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1 IntroductionIn this paper we discuss an e�cient compression schemeand also present an algorithm which allows to searchfor exact and approximate patterns directly in the com-pressed text. To the best of our knowledge this is the�rst attempt to do approximate string matching on com-pressed text, an open problem in [ABF96].The compressed matching problem was �rst de�nedin the work of Amir and Benson [AB92] as the task ofperforming string matching in a compressed text with-out decompressing it. Given a text T , a correspondingcompressed string Z, and a pattern P , the compressedmatching problem consists in �nding all occurrences of Pin T , using only P and Z. A naive algorithm, which �rstdecompresses the string Z and then performs standardstring matching, takes time O(u + m), where u = jT jand m = jP j. An optimal algorithm takes worst-casetime O(n + m), where n = jZj. In [ABF96], a newcriterion, called extra space, for evaluating compressedmatching algorithms, was introduced. According to theextra space criterion, algorithms should use at most O(n)extra space, optimally O(m) in addition to the n-lengthcompressed �le. Most likely an optimal run-time algo-rithm that takes O(n) additional extra space may not befeasible in practice.Apart from e�cient searching, the compression meth-ods try to minimize the compression ratio, which is thesize of the compressed �le as a percentage of the uncom-pressed �le (i.e. n=u).In our compression scheme we propose a variant ofthe word-based Hu�man code [BSTW86, Mof89]. In ourwork the Hu�man code assigned to each text word is asequence of whole bytes and the Hu�man tree has degree256 instead of 2. As we show later, using bytes insteadof bits does not signi�cantly degrade the compression ra-tios. In practice, byte processing is much faster thanbit processing because bit shifts and masking operationsare not necessary at search time. Further, compressionand decompression are very fast and compression ratiosachieved are better than those of the Lempel-Ziv fam-ily [ZL77, ZL78].Our searching algorithm is based on a word-orientedshift-or algorithm [BYG92] and uses a fast Boyer-Moore-type �lter [Sun90] to speed up the scanning of the com-pressed text. The vocabulary available as part of theHu�man coding data is used concomitantly at this point.This vocabulary imposes a negligible space overheadwhen the text collection is large. The algorithm allowsa large number of variations of the exact and approxi-



mate compressed string matching problem. As a result,phrases, ranges, complements, wild cards, and arbitraryregular expressions can be e�ciently searched. Our algo-rithm can also discard separators and stopwords withoutsigni�cantly increasing the search cost.The approximate text searching problem is to �nd allsubstrings in a text database that are at a given \dis-tance" k or less from a pattern p. The distance betweentwo strings is the minimum number of insertions, dele-tions or substitutions of single characters in the stringsthat are needed to make them equal. The case in whichk = 0 corresponds to the classical exact matching prob-lem.Let u; n and m be as de�ned above. For exact search-ing, our approach �nds all pattern occurrences in O(n+m) time (which is optimal) and near O(pu) extra space.For approximate searching our algorithms �nd all patternoccurrences in near O(n +mpu) time and near O(pu)extra space.Our technique is not only useful to speed up sequen-tial search. In fact, it can also be used to improve in-dexed schemes that combine inverted �les and sequentialsearch, like Glimpse [MW93]. Glimpse divides the textspace in logical blocks and builds an inverted �le whereeach list of word occurrences points to the correspondingblocks. Searching is done by �rst doing a search in the in-verted �le and then a sequential search in all the selectedblocks. By using our compression scheme for the wholetext, direct search can be done over each block improv-ing the search time by a factor of 8. Notice that in thiscontext, the alphabet size (number of di�erent words) isvery large, which is one of our working assumptions.The algorithms presented in this paper are being usedin a software package called Cgrep. Cgrep is an exact andapproximate compressed matching tool for large text col-lections. The software package is available from ftp://dcc.ufmg.br/pub/research/�nivio/cgrep, as a proto-type in its version 1.0.This paper is organized as follows. In Section 2 wepresent related work found in the literature. In Section 3we present our compression and decompression method,followed by analytical and experimental results. In Sec-tion 4 we show