
Taxonomic classification with maximal exact1

matches in KATKA kernels and minimizer digests2

Dominika Draesslerová3

Czech Technical University in Prague, Czech Republic4

Omar Ahmed5

Johns Hopkins University, USA6

Travis Gagie7

Dalhousie University, Canada8

Jan Holub9

Czech Technical University in Prague, Czech Republic10

Ben Langmead11

Johns Hopkins University, USA12

Giovanni Manzini13

University of Pisa, Italy14

Gonzalo Navarro15

University of Chile, Chile16

Abstract17

For taxonomic classification, we are asked to index the genomes in a phylogenetic tree such that18

later, given a DNA read, we can quickly choose a small subtree likely to contain the genome from19

which that read was drawn. Although popular classifiers such as Kraken use k-mers, recent research20

indicates that using maximal exact matches (MEMs) can lead to better classifications. For example,21

we can22

build an augmented FM-index over the the genomes in the tree concatenated in left-to-right23

order;24

for each MEM in a read, find the interval in the suffix array containing the starting positions of25

that MEM’s occurrences in those genomes;26

find the minimum and maximum values stored in that interval;27

take the lowest common ancestor (LCA) of the genomes containing the characters at those28

positions.29

This solution is practical, however, only when the total size of the genomes in the tree is fairly small.30

In this paper we consider applying the same solution to three lossily compressed representations of31

the genomes’ concatenation:32

a KATKA kernel, which discards characters that are not in the first or last occurrence of any33

kmax-tuple, for a parameter kmax;34

a minimizer digest;35

a KATKA kernel of a minimizer digest.36

With a test dataset and these three representations of it, simulated reads and various parameter37

settings, we checked how many reads’ longest MEMs occurred only in the sequences from which those38

reads were generated (“true positive” reads). For some parameter settings we achieved significant39

compression while only slightly decreasing the true-positive rate.40

2012 ACM Subject Classification Theory of computation → Pattern matching41

Keywords and phrases Taxonomic classification, metagenomics, KATKA, maximal exact matches,42

string kernels, minimizer digests43

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2344

© Dominika Draesslerová, Omar Ahmed, Travis Gagie, Jan Holub, Ben Langmead, Giovanni Manzini
and Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Taxonomic classification with MEMs

1 Introduction45

Kraken [28] is probably the best-known metagenomic tool for taxonomic classification. Given46

a phylogenetic tree for a collection of genomes and a value k, it stores an index mapping47

each k-mer in the collection to the root of the lowest subtree containing all occurrences of48

that k-mer. Later, given a DNA read — which may not match exactly in any of genomes in49

the collection — it tries to map all the k-mers in that read to subtrees in the tree and then50

to choose a small subtree likely to contain the source of the read. For example, if Kraken is51

given the toy phylogenetic tree shown at the top of Figure 1 and k = 3, then it will store the52

k-mer index shown at the bottom of that figure. Later, given the toy read ATAC, it will map53

ATA to 6 and TAC to 2. Since the subtree rooted at 6 contains the one rooted at 2, it will54

report that the read probably came from a genome in the subtree rooted at 2.55

Nasko et al. [18] showed that a static choice of k is problematic, since “the [reference]56

database composition strongly influence[s] the performance”, with larger k values working57

better as the collection of genomes grows over time. Limiting all analyses to a single choice of58

k causes other problems as well. First, some branches of the taxonomic tree are well studied59

and contain a large number of genome assemblies for diverse strains and species. Other60

branches are scientifically significant but harder to study, and contain only a few genomes.61

In the more richly sampled spaces, larger values of k will better allow for discrimination at62

deeper levels of the tree.63

Choosing a constant value for k also conflicts with the varying error rates across sequencing64

technologies. For the high-accuracy Illumina technology, we expect longer matches to the data65

base and should favour a larger k. For a high-error-rate technology like Oxford Nanopore, we66

expect shorter matches and a small k is better. To this end, many widely tools for classifying67

long (error-prone) reads use matching statistics and/or full-text indexes [15, 1], as do some68

for short reads [14, 17]. Nasko et al. observed that69

“alternative approaches to traditional k-mer-based [lowest common ancestor] iden-70

tification methods, such as those featured within KrakenHLL [4], Kallisto [3], and71

DUDes [21], will be required to maximize the benefit of longer reads coupled with72

ever-increasing reference sequence databases and improve sequence classification73

accuracy.”74

Cheng et al. [6] showed that finding the maximal exact matches (MEMs) of the read75

with respect to the collection and then mapping each MEM to the root of the lowest subtree76

containing all occurrences of that MEM, gives better results than mapping k-mers for any77

single k. However, they did not give a space- and time-efficient index for finding and mapping78

MEMs. As a potential step toward working with MEMs, Gagie et al. [10] described an79

LZ77-based index KATKA that takes O(z log n) space, where z is the number of phrases in80

the LZ77 parse of the collection of genomes and n is the total length of the collection, and81

works like Kraken but taking k at query time instead of at construction time.82

KATKA finds the indices of the genomes containing the first and last occurrences of each83

k-mer in the collection, then performs a lowest common ancestor (LCA) query on those84

genomes in the tree to find the root of the smallest subtree containing all the occurrences of85

that k-mer. As far as we know, however, there is no practical way to find MEMs with LZ77- or86

grammar-based indexes, even if there have been some promising recent developments [12, 19]87

in this direction. Thus, KATKA is not yet a practical implementation of Cheng et al.’s idea.88

