
Compressed String Dictionaries

Nieves R. Brisaboa∗1, Rodrigo Cánovas†2, Francisco Claude‡3, Miguel A.
Mart́ınez-Prieto§†2,4, and Gonzalo Navarro†2

1 Database Lab, Universidade da Coruña, Spain
2 Department of Computer Science, University of Chile, Chile
3 School of Computer Science, University of Waterloo, Canada

4 Department of Computer Science, Universidad de Valladolid, Spain

Abstract. The problem of storing a set of strings – a string dictionary
– in compact form appears naturally in many cases. While classically it
has represented a small part of the whole data to be processed (e.g., for
Natural Language processing or for indexing text collections), recent ap-
plications in Web engines, RDF graphs, Bioinformatics, and many others,
handle very large string dictionaries, whose size is a significant fraction
of the whole data. Thus efficient approaches to compress them are neces-
sary. In this paper we empirically compare time and space performance
of some existing alternatives, as well as new ones we propose. We show
that space reductions of up to 20% of the original size of the strings is
possible while supporting dictionary searches within a few microseconds,
and up to 10% within a few tens or hundreds of microseconds.

1 Introduction

String dictionaries arise naturally in a large number of applications. We associate
them classically to Natural Language (NL) processing: finding the lexicon of a
text corpus is the first step in analyzing it [25]. They also arise, together with
inverted indexes, when indexing text collections formed by NL [2, 33].

In those NL applications, there has not been much concern about the size of
the dictionary. This is because, in classical NL collections, the dictionary grows
sublinearly with the text size: Heaps’ law [19] establishes that in a text of length
n, the dictionary size is O(nβ), for some 0 < β < 1 depending on the type of
text. This β value is usually in the range 0.4–0.6 [2], and thus the dictionary of
terabyte-size collections should occupy just a few megabytes and would easily
fit in the main memory of a commodity PC.

Heaps’ law, however, does not model well the reality of Web search en-
gines. Web collections are much less “clean” than text collections whose con-
tent quality is carefully controlled. Dictionaries of Web crawls easily exceed

∗Funded by Ministry of Science and Innovation of Spain (PGE and FEDER)
TIN2009-14560-C03-02 and Xunta de Galicia ref. 09TIC060E.

†Funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.

‡Funded by the David R. Cheriton scholapships program.
§Funded by Ministry of Science and Innovation of Spain, TIN2009-14009-C02-02.

the gigabytes, due to typos and unique identifiers that are taken as “words”,
but also for “regular words” from multiple languages. The ClueWeb09 dataset
(http://boston.lti.cs.cmu.edu/Data/clueweb09; thanks to Leonid Boystov)
is a real example which comprises close to 200 million different words obtained
from 1 billion web pages on 10 languages. This results in a large dictionary of
far more than 1GB.

Web graphs are another application where the size of the URL names, clas-
sically neglected, is becoming very relevant with the advances of the techniques
that compress the graph topology. The nodes of a Web graph are typically the
pages of a crawl, and the edges are the hyperlinks. Typically there are 15 to 30
links per page. Compressing Web graphs has been an area of intense study, as it
permits caching larger graphs in main memory, for tasks like Web mining, Web
spam detection, finding communities of interest, etc. [21, 9]. URL names are used
to improve the mining quality [34, 27].

In an uncompressed graph, 15 to 30 links per page would require 60 to 120
bytes if represented as a 4-byte integer. This posed a more serious memory
problem compared to the name of the URL itself once some simple compression
procedure was applied to those names (such as Front-Coding, see Section 2).
For example, Broder et al. [5] reports 27.2 bits per edge (bpe) and 80 bits per
node (bpn). This means that each node takes around 400–800 bits to represent
its links, compared to just 80 bits used for storing its URL. In the same way, an
Internet Archive graph of 115M nodes and 1.47 billion edges required [31] 13.92
bpe plus around 50 bpn, so 200–400 bits are used to encode the links and only 50
for the URL. In both cases, the space required to encode the URLs was just 10%-
25% of that required to encode the links. However, the advances in compressing
the edges have been impressive in recent years, achieving compression ratios
around 1–2 bits per edge [3, 1]. At this rate, the edges leaving a node require on
average 2 to 8 bytes, compared to which the name of the URL certainly becomes
an important part of the overall space.