how to perform exact and approximatecompressed string matching, followed by analytical andexperimental results. In Section 5 we present some con-clusions and future work directions.2 Related WorkIn [FT95] it was presented a compressed matching al-gorithm for the LZ1 classic compression scheme [ZL76]that runs in time O(n log2(u=n)+m). In [ABF96] it waspresented a compressed matching algorithm for the LZ78compression scheme that �nds the �rst occurrence in timeO(n+m2) and space O(n+m2) or in time O(n logm+m)and in space O(n +m). Our approach di�ers from thework in [FT95, ABF96] in the following aspects. First, weuse a distinct theoretical framework. Second, while theirwork includes no implementation of the proposed algo-rithms, we implement and thoroughly evaluate our algo-rithms. Third, our empirical evaluation considers boththe compression scheme and the compressed matching(exact and approximate) problem.Another text compression scheme that allows directsearching was proposed by [Man97]. His scheme packspairs of frequent characters in a single byte, leading to acompression ratio of approximately 70% for typical text

�les. Like this work we want also to keep the search atbyte level for e�ciency. However, our approach leads toa better compression ratio of less than half (30% against70%) the compression ratio in [Man97]. Moreover, oursearching algorithm can deal e�ciently with approxi-mate compressed matching, comparing favorably againstAgrep [WM92], the fastest known software to search (ex-actly and approximately) uncompressed text.3 The Compression SchemeModern general compression methods are typically adap-tive as they allow the compression to be carried out in onepass and there is no need to keep separately the parame-ters to be used at decompression time. However, for nat-ural language texts used in a full-text retrieval context,adaptive modeling is not the most e�ective compressiontechnique.We chose to use word-based semi-static modeling andHu�man coding [Huf52]. In the semi-static modeling theencoder makes a �rst pass over the text to obtain the pa-rameters (in this case the frequency of each di�erent textword) and perform the actual compression in a secondpass. There is one strong reason for using this combina-tion of modeling and coding. The data structures asso-ciated with them include the list of words that composethe vocabulary of the text, which we use to derive ourcompressed matching algorithm. Other reasons impor-tant in text retrieval applications are that decompressionis faster on semi-static models, and that the compressedtext can be accessed randomly without having to decom-press the whole text as in adaptive methods. Further-more, previous experiments have shown that word-basedmethods give good compression ratios for natural lan-guage texts [BSTW86, Mof89, HC92].Since the text is not only composed of words but alsoof separators, a model must also be chosen for them.In [Mof89, BMN+93] two di�erent alphabets are used:one for words and one for separators. Since a strict al-ternating property holds, there is no confusion on whichalphabet to use once it is known that the text starts withword or separator.We use a variant of this method to deal with wordsand separators, which we call spaceless words. If a wordis followed by a space, we just encode the word. If not,we encode the word and then the separator. At decod-ing time, we decode a word and assume that a spacefollows, except if the next symbol corresponds to a sepa-rator. This idea was �rstly presented in [MNZ97]. Theyshow that the spaceless word model achieves slightly bet-ter compression ratios. Figure 1 presents an example ofcompression using Hu�man coding for spaceless wordsmethod. The set of symbols in this case is fa, each,is, for, rose, ,tg, whose frequencies are 2, 1, 1, 1, 3,1, respectively.The number of Hu�man trees for a given probabilitydistribution is quite large. The preferred choice for mostapplications is the canonical tree, de�ned by Schwartzand Kallich [SK64]. The Hu�man tree of Figure 1 is acanonical tree. It allows more e�ciency at decoding timewith less memory requirement. Many properties of thecanonical codes are mentioned in [HL90, ZM95].3.1 Byte-Oriented Hu�man CodeThe original method proposed by Hu�man [Huf52] ismostly used as a binary code. In our work the Hu�-



