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Abstract. Compressed Suffix Arrays (CSAs) offer the same functional-
ity as classical suffix arrays (SAs), and more, within space close to that
of the compressed text, and in addition they can reproduce any text frag-
ment. Furthermore, their pattern search times are comparable to those of
SAs. This combination has made CSAs extremely successful substitutes
for SAs on space-demanding applications. Their weakest point is that
they are orders of magnitude slower when reporting the precise positions
of pattern occurrences. SAs have other well-known shortcomings, inher-
ited by CSAs, such as retrieving those positions in arbitrary order. In this
paper we present new techniques that, on one hand, improve the current
space/time tradeoffs for locating pattern occurrences on CSAs, and on
the other, efficiently support extended pattern locating functionalities,
such as reporting occurrences in text order or limiting the occurrences
to within a text window. Our experimental results display considerable
savings with respect to the baseline techniques.

1 Introduction

Suffix arrays [12I21] are text indexing data structures that support various pat-
tern matching functionalities. Built on a text T[1, n] over an alphabet [1, o], the
most basic functionality provided by a suffix array (SA) is to count the number
of times a given pattern P[1,m| appears in T. This can be done in O(mlogn)
and even O(m + logn) time [21]. Once counted, SAs can report each of the occ
positions of P in T in O(1) time. A suffix array uses O(nlogn) bits of space and
can be built in O(n) time [T9I8IIT].

The space usage of suffix arrays, albeit “linear” in classical terms, is asymp-
totically larger than the nlg o bits needed to represent T itself. Since the year
2000, two families of compressed suffix arrays (CSAs) emerged [25]. One family,
simply called CSAs [TAT5B0/3TIT3], built on the compressibility of a so-called
¥ function (see details in the next section), and simulated the basic SA pro-
cedure for pattern searching, achieving the same O(mlogn) counting time of
basic SAs. A second family, called FM-indexes [BIGI7II], built on the Burrows-
Wheeler transform [3] of 7" and on a new concept called backward-search, which
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allowed O(mlogo) and even O(m) time for counting occurrences. The counting
times of all CSAs are comparable to those of SAs in practical terms as well [4].
Their space usage can be made asymptotically equal to that of the compressed
text under the k-th order empirical entropy model, and in all cases it is below
nlgo + o(nlg o) bits. Within this space, CSAs support even stronger function-
alities than SAs. In particular, they can reconstruct any text segment T'[, 7],
as well as to compute “inverse” suffix array entries (again, details in the next
section), efficiently. Reproducing any text segment allows CSAs to replace T,
further reducing space.

The weakest part of CSAs in general is that they are much slower than SAs at
retrieving the occ positions where P occurs in T'. SAs require basically occ con-
tiguous memory accesses. Instead, both CSA families use a sampling parameter
s that induces an extra space of O((n/s)logn) bits (and therefore s is typi-
cally chosen to be £2(logn)); then ¥-based CSAs require O(s) time per reported
position and FM-indexes require O(slog o). In practical terms, all CSAs are or-
ders of magnitude slower than SAs when reporting occurrence positions [4], even
when the distribution of the queries is known [§]. Text extraction complexities
for windows T'[l, r] are also affected by s, but to a lesser degree, O(s +r —1).

Although widely acknowledged as a powerful and flexible tool for text search-
ing activities, the SA has some drawbacks that can be problematic in certain
applications. The simplest one is that it retrieves the occurrence positions of
P in an order that is not left-to-right in the text. This complicates displaying
the occurrences in order (unless one obtains and sorts them all), as for example
when displaying the occurrences progressively in a document viewer. A related
one is that there is no efficient way to retrieve only the occurrences of P that
are within a window of T" unless one uses 2(nlogn) bits of space [20/226/16].
This is useful, for example, to display occurrences only within some documents
of a collection (T being the concatenation of the documents), only recent news
in a collection of news documents, etc.

In this paper we present new techniques that speed up the basic pattern
locating functionalities of CSAs, and also efficiently support extended function-
alities. Our experimental results show that the new solutions outperform the
baseline solutions by a wide margin, in some cases.

1. We unify the samplings for pattern locating and for displaying text substrings
into a single data structure, by using the fact that they are essentially the
inverse permutations of each other. This yields improved space/time trade-
offs for locating pattern positions and displaying text substrings, especially
in memory-reduced scenarios where large values of s must be used.

