
Dynamic List of Clusters in Secondary Memory

Gonzalo Navarro1! and Nora Reyes2

1 Center of Biotechnology and Bioengineering, Department of Computer Science,
University of Chile, Chile, gnavarro@dcc.uchile.cl

2 Departamento de Informática, Universidad Nacional de San Luis, Argentina,
nreyes@unsl.edu.ar

Abstract. We introduce a dynamic and secondary-memory-based vari-
ant of the List of Clusters, which is shown to be competitive with the
literature, especially on higher-dimensional spaces, where it outperforms
the M-tree in searches and I/Os used for insertions. The basic principles
of our design are applicable to other secondary-memory structures.

1 Introduction

The metric space approach has become popular in recent years [2, 14, 16, 6] and a
large number of indexing methods have flourished. Most of the research, however,
is still in the stage of static solutions that work in main memory. Static indexes
have to be rebuilt from scracth when the set of indexed objects undergoes inser-
tions or deletions. In-memory indexes can handle only small datasets, suffering
serious performance degradations when the objects reside on disk. Most real-
life database applications require indexes able to work on disk and to support
insertions and deletions of objects interleaved with the queries.

To date, there exist only a few indexing structures supporting dynamism
and designed for secondary memory. Some are based on so-called pivots [5, 8,
13], some on hierarchical clustering [3, 11, 12], and some on combinations [4, 15].

A further challenge is that the metric spaces arising in many applications
are intrinsically high-dimensional, that is, the histogram of distances is con-
centrated. Pivot-based indexes are known to perform well on low-dimensional
spaces, whereas hierarchical clustering indexes handle medium dimensions bet-
ter. A simple structure that has shown to perform well on higher-dimensional
spaces is the List of Clusters (LC) [1], but it is a static in-memory structure.
There is a dynamic version of LC, named Recursive List of Clusters (RLC) [9],
but it is also designed to work in main memory.

In this paper we introduce a dynamic and secondary-memory variant of the
List of Clusters, aiming at higher-dimensional spaces. Our secondary memory
version, DLC, retains the good features of the LC, and in addition performs well
on secondary memory. In this paper we focus on handling searches and inser-
tions (thus enabling incremental construction), leaving deletions for future work
(these are usually handled with lazy deletion mechanisms). Our experimental
! Funded with Basal Funds FB0001, Conicyt, Chile.

comparisons show that our structures need little extra space, achieve very good
disk page utilization, and are competitive with state-of-the-art alternatives. For
example, compared to the M-tree [3], the best known alternative structure, the
DLC is more efficient at searches. For insertions, the DLC performs fewer I/Os,
but more distance computations. Overall, the DLC turns out to be a practical
and easy-to-implement index that fits several practical scenarios.

2 Basic Concepts

Let U be a universe of objects, with a nonnegative distance function d : U×U −→
R+ defined among them. This distance function satisfies the three axioms that
make (U, d) a metric space: strict positiveness, symmetry, and triangle inequality.
We handle a finite dataset S ⊆ U, which is a subset of the universe of objects
and can be preprocessed (to build an index). Later, given a new object from
the universe (a query q ∈ U), we must retrieve all similar elements found in the
dataset. There are two basic kinds of queries: range query and k-nearest neighbor
queries. We focus this work on range queries, where given q ∈ U and r > 0, we
need to retrieve all elements of S within distance r to q.

In a dynamic scenario, the set S may undergo insertions and deletions, and
the index must be updated accordingly for the subsequent queries. It is also
possible to start with an empty index and build it by successive insertions.

The distance is assumed to be expensive to compute. However, when we work
in secondary memory, the complexity of the search must also consider the I/O
time; other components such as CPU time for side computations can usually be
disregarded. The I/O time is composed of the number of disk pages read and
written; we call B the size of the disk page.

In terms of memory usage, one considers the extra memory required by the
index on top of the data, and in the case of secondary memory, the disk page
utilization, that is, the average fraction of the disk pages that is used.