e��� XXX0 1 rosee��� XXX0 1e hhhh(((( 0 1eHH��each ,t0 1 iseHH��for 10 aOriginal text:Compressed text: 0010 0000 1 0001 01 1 0011 01 1for each rose, a rose is a roseFigure 1: Compression using Hu�man coding for space-less wordsman code assigned to each text word is a sequence ofwhole bytes and the Hu�man tree has degree 256 insteadof 2. All techniques for e�cient encoding and decodingmentioned in [ZM95] can easily be extended to our case.As we show later in the experimental results section nosigni�cant degradation of the compression ratio is experi-enced by using bytes instead of bits. On the other hand,decompression of byte Hu�man code is faster than de-compression of binary Hu�man code. In practice byteprocessing is much faster than bit processing because bitshifts and masking operations are not necessary at de-coding time or at searching time.The construction of byte Hu�man trees involves somedetails to deal with. As explained in [Huf52], care mustbe exercised to ensure that the �rst levels of the treehave no empty nodes when the code is not binary. Fig-ure 2(a) illustrates a case where a naive extension of thebinary Hu�man tree construction algorithm might gen-erate a non-optimal byte tree. In this example the alpha-bet has 512 symbols, all with the same probability. Theroot node has 254 empty spaces that could be ocupied bysymbols from the second level of the tree, changing theircode lengths from 2 bytes to 1 byte.(a) Non-optimal tree(b) Optimal byte treefHH��256 elements. . . fHH��256 elements. . .f������ PPPPPP��QQ254 empty nodes. . . f��� .......................... PPP((((( . . .2 elements 254 empty nodesfHH��256 elements. . . fJJXXXX((((((((((( """ . . .254 elementsFigure 2: Example of byte Hu�man treeA way to ensure that the empty nodes always go tothe lowest level of the tree follows. We calculate pre-viously the number of empty nodes that will arise. Wethen compose these empty nodes with symbols of small-est probabilities. This step is su�cient to guarantee thatthe empty nodes will end up at the deepest level of the�nal tree. The remaining steps are similar to the binaryHu�man tree construction algorithm.In fact, this �rst coupling step must consider 1+((v�256) mod 255) symbols, where v is the total number ofsymbols (i.e. the size of the vocabulary). Applying thisformula to our example we have that 2 elements mustbe coupled with 254 empty nodes in the �rst step (1 +

((512� 256) mod 255) = 2), as shown in Figure 2(b).In the remaining part of this section we show thatthe length of byte Hu�man codes does not grow as thetext grows, even while the vocabulary does. The key toprove this is to show that the distribution of words inthe text is biased enough for the entropy to be O(1), andthen to show that byte Hu�man code has only a constantoverhead over the entropy.We use the Zipf Law [Zip49] as our model of thefrequency of the words appearing in natural languagetexts. This law is widely accepted in information re-trieval. Zipf's law states that, if we order the v words ofa natural language text in decreasing order of probability,then the probability of the �rst word is i� times the prob-ability of the i-th word, for every i. The constant � de-pends on the text. This means that the probability of thei-th word is pi = 1=(i�H), where H = H(�)v =Pvj=1 1=j�.The Zipf Law comes in two avors. A simpli�ed formassumes that � = 1. In this case, H = O(log v). Al-though this simpli�ed form is popular because it is sim-pler to handle mathematically, it does not follow wellthe real distribution of natural language texts. There isstrong evidence that most real texts have in fact a morebiased vocabulary. We performed in [ANZ97] a thoroughset of experiments on the TREC collection, �nding outthat the � values are roughly between 1.5 and 2.0 de-pending on the text, which gives experimental evidencein favor of the \generalized Zipf Law" (i.e. � > 1). Underthis assumption, H = O(1).We have also tested the distribution of the separators,�nding that they also follow reasonably well a Zipf distri-bution. Moreover, their distribution is more biased thanthat of words, being � closer to 1.9. We therefore assumethat � > 1 and consider only words, since the same proofwill hold for separators.We analyze the entropy E(d) of such distribution fora vocabulary of v words when d digits are used in thecoding alphabet, as follows:E(d) = vXi=1 pi logd 1pi= 1ln d vXi=1 lnH + � ln ii�H= 1H ln d  lnH vXi=1 1i� + vXi=1 ln ii� != logdH + �H ln d vXi=1 ln ii�Bounding the summation with an integral, we havethatvXi=1 ln ii� � ln 22� + (� � 1) ln 2 + 12��1(�� 1)2 +O(log v=v��1) = O(1)which allows to conclude that E(d) = O(1).Hu�man coding is not optimal because of its inabilityto represent fractional parts of bits. That is, if a symbolhas probability pi, it should use exactly log2(1=pi) bitsto represent the symbol, which is not possible if pi is nota power of 1=2. This e�ect gets worse if instead of bitswe use numbers in base d. We give now an upper boundon the compression ine�ciency involved.