Since an LCA data structure for the phylogenetic tree takes a constant number of bits89

per genome, the main challenge to implementing Cheng et al.’s idea is to find the MEMs of90

the read with respect to the collection and then to find the genomes containing the first and91

D. Draesslerová et al. 23:3

4 9G
A
T
T
A
C
A
T

A
G
A
T
A
C
A
T

G
A
T
A
C
A
T

G
A
T
T
A
G
A
T

G
A
T
T
A
G
A
T
A

1

2

3 5

6

7

8

ACA: 2 ATT: 6 TAC: 2
AGA: 6 CAT: 2 TAG: 8
ATA: 6 GAT: 6 TTA: 6

Figure 1 A toy phylogenetic tree (top) with Kraken’s k-mer index for k = 3 (bottom).

last occurrence of each MEM. We call all this information the MEM table for the read. We92

describe in Section 2 how we can extend a technique by Ohlebusch et al. [20] to build the93

MEM table in constant time per character in the read plus O(log n) time per MEM as long94

as we are willing to use an O(n)-bit augmented FM-index for the collection — but a space95

usage of O(n) bits is prohibitive when the collection is large and anyway wasteful when it96

is highly repetitive. The most practical way we know of to build the MEM table is with97

Cáceres and Navarro’s [5] block-tree compressed suffix tree, but that offers more functionality98

than we need at the cost of using more space than we would like (“1–3 bits per symbol in99

highly repetitive text collections”).100

In this paper we build approximations of MEM tables using augmented FM-indexes over101

a string kernel for the collection,102

a minimizer digest for the collection,103

a string kernel for a minimizer digest for the collection.104

String kernels and minimizer digests are lossily compressed representations of strings, which105

we review in Section 2. We need a special kind of string kernel that we call a KATKA kernel106

and define also in Section 2. We can use KATKA kernels and minimizer digests to reduce the107

size of the augmented FM-index, at the cost of limiting the lengths of matches and reporting108

some false-positive matches. To test how we can trade off accuracy for compression, we109

built augmented FM-indexes over a test dataset and KATKA kernels, minimizer digests,110

and KATKA kernels of minimizer digests for that dataset with various parameter settings,111

and checked for how many of a set of simulated reads their longest MEMs occurred only112

in the sequences from which those reads were generated (“true positive” reads). For some113

parameter settings we achieved significant compression while only slightly decreasing the114

true-positive rate.115

CVIT 2016

23:4 Taxonomic classification with MEMs

2 Preliminaries116

2.1 Augmented FM-indexes117

Ohlebusch et al. [20] showed how, if we store an augmented FM-index, then when given a118

read we can find its MEMs quickly. We first show how to extend their technique to computing119

the MEM table in constant time per character in the read and O(log n) time per MEM.120

Suppose each genome in the collection is terminated by a special separator character121

$ as shown in Figure 2. The augmented FM-index consists of data structures supporting122

access, rank and select on the collection’s Burrows-Wheeler Transform (BWT)1; access, range-123

minimum and range-maximum on their suffix array (SA); range-minimum, range-maximum,124

previous smaller value (PSV) and next smaller value (NSV) queries on their longest common125

prefix (LCP) array; and rank on the bitvector B with a 1 marking each $ in the collection.126

As long as the collection is over a constant-size alphabet, these data structures together take127

O(n) bits with all their queries taking at most O(log n) time. They are also implemented in128

the Succinct Data Structure Library (SDSL) [13] as components of a compressed suffix tree.129

Given the read ACATA, for example, we start a backward search with BWT interval130

BWT[0..44] (the entire BWT). After 3 backward steps we find the interval BWT[16..18] for131

ATA. Since this interval does not contain a copy of the preceding character C in the read, we132

know ATA is a MEM of ACATA with respect to the collection. We use range-minimum and133

range-maximum queries over SA[16..18] and access to SA to determine that the first and134

last occurrences of ATA start at positions 11 and 41 in the collection. Since B.rank1(11) = 1135

and B.rank1(41) = 4, we know those occurrences are in the second and fifth genomes in the136

collection (stored at nodes 3 and 9 in the phylogenetic tree). Notice we consider only the137

first and last occurrences and not the occurrence starting at position 19, for example.138

We then use rank and select queries on the BWT to look for the previous copy BWT[14] of C139

and next copy of C (which does not exist); use a range-minimum query on LCP[14+1 = 15..16]140

to find the position 16 of the length 2 of the longest prefix AT of ATA that is preceded by141

C in the collection; use access to the LCP to retrieve that value 2; and use PSV(16) = 12142

and NSV(16) = 22 queries to find the interval BWT[12..22 − 1 = 21] for that prefix AT.143

After 2 backward steps we find the interval BWT[6..8] for ACAT. We use range-minimum144

and range-maximum queries over SA[6..8] and access to SA to determine that the first and145

last occurrences of ACAT start at positions 4 and 21 in the collection. Since B.rank1(4) = 0146

and B.rank1(21) = 2, we know those occurrences are in the first and third genomes in the147

collection (stored at nodes 1 and 5 in the phylogenetic tree).148

2.2 String kernels and KATKA kernels149

Ferrada, Gagie, Hirvola and Puglisi [8, 11] and Prochazka and Holub [22] (see also [9])150

independently defined the order-kmax kernel of a string to be the subsequence consisting of151

the characters in the first occurrence of any distinct kmax-mer in the string, with maximal152

omitted substrings replaced by copies of a new separator character #. Since we want to153

find the first and last occurrences of matches, we define the order-kmax KATKA kernel of154

a collection of genomes essentially the same way, but with the subsequence consisting of155

the characters in the first or last occurrence of any distinct kmax-mer in the string, and the156

1 To reduce the size of the figure we have actually shown the genomes’ extended BWT [16], which is
functionally equivalent as far as we are concerned as long as each genomes has length Ω(log n). Notice
some LCP values, such as LCP[4], “wrap around” and count a character in the BWT.

