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Abstract. Supporting top-k document retrieval queries on general text
databases, that is, finding the k documents where a given pattern occurs
most frequently, has become a topic of interest with practical applica-
tions. While the problem has been solved in optimal time and linear
space, the actual space usage is a serious concern. In this paper we study
various reduced-space structures that support top-k retrieval and pro-
pose new alternatives. Our experimental results show that our novel
structures and algorithms dominate almost all the space/time tradeoff.

1 Introduction

Ranked document retrieval is the basic task of most search engines. It consists in
preprocessing a collection of d documents, D = {D1, D2, . . . , Dd}, so that later,
given a query pattern P and a threshold k, one quickly finds the k documents
where P is “most relevant”.

The best known application scenario is that of documents being formed by
natural language texts, that is, sequences of words, and the query patterns being
words, phrases (sequences of words), or sets of words or phrases. Several relevance
measures are used, which attempt to establish the significance of the query in a
given document [2]. The term frequency, the number of times the pattern appears
in the document, is the main component of most measures.

Ranked document retrieval is usually solved with some variant of a simple
structure called an inverted index [2]. This structure, which is behind most
search engines, handles well natural language collections. However, the term
“natural language” hides several assumptions that are key to the efficiency of
that solution: the text must be easily tokenized into words, there must not be
too many different words, and queries must be whole words or phrases.

Those assumptions do not hold in various applications where document re-
trieval is of interest. The most obvious ones are documents written in Asian
languages , where it is not easy to split words automatically, and search engines
treat the text as a sequence of symbols, so that queries can retrieve any sub-
string of the text. Other applications simply do not have a concept of word, yet
ranked retrieval would be of interest: DNA or protein sequence databases where
one seeks the sequences where a short marker appears frequently, source code
repositories where one looks for functions making heavy use of an expression or
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function call, MIDI sequence databases where one seeks for pieces where a given
short passage is repeated, and so on.

These problems are modeled as a text collection where the documents Di are
strings over an alphabet Σ, of size σ, and the queries are also simple strings.
The most popular relevance measure is the term frequency, meaning the number
of occurrences of the string P in the strings Di (we discuss other measures in
Section 6). We call n =

∑
|Di| the collection size and m=|P | the pattern length.

Muthukrishnan [17] pioneered the research on document retrieval for general
strings. He solved the simpler problem of “document listing”: reporting the occ
distinct documents where P appears in optimal time O(m + occ) and linear
space, O(n) integers (or O(n log n) bits). Muthukrishnan also considered various
other document retrieval problems, but not top-k retrieval.

The first efficient solution for the top-k retrieval problem was introduced by
Hon et al. [13]. They achieved O(m+ log n log log n+ k) time, yet the space was
superlinear, O(n log2 n) bits. Soon, Hon et al. [12] achieved O(m+ k log k) time
and linear space, O(n log n) bits. Recently, Navarro and Nekrich [18] achieved
optimal time, O(m+ k), and reduced the space from O(n log n) to O(n(log σ +
log d)) bits (albeit the constant is not small).

While these solutions seem to close the problem, it turns out that the space
required by O(n log n)-bit solutions is way excessive for practical applications.
A recent space-conscious implementation of Hon et al.’s index [20] showed that
it requires at least 5 times the text size.

Motivated by this challenge, there has been a parallel research track on how
to reduce the space of these solutions, while retaining efficient search time [21, 22,
12, 7, 5, 3, 19, 11]. In this work we introduce a new variant with relevant theoreti-
cal and practical properties, and show experimentally that it dominates previous
work. The next section puts our contribution in context.

2 Related Work

Most of the data structures for general text searching, and in particular the
classical ones for document retrieval [17, 12], build on on suffix arrays [16] and
suffix trees [23]. Regard the collection D as a single text T [1, n] = D1D2 . . . Dd,
where each Di is terminated by a special symbol “$”. A suffix array A[1, n] is a
permutation of the values [1, n] that points to all the suffixes of T : A[i] points
to the suffix T [A[i], n]. The suffixes are lexicographically sorted in A: T [A[i], n] <
T [A[i+1], n] for all 1 ≤ i < n. Since the occurrences of any pattern P in T
correspond to suffixes of T that are prefixed by P , the occurrences are pointed
from a contiguous area in the suffix array A[sp, ep]. A simple binary search finds
sp and ep in O(m log n) time [16]. A suffix tree is a digital tree with O(n) nodes
where all the suffixes of T are inserted and unary paths are compacted. Every
internal node of the suffix tree corresponds to a repeated substring of T and
its associated suffix array interval;, suffix tree leaves correspond to the suffixes
and their corresponding suffix array cells. A top-down traversal in the suffix tree
finds the internal node (called the locus of P ) from where all the suffixes prefixed