In the worst case, Hu�man will encode each sym-bol with probability pi using dlogd(1=pi)e digits. Thisis a worst case because some symbols are encoded inblogd(1=pi)c digits. Therefore, in the worst case the av-erage length of a code in the compressed text isvXi=1 pi dlogd(1=pi)e � 1 + vXi=1 pi logd(1=pi)which shows that, regardless of the probability distribu-tion, we cannot spend more than one extra digit per codedue to rounding overheads. For instance, if we use byteswe spend at most one more byte per word.This proves that the entropy remains constant as thetext grows and therefore our compression ratio will notdegrade as the number of di�erent words and separatorsincreases.If we used the simple Zipf Law instead, the resultwould be that E(d) = O(log n), i.e. the average codelength grows as the text grows. The fact that this doesnot happen for 1 gigabyte of text is an independent ex-perimental con�rmation of the validity of the generalizedZipf Law against its simple version.On the other hand, more re�ned versions of the ZipfLaw exist, such as the Mandelbrot distribution [GBY91].This law tries to improve the �tting of the Zipf Law forthe more frequent values. However, it is mathematicallyharder to handle and it should not alter our asymptoticresults.3.2 Compression and DecompressionPerfor-manceFor the experimental results we used literary texts fromthe TREC collection [Har95]. We have chosen the follow-ing texts: ap Newswire (1989), doe - Short abstracts fromdoe publications, fr - Federal Register (1989), wsj - WallStreet Journal (1987, 1988, 1989) and zi� - articles fromComputer Selected disks (Zi�-Davis Publishing). Table 1presents some statistics about the �ve text �les. We con-sidered a word as a contiguous string of characters in theset fA: : :Z, a: : :z, 0: : :9g separated by other charactersnot in the set fA: : :Z, a: : :z, 0: : :9g. All tests were runon a SUN SparcStation 4 with 96 megabytes of RAMrunning Solaris 2.5.1.Table 2 shows the entropy and compression ratiosachieved for Hu�man, byte Hu�man, Unix Compress andgnu Gzip for the �les of the TREC collection. The spaceused to store the vocabulary is included in the Hu�mancompression. As it can be seen, the compression ratiodegrades only slightly by using bytes instead of bits and,in that case, we are still below Gzip. The exception is thefr collection, which includes a large part of non-naturallanguage such as chemical formulas.Method Filesap wsj doe zi� frEntropy 26.20 26.00 24.60 27.50 25.30Hu�man (bits) 27.41 27.13 26.25 28.93 26.88Byte Hu�man 31.16 30.60 30.19 32.90 30.14Compress 43.80 42.94 41.08 41.56 38.54Gzip 38.56 37.53 34.94 34.12 27.75Table 2: Entropy and compression ratios achieved byHu�man, byte Hu�man, Compress and Gzip.

It is empirically known that the vocabulary of a textwith u words grows sublinearly [Hea78], and hence forlarge texts the overhead of storing the vocabulary is min-imal. However, storing the vocabulary represents an im-portant overhead when the text is small (say, less than10 megabytes). We therefore compress the vocabularyusing standard Hu�man on characters. As shown in Fig-ure 3, this makes our compressor better than Gzip for�les of at least 1 megabyte. The need to decompressthe vocabulary at search time poses a minimal process-ing overhead which can even be completely compensatedby the reduced I/O.
