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Abstract. The suffix tree is an extremely important data structure for stringology, with a wealth of ap-
plications in bioinformatics. Classical implementations require much space, which renders them useless
for large problems. Recent research has yielded two implementations offering widely different space-time
tradeoffs. However, each of them has practicality problems regarding either space or time requirements.
In this paper we implement a recent theoretical proposal and show it yields an extremely interesting
structure that lies in between, offering both practical times and affordable space. The implementation
of the theoretical proposal is by no means trivial and involves significant algorithm engineering.

1 Introduction

The suffix tree [18, 30] is arguably the most important data structure for string analysis. It has
been said to have a myriad of virtues [2] and there are even books dedicated to its applications
in areas like bioinformatics [12]. Many complex sequence analysis problems are solved through
sophisticated traversals over the suffix tree, and thus a fully-functional suffix tree implementation
supports a variety of navigation operations. These involve not only the classical tree navigation
operations (parent, child) but also specific ones such as suffix links and lowest common ancestors.

One serious problem of suffix trees is that they take much space. A naive implementation can
easily require 20 bytes per character, and a very optimized one reaches 10 bytes [14]. A way to
reduce this space to about 4 bytes per character is to use a simplified structure called a suffix array
[17], but it does not contain sufficient information to carry out all the complex tasks suffix trees
are used for. Enhanced suffix arrays [1] extend suffix arrays so as to recover the full suffix tree
functionality, raising the space to about 6 bytes per character in practice. Some other heuristic
space-saving methods [20] achieve about the same.

To have an idea of how bad is this space, consider that, on DNA, each character could be encoded
with 2 bits, whereas the alternatives we have considered require 32 to 160 bits per character. Using
suffix trees on secondary memory makes them orders of magnitude slower as most traversals are
non-local. This situation is also a heresy in terms of Information Theory: whereas the information
contained in a sequence of n symbols over an alphabet of size σ is n log σ bits in the worst case, all
the alternatives above require Θ(n log n) bits. (Our logarithms are in base 2.)

Recent research on compressed suffix trees (CSTs) has made much progress in terms of reaching
space requirements that approach not only the worst-case space of the sequence, but even its
information content. All these can be thought of as a compressed suffix array (CSA) plus some
extra information that encodes the tree topology and longest common prefix (LCP) information.

The first such proposal was by Sadakane [27]. It requires 6n bits on top of his CSA [26], which
in turn requires nH0 +O(n log log σ) bits, where H0 is the zero-order entropy of the sequence. This
structure supports most of the tree navigation operations in constant time (except, notably, going
down to a child, which is an important operation). It has recently been implemented by Välimäki



et al. [29]. They achieve a few tens of microseconds per operation, but in practice the structure
requires about 25–35 bits per symbol (close to a suffix array), and thus its applicability is limited.

The second proposal was by Russo et al. [25]. It requires only o(n) bits on top of a CSA. By using
an FM-index [6] as the CSA, one achieves nHk+o(n log σ) bits of space, where Hk is the k-th order
empirical entropy of the sequence, for sufficiently low k ≤ α logσ n, for any constant 0 < α < 1.
The navigation operations are supported in polylogarithmic time (at best Θ(log n log logn) in their
paper). This structure was implemented by Russo and shown to achieve very little space, around
4–6 bits per symbol, which makes it extremely attractive when the sequence is large compared to
the available main memory. On the other hand, the structure is much slower than Sadakane’s. Each
navigation operation takes the order of milliseconds, which starts to approach disk operation times.

Both existing implementations are unsatisfactory in either time or space (though certainly excell
on the other aspect), and become very far extremes of a tradeoff: Either one has sufficient main
memory to spend 30 bits per character, or one has to spend milliseconds per navigation operation.