Another application is Bioinformatics. Popular alignment software like BLAST
[18] indexes all the different substrings of length q of a text, storing the positions
where they occur in the sequence database. For DNA sequences q = 11, 12 is
common, whereas for proteins they use q = 3, 4. Over a DNA alphabet of size 4,
or a protein alphabet of size 20, this amounts to up to 200 million characters.
Using a larger q would certainly allow one improve the quality in searching for
conserved regions, but this is infeasible for memory constraints.

The emergent Linked Data Project (http://linkeddata.org) focuses on
the publication of RDF (http://www.w3.org/TR/rdf-syntax-grammar) data
and their connection between different data sources in the “Web of Data”. This
movement results in huge and heterogeneous RDF datasets from diverse fields.

The dictionary is an essential component in the logical division of an RDF
database [10]. However, its effective representation has not been studied in depth.
Our experience with the tool HDT-It! (http://code.google.com/p/hdt-it)
shows that the dictionary for dataset DBpedia-en (http://downloads.dbpedia.
org/3.5.1/en) takes about 80% of the total size.

Finally, Internet routing poses another interesting problem on dictionary
strings. Domain name servers map domain names to IP addresses, and routers
map IP addresses to physical addresses. They may handle large dictionaries of
domain names or IP addresses, and serve many requests per second.

This short tour over various example applications shows that handling very
large string dictionaries is an important and pervasive problem. Curiously, we
have not seen much research on compressing them, perhaps because a few years
ago the space of these dictionaries was not a serious problem, and at most Front-
Coding was sufficient. In this paper we study Front-Coding and other solutions
we propose for compressing large string dictionaries, so that two basic operations
are supported: (1) given a string, return its position in the dictionary or tell it
is not in the dictionary; (2) given a position, retrieve its string content.

Our study over various application scenarios spots a number of known and
novel alternatives that dominate different niches of the space/time tradeoff map.
The least space-consuming variants perform efficiently while compressing the
dictionary to 9%–22% of its original size, depending on the type of dictionary.

2 Basic Concepts and Related Work

Rank and select on bitmaps. Let B[1, n] be a 0, 1 string (bitmap) of length n and
assume there are m ones in the sequence. We define rankb(B, i) as the number
of occurrences of bit b in B[1, i] and selectb(B, i) as the position of the i-th
occurrence of b in B.

In this paper we will use two different succinct data structures (implemen-
tations available at http://libcds.recoded.cl) that answer rank and select
queries. The first one, that we will refer to as RG [16], uses (1 + x)n bits to
represent B. It supports rank using two random accesses to memory plus 4/x
contiguous (i.e., cached) accesses. Select requires and additional binary search.

The second data structure, that we will call RRR [29], is a compressed bitmap
that uses in practice about log

(
n
m

)
+(4

15+x)n bits (our logarithms are in base 2),
answering rank within two random accesses plus 3 + 8/x accesses to contiguous
memory, and select with an extra binary search. In practice this compresses the
bitmap when m < 0.2n.

Huffman and Hu-Tucker codes. For compressing sequences, statistical methods
assign shorter codes (i.e., bit streams) to more frequent symbols. Huffman coding
[20] is the optimal code (i.e., it achieves the minimum length of encoded data)
that is uniquely decodable. In this paper we use canonical Huffman codes [26],
which have various advantages.

Hu-Tucker codes [22] are optimum among those that maintain the lexico-
graphical order of the symbols. Two sequences encoded using Hu-Tucker can
be lexicographically compared bytewise directly in encoded form. We use both
codes in this paper, in some cases padding them (with zeros) to the next byte
in order to simplify alignment and bytewise comparisons.

Hashing. Hashing [8] is a folklore method to store a dictionary of any kind. A
hash function transforms the elements into indexes in a hash table, where the
corresponding value is to be inserted or sought. A collision arises when two
different elements are mapped to the same array cell. In this paper we use closed
hashing: If the cell where an element is to be found is occupied, one successively
probes other cells until finding a free cell (insertions and unsuccessful searches)
or until finding the element (successful searches).

We will consider two policies to determine the next cells to probe when a
collision is detected at cell x. Double hashing computes another hash function y
that depends on the key and probes x + y, x + 2y, etc. modulo the table size.
Linear probing is a simpler policy. It tries the successive cells of the hash table,
x+ 1, x+ 2, etc. modulo the table size.