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GzipFigure 3: Compression ratios for the wsj �le compressedby Gzip, Compress, byte Hu�man and byte Hu�man cod-ing with compressed vocabularyTable 3 shows the compression and decompressiontimes achieved for Hu�man, byte Hu�man, Compressand Gzip for �les of the TREC collection. In compres-sion, we are 2-3 times faster than Gzip and only 17%slower than Compress (which achieves much worse com-pression ratios). In decompression, there is a signi�cantimprovement when using bytes instead of bits. This isbecause no bit shifts nor masking are necessary. Usingbytes, we are more than 20% faster than Gzip and threetimes faster than Compress.Our method is more memory-demanding than Com-press and Gzip, which constitutes a drawback. The byte-Hu�man algorithm has near O(pu) space complexitywhile the methods used by Gzip and Compress have con-stant space complexity. For example, our method needs10 megabytes of memory to compress and 3.7 megabytesof memory to decompress the �le wsj, while Gzip andCompress need only about 1 megabyte to either com-press or decompress this same �le. However, for the textsearching systems we are interested in, the advantagesof our method (i.e. allowing e�cient search on the com-pressed text and fast decompression of fragments) aremore important than the space requirements.4 Searching on Hu�man Compressed TextWe show now how we search in the compressed text. We�rst explain exact matching, then complex patterns, and�nally present a �lter to speed up the search.4.1 The Basic AlgorithmWe make heavy use of the vocabulary of the text, whichis available as part of the Hu�man coding data. TheHu�man tree can be regarded as a trie where the leavesare the words of the vocabulary and the path from theroot to a leaf spells out its compressed code, as shownin the left part of Figure 4 for the word "rose" (in this



Files Text Vocabulary Vocab./TextSize (bytes) #Words Size (bytes) #Words Size #Wordsap 237,766,005 38,977,670 1,564,050 209,272 0.65% 0.53%doe 181,871,525 28,505,125 1,949,140 235,133 1.07% 0.82%fr 219,987,476 34,455,982 1,284,092 181,965 0.58% 0.52%wsj 262,757,554 42,710,250 1,549,131 208,005 0.59% 0.48%zi� 242,660,178 39,675,248 1,826,349 255,107 0.75% 0.64%Table 1: Text �les from the TREC collectionMethod Compression Decompressionap wsj doe zi� fr ap wsj doe zi� frHu�man (bits) 490 526 360 518 440 170 185 121 174 151Byte Hu�man 487 520 356 515 435 106 117 81 112 96Compress 422 456 308 417 375 367 407 273 373 331Gzip 1333 1526 970 1339 1048 147 161 105 139 111Table 3: Compression and decompression times (in seconds) achieved by Hu�man, byte Hu�man, Compress andGzipexample the word "rose" has a three-byte codeword 47131 8).
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Figure 4: The searching scheme for the pattern "roseis"To search for a pattern we �rst preprocess it. Thepreprocessing consists on searching it in the vocabularyand marking the corresponding entry. This search canbe very e�cient, for instance binary search or hashing.In general, however, the patterns are phrases. To pre-process phrase patterns we simply perform this proce-dure for each word of the pattern. For each word of thevocabulary we set up a bit mask that indicates whichelements of the pattern does the word match. Figure 4shows the marks for the phrase pattern "rose is", where01 indicates that the word "is" is the second in the pat-tern and 10 indicates that the word "rose" is the �rstin the pattern. If any word of the pattern is not foundin the vocabulary we immediately know that it is not inthe text.Next, we scan the compressed text, byte by byte, andat the same time traverse the Hu�man tree downwards,as if we were decompressing the text. We report an oc-currence of a symbol whenever we reach a leaf of theHu�man tree. At each word symbol obtained we send thecorresponding bit mask to an automaton, as illustratedin Figure 4. This nondeterministic automaton allows tomove from state i to state i+ 1 whenever the i-th wordof the pattern is recognized. Notice that this automa-ton depends only on the number of words in the phrasequery. After reaching a leaf we return to the root of the