In this paper we present a third implementation, which offers a relevant space/time tradeoff
between these two extremes. One variant shows to be superior to the implementation of Sadakane’s
CST in both space and time: it uses 13–16 bits per symbol (i.e., half the space) and requires a few
microseconds (i.e., several times faster) per operation. A second alternative works within 8–12 bits
per symbol and requires a few hundreds of microseconds per operation, that is, smaller than our
first variant and still several times faster than Russo’s implementation.

Our implementation is based on a third theoretical proposal, by Fischer et al. [8], which achieves
nHk(2 max(1, log(1/Hk))+1/ε+O(1))+o(n log σ) bits per symbol (for the same k as above and any
constant ε > 0) and navigation times of the form O(logε n). The paper contains several theoretical
structures and solutions, whose efficient implementation was far from trivial, and required significant
algorithm engineering that completely changed the original proposal in some cases. We study both
the original and our proposed variants, and come up with the two variants mentioned above.

2 Compressed Suffix Trees

A suffix array over a text T [1, n] is an array A[1, n] of the positions in T , lexicographically sorted
by the suffix starting at the corresponding position of T . That is, T [A[i], n] < T [A[i+ 1], n] for all
1 ≤ i < n. Note that every substring of T is the prefix of a suffix, and that all suffixes starting
with a given pattern P appear consecutively in A, hence a couple of binary searches find the area
A[sp, ep] containing all the positions where P occurs in T .

There are several compressed suffix arrays (CSAs) [21, 5], which offer essentially the following
functionality: (1) Given a pattern P [1,m], find the interval A[sp, ep] of the suffixes starting with
P ; (2) obtain A[i] given i; (3) obtain A−1[j] given j. An important function the CSAs implement is
Ψ(i) = A−1[(A[i] mod n) + 1] and its inverse, usually much faster than computing A and A−1. This
function lets us move virtually in the text, from the suffix i that points to text position j = A[i],
to the one pointing to j + 1 = A[Ψ(i)].

A suffix tree is a compact trie (or digital tree) storing all the suffixes of T . This is a labeled
tree where each text suffix is read in a root-to-leaf path, and the children of a node are labeled
by different characters. Leaves are formed when the prefix of the corresponding suffix is already
unique. Here “compact” means that unary paths are converted into a single edge, labeled by the
string formed by concatenating the involved character labels. If the children of each node are ordered



lexicographically by their string label, then the leaves of the suffix tree form the suffix array of T .
Fig. 1 illustrates a suffix tree and suffix array. Several navigation operations over the nodes and
leaves of the suffix tree are of interest. Table 1 lists the most common ones.
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Fig. 1. The suffix tree of the text “alabar a la alabarda$”, where the “$” is a terminator symbol. The white space is
written as an underscore for clarity, and it is lexicographically smaller than the characters “a”-“z”.

In order to get a suffix tree from a suffix array, one needs at most two extra pieces of information:
(1) the tree topology; (2) the longest common prefix (LCP) information, that is, LCP [i] is the length
of the longest common prefix between T [A[i − 1], n] and T [A[i], n] for i > 1 and LCP [1] = 0 (or,
seen another way, the length of the string labeling the path from the root to the lowest common
ancestor node of suffix tree leaves i and i − 1). Indeed, the suffix tree topology can be implicit if
we identify each suffix tree node with the suffix array interval containing the leaves that descend
from it. This range uniquely identifies the node because there are no unary nodes in a suffix tree.

Consequently, a compressed suffix tree (CST) is obtained by enriching the CSA with some extra
data. Sadakane [27] added the topology of the tree (using 4n extra bits) and the LCP data. The
LCP was compressed to 2n bits by noticing that, if sorted by text order rather than suffix array
order, the LCP numbers decrease by at most 1. Let LCP ′ be the permuted LCP array, then
LCP ′[j + 1] ≥ LCP ′[j]− 1. Thus the numbers can be differentially encoded, h[j + 1] = LCP ′[j +
1]−LCP ′[j] + 1 ≥ 0, and then represented in unary over a bitmap H[1, 2n] = 0h[1]10h[2] . . . 10h[n]1.
Then, to obtain LCP [i], we look for LCP ′[A[i]], and this is extracted from H via rank/select
operations. Here rankb(H, i) counts the number of bits b in H[1, i] and selectb(H, i) is the position
of the i-th b in H. Both can be answered in constant time using o(n) extra bits of space [19]. Then
LCP ′[j] = select1(H, j)− 2j, assuming LCP ′[0] = 0.