D. Draesslerová et al. 23:5

i SA[i] LCP[i] BWT[i] context
0 17 0 T $AGATACA
1 25 1 T $GATACA
2 8 4 T $GATTACA
3 34 6 T $GATTAGA
4 44 9 A $GATTAGAT
5 43 0 T A$GATTAGA
6 13 1 T ACAT$AGA
7 21 5 T ACAT$GA
8 4 8 T ACAT$GAT
9 30 1 T AGAT$GAT

10 39 4 T AGATA$GAT
11 9 5 $ AGATACAT
12 15 1 C AT$AGATA
13 23 3 C AT$GATA
14 6 6 C AT$GATTA
15 32 8 G AT$GATTA
16 41 2 G ATA$GATTA
17 11 3 G ATACAT$A
18 19 7 G ATACAT$
19 1 2 G ATTACAT$
20 27 4 G ATTAGAT$
21 36 7 G ATTAGATA$
22 14 0 A CAT$AGAT

i SA[i] LCP[i] BWT[i] context
23 22 4 A CAT$GAT
24 5 7 A CAT$GATT
25 31 0 A GAT$GATT
26 40 3 A GATA$GATT
27 10 4 A GATACAT$
28 18 8 $ GATACAT
29 0 3 $ GATTACAT
30 26 5 $ GATTAGAT
31 35 8 $ GATTAGATA
32 16 0 A T$AGATAC
33 24 2 A T$GATAC
34 7 5 A T$GATTAC
35 33 7 A T$GATTAG
36 42 1 A TA$GATTAG
37 12 2 A TACAT$AG
38 20 6 A TACAT$G
39 3 8 T TACAT$GA
40 29 2 T TAGAT$GA
41 38 5 T TAGATA$GA
42 2 1 A TTACAT$G
43 28 3 A TTAGAT$G
44 37 6 A TTAGATA$G

G A T T A C A T $ A G A T A C A T $ G A T A C A T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

G A T T A G A T $ G A T T A G A T A $
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

B = 000000001000000001000000010000000010000000001

Figure 2 The augmented FM-index for our toy collection of genomes.

copies of the separator character $. Since reads will not contain $, we also do not replace157

with # all maximal omitted substrings adjacent to copies of $.158

By construction, for k ≤ kmax, every k-mer from the normal alphabet (so not including159

$) in the original string occurs in the KATKA kernel and vice versa. Moreover, if there are160

i copies of $ to the left of the first occurrence of such a k-mer in the kernel, then the first161

occurrence of that k-mer in the collection is in the (i + 1)st genome (and symmetrically for162

the last occurrences). The running example we have used so far is too small to illustrate163

properly the advantages and disadvantages of KATKA kernels, so Figure 3 shows a slightly164

larger collection of slightly longer toy genomes and Figure 4 shows the subsequence consisting165

of the characters in the first or last occurrence of each distinct 4-mer and the copies of166

$. Figure 5 shows the 4th-order KATKA kernel of the collection with maximal omitted167

substrings replaced by copies of #. In this example, the 4th-order KATKA kernel is about168

half the size of the original collection, but this varies in practice depending on kmax and the169

size and repetitiveness of the collection. The 5th-order KATKA kernel, which we do not170