The load factor is the fraction of occupied cells, and it influences space usage
and time performance. Using good hash functions, insertions and unsuccessful
searches require on average 1/(1− α) probes with double hashing, whereas suc-
cessful searches require ln(1/(1 − α))/α probes. Linear probing requires more
probes on average: (1 + 1/(1 − α)2)/2 for insertions and unsuccessful searches,
and (1 + 1/(1 − α))/2 for successful searches. Despite its poorer complexities,
we consider also linear probing because it has advantages on some compressed
representations we try.

Front-coding. Front-coding [33] is the folklore compression technique for lexico-
graphically sorted dictionaries. It is based on the fact that consecutive entries
are likely to share a common prefix. Each entry in the dictionary is be differ-
entially encoded with respect to the preceding one. Two values are stored: an
integer that encodes the length of their common prefix, and the remaining suffix
of the current entry.

To allow searches, Front-Coding partitions the dictionary into buckets, where
the first element is explicitly stored and the rest are differentially encoded. This
allows the dictionary to be efficiently searched using a two-step process: first, a
binary search on the first entry of the buckets locates the candidate bucket, and
second a sequential scan of this candidate bucket rebuilds each element on the
fly and compares it with the query. The bucket size yields a time/space tradeoff.

Front-coding has been sucessfully used in many applications. We emphasize
its use in WebGraph (http://webgraph.dsi.unimi.it) to encode URL dictio-
naries from Web graphs.

Compressed text self-indexes. A compressed text self-index takes advantage of
the compressibility of a text T [1, N] to represent it in space close to that of the
compressed text, while supporting random access and search operations. More
precisely, a self-index supports at least operations extract(i, j), which returns
T [i, j], and locate(p), which returns the positions in T where pattern p occurs.

There are several self-indexes [28, 11]. For this paper we are interested in par-
ticular in the FM-index family [12, 13], which is based on the Burrows-Wheeler
transform (BWT) [6]. FM-indexes achieve the best compression among self-

indexes and are very fast to determine whether p occurs in T . Many self-indexes
are implemented in the PizzaChili site (http://pizzachili.dcc.uchile.cl).

The BWT of T [1, N], T bwt[1, N], is a permutation of its symbols. If the
suffixes T [i,N] of T are sorted lexicographically, then T bwt[j] is the character
preceding the jth smallest suffix. We use the BWT properties in this paper to
represent a dictionary as the FM-index of a text T .

FM-indexes support two basic operations on T bwt. One is the LF-step, which
moves from T bwt[j] that corresponds to the suffix T [i,N] to T bwt[j′] that cor-
responds to the suffix T [i − 1, N] (or T [N,N] if i = 1), that is j′ = LF (j).
The second is the backward step, which moves from the lexicographical inter-
val T bwt[sp, ep] of all the suffixes of T that start with string x to the interval
T bwt[sp′, ep′] of all the suffixes that start with cx, for a character c.

Grammar-based compression. Grammar-based compresson is about finding a
small grammar that generates a given text [7]. These methods exploit repetitions
in the text to derive good grammar rules, so they are particularly suitable for
texts containing many identical substrings. Finding the smallest grammar for a
given text is NP-hard [7], so grammar-based compressors look for good heuristics.
We use Re-Pair [23] as a concrete compressor, as it runs in linear time and yields
good results in practice.

Re-Pair finds the most-repeated pair xy in the text and replaces all its ocur-
rences by a new symbol R. This adds a new rule R → xy to the grammar. The
process iterates until all remaining pairs are unique in the text. Then Re-Pair
outputs the set of r rules and the compressed text, C. We use a public implemen-
tation (http://www.dcc.uchile.cl/gnavarro/software) for the compressor;
each value (elements of a rule and symbols in C) is stored in log(σ + r) bits.

Variable-length and direct-access codes. Brisaboa et al. [4] introduce a symbol
reordering technique called directly addressable variable-length codes (DACs).
Given a concatenated sequence of variable-length codes, DACs reorder the target
symbols so that direct access to any code is possible. The overhead is at most
one bit per target symbol, which is not too much if the target alphabet is large.