with P descend, in O(m) time. Once sp and ep are known, the top-k query finds
the k documents where most suffixes in A[sp, ep] start.

A first step towards reducing the space in top-k solutions is to compress
the suffix array. Compressed suffix arrays (CSAs) simulate a suffix array within
as little as nHk(T ) + o(n log σ) bits, for any k ≤ α logσ n and any constant
0 < α < 1. Here Hk(T ) is the k-th order entropy of T , a measure of its statistical
compressibility. The CSA, using |CSA| bits, finds sp and ep in time search(m),
and computes any cell A[i], and even A−1[i], in time lookup(n). For example, a
CSA achieving the small space given above [6] achieves search(m) = O(m(1 +

log σ
log logn )) and lookup(n) = O(log1+ε n) for any constant ε > 0. CSAs also replace
the collection, as they can extract any substring of T .

In their very same foundational paper, Hon et al. [12] proposed an alternative
succinct data structure to solve the top-k problem. Building on a solution by
Sadakane [21] for document listing, they use a CSA for T and one smaller CSA
for each document Di, plus a little extra data, for a total space of 2|CSA|+o(n)+
d log(n/d)+O(d) bits. They achieve time O(search(m)+k log3+ε n·lookup(n)), for
any constant ε > 0. Gagie et al. [7] slightly reduced the time to O(search(m) +
k log d log(d/k) log1+ε n · lookup(n)), and Belazzougui and Navarro [3] further
improved it to O(search(m) + k log k log(d/k) logε n · lookup(n)).

The essence of the succinct solution by Hon et al. [12] is to preprocess top-
k answers for the lowest suffix tree nodes containing any range A[i · g, j · g]
for some sampling parameter g. Given the query interval A[sp, ep], they find
the highest preprocessed suffix tree node whose interval [sp′, ep′] is contained in
[sp, ep]. They show that sp′ − sp < g and ep − ep′ < g, and then the cost of
correcting the precomputed answer using the extra occurrences at A[sp, sp′−1]
and A[ep′+1, ep] is bounded. For each such extra occurrence A[i], one finds out
its document, computes the number of occurrences of P within that document,
and lets the document compete in the top-k precomputed list. Hon et al. use the
individual CSAs and other data structures to carry out this task. The subsequent
improvements [7, 3] are due to small optimizations on this basic design.

Gagie et al. [7] also pointed out that in fact Hon et al.’s solution can run
on any other data structure able to (1) telling which document corresponds to
a given A[i], and (2) count how many times the same document appears in
any interval A[sp, ep]. A structure that is suitable for this task is the document
array D[1, n], where D[i] is the document A[i] belongs to [17]. While in Hon
et al.’s solution this is computed from A[i] using d log(n/d) + O(d) extra bits
[21], we need more machinery for task (2). A good alternative was proposed
by Mäkinen and Valimäki [22] in order to reduce the space of Muthukrishnan’s
document listing solution [17]. The structure is a wavelet tree [10] on D. The
wavelet tree represents D using n log d + o(n) log d bits and not only computes
any D[i] in O(log d) time, but it can also compute operation ranki(D, j), which
is the number of occurrences of document i in D[1, j], in O(log d) time too. This
solves operation (2) as rankD[i](D, ep) − rankD[i](D, sp−1). With the obvious
disadvantage of the considerable extra space to representD, this solution changes
lookup(n) by log d in the query time. Gagie et al. show many other combinations



that solve (1) and (2). One of the fastest uses Golynski et al.’s representation
[9] on D and, within the same space, changes lookup(n) to log log d in the time.
Very recently, Hon, Shah, and Thankachan [11] presented new combinations in
the line of Gagie et al., using also faster CSAs. The least space-consuming one
requires n log d + n o(log d) bits of extra space on top of the CSA of T , and
improves the time to O(search(m) + k(log k + (log log n)2+ε)).