show, is about 70% of the size of the original collection.171

CVIT 2016

23:6 Taxonomic classification with MEMs

ACTTAGCTGACGTTCCGGGTGTTTTTGGCCATCTTCTATAGATTTCCCAGAGACATACTAGGCGTGCTGAAGTTGTGACTCGCGGCCGTATTTTCTAACG$
ACTTAGCTGACGTTCCGGGTGTTTTAGGCCATCTTCTATAGATTTCTCAGAGACATAGTAGGCGTGCTGAAGTTGTGACTCGCGGCCGTATTCCCTAACG$
ACTTAGCTGACGTTCCGGGTGTTTTAGGCCATCTTCTATAGTTTTCTCAGAGACATACTAGGCGTGCTGAAGTTGTCACGCGCGCCCGTATTTCCTAACG$
ACTTAGCTGACGTTCAGGGTGTTTTAGGCCATCTTCTATAGTTTTCTCAGAGACATAGTAGGCGTGCTGAAGTTGTCACTCGCGCCCGTATTTCCTAACG$
TCAGAGCTGAGGTTCGGGGTGATTTAGGACATCTTCCATCGATTTCTCAGAGACGTCCTCAGCGTGCTCAAGTTGTCACCCGCGGCCGTTATTCCTAACG$
TCCGAGCTGAGGTTCGGGGTGGTTTAGGTCATCTTCTATAAATTTCTCAGAGACGTCCCCAGCGTGCTCAAGTTGTCACTCGCGGCCGTTTTTCCGAACG$
TCATAGCTGAGGTACGGGGTGGTTTAGGCCAGCTTCTATAGATTTCTCAGACACGAGCAGGGCGTGCTTAAGTTGTCACTCGCGGCCGTTTTTCCTAACG$
TCATAGCTGAGGTACGGGGTGGTTTAGGCCACCTTCTATAGATTTGTCAGACACGAGCTCGGCGTGCTGAAGTTGTCACCCGCGGCCGTTTTTCCTAACG$
TCCAAGCGTCCGTTCGGGGTGGGTTAGGCGATCTTCTGTAGAGTTCTCGGAGACAAGCTAGGCGTGCTGATGTTGTCATTCGCGGCCGTGTTCCCTAACG$
TCCAAGCTTCCGTTCGGGGTGGGTTAGACGATCTTCTGTACAGTTCTTTGAGACAAGCTAGGCGTGCTGAAGTTGTCACACGCGGCCGTGTTCCCTAACG$
TGACAGCGGACGTTCGGGGTGGGTTAGGACATCTTCCGTAGATTTCTCGGATACAAGCTAGGCGTTCTGAAGTTGGCACTCGCGGCCTTGTTCCCTAACG$
TCCCTGCTGACGATCGGGGTAGGTTAGGACATCTTCCGTTGATTTCTCGGATACAAGCTCGGCGTTCTGAAGTTGGCACTCGCGGCCGTGTTCCCTAACG$
TAATATCAGACGTTCGGGCTGGGCTAGTCCATCTTCTTTAGATTTCTCAGAGACTTGCTAGGCGTGCTGAAGTTGGCACTCGTGGCCGTGTTCCCTAACG$
TAATATCAGACGTTCGGGATGGGCTAGTCCATCTTCTTTAGATTTCTCAGAGACATGCTAGGCGTGCTGCAGTTGTCACTCGTGGCCGTGTTCCGTTACG$
TAATATCAGACGTTCGGGCTGGATTAGGCCATCTTCTTTAGATTTCTCAGAGACATGCTAGGCGTGCTGAAGTTGGTAATCGCGGCCCTGTTCTTTAACG$
TAATATCAGACGTTCGGGCCGGGTTAGGCCATCTTCTTTAGATTTCTCAGAGACATGCTAGGCGTGCTGAAGTTGGCAATCGCGGACCTGTTCTCTAACG$

Figure 3 A slightly larger collection of slightly longer toy genomes.

ACTTAGCTGACGTTCCGGGTGTTTTTGGCCATCTTCTATAGATTTCCCAGAGACATACTAGGCGTGCTGAAGTTGTGACTCGCGGCCGTATT CTAACG$
TTTA TCTCAG TAGTAG TGTG ATTCCCTA $

TACTA TGTCACGCGCGCCCG TCCT $
TTCAGGG AGTA CACT GCGCC GTAT $

GAGCTGAGGTTCGGGGTGAT AGGAC TCCATCGAT CGTCCTCAGCG GCTCAAG CACCCGC GTTATT $
CCGAG GTGGT GGTCAT ATAAATT CCCCA TCAA CCGAAC $

GGTACGG CCAGCTT ACACGAGCAGGGC CTTAAG $
CATAGC GAGG ACGG CCACCTTCTATAG CGAGC CACCCGC GTTTTTCCT $
CCAAGCGTC TGGG GCGATC TCTGTAGAGT CGGAGACAAGCTA GATGT TCATTC $
CCAAGCTT TGTACAGT CTTTGAG CACACGC $
ACAGCG GGTG CGTA GGATA GGCAC GCCTTG $
CCTGCTGACGATCGGGGTAGGT AGGA TTGAT GATACAAGCTC TCTG $

TAATATCA GGCTGG AGTC GACTTGC GCACTCGT TCCCTA $
GGGATGGG TAGTCCA CATGC CTGCAGTTGTCACTCGTGG GTGTTCCGTTACG$
GGCTGGATTA TGGTAATC CGGCCCT TTAA $

TAATATCAGACGTTCGGGCCGGGTTAGGCCATCTTCTTTAGATTTCTCAGAGACATGCTAGGCGTGCTGAAGTTGGCAATCGCGGACCTGTTCTCTAACG$

Figure 4 The subsequence consisting of the characters in the first or last occurrence of each
distinct 4-mer and the copies of $, with omitted characters replaced by spaces.

ACTTAGCTGACGTTCCGGGTGTTTTTGGCCATCTTCTATAGATTTCCCAGAGACATACTAGGCGTGCTGAAGTTGTGACTCGCGGCCGTATT#CTAACG$T
TTA#TCTCAG#TAGTAG#TGTG#ATTCCCTA$TACTA#TGTCACGCGCGCCCG#TCCT$TTCAGGG#AGTA#CACT#GCGCC#GTAT$GAGCTGAGGTTCG
GGGTGAT#AGGAC#TCCATCGAT#CGTCCTCAGCG#GCTCAAG#CACCCGC#GTTATT$CCGAG#GTGGT#GGTCAT#ATAAATT#CCCCA#TCAA#CCGA
AC$GGTACGG#CCAGCTT#ACACGAGCAGGGC#CTTAAG$CATAGC#GAGG#ACGG#CCACCTTCTATAG#CGAGC#CACCCGC#GTTTTTCCT$CCAAGC
GTC#TGGG#GCGATC#TCTGTAGAGT#CGGAGACAAGCTA#GATGT#TCATTC$CCAAGCTT#TGTACAGT#CTTTGAG#CACACGC$ACAGCG#GGTG#C
GTA#GGATA#GGCAC#GCCTTG$CCTGCTGACGATCGGGGTAGGT#AGGA#TTGAT#GATACAAGCTC#TCTG$TAATATCA#GGCTGG#AGTC#GACTTG
C#GCACTCGT#TCCCTA$GGGATGGG#TAGTCCA#CATGC#CTGCAGTTGTCACTCGTGG#GTGTTCCGTTACG$GGCTGGATTA#TGGTAATC#CGGCCC
T#TTAA$TAATATCAGACGTTCGGGCCGGGTTAGGCCATCTTCTTTAGATTTCTCAGAGACATGCTAGGCGTGCTGAAGTTGGCAATCGCGGACCTGTTCT
CTAACG$

Figure 5 The subsequence consisting of the characters in the first or last occurrence of each
distinct 4-mer — the 4th-order KATKA kernel — and the copies of $, with maximal omitted
substrings replaced by copies of #, except for those adjacent to $.