2. The occ positions of P have variable locating cost on a CSA. We use a data
structure that takes 2n + o(n) additional bits to report the occurrences of
P from cheapest to most expensive, thereby making reporting considerably
faster when only some occurrences must be displayed (as in search engine
interfaces, or when one displays results progressively and can show a few
and process the rest in the background). Our experiments show that, when
reporting less than around 15% of the occurrences, this technique is faster



than reporting random occurrences, even when the baseline uses those extra
2n + o(n) bits to reduce s. A simple alternative that turns out to be very
competitive is just to report first the occurrences that are sampled in the
CSA, and thus can be reported at basically no cost.

3. Variants of the previous idea have been used for document listing [24] and
for reporting positions in text order [26]. We study this latter application in
practice. While for showing all the occurrences in order it is better to extract
and partially sort them, one might need to show only the first occurrences,
or might have to show the occurrences progressively. Our implementation
becomes faster than the baseline when we report a fraction below 25% of
the occurrences. The improvement increases linearly, reaching for example
three times faster when reporting 5% of the occurrences. Again, we let the
baseline spend those 2n + o(n) extra bits on a denser sampling.

4. Finally, we extend this second idea to report the text positions that are
within a given text window. While the result is not competitive for windows
located at random positions of T, our method is faster than the baseline
of filtering the text positions by brute force when the window is within the
first 15% of T. This is particularly useful in versioned collections or news
archives, when the latest versions/dates are those most frequently queried.

The improved sampling we proposed is available in this branch of SDSL:
https://github.com/simongog/sdsl-lite/tree/better_sampling,

2 Compressed Suffix Arrays

Let T[0,n — 1] be a text over alphabet [0,0 — 1]. Then a substring T'[i,n — 1] is
called a suffiz of T, and is identified with position i. A suffix array SA[0,n — 1]
is a permutation of [0,n — 1] containing the positions of the n suffixes of T" in
increasing lexicographic order (thus the suffix array uses at least nlgn bits).
Since the positions of the occurrences of P[0,m — 1] in T are precisely the
suffixes of T that start with P, and those form a lexicographic range, counting
the number of occurrences of P in T is done via two binary searches using SA
and T, within O(mlogn) time. Once we find that SA[sp,ep] contain all the
occurrences of P in T, their number is occ = ep — sp + 1 and their positions
are SA[sp], SA[sp + 1],...,SA[ep]. With some further structures adding up to
O(nlogn) bits, suffix arrays can do the counting in O(m +logn) time [2T]. This
can be reduced to O(m) by resorting to suffix trees [34], which still use O(nlogn)
bits but too much space in practice.

Our interest in this paper is precisely using less space while retaining the SA
functionality. A compressed suffiz array (CSA) is a data structure that emulates
the SA while using O(nlogo) bits of space, and usually less on compressible
texts [25]. One family of CSAs [T4IT530J3TI13] builds on the so-called ¥ function:
W(i) = SA™1[SA[i]+1], where SA™1! is the inverse permutation of the suffix array
(given a text position j, SA™![j] tells where in the suffix array is the pointer to
the suffix T'[j,n — 1]). Thus, if SA[{] = j, ¥(¢) tells where is j + 1 mentioned
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in SA, SA[W(i)] = SA[i] + 1 = j + 1. It turns out that array ¥ is compressible
up to the k-th order empirical entropy of T' [22]. With small additional data
structures, ¥-based CSAs find the range [sp, ep] for P[0,m — 1] in O(mlogn)
time.

A second family, FM-indexes [BI67I1], build on the Burrows-Wheeler trans-
form [3] of T, denoted T*"*, which is a reversible permutation of the symbols
in T that turns out to be easier to compress. With light extra structures on top
of T""! one can implement a function called LF(i) = SA'[SA[i] — 1], the in-
verse of ¥, in time at most O(log o). An extension to the LF function is used to
implement a so-called backward-search, which allows finding the interval [sp, ep)
corresponding to a pattern P[0,m — 1] in O(mlog o) and even O(m) time [I].