Operation Description
Root() the root of the suffix tree.
Locate(v) the suffix position i if v is the leaf of suffix Ti,n, otherwise NULL.
Ancestor(v, w) true if v is an ancestor of w.
SDepth(v)/TDepth(v) the string-depth/tree-depth of v.
Count(v) the number of leaves in the subtree rooted at v.
Parent(v) the parent node of v.
FChild(v) the alphabetically first child of v.
NSibling(v) the alphabetically next sibling of v.
SLink(v) the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
SLinki(v) the iterated suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σi.
LCA(v, w) the lowest common ancestor of v and w.
Child(v, a) the node w s.th. the first letter on edge (v, w) is a ∈ Σ.
Letter(v, i) the ith letter of v’s path-label, π(v)[i].
LAQS(v, d)/LAQT (v, d) the hightest ancestor of v with string-depth/tree-depth ≤ d.

Table 1. Operations over the nodes and leaves of the suffix tree.

Russo et al. [25] get rid of the parentheses, by instead identifying suffix tree nodes with their
corresponding suffix array interval. By sampling some suffix tree nodes, most operations can be
carried out by moving, using suffix links, towards a sampled node, finding the information stored in
there, and transforming it as we move back to the original node. The suffix link operation, defined
in Table 1, can be computed using Ψ and the lowest common ancestor operation [27].

A New Theoretical CST Proposal. Fischer et al. [8] prove that array H in Sadakane’s CST is
indeed compressible as it has at most 2r ≤ 2(nHk+σk) runs of 0s or 1s, for any k. Let z1, z2, . . . , zr
the lengths of the runs of 0s and o1, o2, . . . , or the lengths of the runs of 1s. They create arrays
Z = 10z1−110z2−1 . . . and O = 10o1−110o2−1 . . ., which have overall 2r 1s out of 2n, and hence can
be compressed to 2r log n

r +O(r) + o(n) bits while supporting constant-time rank and select [24].
Their other improvement over Sadakane’s CST is to get rid of the tree topology and replace it

with suffix array ranges. Fischer et al. show that all the navigation can be simulated under this
representation by means of three operations: (1) RMQ(i, j) gives the position of the minimum in
LCP [i, j]; (2) PSV (i) finds the last value smaller than LCP [i] in LCP [1, i − 1]; and (3) NSV (i)
finds the first value smaller than LCP [i] in LCP [i + 1, n]. All these could easily be solved in
constant time using O(n) extra bits of space on top of the LCP representation, but Fischer et al.
give sublogarithmic-time algorithms to solve them with only o(n) extra bits.

As examples, the parent of node [i, j] is [PSV (i), NSV (i) − 1]; the LCA between nodes [i, j]
and [i′, j′] is [PSV (p), NSV (p)− 1], where p = RMQ(min(i, i′), max(j, j′)); and the suffix link of
[i, j] is [PSV (Ψ(i)), NSV (Ψ(j))− 1].

Our Contribution. The challenge faced in this paper is to implement this CST. This can be
divided into (1) how to represent LCP efficiently in practice, and (2) how to compute efficiently
RMQ, PSV , and NSV over this LCP representation. We study each subproblem separately and
then compare the resulting CST with previous ones.

All our experiments were performed on 100 MB of the protein, sources, XML and DNA texts
from Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl). The computer used features an Intel(R)
Core(TM)2 Duo processor at 3.16 GHz, with 8 GB of main memory and 6 MB of cache, running
version 2.6.24-24 Linux kernel.