D. Draesslerová et al. 23:7

=c<J_cA\2X<G2@’cKNJX5$=c<J_cA\2X\G3K@’cKNJ<5$=c<J_cA\2X\G2@’C6J<
5$=c_cA\2X\G3K@’C6J<5$G__/\<.GC<@CJJ<5$.__CXUGC<@CNJ<.’$G___c=\2
X\.+@CNJ<5$G___92XC.G@’CJJ<5$<<J__.\GG2@QCNJ<5$<<J__.\\\G2@’CNJ<
5$NN__\<J\N2\’+N<5$<.__\<J\N/=N’+J<5$XcN2C<\\\G@2@’+J<5$XcNQC<\\
\GQ2@+C6J<$XcN/A\\\GQ2@’_N\5$XcNJ_\\\GQ2@’+925$

Figure 6 Minimizer digests for the toy genomes in Figure 3, separated by $s.

2.3 Minimizer digests172

To build a minimizer digest [24] for a string S[1..n], we173

1. choose parameters k and w and a hash function h(·) function on k-mers,174

2. mark each k-mer S[j..j + k − 1] in S such that h(S[j..j + k − 1]) is the leftmost occurrence175

of the minimum in h(S[i..i + k − 1], . . . , S[i + w − 1..(i + w − 1) + k − 1]) for some i with176

i ≤ j < i + w,177

3. return the sequence of marked k-mers’ hashes.178

For example, suppose k = 3, w = 10 and the hash function h(·) takes a triple over {A, C, G, T}179

as a 3-digit number x in base 4 and returns (2544x + 3937) mod 8863. The minimizer digests180

for the toy genomes in Figure 3 (excluding $s) are shown in Figure 6 separated by $s and181

with the 64 triples over {A, C, G, T} mapped to ASCII values between 37 and 100. Minimizer182

digests are widely used in bioinformatics to reduce tools’ time and space requirements; for183

example, they are used this way in Kraken 2 [27], mdBG [7] and SPUMONI 2 [2].184

We note that although the first minimizer digest =c<J_cA\2X<G2@’cKNJX5 is 21 characters185

while the first genome is 100 characters, the digest is over an alphabet of size 64 instead of 4;186

therefore, the minimizer is 126 bits while the genome is 200 bits. The space of the auxiliary187

data structures for an augmented FM-index for the minimizer digest still depends on the188

number 21 of characters in the digest, however.189

We say the concatenation of the minimizer digests for the genomes in a collection,190

separated by $s, is the minimizer digest for the collection. By construction, if α is the191

minimizer digest for a pattern and there are i copies of $ to the left of the first occurrence of192

α in the minimizer digest for the collection, then the first occurrence of the pattern cannot193

be before the (i + 1)st genome (and symmetrically for the last occurrences) — although the194

pattern may not occur in that genome and possibly not in the whole collection.195

2.4 KATKA kernels of minimizer digests196

Of course, we can also build KATKA kernels of minimizer digests. Figure 7 shows the197

subsequence consisting of the characters in the first or last occurrence of each distinct pair198

— the 2nd-order KATKA kernel — and the copies of $ in Figure 6, with maximal omitted199

substrings replaced by copies of #. It consists of 220 6-bit characters (1320 bits) plus the 16200

$s; the original minimizer digest consists of 287 6-bit characters (1722 bits) plus the $s, the201

4th-order KATKA kernel consists of 798 2-bit characters (1596 bits) plus the $s, and the202

collection of toy genomes itself consists of 1600 2-bit characters (3200 bits) plus the $s. We203

note that pairs of minimizers with k = 3 and w = 10 can represent substrings as short as 4204

characters or as long as 17 characters in the genomes; in our example, on average a pair of205

minimizers represents about 2 · (1600/287) ≈ 11.15 characters.206

KATKA kernels of minimizer digests may inherit the strengths of both: with kernelization207

we can take advantage of repetition to compress, while using minimizers allows us to keep208

the parameter k in the kernelization small while still dealing with reasonably long patterns.209

CVIT 2016

23:8 Taxonomic classification with MEMs

=c<J_cA\2X<G2@’cKNJX5$X\G3K@’cKNJ<5$c<#’C6J$=c_cA#G3K@$G__/\<.GC
<@CJJ$.__CXUGC<@CN#.’$_c=\2X\.+@C$G_#_92XC.G@#CJJ$<<#_.\GG#@QC$<
<#_.\\#G2#’CN$NN__\#J\N2\’+N<$<.__\<J\N/=N’+J$XcN2C<\#G@2#+J<5$N
QC<\#GQ2@+C6J<$N/A\#’_N\5$XcNJ_\\\GQ2@’+925$

Figure 7 The subsequence consisting of the characters in the first or last occurrence of each
distinct pair — the 2nd-order KATKA kernel — and the copies of $ in Figure 6, with maximal
omitted substrings replaced by copies of #.