Belazzougui and Navarro [3] used an approach based on minimum perfect
hash functions to replace the array D by a weaker data structure that takes
O(n log log log d) bits of space and supports the search in time O(search(m) +
k log k log1+ε n · lookup(n)). This is solution is intermediate between representing
D or the individual CSAs and it could have practical relevance.

Culpepper et al. [5] built on an improved document listing algorithm on
wavelet trees [8] to achieve two top-k algorithms, called Quantile and Greedy,
that use the wavelet tree alone (i.e., without Hon et al.’s [12] extra structures).
Despite their worst-case complexity being as bad as extracting the results one
by one in A[sp, ep], that is, O((ep − sp + 1) log d), in practice the algorithms
performed very well, being Greedy superior. They implemented Sadakane’s so-
lution [21] of using individual CSAs for the documents and showed that the
overheads are very high in practice. Navarro et al. [19] arrived at the same con-
clusion, showing that Hon et al.’s original succinct scheme is not promising in
practice: both space and time were much higher in practice than Culpepper et
al.’s solution. However, their preliminary experiments [19] showed that Hon et
al.’s scheme could compete when running on wavelet trees.

Navarro et al. [19] also presented the first implemented alternative to reduce
the space of wavelet trees, by using Re-Pair compression [15] on the bitmaps.
They showed that significant reductions in space were possible in exchange for
an increase in the response time of Culpepper et al.’s Greedy algorithm (half the
space and twice the time is a common figure).

This review exposes interesting contrasts between the theory and the practice
in this area. On one hand, the structures that are in theory larger and faster
(i.e., the n log d-bits wavelet tree versus a second CSA of at most n log σ bits) are
in practice smaller and faster. On the other hand, algorithms with no worst-case
bound (Culpepper et al.’s [5]) perform very well in practice. Yet, the space of
wavelet trees is still considerably large in practice (about twice the plain size of
T in several test collections [19]), especially if we consider that they represent
totally redundant information that could be extracted from the CSA of T .

In this paper we study a new practical alternative. We use Hon et al.’s [12]
succinct structure on top of a wavelet tree, but instead of brute force we use a
variant of Culpepper et al.’s [5] method to find the extra candidate documents
in A[sp, sp′−1] and A[ep′+1, ep]. We can regard this combination either as Hon
et al.’s method boosting Culpepper et al. or vice versa. Culpepper et al. boost
Hon et al.’s method, while retaining its good worst-case complexities, as they
find the extra occurrences more cleverly than by enumerating them all. Hon et
al. boost plain Culpepper et al.’s method by having precomputed a large part
of the range, and thus ensuring that only small intervals have to be handled.



We consider the plain and the compressed wavelet tree representations, and
the straightforward and novel representations of Hon et al.’s succinct structure.
We compare these alternatives with the original Culpepper et al.’s method (on
plain and compressed wavelet trees), to test the hypothesis that adding Hon
et al.’s structure is worth the extra space. Similarly, we include in the com-
parison the basic Hon et al.’s method (with and without compressed structure)
over Golynski et al.’s [9] sequence representation, to test the hypothesis that
using Culpepper et al.’s method over the wavelet tree is worth compared to the
brute force method over the fastest sequence representation [9]. This brute force
method is also at the core of the new proposal by Hon et al. [11].

Our experiments show that our new algorithms and data structures dominate
almost all the space/time tradeoff for this problem, becoming a new practical
reference point.

3 Implementing Hon et al.’s Succinct Structure

The succinct structure of Hon et al. [12] is a sparse generalized suffix tree of
T (SGST; “generalized” means it indexes d strings). It is obtained by cutting
A[1, n] into blocks of length g and sampling the first and last cell of each block
(recall that cells of A are leaves of the suffix tree). Then all the lowest common
ancestors (lca) of pairs of sampled leaves are marked, and a tree τk is formed
with those (at most) 2n/g marked internal nodes. The top-k answer is stored for
each marked node, using O((n/g)k log n) bits. This is done for k = 1, 2, 4, . . .,
and parameter g is of the form g = k · g′. The final space is O((n/g′) log d log n)
bits. This is made o(n) by properly choosing g′.