Once the range SA[sp,ep] is found (and hence the counting problem is
solved), locating the occurrences of P requires finding out the values of SA[k]
for k € [sp,ep], which are not directly stored in CSAs. All the practical CSAs
use essentially the same solution for locating [25]. Text T is sampled at regular
intervals of length s, and we store those sampled text positions in a sampled suf-
fix array SAs[0,n/s], in suffix array order. More precisely, we mark in a bitmap
B[0,n — 1] the positions SA™![s - j], for all j, with a 1, and the rest are 0s. Now
we traverse B left to right, and append the value SA[i]/s to SA; for each i such
that B[i] = 1. Array SA, requires (n/s)lg(n/s) + O(n/s) bits of space, and B
can be implemented in compressed form using (n/s)lgs + O(n/s) + o(n) bits
[28127], for a total of (n/s)lgn 4+ O(n/s) + o(n) bits.

To compute SA[i] at search time, we proceed as follows on a W-based CSA. If
BJi] = 1, then the position is sampled and we know its value is in S A;, precisely
at position rank;(B,4), which counts the number of 1s in B[1,¢] (this function
is implemented in constant time in the compressed representation of B [28]).
Otherwise, we test B[¥(i)], B[¥?(i)], and so on until we find B[¥*(i)] = B[i'] =
1. Then we find the corresponding value at SA; the final answer is SA[i] =
SAs[ranki(B,i')] - s — k. The procedure is analogous on an FM-index, using
function LF, which traverses T backwards instead of forwards. The sampling
guarantees that we need to perform at most s steps before obtaining SA[:].

To display T'[l, ] we use the same sampling positions s-j, and store a sampled
inverse suffiz array SA;1[1,n/s] with the suffix array positions that point to
the sampled text positions, in text order. More precisely, we store SA;1[j] =
SA~1[j-s] for all j. This requires other (n/s)lg s+O(n/s) bits of space. Then, in
order to display T[l,r] with a ¥-based CSA, we start displaying slightly earlier,
at text position [I/s] - s, which is pointed from position i = SA;![[I/s]] in SA.
The first letter of a suffix SA[i] is easily obtained on all CSAs if ¢ is known.
Therefore, displaying is done by listing the first letter of suffixes pointed from
SA[i], SA[¥(i)], SA[W2(i)],. .. until covering the window T'[l,r]. The process is
analogous on FM-indexes. In total, we need at most s 4+ r — [ steps.

This mechanism is useful as well to compute any SA~![j] value. If j is a
multiple of s then the answer is at SA;![j/s]. Otherwise, on a ¥-based CSA, we
start at i = SA;1[|j/s]] and the answer is ¥ (i), for k = j—|j/s]-s (analogously



i SA SA' B T

0 13 6 0 $ SAs= 4 1 0 2 3
112 7 1 a$ SA;'= 6 5 813 1
2 4 9 0 atenatsea$

3 8 5 0 atsea$ SA;7"= 2 1 3 4 0
4 11 2 0 ea$

5 3 12 1 eatenatsea$

6 0 8 1 eeleatenatsea$ SAil[i-s]:SAgl[i]

7 1 10 0 eleatenatsea$

8 6 3 1 enatsea$ = select(B, SA7'*[i])
9 2 13 0 leatenatsea$

10 7 11 0 natsea$

11 10 4 0 sea$

12 5 1 0 tenatsea$

13 9 0 1 tsea$

Fig. 1. Example of a suffix array, its inverse, and the sample arrays SAs, the concep-
tional and formerly used SA™', and SA™'* for s = 3.

on an FM-index), taking up to s steps. Computing SA~1[j] is useful in many
scenarios, such as compressed suffix trees [32/10] and document retrieval [33].

3 A Combined Structure for Locating and Displaying

In order to have a performance related to s in locating and displaying text, the
basic scheme uses 2(n/s)lgn 4+ O(n/s) 4+ o(n) bits. In this section we show that
this can be reduced to (14 €)(n/s)lgn+ O(n/s)+ o(n) bits, retaining the same
locating cost and increasing the display cost to just 1/e¢ + s+ r — [ steps.

The key is to realize that SA; and SA! are essentially inverse permutations
of each other. Assume we store, instead of the value i = SA;1[j], the smaller
value i’ = SA;*[j] = rank;(B,i). Since BJi] = 1, we can retrieve i from i’ with
the operation i = select;(B,4"), which finds the ¢’th 1 in B and is implemented
in constant time in the compressed representation of B [28]. Now, at the cost
of computing select; once when displaying a text range, we can store SA;'* in
(n/s)lg(n/s) + O(n/s) bits. What is more important, however, is that SAs and
SA;'* arrays are two permutations on [0,n/s], and are inverses of each other.
Fig. [I] shows an example.

Lemma 1. Permutations SAs and SA;'* are inverses of each other.