3 Approximating MEM tables with FM-indexes of KATKA kernels and210

minimizer digests211

Once we have built a KATKA kernel or minimizer digest for a collection of genomes, or a212

KATKA kernel of a minimizer digest, we can build an augmented FM-index over it. For213

example, Figure 8 shows the first and last lines of the augmented FM-indexes for the 4th-order214

KATKA kernel in Figure 5; the minimizer digest in Figure 6; and the 2nd-order KATKA215

kernel of the minimizer digest, from Figure 7. In all three cases, we include an implicit216

end-of-file character less than any other.217

Consider the pattern P = GGATGGGCTAGACGATCTTCTGTG, which we obtained by choosing218

the substring GGGTGGGTTAGACGATCTTCTGTA of toy genome 9 in Figure 3 (numbering the219

genomes from 0) and changing two characters. The MEM table of P with respect to all220

the toy genomes is shown on the left in Figure 9. The MEM table of P with respect to221

the 4th-order KATKA kernel with $s and #s shown in Figure 5, is shown in the center of222

Figure 9. (The MEM table of P with respect to the 5th-order KATKA kernel is the same as223

its MEM table with respect to the genomes.) The minimizer digest of P with w = 10 is Q.224

and the MEM table of that with respect to the minimizer digest of the collection is shown225

on the right of Figure 9; the MEM table with respect to the 2nd-order KATKA kernel of the226

minimizer digest is the same as the MEM table with respect to the minimizer digest.227

Since P comes from toy genome 9, following Wood, Lu and Langmead’s [27] terminology228

in their presentation of Kraken 2, we classify MEMs’ [first, last] ranges as true positives if229

they are exactly [9,9], false positives if they exclude 9 but are not empty, vague positives if230

they include 9 and at least one other number, and false negatives if they are empty. The231

classification of the MEMs’ ranges in Figure 9 are shown below:232

true positives false positives vague positives false negatives
[9] [0, 1], [8], [11] [0, 15], [4, 11]

[12, 14], [13], [15] [6, 15], [8, 15]
233

Notice the ranges for MEMs with respect to the toy genomes and the 4th-order KATKA234

kernel can never be empty (assuming every distinct character in P occurs in the genomes at235

least once), so those ranges cannot be false negatives. On the other hand, if we generate236

P by changing characters in a way that disrupts every previous minimizer and creates new237

minimizers that are not in the minimizer digest of the genomes, then we can get MEMs with238

respect to the minimizer digest or to the 2nd-order KATKA kernel of the minimizer digest,239

whose ranges are empty.240

Looking at the MEM table of P with respect to the toy genomes, it is intuitive to give241

more weight to the longer MEM, which occurs only in genome 9. If on this basis we guess242

correctly that P came from genome 9, then we can consider P a true positive with respect to243

the toy genomes; unfortunately, the same is not true with respect to the 4th-order KATKA244

kernel, nor to the minimizer digest with w = 10.245

D. Draesslerová et al. 23:9

i SA[i] LCP[i] BWT[i] context
0 815 0 $
1 321 0 T #ACACGAGCA...
2 354 3 G #ACGG#CCAC...
3 550 2 T #AGGA#TTGA...
4 209 5 T #AGGAC#TCC...
5 167 3 G #AGTA#CACT...
...

...
...

...
...

i SA[i] LCP[i] BWT[i] context
...

...
...

...
...

810 477 3 C TTTGAG#CAC...
811 23 4 T TTTGGCCATC...
812 390 3 T TTTTCCT$CC...
813 22 4 T TTTTGGCCAT...
814 389 4 G TTTTTCCT$C...
815 21 5 G TTTTTGGCCA...

A C T T A G C . . . C T A A C G $
0 1 2 3 4 5 6 1121 1122 1123 1124 1125 1126 1127

B = 00010
00000000000000000000000000000001000000000000000000000000001000000000000000000000000000010000000000000 . . .
00000000000000000100100000000000000000000000000
000000100

i SA[i] LCP[i] BWT[i] context
0 303 0 $
1 302 0 5 $
2 102 1 5 $.__CXUGC<. . .
3 210 1 5 $<.__\<J\N. . .
4 156 2 5 $<<J__.\GG. . .
5 174 8 5 $<<J__.\\\. . .
...

...
...

...
...

i SA[i] LCP[i] BWT[i] context
...

...
...

...
...

298 15 4 ’ cKNJX5$=c<. . .
299 268 1 X cN/A\\\GQ2. . .
300 230 2 X cN2C<\\\G@. . .
301 286 2 X cNJ_\\\GQ2. . .
302 249 2 X cNQC<\\\GQ. . .
303 67 1 = c_cA\2X\G3. . .

= c < J _ c A . . . @ ’ + 9 2 5 $
0 1 2 3 4 5 6 296 297 298 299 300 301 302

B = 0000000000000000000001000000000000000000 . . .
0001000000000000000000000000000000000001

i SA[i] LCP[i] BWT[i] context
0 236 0 $
1 38 0 < #’C6J$=c_c...
2 137 3 2 #’CN$NN__\...
3 211 2 \ #’_N\5$XcN...
4 185 1 2 #+J<5$NQC<...
5 82 1 N #.’$_c=\2X...
...

...
...

...
...

i SA[i] LCP[i] BWT[i] context
...