3 Representing array LCP

The following alternatives were considered to represent LCP :

Sad-Gon Encodes H in plain, using the rank/select implementation of González [10], which takes
0.1n bits over the 2n used by H itself and answers select in O(log n) time via binary search.

Sad-OS Like the previous one, but using the dense array implementation of Okanohara and
Sadakane [22] for H. This requires about the same space as the previous one and answers
select in O(log4 r/ log n) time.

FMN-RRR Encoding H in compressed form as suggested by Fischer et al. [8], that is, by encoding
bitmaps Z and O. We use the compressed representation by Raman et al. [24] as implemented
by Claude [4]. This poses 0.54n bits of overhead on top of the entropy of the two bitmaps,
2r log n

r +O(r). Operation select takes O(log n) time.
FMN-OS Like the previous one, but instead of Raman et al. technique, we use the sparse array

implementation by Okanohara and Sadakane [22]. This requires 2r log n
r +O(r) bits and solves

select in time O(log4 r/ logm).
PT Inspired on an LCP construction algorithm by Puglisi and Turpin [23], we store a particular

sampling of LCP values, and compute the others using the sampled ones. Given a parameter v,
the sampling requires n+O(n/

√
v+ v) bytes of space and computes any LCP [i] by comparing

at most some T [j, j + v] and T [j′, j′ + v] . As we must obtain these symbols using Ψ up to 2v
times, the idea is relatively slow.

PhiSpare In the same spirit of the previous one, this is inspired in a construction by Kärkkäinen
et al.[13]. For a parameter q, store in text order an array LCP ′q with the LCP values for all text
positions q · k. Now assume SA[i] = qk + b, with 0 ≤ b < k. If b = 0, then LCP [i] = LCP ′q[k].
Otherwise, LCP [i] is computed by comparing at most q+LCP ′q[k+1]−LCP ′q[k] symbols of the
suffixes T [SA[i− 1], n] and T [SA[i], n]. The space is n/q integers and the computation requires
O(q) applications of Ψ on average.

DAC The directly addressable codes of Ladra et al. [3]. Most LCP values are small (O(logσ n) on
average), and thus one could use few bits to represent them. Yet, some can be much longer. Thus
we can fix a block length b and divide each number, of ` bits, into d`/be blocks of b bits. Each
block is stored using b + 1 bits, the last one telling whether the number continues in the next
block or finishes in the current one. Those blocks are then rearranged to allow for fast random
access. There are two variants of this structure, both implemented by Ladra: one with fixed b
(DAC), and another using different b values for the first, second, etc. blocks, and finding the
values of b that minimize the total space (DAC-Var). Note we represent LCP and not LCP ′,
thus we do not need to compute A[i].

RP Re-Pair [15] is a grammar-based compression method that factors out repetitions in a sequence.
It has been used [11] to compress the differentially encoded suffix array, SA′[i] = SA[i]−SA[i−1],
which contains repetitions because SA can be partitioned into r areas that appear elsewhere in
SA with the values shifted by 1 [16]. Note that LCP must then contain the same repetitions
shifted by 1, and therefore Re-Pair compression of the differential LCP should perform similarly,
as advocated in the theoretical proposal [8]. To obtain LCP [i] we must store some sampled
absolute LCP values and decompress the nonterminals since the last sample.
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Fig. 2. Space/time for accessing LCP array.

Experimental Comparison. We tested the different LCP implementations by accessing 100,000
random positions of the LCP array. Fig. 2 shows the space/times achieved. Only PT and PhiSpare
display a space/time tradeoff; in the first we use v = 4, 6, 8 and for the second q = 16, 32, 64.

As it can be seen, DAC/DAC-V ar and the representations of H dominate the space-time
tradeoff map (PhiSpare and PT can use less space but they become impractically slow). For the
rest of the paper we will keep only DAC and DAC-V ar, which give the best time performance,
and FMN -RRR and Sad-Gon, which have the most robust performance at representing H.

