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Abstract. The development of index structures that allow e�cient re-
trieval of spatial objects has been a topic of interest in the last decades.
Most of these structures have been designed for secondary memory. How-
ever, in the last years the price of memory has decreased drastically.
Nowadays it is feasible to place complete spatial indexes in main mem-
ory.
In this paper we focus in a subcategory of spatial indexes named Point
Access Methods. These indexes are designed to solve the problem of in-
dexing points. We present a new index structure designed for two dimen-
sions and main memory that keeps a good trade-o� between the space
needed to store the index and its search e�ciency. Our structure is based
on a wavelet tree, which was originally designed to represent sequences,
but has been successfully used as an index in areas like information re-
trieval or image compression.
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1 Introduction

Recent improvements in hardware have made the implementation of Geographic
Information Systems (GIS) a�ordable for many organizations. An outstanding
feature of this kind of systems is that huge amounts of spatial data have to
be stored and processed. Therefore, a topic of interest in this research area has
been the development of spatial indexing methods, which allow e�cient access
to these data. Many di�erent spatial index structures have been proposed along
the years. These structures can be broadly classi�ed into Point Access Methods
(PAMs) and Spatial Access Methods (SAMs) [1]. PAMs are used to improve the
access time in collections of spatial points. SAMs are more general and are used
? This work has been partially supported by �Ministerio de Educación y Ciencia� (PGE
y FEDER) ref. TIN2006-15071-C03-03, by �Xunta de Galicia� ref. 2006/4 and ref.
08SIN009CT, and by Fondecyt Grant 1-080019, Chile.
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to improve the access time in collections of geographic objects (e.g. points, lines,
polygons, etc.).

Most of these spatial index methods have been designed for secondary mem-
ory. This is mainly due to historical reasons. A few years ago, the main memory
was small and very expensive. Thus, the development of spatial index struc-
tures for main memory was unimaginable. However, in the last years the price
of memory has decreased drastically and nowadays it is feasible to place com-
plete spatial indexes in main memory. Hence, new requirements in the design of
spatial access methods must be considered in order to develop structures suit-
able for main memory. In this paper we present a new PAM for two dimensions
that stores both the index and the collection of points in a compact structure.
This structure reaches a good trade-o� between the space needed and its search
e�ciency. This makes it suitable for main memory.

In the last years, the idea of storing both the data and the index in a compact
form has been widely used in the design of index structures in several research
�elds. These structures are known as self-indexes. In [2], a new approach for
document indexing using wavelet trees is presented. A wavelet tree [3] is a self-
index organized as a binary tree, originally designed to represent and index a
sequence. Here we adapt this structure to the special characteristics of spatial
data.

2 Related Work

Many di�erent SAMs and PAMs have been proposed along the years. A good
survey of these structures can be found in [1]. The main goal of these struc-
tures is to improve the performance in the retrieval of geographic objects that
satisfy a search query. A common kind of search query that must be solved by
both categories of methods is the region query. This operation de�nes a query
window (i.e. a rectangular region in the geographic space) and it returns all the
geographic objects that overlap that region.

One of the most popular spatial access methods and a paradigmatic example
is the R-tree [4]. The R-tree is a balanced tree derived from the B-tree that
splits the space into hierarchically nested, possibly overlapping, MBRs (mini-
mum bounding rectangles). The number of children of each internal node varies
between a minimum and a maximum. The tree is kept balanced by splitting
over�owing nodes and merging under�owing nodes. MBRs are associated with
the leaf nodes, and each internal node stores the MBR that contains all the
nodes in its subtree. The decomposition of the space provided by an R-tree is
adaptive (dependent on the rectangles stored) and overlapping (nodes in the
tree may represent overlapping regions). Several variations of the original R-tree
have been proposed to improve its e�ciency (e.g. the R+-tree or the R*-tree)
and to take into account some speci�c problems (e.g. the STR R-tree for static
data). Most of these proposals have been summarized in [5].