...
...

...
...

231 5 2 _ cA\2X<G2@’...
232 29 1 ’ cKNJ<5$c<#...
233 15 4 ’ cKNJX5$X\G...
234 175 1 X cN2C<\#G@2...
235 219 2 X cNJ_\\\GQ2...
236 45 1 = c_cA#G3K@$...

= c < J _ c A . . . @ ’ + 9 2 5 $
0 1 2 3 4 5 6 229 230 231 232 233 234 235

B = 0000000000000000000001000000000000010000 . . .
0000000000100000000001000000000000000001

Figure 8 The first and last lines of the augmented FM-indexes for the KATKA kernel in Figure 5
(top) and the minimizer digest in Figure 6 (bottom).

CVIT 2016

23:10 Taxonomic classification with MEMs

MEM first last
GGATGGGCTAG 13 13

TAGACGATCTTCTGT 9 9
TGTG 0 1

MEM first last
GGATGGG 13 13

GGGC 6 15
GGCT 12 14

GCTAG 15 15
TAGA 0 15

AGACG 15 15
GACGATC 11 11
ATCTTCT 0 15

TCTGT 8 8
TGTG 0 1

MEM first last
Q 8 15
. 4 11

Figure 9 The MEM tables of P with respect to the toy genomes in Figure 3 (left), the 4th-order
KATKA kernel in Figure 5 (center), and the minimizer digests in Figure 6 (right).

4 Experiments246

In order to present a concise comparison of results obtained with a full dataset with those247

obtained with KATKA kernels, minimizer digests, and KATKA kernels of minimizer digests,248

for this section we focus on true-positive rates rather than whole MEM tables. We classify a249

read as a true positive if its longest MEM is a true positive (or all its longest MEMs, in the250

case of a tie).251

We wrote the code for our experiments (which computes full MEM tables) in C++252

using SDSL [26] and posted it at https://github.com/draessld/KATKA2. We ran our253

experiments on a server at the Department of Computer Science of the Czech Technical254

University in Prague with 128 AMD EPYC 7742 64-Core CPUs and 504 GiB of RAM,255

running GNU/Linux Kernel 5.15.0.256

We chose 1000 bacterial genera consecutive in the phylogenetic tree for 138.1 release of257

the SILVA SSU Ref NR99 database [23] of ribosomal RNA (rRNA) gene sequences. We258

concatenated the gene sequences for the genera, separated by $s, and built augmented259

FM-indexes for that 167328343-character concatenation, and KATKA kernels, minimizer260

digests, and KATKA kernels of minimizer digests for it with various parameter settings:261

for KATKA kernels of the original concatenation, we used k = 5, 10, 15, 20, . . . , 45, 50, 100;262

for minimizer digests, we used 3-mers as minimizers and set w = 5, 10, 15, 20, . . . , 45, 50;263

for KATKA kernels of the minimizer digests, we used k = 5, 10, 15, 20, . . . , 45, 50 and the264

same w values.265

We included the kernel with k = 100 of the original concatenation to show that as k266

increases, the true-positive rate does approach the rate achieved with an index of the original267

concatenation.268

For each genus g, we simulated 500 reads of 200 base pairs each by choosing a random269

starting location in the reference sequence for g and mutating 1% percent of the bases270

uniformly across the read to simulate sequencing error. For each read and each index, we271

found all the read’s longest MEMs and checked whether all their [first, last] ranges contained272

only the ID of the reference sequence for g. Figure 10 shows the index sizes and true-positive273

rates over all 500 000 simulated reads. Clearly, we can achieve significant compression while274

only slightly decreasing the true-positive rate, especially with KATKA kernels of minimizer275

digests: for example, with k = 30 and w = 5 our index took 56.5 MiB and achieved a276

true-positive rate of 74.3%, compared to 287.9 MiB and 78.6% with an index for the full277

dataset, better than the tradeoffs we achieve with kernelization or minimizers alone.278

https://github.com/draessld/KATKA2

D. Draesslerová et al. 23:11

Figure 10 The index size in MiB and the true-positive rate as a percentage, for the original
dataset and various KATKA kernels, minimizer digests, and KATKA kernels of minimizer digests.

5 Conclusions and future work279

Figure 10 strongly confirms our conjecture from Subsection 2.4 that KATKA kernels of280

minimizer digests can inherit the strengths of both. In the near future we plan experiment281

also with varying the width of minimizers (for simplicity, in this paper we always used 3-mers)282

and to measure also the speedups we can achieve. (Searching over minimizer digests is usually283

significantly faster than searching over original texts, both because some characters are not284

represented in the digests and because we use a backward step for each minimizer rather than285

for each character, incurring fewer cache misses.) Later, we plan to incorporate indexing286

KATKA kernels of minimizer digests to build MEM tables — with more sophisticated287

classifications that take advantage of all the information in those tables — into a full pipeline288

for taxonomic classification of reads.289

The confirmation of our conjecture may be useful for other applications as well, when290

we are dealing with repetitive datasets and want the flexibility of an augmented FM-index291

(instead of an r-index or a grammar-based index, for example) but kernelization has still292

had less impact than we might have hoped, because setting the parameter k high enough to293

allow for the pattern lengths used in practice results in poor compression. For example, an294

obvious question that arises from our work is whether Valenzuela et al.’s [25] PanVC tool295

can achieve interesting tradeoffs between compression and accuracy using kernelization of296

minimizer digests, instead of only kernelization.297

CVIT 2016

23:12 Taxonomic classification with MEMs

References298

1 Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C Schatz, Travis Gagie, Christina299