Proof. SA[SA;Y*[4]] = SAs[rank: (B, SA7[j])] = SA[SAYj]]/s =
SA[SATYj-sll/s=(j s)/s =]

Munro et al. [23] showed how to store a permutation 7[0,n’ — 1] in (1 +
e)n’lgn’+0O(n') bits, so that any (i) can be computed in constant time and any
771(4) in time O(1/e¢). Basically, they add a data structure using e n’ lgn’+O0(n’)
bits on top of a plain array storing 7. By applying this technique to SA,, we
retain the same fast access time to it, while obtaining O(1/¢) time access to



SA;1* without the need to represent it directly. This yields the promised result
(more precisely, the space is (1 + €)(n/s)lg(n/s) + (n/s)lgs + O(n/s) + o(n)
bits). We choose to retain faster access to SAg because it is more frequently
used, and for displaying the extra O(1/¢) time cost is blurred by the remaining
O(s+r —1) time. One is free, of course, to choose the opposite.

Our experiments will show that this technique is practical and yields a sig-
nificant improvement in the space-time tradeoff of CSAs, especially when the
space is scarce and relatively large s values must be used.

4 A Structure for Prioritized Location of Occurrences

Assume we want to locate only some, say t, occurrences of P in SA[sp,ep|, as
for example in many interfaces that show a few results. In a ¥-based CSA, the
number of steps needed to compute SA[k] is its distance to the next multiple of
s, that is, D[k] = 0 if SA[k] is a multiple of s and D[k] = s — (SA[k] mod s)
otherwise. In an FM-index, the cost is D[k] = SA[k] mod s. We would like to use
this information to choose low-cost entries k € [sp, ep] instead of arbitrary ones,
as current CSAs do. The problem, of course, is that we do not yet know the value
of SA[k] before computing it! (some CSAs actually store the value SA[k] mod s
[29], but they are not space-competitive with the best current CSAs).
However, we do not need that much information. It is sufficient to know,
given a range D[x,y|, which is the minimum value in that range. This is called a
range minimum query (RMQ): RMQ(z, y) is the position of a minimum value in
Dlxz,y]. The best current (and optimal) result for RMQs [9] preprocesses D in
linear time, producing a data structure that uses just 2n 4+ o(n) bits. Then the
structure, without accessing D, can answer RMQ(x, y) queries in O(1) time.

The basic method. We use the RMQ data structure to progressively obtain the
values of S A[sp, ep] from cheapest to most expensive, as follows [24]. We compute
k = RMQ(sp, ep), which is the cheapest value in the range, retrieve and report
SA[k] as our first value, and compute DI[k] from it. The tuple (sp, ep, k, D[k]) is
inserted as the first element in a min-priority queue that sorts the tuples by D[]
values. Now we iteratively extract the first (cheapest) element from the queue, let
it be the tuple (Ip, rp, k, v), compute k; = RMQ(Ip, k—1) and k, = RMQ(k+1, rp),
then retrieve and report SA[k;] and SA[k,], and insert tuples (Ip, k — 1, ki, D[k])
and (k + 1,7p, k., D[k]) in the priority queue (unless they are empty intervals).
We stop when we have extracted the desired number of answers or when the
queue becomes empty. We carry out O(t) steps to report ¢ occurrences [24].

A stronger solution using B. Recall bitmap B that marks the sampled
positions. The places where D[k] = 0 are precisely those where B[k] = 1. We can
use this to slightly reduce the space of the data structure. First, using operations
rank; and select; on B, we spot all those k € [sp, ep] where B[k] = 1. Ounly
then we start reporting the next cheapest occurrences using the RMQ data
structure as above. This structure, however, is built only on the entries of array



D’, which contains all D[k] # 0. Using ranky operations on B (which counts
Os, ranky(B,i) = i — ranky(B, 1)), we map positions in Dlip,rp| to D'[lp’, rp/].
Mapping back can be solved by using a selectq structure on B, but we opt for an
alternative that is faster in practice and spends little extra memory: we create a
sorted list of pairs (k,ranko(B,k)) for the already spotted k with B[k] = 1, and
binary search it for mapping the positions back.

Refining priorities. The process can be further optimized by refining the
ordering of the priority queue. Our method sorts the intervals [sp, ep] only ac-
cording to the minimum possible value u (= D[k]). Assuming that the values in
Dsp, ep] are distributed uniformly at random in [u, s) we can calculate the value

z
of the expected minimum 7n(lp, rp,u) = u—i—zsfl (S_“) , where z = rp—Iip+1

v=u+1 \ s—u
is the range size. This can be used as a refined priority value.

