui. Linear time construction of com-
pressed text indices in compact space. In Proc. Sympo-
sium on Theory of Computing (STOC), pages 148–193,
2014.

[2] D. Belazzougui. Linear time construction of com-
pressed text indices in compact space. CoRR,
abs/1401.0936, 2014.

[3] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna.
Monotone minimal perfect hashing: searching a sorted
table with o(1) accesses. In Proc. 20th Annual ACM-



SIAM Symposium on Discrete Algorithms (SODA),
pages 785–794, 2009.

[4] D. Belazzougui, F. Cunial, J. Kärkkäinen, and
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A.1 Preliminaries

Rank and Select Queries The following two
kinds of queries play a crucial role in compressed indexes
and other succinct data structures. Consider a sequence
B[0..n − 1] of symbols over an alphabet of size σ. The
rank query ranka(i, B) counts how many times a occurs
among the first i + 1 symbols in B, ranka(i, B) =
|{ j |B[j] = a and 0 ≤ j < i }|. The select query
selecta(i, B) finds the position in B where a occurs for
the i-th time, selecta(i, B) = j where j is such that
B[j] = a and ranka(j, B) = i. The third kind of
query is the access query, access(i, B), which returns the
(i+ 1)-th symbol in B, B[i]. If insertions and deletions
of symbols in B must be supported, then both kinds
of queries require Ω(log n/ log log n) time [15]. If the
sequence B is static, then we can answer select queries
in O(1) time and the cost of rank queries is reduced to

Θ(log log σ
log logn ) [7].4 One important special case of rank

queries is the partial rank query, rankB[i](i, B). Thus a
partial rank query asks how many times B[i] occurred in
B[0..i]. Unlike general rank queries, partial rank queries
can be answered in O(1) time [7]. In Section A.4 we
describe a data structure for partial rank queries that
can be constructed in O(n) deterministic time. Better
results can be achieved in the special case when the
alphabet size is σ = logO(1) n; in this case we can
represent B so that rank, select, and access queries are
answered in O(1) time [14].

Suffix Tree and Suffix Array. A suffix tree for
a string T [0..n − 1] is a compacted tree on the suffixes
of T . The suffix array is an array SA[0..n − 1] such
that SA[i] = j if and only if T [j..] is the (i + 1)-th
lexicographically smallest suffix of T . All occurrences
of a substring p in T correspond to suffixes of T that
start with p; these suffixes occupy a contiguous interval
in the suffix array SA.

Compressed Suffix Array. A compressed suffix
array (CSA) is a compact data structure that provides
the same functionality as the suffix array. The main
component of CSA is the function Ψ, defined by the
equality SA[Ψ(i+1)] = (SA[i]+1) mod n. It is possible
to regenerate the suffix array from Ψ. We refer to [32]
and references therein for a detailed description of CSA
and for trade-offs between space usage and access time.

Burrows-Wheeler Transform and FM-index.
The Burrows-Wheeler Transform (BWT) of a string T
is obtained by sorting all possible rotations of T and
writing the last symbol of every rotation (in sorted
order). The BWT is related to the suffix array as
follows: BWT [i] = T [(SA[i] − 1) mod n]. Hence, we
can build the BWT by sorting the suffixes and writing
the symbols that precede the suffixes in lexicographical
order. This method is used in Section 2.

The FM-index uses the BWT for efficient searching
in T . It consists of the following three main components:

• The BWT of T .

• The array Acc[0..σ−1] where Acc[i] holds the total
number of symbols a ≤ i− 1 in T (or equivalently,
the total number of symbols a ≤ i− 1 in B).

• A sampled array SAMb for a sampling factor b:
SAMb contains values of SA[i] if and only if SA[i]
mod b = 0 or SA[i] = n− 1.

4If we aim to use n log σ+ o(n log σ) bits, then either select or
access must cost ω(1). If, however, (1+ε)n log σ bits are available,

for any constant ε > 0, then we can support both queries in O(1)
time.



The search for a substring P of length m is per-
formed backwards: for i = m − 1,m − 2, . . ., we iden-
tify the interval of p[i..m] in the BWT. Let B denote
the BWT of T . Suppose that we know the interval
B[i1..j1] that corresponds to p[i + 1..m − 1]. Then
the interval B[i2..j2] that corresponds to p[i..m − 1]
is computed as i2 = rankc(i1 − 1, B) + Acc[c] and
j2 = rankc(i2, B) + Acc[c] − 1, where c = P [i]. Thus
the interval of p is found by answering 2m rank queries.
We observe that the interval of p in B is exactly the
same as the interval of p in the suffix array SA.

Another important component of an FM-index is
the function LF , defined as follows: if SA[j] = i + 1,
then SA[LF (j)] = i. LF can be computed by answering
rank queries on B. Using LF we can find the starting
position of the r-th smallest suffix, SA[r], in O(b)
applications of LF , where b is the sampling factor; we
refer to [32] for details. It is also possible to compute
the function Ψ by using select queries the BWT [26].
Therefore the BWT can be viewed as a variant of the
CSA. Using Ψ we can consecutively obtain positions
of suffixes T [i..] in the suffix array: Let ri denote the
position of T [i..] in SA. Since T [n − 1..] = $ is the
smallest suffix, r0 = Ψ(0). For i ≥ 1, ri = Ψ(ri−1) by
definition of Ψ. Hence we can consecutively compute
each ri in O(1) time if we have constant-time select
queries on the BWT.