Boucher, and Ben Langmead. Pan-genomic matching statistics for targeted nanopore sequen-300

cing. Iscience, 24(6), 2021.301

2 Omar Y Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Langmead.302

SPUMONI 2: improved classification using a pangenome index of minimizer digests. Genome303

Biology, 24(1):122, 2023.304

3 Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic305

RNA-Seq quantification. Nature biotechnology, 34(5):525–527, 2016.306

4 Florian P Breitwieser, Daniel N Baker, and Steven L Salzberg. KrakenUniq: confident and307

fast metagenomics classification using unique k-mer counts. Genome biology, 19(1):1–10, 2018.308

5 Manuel Cáceres and Gonzalo Navarro. Faster repetition-aware compressed suffix trees based309

on block trees. Information and Computation, 285:104749, 2022.310

6 Marie Cheng, Omar Ahmed, Anna Liebhoff, and Ben Langmead. Factors affecting k-mer311

specificity and alternative approaches for metagenomic classification. In preparation.312

7 Barış Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-313

genome assembly of long reads in minutes on a personal computer. Cell systems, 12(10):958–968,314

2021.315

8 Héctor Ferrada, Travis Gagie, Tommi Hirvola, and Simon J Puglisi. Hybrid indexes for316

repetitive datasets. Philosophical Transactions of the Royal Society A: Mathematical, Physical317

and Engineering Sciences, 372(2016):20130137, 2014.318

9 Héctor Ferrada, Dominik Kempa, and Simon J Puglisi. Hybrid indexing revisited. In 2018319

Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX),320

pages 1–8. SIAM, 2018.321

10 Travis Gagie, Sana Kashgouli, and Ben Langmead. KATKA: A KRAKEN-like tool with322

k given at query time. In International Symposium on String Processing and Information323

Retrieval, pages 191–197. Springer, 2022.324

11 Travis Gagie and Simon J Puglisi. Searching and indexing genomic databases via kernelization.325

Frontiers in Bioengineering and Biotechnology, 3:12, 2015.326

12 Younan Gao. Computing matching statistics on repetitive texts. In 2022 Data Compression327

Conference (DCC), pages 73–82. IEEE, 2022.328

13 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug329

and play with succinct data structures. In Experimental Algorithms: 13th International330

Symposium, SEA 2014, Copenhagen, Denmark, June 29–July 1, 2014. Proceedings 13, pages331

326–337. Springer, 2014.332

14 Daehwan Kim, Li Song, Florian P Breitwieser, and Steven L Salzberg. Centrifuge: rapid and333

sensitive classification of metagenomic sequences. Genome research, 26(12):1721–1729, 2016.334

15 Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C Schatz. Targeted335

nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nature336

biotechnology, 39(4):431–441, 2021.337

16 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension338

of the Burrows–Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.339

17 Peter Menzel, Kim Lee Ng, and Anders Krogh. Fast and sensitive taxonomic classification for340

metagenomics with Kaiju. Nature communications, 7(1):11257, 2016.341

18 Daniel J Nasko, Sergey Koren, Adam M Phillippy, and Todd J Treangen. RefSeq database342

growth influences the accuracy of k-mer-based lowest common ancestor species identification.343

Genome biology, 19(1):1–10, 2018.344

19 Gonzalo Navarro. Computing MEMs on repetitive text collections. In 34th Annual Symposium345

on Combinatorial Pattern Matching (CPM 2023). Schloss-Dagstuhl-Leibniz Zentrum für346

Informatik, 2023.347

D. Draesslerová et al. 23:13

20 Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching statistics and max-348

imal exact matches on compressed full-text indexes. In String Processing and Information349

Retrieval: 17th International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13,350

2010. Proceedings 17, pages 347–358. Springer, 2010.351

21 Vitor C Piro, Martin S Lindner, and Bernhard Y Renard. DUDes: a top-down taxonomic352

profiler for metagenomics. Bioinformatics, 32(15):2272–2280, 2016.353

22 Petr Procházka and Jan Holub. Compressing similar biological sequences using FM-index. In354

2014 Data Compression Conference, pages 312–321. IEEE, 2014.355

23 Christian Quast, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza,356

Jörg Peplies, and Frank Oliver Glöckner. The silva ribosomal rna gene database project:357

improved data processing and web-based tools. Nucleic acids research, 41(D1):D590–D596,358

2012.359

24 Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.360

Reducing storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363–361

3369, 2004.362

25 Daniel Valenzuela, Tuukka Norri, Niko Välimäki, Esa Pitkänen, and Veli Mäkinen. Towards363

pan-genome read alignment to improve variation calling. BMC genomics, 19(2):123–130, 2018.364

26 vgteam. sdsl-lite. https://github.com/vgteam/sdsl-lite, 2022.365

27 Derrick E Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with366

Kraken 2. Genome biology, 20:1–13, 2019.367

28 Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification368

using exact alignments. Genome biology, 15(3):1–12, 2014.369

CVIT 2016

https://github.com/vgteam/sdsl-lite

	1 Introduction
	2 Preliminaries
	2.1 Augmented FM-indexes
	2.2 String kernels and KATKA kernels
	2.3 Minimizer digests
	2.4 KATKA kernels of minimizer digests

	3 Approximating MEM tables with FM-indexes of KATKA kernels and minimizer digests
	4 Experiments
	5 Conclusions and future work