The K-d-tree [6] is a d-dimensional data structure and one of the most promi-
nent PAMs. When this structure is used to index a collection of points, it is also
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known as Point K-d-tree. The K-d-tree is a binary search tree that represents
a recursive subdivision of the space based on the value of just one coordinate
at each level of the tree. Many variations of this structure di�er in the manner
in which they partition the space. In our experiments we use a static approach,
proposed in [6], that assumes that all the data points are known a priori. In this
variation, the partition lines must pass through the data points and the partition
axis changes cyclically in a �xed order.

As we noted before, the wavelet tree [3] is a compact structure used in other
�elds to store and index data in a compressed way. For instance, in [2] a wavelet
tree is used to index and retrieve documents and in [7] it is used to index im-
ages. It is known to be e�ciently implementable [8]. The basic tool used in the
wavelet tree is the bit-vector rank operation: given a bit vector B[1, n], the query
rank(B, i) = rank1(B, i) returns the number of bits set to 1 in the pre�x B[1, i]
of B. Symmetrically, rank0(B, i) = i− rank1(B, i). The dual query to rank1 is
select1(B, j). It returns the position of the j-th bit set to 1 in B. The de�ni-
tion of select0(B, j) is analogous. For example, given a bitmap B = 1000110,
rank1(B, 5) = 2, and select0(B, 4) = 7. Both rank and select operations can
be implemented in constant time and using little additional space on top of B
[9,10,11].

3 Spatial Indexing Using Wavelet Trees

3.1 Index Construction

Given a set of N points P = P1 . . . PN , each point consisting of two coordinates
(e.g. latitude and longitude) that de�ne its position in the geographic space
with regard to a spatial reference system, we can assume that these points can
be distributed in an N ×N matrix with only one point in each row and column.
This is not a strong restriction because if two points have the same coordinate we
can order them arbitrarily and assign them consecutive rows or columns in the
matrix. It is important to note that the matrix is only used to keep the relative
positions of the points. Neither the distances nor the proportions are kept in
it. This is a very important characteristic because it allows us to construct the
matrix for any set of points, even if there are points with duplicate coordinates
in the set. The translation from the geographic space to a matrix is illustrated
with an example in the left part of Figure 1.

The wavelet tree is a compact structure that can be used to store this matrix
with little storage cost. Given an N × N representative matrix, a wavelet tree
with dlog2 Ne levels and N bits per level can be built to store the permutation
from the order of the points in one dimension (e.g. longitude) to their order
in the other (e.g. latitude). Let X = PX1 . . . PXN and Y = PY1 . . . PYN be the
permutations where the points are ordered by their longitudes and latitudes,
respectively. For example, in Figure 1 we can name the points from left to right
(i.e. Pi is the i-th point counting from the left). Therefore, the �rst permutation
can be written as X = P1P2 . . . P16 and the second as Y = P2P13P11 . . . P1P5.
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Fig. 1. Wavelet tree construction. Only the greyed data are stored

The point P1, for instance, is the �rst one in the order of the longitudes and it
is the second to last in the order of the latitudes.

The root of the wavelet tree is a bitmap B = b1 . . . bN with the same length
of the set of points (i.e. N positions). Each position i represents the i-th point
assuming them ordered in the �rst dimension (e.g. longitude). In the example,
PX1 = P1, PX2 = P2, etc. Then, bi = 0 if PXi ∈ PY1 . . . PYN/2 , and bi = 1 if
PXi ∈ PYN/2+1 . . . PYN . The sequence of the points given a 1 in this vector are
processed in the right child of the node, and those marked 0 are processed in the
left child of the node. In this way, each node indexes half the symbols indexed by
its parent node. This process is repeated recursively in each node until the leaf
nodes where the sequence of indexed symbols corresponds to the permutation
in the second dimension (e.g. latitude). The right part of Figure 1 shows the
wavelet tree that represents the matrix on the left. Each position in each node of
the wavelet tree has been annotated with the order of the corresponding point
in the second permutation (these orders are crossed out because in fact they are
not stored in the wavelet tree).