Compressed Suffix Tree. A compressed suffix
tree consists of the following components:

• The compressed suffix array of T . We can use the
FM-index as an implementation.

• The suffix tree topology. This component can be
stored in 4n+ o(n) bits [39].

• The permuted LCP array, or PLCP. The longest
common prefix array LCP is defined as follows:
LCP [r] = j if and only if the longest common prefix
between the suffixes of rank r and r−1 is of length
j. The permuted LCP array is defined as follows:
PLCP [i] = j if and only if the rank of T [i..] is r and
LCP [r] = j. A careful implementation of PLCP
occupies 2n+ o(n) bits [39].

A.2 Monotone List Labelling with Batched
Updates

A direct attempt to dynamize the data structure of
Section 3 encounters one significant difficulty. An
insertion of a new symbol a into a chunk C changes
the positions of all the symbols that follow it. Since
symbols are stored in pairs (aj , i) grouped by symbol,
even a single insertion into C can lead to a linear
number of updates. Thus it appears that we cannot

support the batch of updates on C in less than Θ(|C|)
time. In order to overcome this difficulty we employ a
monotone labeling method and assign labels to positions
of symbols. Every position i in the chunk is assigned an
integer label lab(i) satisfying 0 ≤ lab(i) ≤ σ · nO(1) and
lab(i1) < lab(i2) if and only if i1 < i2. Instead of pairs
(a, i) the sequence R will contain pairs (a, lab(i)).

When a new element is inserted, we have to change
the labels of some other elements in order to main-
tain the monotonicity of the labeling. Existing label-
ing schemes [44, 10, 11] require O(log2 n) or O(log n)
changes of labels after every insertion. In our case, how-
ever, we have to process large batches of insertions. We
can also assume that at most log n batches need to be
processed. In our scenario O(1) amortized modifications
per insertion can be achieved, as shown below.

In this section we denote by C an ordered set
that contains between σ and 2σ elements. Let x1 ≤
x2 ≤ . . . ≤ xt denote the elements of C. Initially we
assign the label lab(xi) = i · d to the i-th smallest
element xi, where d = 4n. We associate an interval
[lab(xi), lab(xi+1) − 1] with xi. Thus initially the
interval of xi is [id, (i+1)d−1]. We assume that C also
contains a dummy element x0 = −∞ and lab(−∞) = 0.
Thus all labels are non-negative integers bounded by
O(σ · n).

Suppose that the k-th batch of insertions consists
of m new elements y1 ≤ y2 ≤ . . . ≤ ym. Since at
most log n batches of insertions must be supported,
1 ≤ k ≤ log n. We say that an element yj is in an
interval I = [lab(xs), lab(xe)] if xs < yj < xe. We
denote by new(I) the number of inserted elements in I.
The parameter ρ(I) for an interval I is defined as the
ratio of old and new elements in I = [lab(xs), lab(xe)],
ρ(I) = e−s+1

new(I) . We identify the set of non-overlapping

intervals I1, . . ., Ir such that every new element yt is in
some interval Ij , and 1 ≤ ρ(Ij) ≤ 2 for all j, 1 ≤ j ≤ r.
(This is always possible if m ≤ |C|; otherwise we simply
merge the insertions with C in O(|C| + m) = O(m)
time and restart all the labels.) We can find I1, . . ., Ir
in O(m) time. For every Ij , 1 ≤ j ≤ r, we evenly
distribute the labels of old and new elements in the
interval I ′j ⊆ Ij . Suppose that f new elements yp, . . .,
yp+f−1 are inserted into interval Ij = [lab(xs), lab(xe)]
so that now there are v = f+(e−s)+1 elements in this
interval. We assign the label lab(xs) + dj · (i− 1) to the

i-th smallest element in Ij where dj = lab(xe)−lab(xs)
v−1 .

By our choice of Ij , f ≤ e − s + 1 and the number of
elements in Ij increased at most by twofold. Hence the
minimal distance between two consecutive labels does
not decrease by more than a factor of 2 after insertion of
new elements into Ij . We inserted f new elements into
Ij and changed the labels of at most 2f old elements.
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Hence the amortized number of labels that we must
change after every insertion is O(1). The initial distance
between labels is d = 4n and this distance becomes at
most two times smaller after every batch of insertions.
Hence the distance between consecutive labels is an
integer larger than 2 during the first log n batches.

One remaining problem with our scheme is the large
range of the labels. Since labels are integers bounded by
4|C|n, we need Θ(log σ + log n) bits per label. To solve
this problem, we will split the chunk C into blocks and
assign the same label to all the symbols in a block. A
label assigned to the symbols in a block will be stored
only once. Details are provided in Section A.3.