To answer top-k queries, they search the CSA for P , to obtain the suffix
range A[sp, ep] of the pattern. Then they turn to the closest higher power of two
of k, k∗ = 2dlog ke, and let g = k∗ ·g′ be the corresponding g value. They now find
the locus of P in the tree τk∗ by descending from the root until finding the first
node v whose interval [spv, epv] is contained in [sp, ep]. They have at v the top-k
candidates for [spv, epv] and have to correct the answer considering [sp, spv−1]
and [epv+1, ep]. Now we introduce two implementations of this idea.

3.1 Sparsified Generalized Suffix Tree (SGST)

Let us call li = A[i] the i-th leaf. Given a value of k we define g = k · g′,
for a space/time tradeoff parameter g′, and sample n/g leaves l1, lg+1, l2g+1, . . .,
instead of sampling 2n/g leaves as in the theoretical proposal. We mark internal
SGST nodes lca(l1, lg+1), lca(lg+1, l2g+1), . . .. It is easy to prove that any v =
lca(lig+1, ljg+1) is also v = lca(lrg+1, l(r+1)g+1) for some r (precisely, r is the
rightmost sampled leaf descending from the child of v that is ancestor of lig+1).
Thus these n/g SGST nodes suffice and can be computed in linear time [4].

Now we note that there is a great deal of redundancy in the log d trees
τk, since the nodes of τ2k are included in those of τk, and the 2k candidates
stored in the nodes of τ2k contain those in the corresponding nodes of τk. To



factor out some of this redundancy we store only one tree τ , whose nodes are
the same of τ1, and record the class c(v) of each node v ∈ τ . This is c(v) =
max{k, v ∈ τk} and can be stored in log log d bits. Each node v ∈ τ stores
the top-c(v) candidates corresponding to its interval, using c(v) log d bits, and
their frequencies, using c(v) log n bits, plus a pointer to the table, and the interval
itself, [spv, epv], using 2 log n bits. All the information on intervals and candidates
is factored in this way, saving space. Note that the class does not necessarily
decrease monotonically in a root-to-leaf path of τ , thus we store all the topologies
independently to allow for efficient traversal of the τk trees, for k > 1. Apart
from topology information, each node of such τk trees contains just a pointer to
the corresponding node in τ , using log |τ | bits.

In our first data structure, the topology of the trees τ and τk is represented
using pointers of log |τ | and log |τk| bits, respectively. To answer top-k queries,
we find the range A[sp, ep] using a CSA (whose space and negligible time will
not be reported because it is orthogonal to all the data structures). Now we find
the locus in the appropriate tree τk∗ top-down, binary searching the intervals
[spv, epv] of the children of the current node, and extracting those intervals
using the pointer to τ . By the properties of the sampling [12] it follows that we
will traverse in this descent nodes v ∈ τk∗ such that [sp, ep] ⊆ [spv, epv], until
reaching a node v so that [spv, epv] = [sp′, ep′] ⊆ [sp, ep] ⊆ [sp′ − g, ep′ + g] (or
reaching a leaf u ∈ τk such that [sp, ep] ⊆ [spu, epu], in which case ep− sp+ 1 <
2g). This v is the locus of P in τk∗ , and we find it in time O(m log σ). This is
negligible compared to the subsequent costs, as well as it is the CSA search.

3.2 Succinct SGST

Our second implementation uses represents the tree topologies without point-
ers. Although the tree operations are slightly slower than with pointers, this
slowdown occurs on a less significant part of the search process, and a succinct
representation allows one to reduce the sampling parameter g for the same space.

Arroyuelo et al. [1] showed that, for the functionality it provides, the most
promising succinct representation of trees is the so-called LOUDS [14]. It requires
2N + o(N) bits of space (in practice, as little as 2.1N) to represent a tree of N
nodes, and it solves many operations in constant time (less than a microsecond
in practice). We resort to their labeled trees [1] implementation, We encode the
values spv and epv, pointers to τ (in τk), and pointers to the candidates in a
separate array, indexed by the LOUDS rank of the node v, managing them as
Arroyuelo et al. [1] manage labels. We use that implementation [1].