tree and proceed in the compressed text.The automaton is simulated by the shift-or algo-rithm [BYG92]. We perform one transition in the au-tomaton for each text word. The shift-or algorithm sim-ulates e�ciently the nondeterministic automaton usingonly two operations per transition. In a 32-bit archi-tecture it can search a phrase of up to 32 words using asingle computer word as the bit mask. For longer phraseswe use as many computer words as needed.Finally, we show how to deal with separators andstopwords. Most online searching algorithms cannot e�-ciently deal with the problem of matching a phrase dis-regarding the separators among words (e.g. two spacesbetween words instead of one). The same happens tothe elimination of stopwords, which are usually disre-garded in indexing schemes and are di�cult to disregardin online searching. In our compression scheme, we knowwhich elements of the vocabulary correspond in fact toseparators, and which correspond to stopwords: at com-pression time we mark them so that the searching algo-rithm ignores them. Therefore, we eliminate separatorsand stopwords from the sequence (and from the searchpattern) at negligible cost.4.2 Extending the Basic Algorithm for Com-plex PatternsBefore entering into details of the searching algorithmsfor complex patterns we mention the types of phrase pat-terns supported by our system. For each word of a pat-tern it allows to have not only single letters in the pat-tern, but any set of characters at each position. In addi-tion, system supports patterns combining exact matchingof some of their parts and approximate matching of otherparts, unbounded number of wild cards, arbitrary regularexpressions, and combinations, exactly or allowing errors.In the Appendix we present in detail each type of querysupported by our system.For complex patterns the preprocessing phase corre-sponds to a sequential search in the vocabulary to markall the words that match the pattern. This technique hasbeen already used in block oriented indexing schemes forsearching allowing errors in uncompressed texts [MW93,ANZ97]. Since the vocabulary is very small compared tothe text size, the sequential search time on the vocabu-lary is negligible, and there is no other additional cost to



allow complex queries. This is very di�cult to achievewith online plain text searching, since we take advantageof the knowledge of the vocabulary stored as part of theHu�man tree.Each word of the pattern is searched separately inthe vocabulary using a sequential pattern matching al-gorithm. The corresponding mask bits of each matchedword in the vocabulary are set to indicate its position inthe pattern. Figure 5 illustrates this phase for the pat-tern "ro* rose is" with k = 1 (allowing 1 error). Forinstance, the word "rose" in the vocabulary matches thepattern in positions 1 and 2.
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Word CodeFigure 6: An example where the code of a word is presentin the compressed text but the word is not present in theoriginal textcrosses a block boundary. Therefore, we only need to runthe basic algorithm from the beginning of the block thatcontains the match.The block size must be small enough so that theslower basic algorithm is used only on small areas, andlarge enough so that the extra space lost at block bound-aries is not signi�cant. We run a number of experimentson the wsj �le for blocks of sizes 64, 128, 256, and 512bytes. The worst search performance was for blocks of64 bytes, due to the overhead of treating ags at the endof each block. The performance improved for blocks of128 and 256 bytes and decreased for blocks of 512 bytes,the latter due to the overhead of performing more veri�-cation work at each potential match. Therefore, a goodtime-space tradeo� for the block size is 256 bytes.In order to search for complex queries, we �rst searchthe vocabulary as explained in Section 4.2. Once the setof all words is obtained, we search for all the codes inthe text using an extension of the BMHS algorithm tohandle multiple patterns [BYN96, BYN97a].In order to search a phrase pattern, we simply takeone of the words of the phrase as its representative. Oncethe code of that element is found in the compressed text,the veri�cation phase searches the whole phrase. Sincewe are free to use any representative, we take the onewith longest code (i.e. the most infrequent word), asBMHS searching improves with longer patterns.If the number of matching words in the vocabulary istoo large, the e�ciency of the �lter may be degraded, andthe use