A.3 Batched Rank Queries and Insertions on a
Sequence

In this section we describe a dynamic data structure
that supports both batches of rank queries and batches
of insertions. First we describe how queries and updates
on a chunk C are supported.

The linked list L contains all the symbols of C in
the same order as they appear in C. Each node of
L stores a block of Θ(logσ n) symbols, containing at
most (1/4) logσ n of them. We will identify list nodes
with the blocks they contain; however, the node storing
block b also stores the total number of symbols in all
preceding blocks and a label lab(b) for the block. Labels
are assigned to blocks with the method described in
Section A.2. The pointer to (the list node containing)
block b will be called pb; these pointers use O(log σ) bits.

We also maintain a data structure that can answer
rank queries on any block. The data structure for
a block supports queries and insertions in O(1) time
using a look-up table: Since σ ≤ n1/4 and the block
size is (1/4) logσ n, we can keep pre-computed answers
to all rank queries for all possible blocks in a table
Tbl[0..n1/4 − 1][0..n1/4 − 1][0.. logσ n − 1]. The entry
Tbl[b][a][i] contains the answer to the query ranka(i, b)
on a block b. Tbl contains O(n1/2 logσ n) = o(n) entries
and can be constructed in o(n) time. Updates can be
supported by a similar look-up table or by bit operations
on the block b.

We also use sequences R and R′, defined in Sec-
tion 3, but we make the following modifications. For
every occurrence C[i] = a of a symbol a in C, the se-
quence R contains pair (a, pb), where pb is a pointer to
the block b of L that contains C[i]. Pairs are sorted
by symbol in increasing order, and pairs with the same
symbol are sorted by their position in C. Unlike in
Section 3, the chunk C can be updated and we cannot
maintain the exact position i of C[i] for all symbols in C;
we only maintain the pointers pb in the pairs (a, pb) ∈ R.

Note that we cannot use block pointers for searching

in L (or in C). Instead, block labels are monotonously
increasing and lab(b1) < lab(b2) if the block b2 follows b1
in L. Hence block labels will be used for searching and
answering rank queries. Block labels lab(b) use Θ(log n)
bits of space, so we store them only once with the list
nodes b and access them via the pointers pb.

Groups Ha,j are defined as in Section 3; each
Ha,j contains all the pairs of R that are between
two consecutive elements of R′a for some a. The
data structure Da,j that permits searching in Ha,j is
defined as follows. Suppose that Ha,j contains pairs
(a, pb1), . . ., (a, pbf ). We then keep a Succinct SB-tree
data structure [18] on lab(b1), . . ., lab(bf ). This data
structure requires O(log log n) additional bits per label.
For any integer q, it can find the largest block label
lab(bi) < q in O(1) time or count the number of blocks
bi such that lab(bi) < q in O(1) time (because our sets
Ha,r contain a logarithmic number of elements). The
search procedure needs to access one block label, which
we read from the corresponding block pointer.

Queries. Suppose that we want to answer queries
ranka1(i1, C), ranka2(i2, C), . . ., rankat(it, C) on a
chunk C. We traverse all the blocks of L and find
for every ij the label lj of the block bj that con-
tains the ij-th symbol, lj = lab(bj). We also compute
rj,1 = rankaj (i

′
j , bj) using Tbl, where i′j is the relative

position of the ij-th symbol in bj . Since we know the
total number of symbols in all the blocks that precede
bj , we can compute i′j in O(1) time.

We then represent the queries by pairs (aj , lj) and
sort these pairs stably in increasing order of aj . Then we
traverse the list of query pairs (aj , lj) and the sequence
R′. For every query (aj , lj) we find the rightmost pair
(aj , pj) ∈ R′ satisfying lab(pj) ≤ lj . Let rj,2 denote
the rank of (aj , pj) in Raj , i.e., the number of pairs
(aj , i) ∈ R preceding (aj , pj). We keep this information
for every pair in R′ using O(log σ) additional bits.
Then we use the succinct SB-tree Daj ,pj , which contains
information about the pairs in Haj ,pj (i.e., the pairs
in the group starting with (aj , pj)). The structure
finds in constant time the largest lab(bg) ∈ Daj ,pj such
that lab(bg) < lj , as well as the number rj,3 of pairs
from the beginning of Haj ,pj up to the pair with label
lab(bg). The answer to the j-th rank query is then
rankaj (ij , C) = rj,1 + rj,2 + rj,3.

The total query time is then O(σ/ logσ n+ t).
Insertions. Suppose that symbols a1, . . ., at are to

be inserted at positions i1, . . ., it, respectively. We tra-
verse the list L and identify the nodes where new sym-
bols must be inserted. We simultaneously update the
information about the number of preceding elements,
for all nodes. All this is done in time O(σ/ logσ n + t).
We also perform the insertions into the blocks. If, as



a result, some block contains more than (1/4) logσ n
symbols, we split it into an appropriate number of
blocks, so that each block contains Θ(logσ n) but at
most (1/4) logσ n symbols. Nodes for the new blocks
are allocated5, linked to the list L, and assigned appro-
priate labels using the method described in Section A.2.
After t insertions, we create at most O(t/ logσ n) new
blocks (in the amortized sense, i.e., if we consider the
insertions from the beginning). Each such new block
b′, coming from splitting an existing block b, requires
that we change all the corresponding pointers pb from
the pairs (az, pb) in R (and R′), so that they become
(az, pb′). To find those pairs efficiently, the list node
holding b also contains the O(logσ n) pointers to those
pairs (using O(log σ) bits each); we can then update the
required pointers in O(t) total time.