4 A New Top-k Algorithm

We run a combination of the algorithm by Hon et al. [12] and those of Culpep-
per et al. [5], over a wavelet tree representation of the document array D[1, n].
Culpepper et al. introduce, among others, a document listing method (DFS) and
a Greedy top-k heuristic. We adapt these to our particular top-k subproblem.



If the search for the locus of P ends at a leaf u that still contains the interval
[sp, ep], Hon et al. simply scan A[sp, ep] by brute force and accumulate frequen-
cies. We use instead Culpepper et al.’s Greedy algorithm, which is always better
than a brute-force scanning.

When, instead, the locus of P is a node v where [spv, epv] = [sp′, ep′] ⊆
[sp, ep], we start with the precomputed answer of the k ≤ k∗ most frequent
documents in [sp′, ep′], and update it to consider the subintervals [sp, sp′−1]
and [ep′+1, ep]. We use the wavelet tree of D to solve the following problem:
Given an interval D[l, r], and two subintervals [l1, r1] and [l2, r2], enumerate all
the distinct values in [l1, r1] ∪ [l2, r2], and their frequencies in [l, r]. We propose
two solutions, which generalize the heuristics proposed by Culpepper et al. [5].

4.1 Restricted Depth-First Search (DFS)

Let us consider a wavelet tree [10] representation of an array D. At the root, a
bitmap B[1, n] stores B[i] = 0 if D[i] ≤ d/2 and B[i] = 1 otherwise. The left
child of the root is, recursively, a wavelet tree handling the subsequence of D
with values D[i] ≤ d/2, and the right child handles the subsequence of values
D[i] > d/2. Added over the log d levels, the wavelet tree requires n log d bits
of space. With o(n log d) additional bits we answer in constant time any query
rank0/1(B, i) over any bitmap B [14].

Note that any interval D[i, j] can be projected into the left child of the root
as [i0, j0] = [rank0(B, i−1)+1, rank0(B, j)], and into its right child as [i1, j1] =
[rank1(B, i−1)+1, rank1(B, j)], where B is the root bitmap. Those can then be
projected recursively into other wavelet tree nodes.

Our restricted DFS algorithm begins at the root of the wavelet tree and
tracks down the intervals [l, r] = [sp, ep], [l1, r1] = [sp, sp′−1], and [l2, r2] =
[ep′+1, ep]. More precisely, we count the number of zeros and ones in B in ranges
[l1, r1] ∪ [l2, r2], as well as in [l, r], using a constant number of rank operations
on B. If there are any zeros in [l1, r1] ∪ [l2, r2], we map all the intervals into
the left child of the node and proceed recursively from this node. Similarly, if
there are any ones in [l1, r1]∪ [l2, r2], we continue on the right child of the node.
When we reach a wavelet tree leaf we report the corresponding document, and
the frequency is the length of the interval [l, r] at the leaf.

When solving the problem in the context of top-k retrieval, we can prune
some recursive calls. If, at some node, the size of the local interval [l, r] is smaller
than our current kth candidate to the answer, we stop exploring its subtree since
it cannot contain competitive documents.

4.2 Restricted Greedy

Following the idea of Culpepper et al., we can not only stop the traversal when
[l, r] is too small, but also prioritize the traversal of the nodes by their [l, r] value.

We keep a priority queue where we store the wavelet tree nodes yet to process,
and their intervals [l, r], [l1, r1], and [l2, r2]. The priority queue begins with one



element, the root. Iteratively, we remove the element with highest r−l+1 value
from the queue. If it is a leaf, we report it. Otherwise, we project the intervals into
its left and right children, and insert each such children containing nonempty
intervals [l1, r1] or [l2, r2] into the queue. As soon as the r−l+1 value of the
element we extract from the queue is not larger than the kth frequency known
at the moment, we can stop.