3 List of Clusters

We briefly recall the list of clusters (LC) [1]. The LC splits the space into zones
(or “clusters”). Each zone has a center c and a radius rc, and it stores the internal
objects I = {x ∈ S, d(x, c) ≤ rc}, which are at distance at most rc from c.

The construction proceeds by choosing c and rc, computing I, and then build-
ing the rest of the list with the remaining elements, E = S−I. Many alternatives
to select centers and radii are considered [1], finding experimentally that the best
performance is achieved when the zones have a fixed number of elements m (and
rc is defined accordingly for each c), and when the next center c is selected as
the element that maximizes the distance sum to the centers previously chosen.
The brute force algorithm for constructing the list takes O(n2/m) time.

A range query (q, r) visits the list zone by zone. We first compute d(q, c), and
report c if d(q, c) ≤ r. Then, if d(q, c)− rc ≤ r, we search exhaustively the set of
internal elements I. The rest of the list is processed only if rc ≤ d(q, c) + r.

4 Our Proposal

In this section we introduce the DLC. We base our index on the LC [1], and also
use some ideas from the M-tree [3]. The challenge is to maintain a disk layout
that minimizes both distance computations and I/Os, and achieves a good disk
page utilization.

4.1 Structure

We store the objects I of a cluster in a single disk page, so that the retrieval
of the cluster incurs only one disk page read. Therefore, we use clusters of fixed
size m, which is chosen according to the disk page size B.3

For each cluster C the index stores (1) the center object c = center(C); (2)
its covering radius rc = cr(C) (the maximum distance between c and any object
in the cluster); (3) the number of elements in the cluster, |I| = #(C); and (4)
the objects in the cluster, I = cluster(C), together with the distances d(x, c)
for each x ∈ I. In order to reduce I/Os, we will maintain components (1), (2)
and (3) in main memory, that is, one object and a few numbers per cluster.
The cluster objects and their distances to the center (component (4)) will be
maintained in the corresponding disk page.

Unlike in the static LC, the dynamic structure will not guarantee that I
contains all the objects that are within distance rc to c, but only that all the
objects in I are within distance rc to c. This makes maintenance much simpler,
at the cost of having to consider, in principle, all the zones in each query.

The structure starts empty and is built by successive insertions. The first
arrived element becomes the center of the first cluster, and from then on we
apply a general insertion mechanism described next.

4.2 Insertions

To insert a new object x we must locate the most suitable cluster for accommo-
dating it. The structure of the cluster might be improved by the insertion of x.
Finally, if the cluster overflows upon the insertion, it must be split somehow.

Two orthogonal criteria determine which is the “most suitable” cluster. On
one hand, choosing the cluster whose center is closest to x yields more compact
zones, which are then less likely to be read from disk and scanned at query time.
On the other hand, choosing clusters with lower disk page occupancy yields
better disk usage, fewer clusters overall, and a better value for the cost of a disk
page read. We consider the two following policies to choose the insertion point:

Compactness: the cluster C whose center(C) is nearest to x is chosen. If there
is a tie, we choose the one whose covering radius will increase the least. If
there is still a tie, we choose the one with least elements.

3 In some applications, the objects are large compared to disk pages, so we must relax
this assumption and assume that a cluster spans a constant number of disk pages.

Occupancy: the cluster C with lowest #(C) is chosen. If there is a tie, we
choose the cluster whose center(C) is nearest to x, and if there is still a tie,
we choose the one whose covering radius will increase the least.

As it can be noticed, to determine the cluster where the new element will
be inserted it suffices with the information maintained in main memory, thus no
I/Os are incurred, only distance computations between x and the cluster centers.
Once the cluster C that will receive the insertion is determined, we increase #(C)
in main memory and read the corresponding page from secondary memory.