The new blocks also require creating their la-
bels. Those O(t/ logσ n) label insertions also trigger
O(t/ logσ n) changes of other labels, with the technique
of Section A.2. If the label of a block b was changed,
we visit all pairs (az, pb) in R that point to b. Each
such (az, pb) is kept in some group Haz,k and in some
succinct SB-tree Daz,k. We then delete the old label of
b from Daz,k and insert the new modified label. The to-
tal number of updates is thus bounded by O(t). While
not mntioned in the original paper [18], one can easily
perform constant-time insertions and deletions of labels
in a succinct SB-tree: The structure is a two-level B-
tree of arity

√
log n holding encoded Patricia trees on

the bits of the keys, and storing at the leaves the po-
sitions of the keys in Ha,r using O(log log n) bits each.
To insert or delete a label we follow the usual B-tree
procedures. The insertion or deletion of a key in a
B-tree node is done in constant time with a precom-
puted table that, in the same spirit of Tbl, yields the
resulting Patricia tree if we delete or insert a certain
node; this is possible because internal nodes store only
O(
√

log n log log n) = o(log n) bits. Similarly, we can
delete or insert a key at the leaves of the tree.

Apart from handling the block overflows, we must
insert in R the pairs corresponding to the new t symbols
we are actually inserting. We perform t rank queries
ranka1(i1, C), . . ., rankat(it, C), just as described above,
and sort the symbols to insert by those ranks using radix
sort. We then traverseR′ and identify the groupsHa1,j1 ,
. . ., Hat,jt where new symbols must be inserted; the
counters of preceding pairs for the pairs in R′ is easily
updated in the way. We allocate the pairs (ak, pbk) that
will belong to Hai,ji and insert the labels lab(bk) in the
corresponding data structures Dak,jk , for all 1 ≤ k ≤ t.

5Constant-time allocation is possible because we use fixed-size

nodes, leaving the maximum possible space, (1/4) logn bits, for
the block contents.

If some groups Hat,jt become larger than permitted, we
split them as necessary and insert the corresponding
pairs in R′. We can answer the rank queries, traverse
R, and update the groups Hak,jk all in O(σ/ logσ n+ t)
time.

Global Sequence. In addition to chunk data
structures, we keep a static bitvector Ma = 1d10 . . . 1ds

for every symbol a; di denotes the number of times a
occurs in the i-th chunk.

Given a global sequence of m ≥ n/ logσ n queries,
ranka1(i1, B), . . ., rankam(im, B) on B, we can assign
them to chunks in O(m) time. Then we answer queries
on chunks as shown above. If mj queries are asked on
chunk Cj , then these queries are processed in O(mj +
σ/ logσ n) time. Hence all queries on all chunks are
answered in O(m + n/ logσ n) = O(m) time. We can
answer a query rankak(ik, B) by answering a rank query
on the chunk that contains B[ik] and O(1) queries on
the sequence Mak [17]. Queries on Mak are supported
in O(1) time because the bitvector is static. Hence the
total time to answer m queries on B is O(m).

When a batch of symbols is inserted, we update the
corresponding chunks as described above. If some chunk
contains more than 4σ symbols, we split it into several
chunks of size Θ(σ) using standard techniques. Finally
we update the global sequences Ma, both because of
the insertions and due to the possible chunk splits. We
simply rebuild the bitvectors Ma from scratch; this is
easily done in O(na/ log n) time, where na is the number
of bits in Ma; see e.g. [30]. This adds up to O(m/ log n)
time.

Hence the total amortized cost for a batch of m ≥
n/∆ insertions is O(m).

Theorem A.3.1. We can keep a sequence B[0..n − 1]
over an alphabet of size σ in O(n log σ) bits of space so
that a batch of m rank queries can be answered in O(m)
time and a batch of m insertions is supported in O(m)
amortized time, for n

logσ n
≤ m ≤ n.

A.4 Sequences with Partial Rank Operation

If σ = logO(1) n, then we can keep a sequence S in
O(n log σ) bits so that select and rank queries (including
partial rank queries) are answered in constant time [14].
In the remaining part of this section we will assume that
σ ≥ log3 n.

Lemma A.4.1. Let σ ≤ m ≤ n. We can support partial
rank queries on a sequence C[0..m−1] over an alphabet
of size σ in time O(1). The data structure needs
O(m log logm) additional bits and can be constructed
in O(m) deterministic time.