4 Computing RMQ, PSV , and NSV

Once a representation for LCP is chosen, one must carry out operations RMQ, PSV , and NSV on
top of it (as they require to access LCP ). We first implemented verbatim the theoretical proposals
of Fischer et al. [8]. For NSV , the idea is akin to the recursive findclose solution for compressed
trees [9]: the array is divided into blocks and some values are chosen as pioneers so that, if a position
is not a pioneer, then its NSV answer is in the same block of that of its preceding pioneer (and
thus it can be found by scanning that block). Pioneers are marked in a bitmap so as to map them
to a reduced array of pioneers, where the problem is recursively solved. We experimentally verified
that it is convenient to continue the recursion until the end instead of storing the explicit answers



at some point. The block length L yields a space/time tradeoff since, at each level of the recursion,
we must obtain O(L) values from LCP . PSV is symmetric, needing another similar structure.

For RMQ we apply an existing implementation [7] to the LCP array, remembering that we
do not have direct access to LCP but have to use any of the access methods we have developed
for it. This accesses at most 5 cells of LCP , yet it requires 3.25n bits. In the actual theoretical
proposal [8] this is reduced to o(n) but many more accesses to LCP would be necessary; we did
not implement that verbatim as it has little chances of being practical.

The final data structure, that we call NPR-FMN , is composed of the structure to answer NSV
queries plus the one for PSV queries plus the structure to calculate RMQ.

4.1 A Novel Practical Solution

We propose now a different solution, inspired in Sadakane and Navarro’s succinct tree representation
[28]. We divide LCP into blocks of length L. Now we form a hierarchy of blocks, where we store
the minimum LCP value of each block i in an array m[i]. The array uses n

L log n bits. On top of
array m, we construct a perfect L-ary tree Tm where the leaves are the elements of m and each
internal node stores the minimum of the values stored in its children. The total space needed for
Tm is n

L log n(1 +O(1/L)) bits, so if L = ω(log n), the space used is o(n) bits.
To answer NSV (i), we look for the first j > i such that LCP [j] < p = LCP [i], using Tm to find

it in time O(L log(n/L)). We first search sequentially for the answer in the same block of i. If it is
not there, we go up to the leaf that represents the block and search the right siblings of this leaf. If
some of these sibling leaves contain a minimum value smaller than p, then the answer to NSV (i) is
within their block, so we go down to their block and find sequentially the leftmost position j where
LCP [j] < p. If, however, no sibling of the leaf contains a minimum smaller than p, we continue
going up the tree and considering the right siblings of the parent of the current node. At some node
we find a minimum smaller than p and start traversing down the tree as before, finding at each
level the first child of the current node with a minimum smaller than p. PSV is symmetric. Note
that the heaviest part of the cost in practice is the O(L) accesses to LCP cells at the lowest levels,
since the minima in Tm are explicitly stored.

To calculate RMQ(x, y) we use the same Tm and separate the search in three parts: (a) We
calculate sequentially the minimum value in the interval [x, Ld xLe − 1] and its leftmost position in
the interval; (b) we do the same for the interval [Lb yLc, y]; (c) we calculate RMQ(Ld xLe, Lb

y
Lc − 1)

using Tm. Finally we compare the results obtained in (a), (b) and (c) and the answer will be the one
holding the minimum value, choosing the leftmost to break ties. For each node in Tm we also store
the local position in the children where the minimum occurs, so we do not need to scan the child
blocks when we go down the tree. The extra space incurred is just n

L logL(1 + O(1/L)) bits. The
final data structure, if L = ω(log n), requires o(n) bits and can compute NSV , PSV and RMQ all
using the same auxiliary structure. We call it NPR-CN .