Before updating the page on disk, we consider whether x would be a better
center of C than c = center(C): We compute crx = max{d(x, y), y ∈ I∪{c}}, the
covering radius C would have if x were its center. If crx < max(cr(C), d(x, c)), we
set center(C) ← x and cr(C) ← crx in main memory, and write back I ∪ {c} to
disk, with all the distances between elements and the (new) center recomputed.
Otherwise, we leave the current center(C) as is, set cr(C) ← max(cr(C), d(x, c)),
and write back I ∪ {x} to disk, associating distance d(x, c) to x

This improvement of cluster qualities justifies our “compactness” choice of
minimizing the distance d(x, center(C)) against, for example, choosing the center
C with smallest cr(C) resulting after the insertion of x: The insertion of elements
into the clusters of their smallest centers will, in the long term, reduce the
covering radii of the clusters.

On large databases, a sequential scan for the center most appropriate for
insertion can be too expensive in terms of distance evaluations. To reduce this
time, the centers stored in memory are organized in a Dynamic Spatial Approx-
imation Tree (DSAT) [10], a fully-dynamic in-memory metric index that uses
little extra space per element. Any change involving a center is then reflected
in the DSAT. For insertions, we determine K candidate centers with a K-NN
query in the DSAT and then select one of them according to the policy to choose
the insertion point. We use K to be 10% of the centers.

When the cluster chosen for insertion is full, the procedure is different. We
must split it into two clusters, the current one (C) and a new one (N), choose
centers for both (according to a so-called “selection method”) and choose which
elements in the current set {c}∪ cluster(C) ∪ {x} stay in C and which go to N
(according to a so-called “partition method”). Finally, we must update C and
add N in the list of clusters (and in the DSAT) maintained in memory, and write
C and N to disk. The combination of a selection and a partition method yields
a split policy, several of which have been proposed for the M-tree [3].

Split Policies. The M-tree [3] considers various requirements for split policies:
minimum volume refers to minimizing cr(C); minimum overlap to minimizing
the amount of overlap between two clusters (and hence the chance that a query
must visit both); and maximum balance to minimizing the difference in number
of elements. The latter is less relevant to our structure, because the LC is not a
tree, but still it is important to maintain a minimum occupancy of disk pages.

The selection method may maintain the old center c and just choose a new
one c′ (the so-called “confirmed” strategy [3]) or it may choose two fresh centers

(the “non-confirmed” strategy). The confirmed strategy reduces the splitting
cost in terms of distance computations, but the non-confirmed one usually yields
clusters of better quality. We use their same notation [3], adding 1 or 2 to the
strategy names depending on whether the partition strategy is confirmed or not.

Random: The center(s) are chosen at random, with zero distance evaluations.
Sampling: A random sample of s objects is chosen. For each of the

(
s
2

)
pairs

of centers, the m elements are assigned to the closest of the two. Then, the
new centers are the pair with least sum of the two covering radii. It requires
O(s2m) distance computations (O(sm) for the confirmed variant, where one
center is always c). In our experiments we use s = 0.1m.

M LB DIST: Only for the confirmed case. The new center is the farthest one
from c. As we store those distances, this requires no distance computations.

mM RAD: Only for the non-confirmed case. It is equivalent to sampling with
s = m, so it costs O(m2) distance computations.

M DIST: Only for the non-confirmed case, and not used for the M-tree. It aims
to choose as new centers a pair of elements whose distance approximates that
of the farthest pair. It selects one random cluster element x, determines the
farthest element y from x, and repeats the process from y, for a constant
number of iterations or until the farthest distance does not increase. The last
two elements considered are the centers. The cost of this method is O(m)
distance calculations.

Once the centers c and c′ are choosen, the M-tree proposes two partition
methods to determine the new contents of the clusters C and C′ = N . The first
yields unbalanced splits, whereas the second does not.

Hyperplane Partition: It assigns each object to its nearest center.
Balanced Partition: It starts from the current cluster elements (except the

new centers) and, until assigning them all, (1) moves to C the element nearest
to c, (2) moves to C′ the elment nearest to C′.

A third strategy ensures a minimum occupancy fraction αm, for 0 < α < 1/2:

Mixed Partition: Use balanced partitioning for the first 2αm elements, and
then continue with hyperplane partitioning.