Proof. Our method employs the idea of buckets intro-
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duced in [3]. Our structure does not use monotone per-
fect hashing, however. Let Ia denote the set of positions
where a symbol a occurs in C, i.e., Ia contains all in-
tegers i satisfying C[i] = a. If Ia contains more than
2 log2m integers, we divide Ia into buckets Ba,s of size
log2m. Let pa,s denote the longest common prefix of
all integers (seen as bit strings) in the bucket Ba,s and
let la,s denote the length of pa,s. For every element
C[i] in the sequence we keep the value of lC[i],t where
BC[i],t is the bucket containing i. If IC[i] was not di-
vided into buckets, we assume lC[i],t = null, a dummy
value. We will show below how the index t of BC[i],t

can be identified if lC[i],t is known. For every symbol
C[i] we also keep the rank r of i in its bucket BC[i],t.
That is, for every C[i] we store the value of r such that
i is the r-th smallest element in its bucket BC[i],t. Both
lC[i],t and r can be stored in O(log logm) bits. The par-
tial rank of C[i] in C can be computed from t and r,
rankC[i](i, C) = t log2m+ r.

It remains to describe how the index t of the bucket
containing C[i] can be found. Our method uses o(m)
additional bits. First we observe that pa,i 6= pa,j for
any fixed a and i 6= j; see [3] for a proof. Let Tw denote
the full binary trie on the interval [0..m − 1]. Nodes
of Tw correspond to all possible bit prefixes of integers
0, . . . ,m − 1. We say that a bucket Ba,j is assigned to
a node u ∈ Tw if pa,j corresponds to the node u. Thus
many different buckets can be assigned to the same node
u. But for any symbol a at most one bucket Ba,k is
assigned to u. If a bucket is assigned to a node u, then
there are at least log2m leaves below u. Hence buckets
can be assigned to nodes of height at least 2 log logm;
such nodes will be further called bucket nodes. We store
all buckets assigned to bucket nodes of Tw using the
structure described below.

We order the nodes u level-by-level starting at the
top of the tree. Let mj denote the number of buckets
assigned to uj . The data structure Gj contains all
symbols a such that some bucket Ba,ka is assigned to
uj . For every symbol a in Gj we can find in O(1) time
the index ka of the bucket Ba,ka that is assigned to
uj . We implement Gj as deterministic dictionaries of
Hagerup et al. [20]. Gj uses O(mj log σ) bits and can
be constructed in O(mj log σ) time. We store Gj only
for bucket nodes uj such that mj > 0. We also keep an
array W [1.. m

log2m
] whose entries correspond to bucket

nodes of Tw: W [j] contains a pointer to Gj or null if Gj
does not exist.

Using W and Gj we can answer a partial rank query
rankC[i](i, C). Let C[i] = a. Although the bucket Ba,t
containing i is not known, we know the length la,t of the
prefix pa,t. Hence pa,t can be computed by extracting
the first la,t bits of i. We can then find the index j of the

node uj that corresponds to pa,t, j = (2la,t − 1) + pa,t.
We lookup the address of the data structure Gj in W [j].
Finally the index t of the bucket Ba,t is computed as
t = Gj [a].

A data structure Gj consumes O(mj logm) bits.
Since

∑
jmj ≤ m

log2m
, all Gj use O(m/ logm) bits of

space. The array W also uses O(m/ logm) bits. Hence
our data structure uses O(log logm) additional bits per
symbol.

Theorem A.4.1. We can support partial rank queries
on a sequence B using O(n log log σ) additional bits.
The underlying data structure can be constructed in
O(n) deterministic time.

Proof. We divide the sequence B into chunks of size σ
(except for the last chunk that contains n − (bn/σcσ)
symbols). Global sequences Ma are defined in the same
way as in Section 3. A partial rank query on B can be
answered by a partial rank query on a chunk and two
queries on Ma.

A.5 Reporting All Symbols in a Range

We prove the following lemma in this section.

Lemma A.5.1. Given a sequence B[0..n − 1] over an
alphabet σ, we can build in O(n) time a data structure
that uses O(n log log σ) additional bits and answers the
following queries: for any range [i..j], report occ distinct
symbols that occur in B[i..j] in O(occ) time, and for
every reported symbol a, give its frequency in B[i..j] and
its frequency in B[0..i− 1].

The proof is the same as that of Lemma 3 in [1], but
we use the result of Theorem A.4.1 to answer partial
rank queries. This allows us to construct the data
structure in O(n) deterministic time (while the data
structure in [1] achieves the same query time, but the
construction algorithm requires randomization). For
completeness we sketch the proof below.