Experiments. In the experimental section we will explore the performance of
four solution variants: The ‘standard’ method, which extracts the first ¢ entries
in SA[sp,epl; a variant we call ‘select’, which enhances the baseline by using
rank and select to first report all SA[k] with B[k] = 1; and the described RMQ
approach on D’, with the priority queue ordering according to the minimum value
DIk] (‘RMQ’) or the expected minimum in the intervals (‘RMQ+est.min.”).

Locating occurrences in text position order. By giving distinct seman-
tics to the D array, we can use the same RMQ-based mechanism to prioritize
the extraction of the occurrences in different ways. An immediate application,
already proposed in the literature (but not implemented) [26], is to report the
occurrences in text position order, that is, using D[k] = SA[k]. In the experimen-
tal section we show that our implementation of this mechanism is faster than
obtaining all the SA[sp, ep] values and sorting them, even when a significant
fraction of the occurrences is to be reported.

5 Range-Restricted Location of Occurrences

We now extend the mechanism of the previous section to address, partially,
the more complex problem of retrieving the occurrences of SA[sp, ep] that are
within a text window T'[[,r]. Again, we focus on retrieving some of those “valid”
occurrences, not all of them. We cannot guarantee a worst-case complexity (as
it would not be possible in succinct space [16]), but expect that in practice
we perform faster than the baseline of scanning the values left to right and
reporting those that are within the range, | < SA[k] < 7, until reporting the
desired number of occurrences.

If, as in the end of Section [} we obtain the occurrences in increasing text
position order, we will eventually report the leftmost occurrence within T'[l, r],
and since then we will report all valid occurrences. As soon as we report the first
occurrence position larger than r, we can stop. Although introducing ordering in
the process, this mechanism is unlikely to be very fast, because it must traverse
all the positions to the left of [ before reaching any valid occurrence.



We propose the following heuristic modification, in order to arrive faster to
the valid occurrences. We again store tuples (Ip, rp, k, SA[k]), where k gives the
minimum position in SA[lp,rp]. But now we use a max-priority queue sorted
according to SA[k], that is, it will retrieve first the largest minima of the en-
queued ranges. After inserting the first tuple as before, we iteratively extract
tuples (Ip, rp, k, SA[k]). If SA[k] > r, then the extracted range can be discarded
and we continue. If SA[k] < I, then we split the interval into two as before
and reinsert both halves in the queue (position SA[k] is not reported). Finally,
if | < SA[k] < r, we run the algorithm of the end of Section 4] on the interval
S Allp, rp], which will give all valid positions to report. This process on S Al[lp, rp]
finishes when we extract the first value larger than r, at which point this segment
is discarded and we continue the process with the main priority queue.

Note that, although this heuristic is weaker in letting us know when we can
stop, it is likely to reach valid values to report sooner than using the algorithm of
Section[d In the experimental section we will show that, although our technique
is slower than the baseline for general intervals (e.g., near the middle of the
text), it is faster when the desired interval is close to the beginning (or the
end, as desired). This biased range-restricted searching is useful, for example, in
versioned systems, where the latest versions are those most frequently queried.

6 Experimental Results

All experiments were run on a server equipped with 144 GB of RAM and
two Intel Xeon E5640 processors each with a 12 MB L3 cache. We used the
P12zA& CHILI corpusEI, which contains texts from various application domains.
Our implementations are based on structures of version 2.0.2 of SDSLEL The
CSAs of sDSL can be parameterized with the described traditional sampling
method, which uses a bitmap B to mark the sampled suffixes. It has recently
been shown [I1] that this sampling strategy, when B is represented as|sd_vector
[27], gives better time/space tradeoffs than a strategy that does not use B but
samples every SA[i] with ¢ =0 mod s. In our first experiment, we compare the
traditional sampling using SA, SA;! and B to the new solution that replaces
S A1 by just €n/s samples plus a bitmap B’ of length n/s to mark those samples
in SA,. We opted for e = 1/8, so that every SA~! value can be retrieved in at
most 8 steps, and B’ is represented as an uncompressed bitmap (bit_vector).
The underlaying CSA is a very compact FM-index (csa_wt) parameterized with a
Huffman-shaped wavelet tree (wt_huff) and a compressed bitmap (rrr_vector).
We choose this FM-index deliberately, since the ratio of space assigned to samples
is especially high. With the new method we save so much space that we can also
afford to represent B as bit_vector. Fig. |2 shows the time/space tradeoffs for
accessing SA and SA~! on one text (the results were similar on the others).
The points representing the same s value lie further left in the new solution,
since we saved space. Replacing B with an uncompressed bitmap slightly reduces