of the scheme with no �lter might be preferable.4.4 Analytical ResultsWe analyze the performance of our searching algorithm.The analysis considers a random text, which is very ap-propriate because the compressed text is mainly random.It is empirically known that the vocabulary of a textwith u words grows as u� [Hea78, ANZ97, MNZ97]. Forthe analysis we consider that: the vocabulary has v =O(u�) ' O(pu) words (typically � = 0:4::0:6), the com-pressed search patterns are of length c (typically c isequal to 3 or 4 bytes), the original text has u char-acters, the compressed text has n characters, a com-plex query matches p words in the vocabulary (typicallyp = O(u0:1::0:2 ) [BYN97b]), k is the number of errors al-lowed, � is the coding alphabet (� = 256 symbols), thepattern has m characters and j di�erent words of lengthw1; :::; wj (Pji=1 wi = m). Finally, we align the codes atthe boundaries of blocks of b bytes.We �rst consider the preprocessing phase. Lookingexactly for a word of length w in the vocabulary can bedone in O(w) in the worst case by using a trie or on aver-age by using hashing. Therefore, looking exactly for allwords in the pattern has a cost of O(Pji=1 wi) = O(m).On the other hand, if we search a complex pattern wepreprocess all the words at a cost O(ju� +Pji=1 wi) =



O(ju� +m) or O(jku� +Pji=1 wi) = O(jku� +m) de-pending on the algorithm used. In all reasonable casesthe preprocessing phase is sublinear in the text size andnegligible in cost. Since k is taken as a constant, the pre-processing cost is O(ju� +m) = O(mu�), which is closeto O(mpu).We consider now text searching for natural languagetexts. The basic algorithm works O(1) per compressedbyte and therefore the search time is O(n + t) in theworst case, where t is the preprocessing costs presentedabove. This worst-case complexity is independent on thecomplexity of the search.On the other hand, the algorithm using BMHS �lterdoes not inspect all the characters. If the pattern is aphrase we just look for one element of the phrase, so werestrict our attention to single-word queries.If the query matches a single word in the vocabulary,the search time is very close to O(n=c + t), where c isthe length of the compressed word. Even in the case of aquery matching a few words in the vocabulary, the aboveformula holds for the multipattern BMHS algorithm, pro-vided c is the length of the shortest code among the vo-cabulary words matching the query. This is because thealphabet size (256) is much larger than the length of thecodes (3 or 4 at most).In case of a complex query which generates many dif-ferent patterns to search for, the e�ectiveness of the �ltercan be degraded, being O(n + t) (albeit the constant issmaller than in the basic algorithm). The exact constantis an open problem [BYR92].However, even when using a �lter, some blocks mustbe traversed with the basic algorithm to verify matchesfound by the �lter. When searching p codes of length cin parallel, the probability of �nding anyone in a givenblock of length b is (1 � (1 � p=�c)b), and therefore thetotal cost for veri�cations isn�1� �1� p�c �b� � n�1� e�bp=�c�To give an idea of the real numbers involved, con-sider that we search for a single word whose code has 3bytes, and that we use b = 64. In this case, the BMHS�lter inspects on average 2 bytes to advance 4 positions,therefore inspecting a total of n=2 bytes. The proportionof bytes inspected due to veri�cations is smaller than4� 10�6. Since n is close to u=3, we inspect u=6 bytes,which is close to a BMHS algorithm run over the originaltext. Therefore, in this case our CPU costs are similar.However, we perform only one third of the I/O requiredby the uncompressed searching, which makes our searchsigni�cantly faster.A well-accepted rule in Information Retrieval is thatqueries are uniformly distributed across the vocabulary.This makes queries with large cmuch more probable thanthose with code length 1 or 2. Moreover, very short codelengths correspond to stopwords and may therefore beforbidden.To search for a very complex pattern that makes the�lter unsuitable, we simply run the shift-or algorithm,inspecting all n � u=3 bytes. However, in the uncom-pressed version we would work at the very best O(1) peroriginal text character, which is three times our cost. TheI/O times are also in our case one third of those of un-compressed searching.