Augmenting B with O(n) additional bits, we can
report all distinct symbols occurring in B[i..j] in
O(occ) time using the idea originally introduced by
Sadakane [40]. For every reported symbol we can find
in O(1) time its leftmost and its rightmost occurrences
in B[i..j]. Suppose ia and ja are the leftmost and right-
most occurrences of a in B[i..j]. Then the frequen-
cies of a in B[i..j] and B[0..i − 1] can be computed as
ranka(ja, B)− ranka(ia, B) + 1 and ranka(ia, B)− 1 re-
spectively. Since ranka(ia, B) and ranka(ja, B) are par-
tial rank queries, they are answered in O(1) time. The
data structure that reports the leftmost and the right-
most occurrences can be constructed in O(n) time. De-
tails and references can be found in [8]. Partial rank



queries are answered by the data structure of Theo-
rem A.4.1. Hence the data structure of Lemma A.5.1
can be built in O(n) deterministic time. We can also
use the data structure of Lemma A.4.1 to determine
whether the range B[i..j] contains only one distinct
symbol in O(1) time by using the following observation.
If B[i..j] contains only one symbol, then B[i] = B[j] and
rankB[i](j, B)− rankB[i](i, B) = j− i+ 1. Hence we can
find out whether B[i..j] contains exactly one symbol in
O(1) time by answering two partial rank queries. This
observation will be helpful in Section 5.

A.6 Computing the Intervals

The algorithm for constructing PLCP, described in
Section 5, requires that we compute the intervals of
T [j∆′..j∆′ + `i] and T [j∆′..j∆′ + `i] for i = j∆′ and
j = 0, 1, . . . , n/∆′. We will show in this section how
all necessary intervals can be computed in linear time
when `i for i = j∆′ are known. Our algorithm uses the
suffix tree topology. We construct some additional data
structures and pointers for selected nodes of the suffix
tree T . First, we will describe auxiliary data structures
on T . Then we show how these structures can be used
to find all needed intervals in linear time.

Marking Nodes in a Tree. We use the marking
scheme described in [33]. Let d = log n. A node u of
T is heavy if it has at least d leaf descendants and light
otherwise. We say that a heavy node u is a special or
marked node if u has at least two heavy children. If a
non-special heavy node u has more than d children and
among them is one heavy child, then we keep the index
of the heavy child in u.

We keep all children of a node u in the data
structure Fu, so that the child of u that is labeled by a
symbol a can be found efficiently. If u has at most d+ 1
children, then Fu is implemented as a fusion tree [16];
we can find the child of u labeled by any symbol a in
O(1) time. If u has more than d + 1 children, then Fu
is implemented as the van Emde Boas data structure
and we can find the child labeled by a in O(log log σ)
time. If the node u is special, we keep labels of its heavy
children in the data structure Du. Du is implemented as
a dictionary data structure [20] so that we can find any
heavy child of a special node in O(1) time. We will say
that a node u is difficult if u is light but the parent of
u is heavy. We can quickly navigate from a node u ∈ T
to its child ui unless the node ui is difficult.

Proposition A.6.1. We can find the child ui of u that
is labeled with a symbol a in O(1) time unless the node
ui is difficult. If ui is difficult, we can find ui in
O(log log σ) time.

Proof. Suppose that ui is heavy. If u is special, we can

find ui in O(1) time using Du. If u is not special and
it has at most d + 1 children, then we find ui in O(1)
time using Fu. If u is not special and it has more than
d+ 1 children, then ui is the only heavy child of u and
its index i is stored with the node u. Suppose that ui is
light and u is also light. Then u has at most d children
and we can find ui in O(1) time using Fu. If u is heavy
and ui is light, then ui is a difficult node. In this case
we can find the index i of ui in O(log log σ) time using
Fu.

Proposition A.6.2. Any path from a node u to its
descendant v contains at most one difficult node.

Proof. Suppose that a node u is a heavy node and its
descendant v is a light node. Let u′ denote the first light
node on the path from u to v. Then all descendants of
u′ are light nodes and u′ is the only difficult node on the
path from u to v. If u is light or v is heavy, then there
are apparently no difficult nodes between u and v.

Weiner Links. A Weiner link (or w-link)
wlink(v, c) connects a node v of the suffix tree T labeled
by the path p to the node u, such that u is the locus of
cp. If wlink(v, c) = u we will say that u is the target
node and v is the source of wlink(v, c) and c is the label
of wlink(v, c). If the target node u is labeled by cp, we
say that the w-link is explicit. If u is labeled by some
path cp′, such that cp is a proper prefix of cp′, then the
Weiner link is implicit. We classify Weiner links using
the same technique that was applied to nodes of the suf-
fix tree above. Weiner links that share the same source
node are called sibling links. A Weiner link from v to
u is heavy if the node u has at least d leaf descendants
and light otherwise. A node v is w-special iff there are
at least two heavy w-links connecting v and some other
nodes. For every special node v the dictionary D′v con-
tains the labels c of all heavy w-links wlink(v, c). For
every c such that wlink(v, c) is heavy, we also keep the
target node u = wlink(v, c). D′v is implemented as in
[20] so that queries are answered in O(1) time. Suppose
that v is the source node of at least d + 1 w-links, but
u = wlink(v, c) is the only heavy link that starts at v.
In this case we say that wlink(v, c) is unique and we
store the index of u and the symbol c in v. Summing
up, we store only heavy w-links that start in a w-special
node or unique w-links. All other w-links are not stored
explicitly; if they are needed, we compute them using
additional data structures that will be described below.