4.3 Range Search

Upon a search for (q, r), we determine the candidate clusters as those whose zone
intersects the query ball, using the data maintained in memory. More precisely,
for each C, we compute d = d(q, center(C)), and if d ≤ r we immediately report
c = center(C). Independently, if d − cr(C) ≤ r, we read the cluster elements
from disk and scan them. Note that, in the dynamic case, the traversal of the
list cannot be stopped when cr(C) ≤ d + r, as explained.

The scanning of a cluster also has a filtering stage: Since we store d(x, c) for
all x ∈ cluster(C), we compute d(x, q) explicitly only when |d(x, q)−d(q, c)| ≤ r.
Otherwise, we already know that d(x, q) > r by the triangle inequality.

Finally, in order to perform a sequential pass on the disk when reading the
candidate clusters, and avoid unnecessary seeks, we first sort all the candidate
clusters by their disk page number before starting reading them one by one.

For lack of space we have focused on range search. Nearest neighbor search
algorithms can be systematically built over range searches in an optimal way
[7]. To find the k objects nearest to q, the main difference is that the set
of candidate clusters must be traversed ordered by the lower-bound distances
d(q, center(C)) − cr(C), in order to shrink the current search radius as soon as
possible, and the process stops when the currently known kth nearest neighbor
is closer than the least d(q, center(C)) − cr(C) value of an unexplored cluster.

5 Experimental Results

In order to give a broad picture of the performance of our index, we have se-
lected three widely different metric spaces, all from the SISAP Metric Library
(www.sisap.org). The disk page size used in this experiments is 4KB.

Words: a dictionary of 69,069 English words. The distance is the edit distance,
that is, the minimum number of character insertions, deletions and substi-
tutions needed to make two strings equal.

Images: 40,700 20-dimensional feature vectors, generated from NASA images,
using Euclidean distance.

Histograms: 112,682 8-D color histograms (112-dimensional vectors) from an
image database. Euclidean distance is used.

5.1 Search Performance

For the search experiments, we built the indexes with 90% of the elements and
used the other 10% (randomly chosen) as queries. All our results are averaged
over 10 index constructions using different permutations of the datasets. We
have considered range queries retrieving on average 0.01%, 0.1% and 1% of
the dataset. This corresponds to radii 0.605740, 0.780000 and 1.009000 for the
images, and 0.051768, 0.082514 and 0.131163 for the histograms. Words have a
discrete distance, so we used radii 1 to 4, which retrieved on average 0.00003%,
0.00037%, 0.00326% and 0.01757% of the dataset, respectively. The same queries
were used for all the experiments on the same datasets.

For lack of space, we show the results of the best alternatives considering
mainly search costs. From the point of view of searches, the best alternatives
are: compactness (COMP) for the search of the insertion point, mM RAD 2,
Sampling 1 (SAMP 1), and M LB DIST 1 for center selection, and pure (HY-
PERPL) or combined with balancing (MIXED) hyperplane distribution for par-
titioning. As expected, the balanced partitioning obtains worse search costs than
the others, because it prioritizes occupancy over compactness. The same occurs
with the insertion strategy that looks for improved occupancy. Fig. 1 shows the
search costs in terms of distance evaluations (1(a)) and pages read (1(b)).

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

M_LB_DIST_1, MIXED
mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

M_LB_DIST_1, MIXED
mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 4 3 2 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 69,069 words

 300

 400

 500

 600

 700

 800

 900

 1000

 4 3 2 1

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 69,069 words

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

(a) Distance Evaluations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

(b) Pages Read.

Fig. 1. Search costs for the best alternatives of DLC.