4.3 Heaps for the k Most Frequent Candidates

Our two algorithms solve the query assuming that we can easily know at each
moment which is the kth best candidate known up to now. We use a min-heap
data structure for this purpose. It is loaded with the top-k precomputed candi-
dates corresponding to the interval [sp′, ep′]. At each point, the top of the heap
gives the kth known frequency in constant time. Given that the previous algo-
rithms stop when they reach a wavelet tree node where r−l+1 is not larger than
the kth known frequency, it follows that each time the algorithms report a new
candidate, that candidate is more frequent than our kth known candidate. Thus
we replace the top of our heap with the reported candidate and reorder the heap
(which is always of size k, or less until we find k distinct elements in D[sp, ep]).
Therefore each candidate reported costs O(log d+log k) time (there are also steps
that do not yield any result, but the overall bound is still O(g(log d+ log k))).

A remaining issue is that we can find again, in our DFS or Greedy traversal,
a node that was in the original top-k list, and thus possibly in the heap. This
means that the document had been inserted with its frequency in D[sp′, ep′],
but since it appears more times in D[sp, ep], we must now increase its frequency
and restore the min-heap invariant. It is not hard to maintain a hash table with
forward and backward pointers to the heap so that we can track their current
positions and replace their values. However, for the small k values used in practice
(say, ten or at most hundreds), it is more practical to scan the heap for each
new candidate to insert than to maintain all those pointers upon all operations.

5 Experimental Results

We test our implementations of Hon et al.’s succinct structure combined with a
wavelet tree (as explained, the original proposal is not competitive in practice
[19]). We used three test collections of different nature: ClueWiki, a 141 MB
sample of ClueWeb09, formed by 3,334 Web pages from the English Wikipedia;
KGS, a 25 MB collection of 18,838 sgf-formatted Go game records (http://www.
u-go.net/gamerecords); and Proteins, a 60 MB collection of 143,244 sequences
of Human and Mouse proteins (http://www.ebi.ac.uk/swissprot).

Our tests were run on a 4-core 8-processors Intel Xeon, 2Ghz each, with
16GB RAM and 2MB cache. We compiled using g++ with full optimization. For
queries, we selected 1,000 substrings at random positions, of length 3 and 8, and
retrieved the top-k documents for each, for k = 1 and 10.



Choosing our best variant. Our first round of experiments compares our differ-
ent implementations of SGSTs (i.e., the trees τk, see Section 3) over a single
implementation of wavelet tree (Alpha, choosing the best value for α in each
case [19]). We tested a pointer-based representation of the SGST (Ptrs, the
original proposal [12]), a LOUDS-based representation (LOUDS), our variant of
LOUDS that stores the topologies in a unique tree τ (LIGHT), and our variant of
LIGHT that does not store frequencies of the top-k candidates (XLIGHT). We used
sampling steps of 200 and 400 for g′. For each value of g, we obtain a curve with
various sampling steps for the rank computations on the wavelet tree bitmaps.

We also tested different algorithms to find the top-k among the precomputed
candidates and remaining leaves (see Section 4): Our modified greedy (Greedy),
our modified depth-first-search (DFS), and the brute-force selection procedure of
the original proposal [12] on top of the same wavelet tree (Select). As this is
orthogonal to the data structures used, we compare these algorithms only on top
of the Ptrs structure. The other structures will be tested using the best method.

Figure 1 shows the results. Method Greedy is always better than Select

(up to 80% better) and DFS (up to 50%), which confirms intuition. Using LOUDS

representation instead of Ptr had almost no impact on the time. This is because
time needed to find the locus is usually negligible compared with that to explore
the uncovered leaves. Further costless space gains are obtained with variant
LIGHT. Variant XLIGHT, instead, reduces the space of LIGHT at a noticeable cost
in time that makes it not so interesting, except on Proteins. In various cases the
sparser sampling dominates the denser one, whereas in others the latter makes
the structure faster if sufficient space is spent. To compare with other techniques,
we will use variant LIGHT on ClueWiki and KGS, and XLIGHT on Proteins,
both with g′ = 400. This combination will be called generically SSGST.

Comparison with previous work. We now compare ours with previous work.
The Greedy heuristic [5] is run over different wavelet-tree representations of the
document array: a plain one (WT-Plain) [5], a Re-Pair compressed one (WT-RP),
and a hybrid that at each wavelet tree level chooses between plain, Re-Pair, or
entropy-based compression of the bitmaps (WT-Alpha) [19]. We combine these
with our best implementation of Hon et al.’s structure (suffixing the previous
names with +SSGST). We also consider variant Goly+SSGST [7, 11], which runs
the rank-based method (Select) on top of the fastest rank-capable sequence
representation of the document array (Golynski et al.’s [9], which is faster than
wavelet trees for rank but does not support our more sophisticated algorithms;
here we used the implementation at http://libcds.recoded.cl).