3.2 Solving Queries

Obtaining the order of a point in a dimension knowing its order in the other
dimension is quite simple. If we know the order of a point in the �rst dimension
(in our example, the longitude) we can go down the wavelet tree to obtain its
order in the second dimension (in our example, the latitude). The value at a
certain position and the rank operation are used to go down in the wavelet tree.
The bit bi in the bitmap of a node de�nes whether the corresponding point is
indexed by either the left (bi = 0) or right (bi = 1) branch of this node. In
addition, rankbi(B, i) gives us the position of that point in the bitmap of the
child node. This process is repeated until a leaf node is reached, which gives us
the position of the point in the other permutation. As an example, in the wavelet
tree of Figure 1, the point in column 6 is at row 12. To obtain this result we
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�rst retrieve the bit at position 6 of the root node. That bit is set to 1. Then,
we obtain rank1(B, 6) = 4. Both results indicate that we have to repeat the
operation in position 4 of the right node. If we repeat this process until a leaf
node is reached, we obtain the result 12 (i.e. the order in the second dimension
of the element at the sixth position in the �rst dimensions).

On the other hand, if we know the order of a point in the second dimension
(in our example, the latitude) we can go up the wavelet tree to obtain its order
in the �rst dimension (in our example, the longitude). The value in the label of
the branch that gives access to the node and the select operation are used to go
up the wavelet tree. As our structure is a perfect binary tree, it is very easy to
know at each level of the tree whether the current node is a left or right child
of its parent. In the example, the point in row 13 is at column 8. To obtain this
result we �rst calculate select0(B, 1) = 1. We have made a select0 because the
position 13 in the leaf level is stored in a left node (i.e. a branch labeled with a
0) and the position 1 because 13 is the �rst position of its node. In the next level,
we have to calculate select0(B, 1) = 3 and then select1(B, 3) = 6 (1 because it is
a right child and 3 because this is the position computed in the previous step).
Finally we reach the root, where we obtain the result select1(B, 6) = 8.

We can also use the wavelet tree to solve region query operations. However,
for this purpose we need three auxiliary structures: two arrays with the coordi-
nates ordered in each dimension and the point identi�ers ordered in the same
order as one of the other arrays. The arrays of ordered coordinates are used
to translate spatial queries to ranges of valid rows and columns in the wavelet
tree. Once the query has been translated, the range of columns (longitudes) is
the range of valid positions in the root node of the wavelet tree. We can go
down through the structure using the algorithm that we have sketched before.
Nevertheless, the performance of that algorithm can be easily improved taking
into account that consecutive points in a parent node remain consecutive in the
corresponding child node. Hence, only two rank operations (one for the �rst po-
sition of the range and one for the last one) have to be calculated. Furthermore,
the range of valid rows (latitudes) obtained in the translation of the query can
be used to prune the search tree. Each node in the wavelet tree contains points
in a certain range. If this range does not intersect with the range of rows, the
algorithm does not continue in that branch.

Figure 2 shows the wavelet tree of the example with the auxiliary struc-
tures. In the �gure, two arrays with the point identi�ers are shown (IDs(X) and
IDs(Y)). The structure needs only one of them, and the decision of which one
to employ has pros and cons, as we see later. The �gure shows an example of
a region query q = <(27.53, 15.75), (30.71, 19)>. The translation of this query
to the representative matrix de�nes the range of valid columns [6, 10] and the
range of valid rows [9, 14]. The algorithm to solve the query begins with the
traversal of the wavelet tree. As we noted before, only the �rst and the last po-
sitions of a chunk (i.e. several consecutive positions) are relevant to decide the
chunks of interest in the next level. Therefore, in the �rst step the algorithm has
to calculate rank0(B, 6− 1) + 1 = 3, rank0(B, 10) = 4, rank1(B, 6− 1) + 1 = 4
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and rank1(B, 10) = 6. Actually, only two of them have to be computed because
rank0(B, i) + rank1(B, i) = i. Thus, the valid chunks in the second level are [3,
4] in the left node and [4, 6] in the right one. However, solutions to the query
cannot be in the left node because it covers the range of rows [1, 8], which does
not intersect with the range of rows in the query ([9, 14]). Hence, this branch is
discarded. The algorithm repeats this process until the leaf level is reached.
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Fig. 2. Query solution using the wavelet tree