As it can be seen, with respect to distance evaluations, in general better
costs are obtained with hyperplane distributions. For the NASA images, the best
strategy of center selection depends on the radius, but a good global alternative
is M LB DIST 1. For Words, the best alternative of center selection for all radii
is M LB DIST 1. If we consider the number of pages read during searches for
NASA images, better costs are obtained with the two versions of M LB DIST 1,
with the distribution that ensures a minimum occupancy of disk pages (MIXED)
and with hyperplane distribution. For Words, the best results are achieved with
MIXED distribution and the center selection strategies SAMP 1 and Random 1
(RAND 1). Notably, the confirmed center selection policies are better than non-

Dataset Fill ratio Total pages used
DLC DSA+-tree DLC DSA+-tree M-tree

Words 34% 66% 1,288 1,536 1,608
Images 54% 67% 1,431 1,726 1,973
Histograms 45% 67% 24,922 21,136 31,791

Table 1. Average space usage for the different datasets.

confirmed ones, except for mM RAD 2. This fact suggests that if we are not
willing to spend the necessary number of distance evaluations to test all pairs of
elements as centers, we should leave the old center and choose only a new one.
Finally, on Histograms, the MIXED alternative is better than the HYPERPL
one regarding distances, and conversely considering the number of pages read.

5.2 Comparison with Other Indexes

The M-tree [3] is the best-known dynamic and secondary-memory index, and
its code is freely available4. We have used the parameter setting suggested
by the authors: SPLIT FUNCTION = G HYPERPL, PROMOTE PART FUNCTION = MIN RAD,

SECONDARY PART FUNCTION = MIN RAD, RADIUS FUNCTION = LB, MIN UTIL = 0.2.
Another suitable index is the DSA+-tree [11]. Its only parameter is the max-

imum arity, for which we use the best values reported before [11] for each metric
space: 4 for all the spaces except Words, where it is 32.

There are other suitable metric indexes [5, 8, 13, 4, 15], not all of which have
available code. For this conference version we compare our structure with the
two indexes described above, plus the static LC, using the same bucket size used
in DLC, as a reference.

Table 1 shows the average disk page occupancy achieved, considering the
best search alternative for the different spaces: M LB DIST 1 HYPERPL for
Words, SAMP 1 HYPERPL for NASA images, and mM RAD 2 HYPERPL for
Histograms. The table also shows the total number of disk pages used, compared
to the M-tree and the DSA+-tree. Our fill ratios vary depending of the space,
but they are always over 30%. Although 30% occupancy is not good, even then
the DLC is more compact than the other indexes. We remind that, by using the
MIXED partition strategy, we can guarantee a minumum disk page occupancy,
if desired.

Fig. 2 compares the search costs, considering distance computations (2(a))
and pages read (2(b)). In terms of distance computations, the DSA+-tree always
takes over as the search radius grows, even outperforming the static LC. A larger
query range makes the problem harder, equivalently to a higher dimension. For
smaller radii, however, the DSA+-tree or the LC are significantly faster. In terms
of disk pages read, however, the DLC is significantly better than the M-tree and
the DSA+-tree. Only the latter gets close for small search radii on NASA images.
4 At http://www-db.deis.unibo.it/research/Mtree/

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, SAMP_1, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Query Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, SAMP_1, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

Static LC
DLC, RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 1 2 3 4

N
um

be
r o

f p
ag

es
 re

ad

Search radius

Query Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

DLC. RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, RAND_1, HYPERPL

(a) Distance Evaluations

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Query Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, RAND_1, HYPERPL

(b) Pages Read.

Fig. 2. Comparison of search costs of DLC, LC, DSA+-tree, and M-tree.

5.3 Insertion Performance

Now we analyze the insertion costs of our alternatives, and compare the best
ones with previous indexes. Fig. 3(a) shows the insertion cost per element as the
database grows, measured in number of distance computations. All the methods
have basically the same I/O cost, 1 read and 1 write per insertion, plus a very
small number equal to the average number of page splits produced, which is the
inverse of the average number of objects per disk page.

Fig. 4 compares our best alternatives with previous methods, both in distance
computations and I/Os. In general, DLC pays more distance computations for
insertions than the other indexes, but it outperforms them in number of I/Os.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

M_LB_DIST_1, MIXED
mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000
 220000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Search cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database used

Search cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

(a) DLC variants.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, HYPERPL
SAMP_1, HYPERPL

M_LB_DIST_1, HYPERPL
mM_RAD_2, HYPERPL

(b) Scalability Test

Fig. 3. Construction costs for best DLC alternatives (left) and scalability test (right).