Our new structures dominate most of the space-time map. When using lit-
tle space, variant WT-RP+SSGST dominates, being only ocassionally and slightly
superseded by WT-RP. When using more space, WT-Alpha+SSGST takes over,
and finally, with even more space, WT-Plain+SSGST becomes the best choice.
Most of the exceptions arise in Proteins, which due to its incompressibility [19]
makes WT-Plain+SSGST essentially the only interesting variant. The alternative
Goly+SSGST is no case faster than a Greedy algorithm over plain wavelet trees
(WT-Plain), and takes more space.
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Fig. 1. Our different alternatives for top-k queries. On the left for k = 1 and pattern
length m = 3; on the right for k = 10 and m = 8.

6 Final Remarks

We can further reduce the space in exchange for possibly higher times. For
example the sequence of all precomputed top-k candidates can be Huffman-
compressed, as there is much repetition in the sets and a zero-order compression
would yield space reductions of up to 25%. The pointers to those tables could also
be removed, by separating the tables by size, and computing the offset within
each size using rank on the sequence of classes of the nodes in τ .

More in perspective, term frequency is probably the simplest relevance mea-
sure. In Information Retrieval, more sophisticated ones like BM25 are used. Such
formula involves the sizes of the documents, and thus techniques like Culpep-
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Fig. 2. Comparison with previous work, for m = 3 (left) and m = 8 (right).

per et al.’s [5] do not immediately apply. However, Hon et al.’s [12] does, by
simply storing the precomputed top-k answers according to BM25 and using
their brute-force traversal instead of our “restricted Greedy/DFS” methods).
The times would be very similar to the variant we called Select in this paper.

Sadakane [21] showed how to efficiently compute document frequencies (i.e.,
in how many documents does a pattern appear), in constant time and using just
2n+o(n) bits. With term frequency, these two measures are sufficient to compute
the popular tf-idf score. Note, however, that as long as queries are formed by
a single term, the top-k ranking is the same as given by term frequency alone.
Document frequency makes a difference on bag-of-word queries, which involve
several terms. Structures like those we have explored in this paper are able to
emulate a (virtual) inverted list, sorted by decreasing term frequency, for any



pattern, and thus enable the implementation of any top-k algorithm for bags of
words designed for inverted indexes.
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6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Trans. Alg., 3(2):article 20, 2007.

7. T. Gagie, G. Navarro, and S. Puglisi. Colored range queries and document retrieval.
In Proc. 17th SPIRE, pages 67–81, 2010.

8. T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: Another virtue of
wavelet trees. In Proc. 16th SPIRE, pages 1–6, 2009.

9. A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proc. 17th SODA, pages 368–373, 2006.

10. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th SODA, pages 636–645, 2003.

11. W.-K. Hon, R. Shah, and S. Thankachan. Towards an optimal space-and-query-
time index for top-k document retrieval. CoRR, arXiv:1108.0554, 2011.

12. W.-K. Hon, R. Shah, and J. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. 50th FOCS, pages 713–722, 2009.

13. W.-K. Hon, R. Shah, and S.-B. Wu. Efficient index for retrieving top-k most
frequent documents. In Proc. 16th SPIRE, pages 182–193, 2009.

14. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS, pages
549–554, 1989.

15. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. of the
IEEE, 88(11):1722–1732, 2000.

16. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comp., 22(5):935–948, 1993.

17. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc.
13th SODA, pages 657–666, 2002.

18. G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear
space. In Proc. 22th SODA, pages 1066–1078, 2012.

19. G. Navarro, S. Puglisi, and D. Valenzuela. Practical compressed document re-
trieval. In Proc. 10th SEA, pages 193–205, 2011.

20. M. Patil, S. Thankachan, R. Shah, W.-K. Hon, J. Vitter, and S. Chandrasekaran.
Inverted indexes for phrases and strings. In Proc. SIGIR, pages 555–564, 2011.

21. K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discr.
Alg., 5(1):12–22, 2007.
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