Experimental Comparison. We tested the performance of the different NPR implementations
by performing 100,000 NSV and RMQ queries at different random positions in the LCP array.
Fig. 3 shows the space/time achieved for each implementation. We used the slower Sad-Gon im-
plementation for LCP to enhance the differences in time performance. We obtained space/time
tradeoffs by using different block sizes L = 8, 16, 32 (so the times for RMQ on NPR-FMN are
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Fig. 3. Space/time for the operations NSV and RMQ.

not affected). Clearly NPR-CN displays the best performance for NSV , both in space and time.
For RMQ, it can be see that the best time obtained with NPR-CN dominates, in time and space,
the NPR-FMN curve. Thus NPR-CN is our chosen implementation for the rest.

5 Our Compressed Suffix Tree

Our CST implementation applies our NPR-CN algorithms of Section 4 on top of some LCP repre-
sentation from those chosen in Section 3. This solves most of the tree traversal operations by using
the formulas provided by Fischer et al. [8], which we do not repeat for lack of space. In some cases,
however, we have deviated from the theoretical algorithms for practical considerations.

TDepth: We proceed by brute force using Parent, as there is no practical solution in the proposal.
NSib: There is a bug in the original formula [8] in the case v is the next-to-last child of its parent.

According to them, NSib([vl, vr]) first obtains its parent [wl, wr], then checks whether vr = wr
(in which case there is no next sibling), then checks whether wr = vr + 1 (in which case the
next sibling is leaf [wr, wr]), and finally answers [vr + 1, z − 1], where z = RMQ(vr + 2, wr).
This RMQ is aimed at finding the end of the next sibling of the next sibling, but it fails if we
are near the end. Instead, we replace it by the faster z = NSV ′(vr + 1, LCP [vr + 1]), where
NSV ′(i, d) is a generalization of NSV that finds the next value smaller or equal to d, and is
implemented almost like NSV using Tm.



Child: The children are ordered by letter. We need to extract the children sequentially using
FChild and NSib, to find the one descending by the correct letter, yet extracting the Letter
of each is expensive. Thus we first find all the children sequentially and then binary search the
correct letter among them, thus reducing the use of Letter as much as possible.

LAQS(v, d): Instead of the slow and complex formula given in the original paper, we use NSV ′

(and PSV ′): LAQS([vl, vr], d) = [PSV ′(vl + 1, d), NSV ′(vr, d)−1]. This is a complex operation
we are supporting with extreme simplicity.

LAQT (v, d): There is no practical solution in the original proposal. We proceed as follows to achieve
the cost of d Parent operations, plus sume LAQS ones, all of which are reasonably cheap. Since
SDepth(v) ≥ TDepth(v), we first try v′ = LAQS(v, d), which is an ancestor of our answer; let
d′ = TDepth(v′). If d′ = d we are done; else d′ < d and we try v′′ = LAQS(v, d + (d − d′)).
We compute d′′ = TDepth(v′′) (which is measured by using d′′ − d′ Parent operations until
reaching v′) and iterate until finding the right node.

6 Comparing the CST Implementations

We compare all the CST implementations: Välimäki et al.’s [29] implementation of Sadakane’s com-
pressed suffix tree [27] (CST-Sadakane); Russo’s implementation of Russo et al.’s “fully-compressed”
suffix tree [25] (FCST); and our best variants. These are called Our CST in the plots. Depending
on their LCP representation, they are suffixed with Sad-Gon, FMN-RRR, DAC, and DAC-Var.
We do not compare some operations like Root and Ancestor because they are trivial in all imple-
mentations; Locate and Count because they depend only on the underlying compressed suffix array
(which is mostly orthogonal); SLinki because it is usually better to do SLink i times; and LAQS
and LAQT because they are not implemented in the alternative CSTs.