5.4 Scalability

Fig. 3(b) shows the search costs in terms of distance evaluations, number of pages
read, and construction costs (in terms of distance evaluations) on a larger syn-
thetic dataset composed of 1,000,000 random vectors on dimension 15, uniformly
distributed on the unitary hypercube.

The conclusions obtained for the smaller datasets are roughly maintained for
this larger one. The fill ratio for the best searching strategy is over 30%. A more
thorough study of the performance of the index on more massive scenarios is left
for future work.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, SAMP_1, HYPERPL

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, SAMP_1, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

Static LC
DLC, RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

DLC, RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, RAND_1, HYPERPL

(a) Distance evaluations.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, RAND_1, HYPERPL

(b) I/O operations.

Fig. 4. Construction costs of DLC, LC, DSA+-tree, and M-tree.

6 Conclusions

We have presented the Dynamic List of Clusters (DLC), a dynamic and secondary-
memory variant of the List of Clusters [1], which maintains its simplicity, low
space overhead, and a good search performance in high dimensions. The DLC,
in addition, supports efficient insertions and works in secondary memory. It
achieves a reasonable disk page utilization (30% to 54%) and is competitive in
both distance computations and I/Os. For the journal version we plan to add
experimental results over larger real datasets and measure the evolution of the
search performance as a function of n.

The weakest point of our structure is its high cost for insertions in terms of
distance computations (whereas its number of I/Os is outstanding). We plan to
study ways to optimize our idea of using an in-memory index to lower the cost
of insertions. A variant of this structure can also be used to discard clusters at
query time, without comparing their centers against the query.

Another important remaining work is to handle deletions, which is likely
to work well with a lazy deletion mechanism that reconstructs clusters when
they reach a fraction of marked elements. Adapting the original construction
algorithm for the LC as a bulk-loading mechanisms for the DLC seems promising
as well.

References

1. E. Chávez and G. Navarro. A compact space decomposition for effective metric
indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.

2. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

3. P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for simi-
larity search in metric spaces. In Proc. 23rd VLDB, pages 426–435, 1997.

4. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching
index for metric data sets. Multimedia Tools and Applications, 21(1):9–33, 2003.

5. R. F. Santos Filho, A. J. M. Traina, C. Traina Jr., and C. Faloutsos. Similarity
search without tears: The OMNI family of all-purpose access methods. In Proc.
17th ICDE, pages 623–630, 2001.

6. M. Hetland. The basic principles of metric indexing. In Swarm Intelligence for
Multi-objective Problems in Data Mining, volume 242 of Studies in Computational
Intelligence, pages 199–232. Springer, 2009.

7. G. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems, 28(4):517–580, 2003.

8. H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An adaptive
B+-tree based indexing method for nearest neighbor search. ACM Transactions
on Database Systems, 30(2):364–397, 2005.

9. M. Mamede. Recursive lists of clusters: A dynamic data structure for range queries
in metric spaces. In Proc. 20th Intl. Symp. on Computer and Information Sciences
(ISCIS’05), LNCS 3733, pages 843–853, 2005.

10. G. Navarro and N. Reyes. Dynamic spatial approximation trees. ACM Journal of
Experimental Algorithmics, 12:article 1.5, 2009.

11. G. Navarro and N. Reyes. Dynamic spatial approximation trees for massive data.
In Proc. 2nd SISAP, pages 81–88, 2009.

12. G. Navarro and R. Uribe. Fully dynamic metric access methods based on hyper-
plane partitioning. Information Systems, 36(4):734–747, 2011.

13. G. Ruiz, F. Santoyo, E. Chávez, K. Figueroa, and E. Tellez. Extreme pivots for
faster metric indexes. In Proc. 6th SISAP, pages 115–126, 2013.

14. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2005.

15. T. Skopal, J. Pokorný, and V. Snásel. PM-tree: Pivoting metric tree for similarity
search in multimedia databases. In ADBIS (Local Proceedings), 2004.

16. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach, volume 32 of Advances in Database Systems. Springer, 2006.