3 Available under http://pizzachili.dcc.uchile.cl/.
4 Publicly available under [https://github.com /simongog/sdsl-lite
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Fig. 2. Time/space tradeoffs to extract a SA (o) respectively SA™" value (A) from
indexes over input english.2108MB. Sampling density s was varied between 1 and 32.

access time, in addition. We only report this basic experiment, but we note that
these better tradeoffs directly transfer to applications that need simultaneous
access to SA and SA™1, like the child operation in compressed suffix trees.

In the second experiment, we measure the time to extract ¢ = 50 arbitrary
SA[k] values from a range [sp, ep]. We use the same FM-index of the previous
paragraph. We create one index with s = 6 and one using an RMQ structure on
D’ (rmg-succinct_sct)). Setting s’ = 10 for the latter index results in a size of
2,261 MB, slightly smaller than the s = 6 index (2,303 MB).

Fig. [3| (top) shows time and the average distance of the retrieved values to
their nearest sample. Solution ‘standard’ spends the expected (s'—1)/2 = 2.5 LF
steps per SA value, independently of the range size. Method ‘select’ first reports
all sampled values in the range, hence the average distance linearly decreases
and is close to zero at s x 50 = 300. The RMQ based indexes spend the expected
(s —1)/2 = 4.5 steps for z = 50. Using the RMQ information helps to decrease
time and distance faster than linearly. The version using minimum estimation
performs fewer LF steps for ranges in [150,220], but the cost of the RMQs in
this case is too high compared to the saved LF steps.

In scenarios where LF is more expensive, ‘RMQ+est.min.” can also outper-
form ‘select’ in runtime. The cost of one LF step depends logarithmically on the
alphabet size o, while the RMQ cost stays the same. Thus, using a text over a
larger alphabet yields a stronger correlation between the distance and runtime,
as shown in Fig. 3| (bottom), where we repeat the experiment using an FM-index
(csa_wt| parameterized with wt_int) on a word parsing enwiki.4646MB of the
English Wikipedia (o = 3,903,703). The RMQ supported index takes 3362 MB
for s/ = 10 and we get 3393 MB for s = 6.

Using almost the same index on english.2108MB (RMQ is built on SA
this time, using s’ = 32 and s = 10, obtaining sizes 1,554 MB and 1,590 MB),
we now evaluate how long it takes to report the ¢ = 10 smallest SA[k] values
in a range SA[sp, ep]. The standard version sequentially extracts all values in
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Fig. 3. Left: Time to report 50 values in the range SA[sp, sp+z—1]. Right: Distance
of a reported SA[k] value to its nearest sample. Input: english.2108MB (top) and
enwiki.4646MB (bottom).

S Alsp, ep], while keeping a max-priority queue of size k with the minima. The
RMQ based method uses a min-priority queue that is populated with ranges
and corresponding minimum values. Fig. 4] contains the results. For range size
z = 10, the standard method is about 3 times faster, since we decode 10 values
in both methods and the sampling of the standard method is 3.2 times denser
than that of the RM(Q supported index. The RMQ index extracts 2t — 1 values
in the worst case, when there are ¢t — 1 left in the priority queue. Therefore it is
not surprising that the crossing point lies at about 60 ~ 3.2 x (2t — 1).

Lastly, we explore the performance of range-restricted locating on the same
indexes. We take pattern ranges of size 10,000 and search for occurrences in text
ranges T'[l,] + 0.01n], which corresponds to the scenario drawn earlier in the
paper. Fig. [f] shows that our heuristic using a max-priority queue to retrieve
subranges that contain values > [, is superior to the standard approach in the
first 15% of the text. The approach of the previous experiment extracts first all
the occurrences located in T'[0,1—1), and thus becomes quickly slower than the
standard approach.
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Fig. 4. Average time to report the ten smallest SA[k] values in SA[sp, sp+z—1].
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Fig. 5. Average time to report ten SA[k] € [I,r] for k in [sp, sp+10000—1].
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