All the first symbols of the codes are concatenated in a first array A1. A
bitmap B1 stores one bit per code in A1, marking with a 1 the codes of length
more than 1. The second symbols of the codes of length more than one are
concatenated in a second array A2, with B2 marking which are longer than two,
and so on. To extract the ith code, one finds its first symbol in A1[i]. If B1[i] = 0,
we are done. Otherwise we continue in A2[rank1(B1, i)], and so on.

A variable-length coding we use in this paper (albeit not in combination with
DACs) is Vbyte [32]. It is used to represent numbers of distinct magnitudes,
where most are small. Vbyte partitions the bits into 7-bit chunks and reserves
the last bit of each byte to signal whether the number continues or not.

Tries and the XBW. A trie is an edge-labeled tree where each path from the
root to a leaf represents a string. Strings that share a common prefix share a
corresponding common path from the root.

A trie can represent a dictionary in a natural way. Searching for a string in
the dictionary corresponds to following the labeled edges according to the string
characters. The number of the leaf would correspond to the id of the string (if
the leaf exists), and it usually matches with the rank of that string in the set.

The main problem in practice is that tries tend to use much space; even
when the space is linear, the constants are not negligible. To overcome this limi-
tation, Ferragina et al. [15] proposed a compressed representation for trees that
supports navigational operations, and subpath searching, using rank and select
data structures for sequences. The representation, called XBW, corresponds to
an extension of the BWT to trees.

3 Compressed Dictionary Representations

We describe now various approches for representing a dictionary within com-
pressed space while solving two operations on it. The first operation, locate(p),
gives a unique nonnegative identifier for the string p, if it appears in the dic-
tionary; otherwise it returns −1. The second operation, extract(i), returns the
string with identifier i in the dictionary, if it exists; otherwise returns NULL.

3.1 Hashing and Compression

We explore several combinations of hashing and compression. We Huffman-
encode each string and the codes are concatenated in byte-aligned form. We
insert the (byte-)offsets of the encoded strings in a hash table. The hash func-
tion operates over the encoded strings (seen as a sequence of bytes, that is, we
compare them bytewise). This lowers the time to compute the function and to
compare search keys (as the string is shorter). For searching we first Huffman-
encode the search string and pad its bits to an integral number of bytes.

Our main hash function is a modified Bernstein’s hash5. The second function
for double hashing is the “rotating hash” proposed by Knuth [22, Sec. 6.4]6.

We concatenate the strings in the same order they are finally stored in the
hash table. This improves locality of reference for linear probing, and gives other
benefits, as seen later (in particular we easily know the length in bytes of each
encoded string). We consider three variants to represent the hash table, and
combine each of them with linear probing (lp) or double hashing (dh).

The first variant, Hash, stores the hash table in classical form, as an array
H[1,m] pointing to the byte offset of the encoded strings. To answer locate(p) we
proceed as usual, returning the offset of H where the answer was found, or −1
if not. To answer extract(i), we simply decompress the string pointed from H[i].
Then with load factor α = n/m (n being the number of strings in the dictionary),
the structure requires m integers in addition to the Huffman-compressed strings.

5http://www.burtleburtle.net/bob/hash/doobs.html. We initialize h as a large
prime and replace the 33 by 215 + 1, taking modulo the table size at each iteration.

6Precisely, the variant at http://burtleburtle.net/bob/hash/examhash.html.
We also initialize h as a large prime.

The second variant, HashB, storesH[1,m] in compact form, that is, removing
the empty cells, in an arrayM [1, n]. It also stores an RG-encoded bitmap B[1,m]
that marks with a 1 the nonempty cells of H. Then H[i] is empty if B[i] = 0,
and if it is nonempty then its value is H[i] = M [rank1(B, i)]. Now locate(p)
returns positions in M , so our identifiers become contiguous in the range [1, n],
which is desirable. For extract(i) we simply decompress the string pointed from
M [i]. The space of this representation is n integers plus (1 + x)m bits, where
x is the parameter of bitmap representation RG. The n integers require n logN
bits, where N is the total byte length of the encoded strings.

The price is in time, as each new probe requires an additional rank on B.
However, with linear probing, rank needs to be computed only once, as the
successive cells are also successive in M . We only need to access the bits of B to
determine where is the next empty cell.