Once the leaf nodes are reached, the way the algorithm continues depends
on the order selected for the point identi�ers. If the point identi�ers are ordered
in the same way of the second array of coordinates (in our example, latitudes),
the positions of the leaf nodes can be directly translated to the positions in the
array of identi�ers. Hence, this version of the algorithm is simpler and, as we
will see in the next section, it is more e�cient too. On the other hand, if the
point identi�ers are ordered in the same way of the root node (in our example,
longitudes), the algorithm is more complex because when the algorithm discovers
that the latitude of a point is valid for the query, the algorithm has to go up
the wavelet tree again to obtain its identi�er. Since the validity of a latitude
can be discovered at any level of the tree, and therefore the algorithm does not
always have to reach the leaf nodes, this ordering of the identi�ers could improve
the performance of the solution. However, as we will see in the next section, its
performance is worse than that of the previous version.

4 Experiments

We compare the e�ciency of our structure with respect to other spatial index
structures, considering �rst the space requirements and then their e�ciency to
solve region queries. The results show that our structure achieves a good trade-o�
between the required space and its time e�ciency.
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We compare four spatial index structures that run in main memory. The �rst
two are the variants of our index structure presented in Section 3. In the �rst
one, called DPW-tree (down point wavelet tree), the identi�ers of the points are
stored ordered following the permutation of the leaf nodes and it is only necessary
to descend the wavelet tree to obtain the identi�ers of the points that ful�l the
query. In the second one, called UPW-tree (up point wavelet tree), the identi�ers
of the points are stored ordered following the permutation of the root node and
once that a point is known to belong to the query result it is necessary to ascend
the tree to retrieve its identi�er. The third index structure is a classical R-tree
adapted to run in main memory [12]. Although this index structure is not a point
access method but a spatial access method, and therefore it is not optimized for
point indexing, it is nonetheless the most used index structure in the geographic
information systems that are developed nowadays. We use two variations of the
original structure: the R*-tree [13] and the static construction of the STR R-tree
[14]. We count its space assuming a contiguous layout in memory. Finally, the
fourth index structure is a K-d-tree that represents the point access methods.
The K-d-tree variant that we have selected [15] is probably the most e�cient
one because it is optimized for scenarios where the set of points to be indexed
is known a priori.

To build the query sets, we implemented an algorithm that generates query
windows of a given size. This algorithm is based on the one used on the evalu-
ation of the R*-tree in [13]. The query windows generated by the algorithm are
distributed uniformly in the space. Furthermore, the size of the window sides is
adjusted so that the ratio between the horizontal and vertical extensions varies
uniformly between 0.25 and 2.25.

4.1 Space Comparison
Both variants of our structure need to store the coordinates of the N points
(two arrays of N 8-byte �oating-point numbers), the identi�ers (an array of N
4-byte integer numbers) and the wavelet tree. The wavelet tree is a very compact
structure that needs only N ×dlog2 Ne bits (1 bit per point per level, that is, N
bits per level, and there are dlog2 Ne levels). Moreover, in order to perform rank
and select operations in constant time, some auxiliary structures are needed that
use an additional space of around 37.5% of the wavelet tree size [10]. Therefore,
the complete structure requires 20×N + (N × dlog2 Ne × 1.375)/8 bytes.