Let B denote the BWT of T . We split B into
intervals Gj of size 4d2. For every Gj we keep the
dictionary Aj of symbols that occur in Gj . For each
symbol a that occurs in Gj , the data structure Gj,a
contains all positions of a in Gj . Using Aj , we can
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find out whether a symbol a occurs in Gj . Using Gj,a,
we can find for any position i the smallest i′ ≥ i such
that B[i′] = a and B[i′] is in Gj (or the largest i′′ ≤ i
such that B[i′′] = a and B[i′′] is in Gj). We implement
both Aj and Gj,a as fusion trees [16] so that queries are
answered in O(1) time. Data structures Aj and Gj,a
for a fixed j need O(d2 log σ) bits. We also keep (1) the
data structure from [17] that supports select queries on
B in O(1) time and rank queries on B in O(log log σ)
time and (2) the data structure from Theorem A.4.1
that supports partial rank queries in O(1) time. All
additional data structures on the sequence B need
O(n log σ) bits.

Proposition A.6.3. The total number of heavy w-
links that start in w-special nodes is O(n/d).

Proof. Suppose that u is a w-special node and let p be
the label of u. Let c1, . . ., cs denote the labels of heavy
w-links with source node u. This means that each c1p,
c2p, . . ., csp occurs at least d times in T . Consider the
suffix tree T of the reverse text T . T contains the node
u that is labeled with p. The node u has (at least) s
children u1, . . ., us. The edge connecting u and ui is
a string that starts with ci. In other words each ui is
the locus of pci. Since cip occurs at least d times in
T , pci occurs at least d times in T . Hence each ui has
at least d descendants. Thus every w-special node in
T correspond to a special node in T and every heavy
w-link outgoing from a w-special node corresponds to
some heavy child of a special node in T . Since the
number of heavy children of special nodes in a suffix
tree is O(n/d), the number of heavy w-links starting in
a w-special node is also O(n/d).

Proposition A.6.4. The total number of unique w-
links is O(n/d).

Proof. A Weiner link wlink(v, a) is unique only if
wlink(v, a) is heavy, all other w-links outgoing from v
are light, and there are at least d light outgoing w-links
from v. Hence there are at least d w-links for every
explicitly stored target node of a unique Weiner link.

We say that wlink(v, a) is difficult if its target node
u = wlink(v, a) is light and its source node v is heavy.

Proposition A.6.5. We can compute u = wlink(v, a)
of u in O(1) time unless wlink(v, a) is difficult. If the
wlink(v, a) is difficult, we can compute u = wlink(v, a)
in O(log log σ) time.

Proof. Suppose that u is heavy. If v is w-special, we
can find u in O(1) time using Du. If v is not w-special
and it has at most d + 1 w-children, then we find ui

in O(1) time using data structures on B. Let [lv, rv]
denote the suffix range of v. The suffix range of u is
[lu, ru] where lu = Acc[a] + ranka(lv − 1, B) + 1 and
ru = Acc[a] + ranka(rv, B). We can find ranka(rv, B)
as follows. Since v has at most d light w-children,
the rightmost occurrence of a in B[lv, rv] is within the
distance d2 from rv. Hence we can find the rightmost
ia ≤ rv such that B[ia] = a by searching in the interval
Gj that contains rv or the preceding interval Gj−1.
When ia is found, ranka(rv, B) = ranka(ia, B) can be
computed in O(1) time because partial rank queries
on B are supported in time O(1). We can compute
ranka(lv−1, B) in the same way. When rank queries are
answered, we can find lu and ru in constant time. Then
we can identify the node u by computing the lowest
common ancestor of lu-th and ru-th leaves in T .

If v is not special and it has more than d+1 outgoing
w-links, then u is the only heavy target node of a w-
link starting at v; hence, its index i is stored in the
node v. Suppose that u is light and v is also light.
Then the suffix range [lv, rv] of v has length at most d.
B[lv, rv] intersects at most two intervals Gj . Hence we
can find ranka(lv − 1, B) and ranka(rv, B) in constant
time. Then we can find the range [lu, ru] of the node u
and identify u in time O(1) as described above. If v is
heavy and u is light, then wlink(v, a) is a difficult w-
link. In this case we need O(log log σ) time to compute
ranka(lv − 1, B) and ranka(rv, B). Then we find the
range [lu, ru] and the node u is found as described above.

Proposition A.6.6. Any sequence of nodes u1, . . .,
ut where ui = wlink(ui−1, ai−1) for some symbol ai−1

contains at most one difficult w-link.

Proof. Let π denote the path of w-links that contains
nodes u1, . . ., ut. Suppose that a node u1 is a heavy
node and ut is a light node. Let ul denote the first light
node on the path π. Then all nodes on the path from ul
to ut are light nodes and wlink(ul−1, al−1) is the only
difficult w-link on the path from u1 to ut. If u1 is light
or ut is heavy, then all nodes on π are light nodes (resp.
all nodes on π are heavy nodes). In this case there are
apparently no difficult w-links between u1 and ut.