The third variant, HashBB, also stores M and B instead of H, but M is re-
placed by a second bitmap. Note that since we have reordered the codes according
to where they appear inH (orM), the values in these arrays are increasing. Thus
instead of M we store a second bitmap Y [1, N], where a 1 marks the beginning
of the codes. Then M [i] = select1(Y, i). Bitmap Y is encoded in compressed
form (RRR). Now the n logN bits of M are reduced to log

(
N
n

)
+(4

15 +x)N bits,
which is smaller unless the encoded strings are long.

The price is, again, in time. Each access to M requires a select operation.
Note that linear probing does not save us from successive select operations,
despite the involved string being contiguous, because we have no way to know
where a code ends and the next starts.

3.2 Front-Coding and Compression

We consider two variants of Front-Coding. Plain Front-Coding implements the
original technique by using Vbyte to encode the length of the common prefix.
The remaining suffix is terminated with a zero-byte. Only bytewise operations
are needed to search. The block sizes are measured in number of strings, so
extract(i) determines the appropriate block with a simple division, and then
scans the block to find the corresponding string.

Hu-Tucker Front-Coding is similar, but all the strings and Vbyte codes are
encoded together using a single Hu-Tucker code. The bucket starts with the Hu-
Tucker code of the first string, which is padded to the next byte boundary and
preceded by the byte length of the encoded string, in Vbyte form. This prelude
enables binary searching the first strings without decompressing them. The rest
of the bucket is Hu-Tucker-compressed and bit-aligned, and is sequentially de-
compressed when scanning the bucket, both for locating and for extracting. We
use a pointer-based Hu-Tucker tree implementation.

3.3 FM-Index Based Representation

We use two FM-indexes from PizzaChili. They represent the BWT using a
wavelet tree [17], whose bitmaps are represented using RG (version SSA v3.1) or

RRR (version SSA RRR). The former corresponds to the “succinct suffix array”
[13], which achieves zero-order compression of T , and the second to the “implicit
compression boosting” idea [24], which reaches higher-order compression. Both
FM-index implementations support functions LF and BWS, as well as obtain-
ing T bwt[j] given j, in time O(log σ), where σ is the alphabet size of T . We use
the indexes with no extra sampling because we need only limited functionality.

We concatenate all the strings in lexicographic order, terminating each one
with a special character, $, that is lexicographically smaller than all the symbols
in T (in practice $ is the ASCII code zero, which is the natural string terminator).
We also add $ at the beginning of the sequence. Thus we can speak of the ith
string in lexicographical or positional order, indistinctly.

Note that, when the suffixes of T are sorted lexicographically, the first cor-
responds to the final $, and the next n correspond to the $s that precede each
dictionary string. Thus T bwt[1] is the final character of the nth dictionary string,
and T bwt[i + 2] is the final character of the ith string, for 1 ≤ i < n. Therefore
extract(i) can be carried out by starting at the corresponding position of T bwt

and using LF-steps until reaching a $. The T bwt[j] characters traversed spell out
the desired dictionary string in reverse order.

To answer locate(p) we just need to determine whether p occurs in T . Thus
we start with (sp, ep) = (1, n+1) and use |p|+1 backward steps until finding the
lexicographical interval (sp′, ep′) of the suffixes that start with p. If p exists in
the dictionary and is the ith string, then sp′ = ep′ = i+1 and we simply return
i; otherwise sp′ > ep′ holds at some point in the process and we return −1.

3.4 Re-Pair Based Representation

We concatenate all the dictionary strings in lexicographic order and apply Re-
Pair compression to the concatenation. However, we avoid forming rules that
contain the string terminator. This ensures that each string is encoded with an
integral number of symbols in C and thus decompression is fast.

Locating is done via binary search, where each dictionary string to compare
must be decompressed first. We decompress the string only up to the point
where the lexicographical comparison can be decided. For extraction we simply
decompress the desired string.

For both operations we need direct access to the first symbol of the ith string
in C. Each compressed string can be seen as a variable-length sequence of symbols
in C, where they are concatenated. Thus we use the DAC representation on those
sequences. This gives fast direct access to the ith string, at the price of 1.25 bits
per symbol: we use RG representation with 25% overhead.