4.5 Searching PerformanceThe performance evaluation of the algorithms presentedin the previous sections was obtained using 120 randomlychosen patterns. In fact we considered 40 patterns con-taining 1 word, 40 patterns containing 2 words, 40 pat-terns containing 3 words, and submitted each one to thesearching algorithms. All experiments were run on thewsj text �le and the results were obtained with 99% con�-dence. The sizes of the wsj uncompressed and compressed�les were 262.8 and 80.4 megabytes, respectively.Table 4 presents exact (k = 0) and approximate (k =1; 2; 3) searching times using Agrep [WM92], Cgrep �lter-less, and Cgrep with Boyer-Moore �ltering for blocks of256 bytes. It can be seen from this table that Cgrep �lter-less is almost insensitive to the number of errors allowedin the pattern while Agrep is not. This happens becausethe �lterless version maps all the queries to the same au-tomaton that does not depend on k. It also shows thatfor exact searching Cgrep �lter is almost twice as fast asAgrep and nearly 8 times faster for approximate search-ing. For all times presented, there is a constant I/Otime factor of approximately 8 seconds for Cgrep to readthe wsj compressed �le and approximately 20 seconds forAgrep to read the wsj uncompressed �le.The following test was for three di�erent types of pat-terns, as follows:1. prob#atic sign#ance: where # means any char-acter considered zero or more times (one possibleanswer is "problematic significance")2. petroleum services lines3. BrasilTable 5 presents exact (k = 0) and approximate (k =1; 2) searching times using Agrep, Cgrep �lterless, andCgrep with Boyer-Moore �ltering for blocks of 256 bytes.5 Conclusion and Future WorkIn this paper we investigated a fast compression and de-compression scheme for natural language texts and alsopresented an algorithm which allows to search for exactand approximate compressed matches. We analyzed ouralgorithms and presented experimental results on theirperformance for natural language texts. We showed thatwe achieve about 30% compression ratio, against 40%and 35% for Compress and Gzip, respectively. For typ-ical texts, compression times are close to the times ofCompress and approximately half the times of Gzip, anddecompression times are lower than those of Gzip andone third of those of Compress.For exact searching our algorithm is O(n +m) time(which is optimal), using O(pu) extra space, where nis the size of the compressed text, m is the size of thepattern and u is the size of the uncompressed text. Forapproximate searching or complex queries our algorithmis near O(n +mpu) time using O(pu) extra space. Wealso presented a fast Boyer-Moore-type �lter to speed upthe search which is close to O(n=c +mpu) on averageand uses O(pu) extra space, where c is the length of theshortest code among the words matching the pattern.An example of the power of our compressed matchingalgorithm is the search of a pattern containing 3 wordsand allowing 1 error, in a compressed �le of approxi-mately 80.4 megabytes (corresponding to the wsj �le of262.8 megabytes). It runs at 5.4 megabytes per second,which is equivalent to searching the original text at 17.5
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� range of characters (e.g. t[a-z]xt, where [a-z]means any letter between a and z);� arbitrary sets of characters (e.g. t[aei]xtmeaningthe words taxt, text and tixt);� complements (e.g. t[�ab]xt, where �ab meansany single character except a or b; t[�a-d]xt,where �a-d means any single character except a,b, c or d);� arbitrary characters (e.g. t�xtmeans any characteras the second character of the word);� case insensitive patterns (e.g. Text and text areconsidered as the same words).In addition to single strings of arbitrary size andclasses of characters described above the system supportspatterns combining exact matching of some of their partsand approximate matching of other parts, unboundednumber of wild cards, arbitrary regular expressions, andcombinations, exactly or allowing errors, as follows:� unions (e.g. t(e|ai)xt means the words text andtaixt; t(e|ai)*xtmeans the words beginning witht followed by e or ai zero or more times followedby xt). In this case the word is seen as a regularexpression;� arbitrary number of repetitions (e.g. t(ab)*xtmeans that ab will be considered zero or moretimes). In this case the word is seen as a regu-lar expression;� arbitrary number of characters in the middle of thepattern (e.g. t#xt, where # means any characterconsidered zero or more times). In this case theword is not considered as a regular expression fore�ciency. Note that # is equivalent to �� (e.g. t#xtand t�*xt obtain the same matchings but the latteris considered as a regular expression);� combining exact matching of some of their partsand approximate matching of other parts (<te>xt,with k = 1, meaning exact occurrence of te followedby any occurrence of xt with 1 error);� matching with nonuniform costs (e.g. the cost ofinsertions can be de�ned to be twice the cost ofdeletions).