The space needed by an R-tree over a collection of N points can be estimated
considering an average arity (M). The leaves store the point identi�ers. A static
structure can store the leaves contiguously without spare space. Thus the leaves
amount to 4×N bytes, and with the table storing the coordinates of the points,
we add up to 20×N bytes. Each leaf costs a MBR and a pointer at its parent,
which requires 36 bytes. Over all the levels, there are N/(M − 1) nodes, so the
total R-tree space is 20 × N + 36 × N/(M − 1). The best performance of the
STR R-tree is achieved with an e�ective M value of 30.

Finally, a K-d-tree that indexes N points has height h = dlog2 Ne and 2h −
1 + (N mod 2blog2 Nc) nodes, where each node needs 16 bytes (a �oating point
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number and two pointers). Just like the R-tree, we must also consider the 20×N
bytes of the table of points.

To �nalize the space comparison, we show the space per point necessary in
each spatial index structure. First, both variants of our structure need the same
space: 23.69 bytes/point. In the same way, both variants of the R-tree need 21.24
bytes/point. Finally, the K-d-tree needs 36.00 bytes/point. The main conclusion
that we can extract from these results is that our structure needs less space than
the K-d-tree and more than the R-tree.

4.2 Time Comparison

To perform the time comparison we take into account the two variables that can
a�ect the tests: the selectivity of the queries and the size of the test collections.
The query selectivity depends directly on the size of the query windows used. In
our tests, we created windows of four di�erent sizes that represent 0.01%, 0.1%,
1% and 10% of the area of the space where the points are represented. We use
four synthetic collections with 219, 220, 223 and 224 points uniformly distributed
in the space. Figure 4 shows four graphs where one can appreciate the in�uence
of these variables in the time needed to solve the queries.
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We have also experimented with non-uniform spaces. Figure 4 shows the
results with two synthetic collections and two real collections. Both synthetic
collections have one million points each, the �rst one with a Zipf distribution
(world size = 1000× 1000, ρ = 1) and the second one with a Gauss distribution
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(world size = 1000× 1000, mean = 500, sigma = 200). The two real collections
have 123,593 postal addresses from New York, Philadelphia and Boston (NE
dataset available at http://www.rtreeportal.org) and 2,693,569 populated places
distributed all over the world (available at http://www.geonames.org).
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The main conclusion that can be extracted from these results is that our
structure is competitive with respect to query time e�ciency. The K-d-tree is
generally the most e�cient structure, but the DPW-tree is always close, and
becomes better for low selectivities. On the other hand, the K-d-tree requires
signi�cantly more space. Both the R*-tree and the STR R-tree uses less space
than the DPW-tree but they are not competitive in time as a point access
method. We have included them in the experiments because the R-tree is the
paradigmatic example of spatial index structures, and it must be taken into
account because it is widely used nowadays. Finally, regarding the two variants
of our structure, the DPW-tree (the version that only needs to descend the
wavelet tree) is more e�cient than the UPW-tree (the version that requires
ascending in the wavelet tree).

5 Conclusions and Future Work

We have presented a new point access method based on the wavelet tree, a
compact structure widely used in other areas such as information retrieval. Our
spatial index structure is designed for two dimensions and for main memory, and
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keeps a good trade-o� between the space needed to store the index and its search
e�ciency. This is an important advantage, as main-memory spatial indexes are
becoming popular.

We are currently working on several research lines. First, we are working
on allowing the insertion or removal of points once the structure has been con-
structed. Second, we plan to design algorithms to solve other kinds of queries
such as k-nearest neighbor queries or spatial joins. We are also integrating this
structure in real geographic information systems in order to check how their per-
formance is improved by our structure. Finally, we are developing a new index
structure based on the wavelet tree to index any type of geographic object by
means of their MBRs. Alternatively, it could be interesting to see how is the
time performance of a static K-d-tree if we reduce its space by replacing the
pointer-based structure by a balanced extending representation (see [16]).
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