3.5 XBW Trie Representation

If the trie has N nodes, the XBW consists of a sequence Sα[1, N + n] of labels
(each leaf is identified with a label $ leading to it) plus a bitmap Slast[1, N + n]
with n bits set. We represent Sα using wavelet trees and, as for the FM-Index,
represent their bitmaps (and Slast) using RG or RRR.

For locating, we use operation GetChildren [15] to find the leaf. Then we
map the leaf x to an identifier in the range [1, n] with rank$(S, x). For extracting,
we start from the leaf and use GetParent [15] to obtain all the string characters.

4 Experimental Results

We consider four dictionaries that are representative of relevant applications:

Words comprises all the different words with at least 3 ocurrences in the
ClueWeb09 dataset It contains 25,609,784 words and occupies 256.36 MB.

DNA all substrings of 12 nucleotides found in S. Paradoxus, known as the
para dataset7. It contains 9,202,863 subsequences and occupies 114.09 MB.

URLs corresponds to a 2002 crawl of the .uk domain from the WebGraph
framework. It contains 18,520,486 URLs and occupies 1.34 GB.

URIs contains all different URIs used in the DBpedia-en RDF dataset (blank
nodes and literals excluded). It contains 30,176,012 URIs and takes 1.52 GB.

We use an Intel Core2 Duo processor at 3.16 GHz, with 8 GB of main memory
and 6 MB of cache, running Linux kernel 2:6:24-28. We ran locate experiments for
successful and unsuccessful searches. For the former we chose 10,000 dictionary
strings at random. For the latter we chose other 1,000 strings at random and
excluded them from the indexing. For extract we queried 10,000 random numbers
between 1 and n. Each data point is the average user time over 10 repetitions.

Figure 4 shows our results. Most methods are drawn as a line that corresponds
to their main space/time tuning parameter. On the left we show locate time
for successful searches; the plots for unsuccessful searches are very similar and
omitted for lack of space. On the right we show extraction times. Time is shown
in microseconds and space as a percentage of the space required by concatenating
the plain strings. Since, despite the advantages of linear probing in this scenario,
double hashing was always better, we only plot the latter.

Front-Coding with Hu-Tucker compression shows to be an excellent choice
in all cases, achieving good time performance and the least space usage (only
beaten by XBW and, on URLs, by Re-Pair). The folklore Front-Coding, without
compression, is almost everywhere dominated by the compressed variant.

The least space is always achieved by XBW+RRR, yet the time it achieves is
significantly higher than the other approaches. The next best space, on URLs, is
achieved by Re-Pair, which is much faster than XBW but still noticeably slower
than compressed Front-Coding. On the shorter-string dictionaries (Words and
DNA), Re-Pair does not compress well and compressed Front-Coding achieves
the second-best space (with much better time than XBW variants).

HashBB performs better in space than HashB when the strings are short,
otherwise the bitmap becomes too long. It is never, however, clearly the best
alternative. HashB and Hash excell in time with short strings when much space
is used (nearly 100%), yet HashB is never much better than Hash.

7http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp

 1

 10

 100

 0 50 100 150 200

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

Words

FrontCoding
Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)HashB (dh)

HashBB (dh)

XBW+RG

XBW+RRR

 0.1

 1

 10

 100

 0 50 100 150 200

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

Words

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)

HashBB (dh)

XBW+RG

XBW+RRR

 1

 10

 100

 0 20 40 60 80 100 120 140 160

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

DNA

FrontCoding

Hu-Tucker

XBW+RG

XBW+RRR

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

DNA

FrontCoding

Hu-Tucker RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)

HashBB (dh)

XBW+RG

XBW+RRR

 10

 100

 1000

 0 20 40 60 80 100

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

URLs

XBW+RG

XBW+RRR

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

URLs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)
HashBB (dh)

XBW+RGXBW+RRR

 10

 100

 0 20 40 60 80 100

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

URIs

FrontCoding

Hu-Tucker
XBW+RG

XBW+RRR

RePair

FMIndex RRR

FMIndex RG

Hash (dh)HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

URIs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

XBW+RGXBW+RRR

Fig. 1. Locate times (left) and extract times (right) for the different methods as a
function of their space consumption.

For extracting, the map is dominated by Front-Coding, in plain or com-
pressed form (the plain folklore variant is more relevant in this case). Still Re-
Pair achieves less space on URLs, and XBW always requires the minimum space
but the highest times.