Pre-processing. Now we show how we can con-
struct above described auxiliary data structures in lin-
ear time. We start by generating the suffix tree topology
and creating data structures Fu and Du for all nodes u.
For every node u in the suffix tree we create the list of its
children ui and their labels in O(n) time. For every tree
node u we can find the number of its leaf descendants
using standard operations on the suffix tree topology.
Hence, we can determine whether u is a heavy or a light
node and whether u is a special node. When this infor-



mation is available, we generate the data structures Fu
and Du.

We can create data structures necessary for navi-
gating along w-links in a similar way. We visit all nodes
u of T . Let lu and ru denote the indexes of leftmost
and rightmost leaves in the subtree of u. Let B denote
the BWT of T . Using the method of Lemma A.5.1,
we can generate the list of distinct symbols in B[lu..ru]
and count how many times every symbol occurred in
B[lu..ru] in O(1) time per symbol. If a symbol a oc-
curred more than d times, then wlink(u, a) is heavy.
Using this information, we can identify w-special nodes
and create data structures D′u. Using the method
of [37], we can construct D′u in O(nu log log nu) time.
By Lemma A.6.3 the total number of target nodes in
all D′u is O(n/d); hence we can construct all D′u in o(n)
time. We can also find all nodes u with a unique w-
link. All dictionaries D′u and all unique w-links need
O((n/d) log n) = O(n) bits of space.

Supporting a Sequence of extendright Oper-
ations.

Lemma A.6.1. If we know the suffix interval of a right-
maximal factor T [i..i + j] in B and the suffix interval
of T [i..i+ j] in B, the we can find the intervals of
T [i..i+ j+ t] and T [i..i+ j + t] in O(t+ log log σ) time.

Proof. Let T and T denote the suffix tree for the text
T and let T denote the suffix tree of the reverse text
T . We keep the data structure for navigating the
suffix tree T , described in Proposition A.6.1 and the
data structure for computing Weiner links described
in Proposition A.6.5. We also keep the same data
structures for T . Let [`0,s, `0,e] denote the suffix interval
of T [i..i + j]; let [`′0,s, `

′
0,e] denote the suffix interval of

T [i..i+ j]. We navigate down the tree following the
symbols T [i+j+1], . . ., T [i+j+t]. Let a = T [i+j+k] for
some k such that 1 ≤ k ≤ t and suppose that the suffix
interval [`k−1,s, `k−1,e] of T [i..i+j+k−1] and the suffix

interval [`′k−1,s, `
′
k−1,e] of T [i..i+ j + k − 1] are already

known. First, we check whether our current location is a
node of T . If B[`′k−1,s, `

′
k−1,e] contains only one symbol

T [i+ j + k], then the range of T [i..i+ j + k] is identical

with the range of T [i..i+j+k−1]. We can calculate the
range of T [i..i+ j + k] in a standard way by answering
two rank queries on B and O(1) arithmetic operations;
see Section A.1. Since B[`′k−1,s, `

′
k−1,e] contains only

one symbol, rank queries that we need to answer are
partial rank queries. Hence we can find the range of
T [i..i+ j + k] in time O(1). If B[`′k−1,s, `

′
k−1,e] contains

more than one symbol, then there is a node u ∈ T that
is labeled with T [i..i+ j+ k− 1]; u = lca(`k−1,s, `k−1,e)
where lca(f, g) denotes the lowest common ancestor of
the f -th and the g-th leaves. We find the child u′ of
the node u in T that is labeled with a = T [i + j + k].
We also compute the Weiner link u′ = wlink(u, a) for
a node u′ = lca(`′k−1,s, `

′
k−1,e) in T . Then `′k,s =

leftmost leaf(u′) and `′k,e = rightmost leaf(u′).
We need to visit at most t nodes of T and at most
t nodes of T in order to find the desired interval.
By Proposition A.6.1 and Proposition A.6.2, the total
time needed to move down in T is O(t + log log σ).
By Proposition A.6.5 and Proposition A.6.6, the total
time to compute all necessary w-links in T is also
O(t+ log log σ).

Finding the Intervals. The algorithm for com-
puting PLCP, described in Section 5, assumes that
we know the intervals of T [j∆′..j∆′ + `i] and
T [j∆′..j∆′ + `i] for i = j∆′ and j = 0, 1, . . . , n/∆′.
These values can be found as follows. We start
by computing the intervals of T [0..`0] and T [0..`0].
Suppose that the intervals of T [j∆′..j∆′ + `i] and
T [j∆′..j∆′ + `i] are known. We can compute `(j+1)∆′

as shown in Section 5. We find the intervals of T [(j +
1)∆′..j∆′+`i] and T [(j + 1)∆′..j∆′ + `i] in time O(∆′)
by executing ∆′ operations contractleft. Each oper-
ation contractleft takes constant time. Then we cal-
culate the intervals of T [(j+ 1)∆′..(j+ 1)∆′+ `i+1] and
T [(j + 1)∆′..(j + 1)∆′ + `i+1] in O(log log σ + (`i+1 −
`i + ∆′)) time using Lemma A.6.1. We know from Sec-
tion 5 that

∑
(`i+1 − `i) = O(n). Hence we compute

all necessary intervals in time O(n+ (n/∆′) log log σ) =
O(n).
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