We typically show space/time tradeoffs for all the structures, where the space is measured in
bits per character of the original text (recall that these CSTs replace the text, so this is the overall
space required). The times are averaged over a number of queries on random nodes. We use four
types of node samplings, which make sense in different typical suffix tree traversal scenarios: (a)
Collecting the nodes visited over 10,000 traversals from a random leaf to the root (used for Parent,
SDepth, and Child operations); (b) same but keeping only nodes with string depth larger than 5
(for Letter); (c) collecting the nodes visited over 10,000 traversals from the parent of a random leaf
towards the root via suffix links (used for SLink and TDepth); and (d) taking 10,000 random leaf
pairs (for LCA). For space limitations, and because the outcomes are consistent across texts, we
show the results of each operation over one text only, choosing in each case a different text.

Fig. 4 shows space/time tradeoffs for six operations. The general conclusion is that our CST
implementation does offer a relevant tradeoff between the two rather extreme existing variants.
Our CSTs can operate within 8–12 bits per symbol (that is, at most 50% larger than the plain
byte-based representation of the text, and replacing it) while requiring a few hundred microseconds
for most operations (the “small and slow” variants Sad-Gon and FMN-RRR); or within 13–16 bits
per symbol and carry out most operations within a few microseconds (the “large and fast” variants
DAC and DAC-Var). In contrast, the FCST requires only 4–6 bits per symbol (which is, remarkably,
up to half the space required by the plain text representation), but takes the order of milliseconds
per operation; and Sadakane’s CST takes usually a few tens of microseconds per operation but
requires 25–35 bits per character, which is close to uncompressed suffix arrays (not uncompressed
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Fig. 4. Space/time tradeoff performance figures for different CSTs and suffix tree operations. Note the logscale.
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Fig. 5. Time comparison for operation Letter (left) and a full traversal computing SDepth. Note the logscale.

suffix trees, though). We remark that, for many operations, our “fast and large” variant still takes
half the space of Sadakane’s CST implementation and operates several times faster.

Exceptions to the latter comment are Parent and TDepth, where Sadakane’s CST stores the
explicit tree topology, and thus takes a fraction of a microsecond. On the other hand, our CST
carries out LAQS (not shown) in the same time of Parent, whereas this is much more complicated
for the alternatives (they do not even implement it). For Child, where we descend by a random
letter from the current node, the times are higher than for other operations as expected, yet the
same happens to all the implementations. We note that the FCST is more efficient on operations
LCA and SDepth, which are its kernel operations, yet it is still slower than our “small and slow”
variant. Finally, TDepth is an operation where all but Sadakane’s CST are relatively slow, yet
on most suffix tree algorithms the string depth is much more relevant than the tree depth. Our
LAQT (v, d) (not shown) would cost about d times the time of our TDepth.

Fig. 5 (left) shows operation Letter(i) as a function of i. This requires either applying i−1 times
Ψ , or applying once SA and SA−1. The former choice is preferred for the FCST and the latter in
Sadakane’s CST. For our CST, using Ψ iteratively was better for these i values, as the alternative
requires around 70 microseconds. Note this operation depends only on the CSA structure.

We finish with a basic suffix tree traversal algorithm: the classical one to detect the longest
repetition in a text. This traverses all of the internal nodes using FChild and NSib and reports the
maximum SDepth. Fig. 5 (right) illustrates the result. Although Sadakane’s CST takes advantage
of locality, our “large and fast” variant is pretty close using half the space. Our “small and slow”
variant, instead, requires a few hundred microseconds as expected, yet the FCST has a special
implementation for full traversals and, this time, it beats our slow variant in space and time.

7 Final Remarks

We have presented new practical compressed suffix tree implementations that offer very relevant
space/time tradeoffs. This opens the door to a number of practical suffix tree applications, partic-
ularly relevant to bioinformatics. We plan to leave the code publicly available to foster its widest
dissemination. We also plan to apply it to solve concrete bioinformatic problems on large instances.



Acknowledgements. Supported in part by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant

ICM P05-001-F, Mideplan, Chile. We thank F. Claude, J. Fischer, R. González, J. Kärkkäinen, S. Ladra, V. Mäkinen, S. Puglisi,
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