5 Final Remarks

Prefix search, that is, finding the dictionary strings that start with a given pat-
tern, is easily supported by the methods we have explored, except hashing. Other
variants that can likewise be supported are of interest for Internet routing tables,
e.g., find the dictionary string that is the longest prefix of the pattern.

Despite the FM-index and the XBW being the slowest solutions, they support
other searches of interest, such as finding the dictionary strings that contain a
substring, or that have a given prefix and a given suffix [14, 15]. They also support
approximate searches [30].

We have reordered the strings at our convenience, but sometimes the or-
der must be fixed. Hashing is easily adapted to any order (except the variant
HashBB), but others would need an explicit permutation that would significantly
increase the space. The FM-index and the XBW can use the LF-step mechanism
to trade space for time and store just a sample permutation.

References

1. A. Apostolico and G. Drovandi. Graph compression by BFS. Algorithms, 2:1031–
1044, 2009.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

3. P. Boldi and S. Vigna. The Webgraph framework i: Compression techniques. In
Proc. WWW, pages 595–2562, 2004.

4. N. Brisaboa, S. Ladra, and G. Navarro. Directly addressable variable-length codes.
In Proc. SPIRE, LNCS 5721, pages 122–130, 2009.

5. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A.Tomkins, and J. Wiener. Graph structure in the Web. Comput. Netw., 33:309–
320, 2000.

6. M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Digital Equipment Corporation, 1994.

7. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

9. D. Donato, L. Laura, S. Leonardi, U. Meyer, S. Millozzi, and J. Sibeyn. Algorithms
and experiments for the Webgraph. J. Graph Algor. App., 10(2):219–236, 2006.

10. J.D. Fernández, M.A. Mart́ınez-Prieto, and C. Gutierrez. Compact representation
of large RDF data sets for publishing and exchange. In Proc. ISWC, LNCS 6496,
pages 193–208 (part I), 2010.

11. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. ACM JEA, 13:article 12, 2009.

12. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. FOCS, pages 390–398, 2000.

13. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Trans. Alg., 3(2):article 20, 2007.

14. P. Ferragina and R. Venturini. The compressed permuterm index. ACM Trans.
Alg., 7(1):article 10, 2010.

15. Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Struc-
turing labeled trees for optimal succinctness, and beyond. In Proc. FOCS, pages
184–196, 2005.

16. R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical implementa-
tion of rank and select queries. In Posters WEA, pages 27–38, 2005.

17. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA, pages 841–850, 2003.

18. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge Univ. Press, 2007.

19. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, 1978.

20. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. of the Institute of Radio Engineers, 40(9):1098–1101, 1952.

21. J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The Web
as a graph: Measurements, models, and methods. In Proc. COCOON, LNCS 1627,
pages 1–17, 1999.

22. D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, 2007.

23. N.J. Larsson and J. A. Moffat. Offline dictionary-based compression. Proc. of the
IEEE, 88:1722–1732, 2000.

24. V. Mäkinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In Proc. SPIRE, LNCS 4726, pages 214–226, 2007.

25. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, 1999.

26. A. Moffat and J. Katajainen. In-place calculation of minimum-redundancy codes.
In Proc. WADS, LNCS 955, pages 393–402, 1995.

27. N. Nagwani. Clustering based URL normalization technique for Web mining. In
Proc. ACE, pages 349–351, 2010.

28. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv.,
39(1):article 2, 2007.

29. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with appli-
cations to encoding k-ary trees and multisets. In Proc. SODA, pages 233–242,
2002.

30. L. Russo, G. Navarro, A. Oliveira, and P. Morales. Approximate string matching
with compressed indexes. Algorithms, 2(3):1105–1136, 2009.

31. T. Suel and J. Yuan. Compressing the graph structure of the Web. In Proc. DCC,
pages 213–222, 2001.

32. H. Williams and J. Zobel. Compressing integers for fast file access. The Computer
Journal, 42:193–201, 1999.

33. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes : Compressing and
Indexing Documents and Images. Morgan Kaufmann, 1999.

34. M. Yin, D. Goh, E.-P. Lim, and A. Sun. Discovery of concept entities from Web
sites using web unit mining. Intl. J. of Web Inf. Sys., 1(3):123–135, 2005.

