
Dynami Spatial Approximation TreesGonzalo Navarro � Nora ReyesDept. of Computer Siene Depto. de Inform�atiaUniversity of Chile Universidad Naional de San LuisBlano Enalada 2120, Santiago, Chile Ej�erito de los Andes 950, San Luis, Argentinagnavarro�d.uhile.l nreyes�unsl.edu.arAbstratThe Spatial Approximation Tree (sa-tree) is a re-ently proposed data struture for searhing in metrispaes. It has been shown that it ompares favorablyagainst alternative data strutures in spaes of highdimension or queries with low seletivity. The maindrawbak of the sa-tree is that it is a stati data stru-ture, that is, one built, it is diÆult to add new el-ements to it. This rules it out for many interestingappliations.In this paper we overome this weakness. We pro-pose and study several methods to handle insertionsin the sa-tree. Some are lassial folklore solutionswell known in the data strutures ommunity, while themost promising ones have been spei�ally developedonsidering the partiular properties of the sa-tree, andinvolve new algorithmi insights in the behavior of thisdata struture. As a result, we show that it is viable tomodify the sa-tree so as to permit fast insertions whilekeeping its good searh eÆieny.1. IntrodutionThe onept of \approximate" searhing has appli-ations in a vast number of �elds. Some examples arenon-traditional databases (e.g. storing images, �nger-prints or audio lips, where the onept of exat searhis of no use and we searh instead for similar objets);text searhing (to �nd words and phrases in a textdatabase allowing a small number of typographial orspelling errors); information retrieval (to look for do-uments that are similar to a given query or doument);mahine learning and lassi�ation (to lassify a newelement aording to its losest representative); image�Partially supported by Fondeyt grant 1-000929.

quantization and ompression (where only some ve-tors an be represented and we ode the others as theirlosest representable point); omputational biology (to�nd a DNA or protein sequene in a database allowingsome errors due to mutations); and funtion predition(to searh for the most similar behavior of a funtion inthe past so as to predit its probable future behavior).All those appliations have some ommon hara-teristis. There is a universe U of objets, and a non-negative distane funtion d : U � U �! R+ de�nedamong them. This distane satis�es the three axiomsthat make the set a metri spae: strit positiveness(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))and triangle inequality (d(x; z) � d(x; y) + d(y; z)).The smaller the distane between two objets, themore \similar" they are. We have a �nite databaseS � U , whih is a subset of the universe of objets andan be preproessed (to build an index, for example).Later, given a new objet from the universe (a queryq), we must retrieve all similar elements found in thedatabase. There are two typial queries of this kind:Range query: Retrieve all elements within distaner to q in S. This is, fx 2 S ; d(x; q) � rg.Nearest neighbor query (k-NN): Retrieve the klosest elements to q in S. That is, a set A � Ssuh that jAj = k and 8x 2 A; y 2 S�A; d(x; q) �d(y; q).The distane is onsidered expensive to ompute(think, for instane, in omparing two �ngerprints).Hene, it is ustomary to de�ne the omplexity ofthe searh as the number of distane evaluations per-formed, disregarding other omponents suh as CPUtime for side omputations, and even I/O time. Givena database of jSj = n objets, queries an be triviallyanswered by performing n distane evaluations. Thegoal is to struture the database suh that we performless distane evaluations.



A partiular ase of this problem arises when thespae is a set of d-dimensional points and the dis-tane belongs to the Minkowski Lp family: Lp =(P1�i�d jxi � yijp)1=p. The best known speial asesare p = 1 (Manhattan distane), p = 2 (Eulideandistane) and p = 1 (maximum distane), that is,L1 = max1�i�d jxi � yij.There are e�etive methods to searh on d-dimensional spaes, suh as kd-trees [2℄ or R-trees [13℄.However, for roughly 20 dimensions or more thosestrutures ease to work well. We fous in this paper ingeneral metri spaes, although the solutions are wellsuited also for d-dimensional spaes.It is interesting to notie that the onept of \di-mensionality" an be translated to metri spaes aswell: the typial feature in high dimensional spaeswith Lp distanes is that the probability distributionof distanes among elements has a very onentratedhistogram (with larger mean as the dimension grows),making the work of any similarity searh algorithmmore diÆult [5, 10℄. In the extreme ase we have aspae where d(x; x) = 0 and 8y 6= x; d(x; y) = 1, whereit is impossible to avoid a single distane evaluation atsearh time. We say that a general metri spae is highdimensional when its histogram of distanes is onen-trated.There are a number of methods to preproess the setin order to redue the number of distane evaluations.All those strutures work on the basis of disardingelements using the triangle inequality, and most usethe lassial divide-and-onquer approah (whih is notspei� of metri spae searhing).The Spatial Approximation Tree (sa-tree) is a re-ently proposed data struture of this kind [16℄, whihis based on a novel onept: rather than dividing thesearh spae, approah the query spatially, that is,start at some point in the spae and get loser andloser to the query. It has been shown that the sa-tree behaves better than the other existing strutureson metri spaes of high dimension or queries with lowseletivity, whih is the ase in many appliations.The sa-tree, unlike other data strutures, does nothave parameters to be tuned by the user of eah ap-pliation. This makes it very appealing as a generalpurpose data struture for metri searhing, sine anynon-expert seeking for a tool to solve his/her partiularproblem an use it as a blak box tool, without the needof understanding the ompliations of an area he/sheis not interested in. Other data strutures have manytuning parameters, hene requiring a big e�ort fromthe user in order to obtain an aeptable performane.On the other hand, the main weakness of the sa-tree is that it is not dynami. That is, one it is built,

it is diÆult to add new elements to it. This makesthe sa-tree unsuitable for dynami appliations suh asmultimedia databases.Overoming this weakness is the aim of this paper.We propose and study several methods to handle inser-tions in the sa-tree. Some are lassial folklore solutionswell known in the data strutures ommunity, while themost promising ones have been spei�ally developedonsidering the partiular properties of the sa-tree. Asa result, we show that it is viable to modify the sa-treeso as to permit fast insertions while keeping its goodsearh eÆieny. As a related byprodut of this study,we give new algorithmi insights in the behavior of thisdata struture.2. Previous WorkAlgorithms to searh in general metri spaes an bedivided in two large areas: pivot-based and lusteringalgorithms. (See [10℄ for a more omplete review.)Pivot-based algorithms. The idea is to use a setof k distinguished elements (\pivots") p1:::pk 2 Sand storing, for eah database element x, its dis-tane to the k pivots (d(x; p1):::d(x; pk)). Given thequery q, its distane to the k pivots is omputed(d(q; p1):::d(q; pk)). Now, if for some pivot pi it holdsthat jd(q; pi) � d(x; pi)j > r, then we know by the tri-angle inequality that d(q; x) > r and therefore do notneed to expliitly evaluate d(x; p). All the other el-ements that annot be eliminated using this rule arediretly ompared against the query.Several algorithms [23, 15, 7, 18, 6, 8℄ are almostdiret implementations of this idea, and di�er basiallyin their extra struture used to redue the CPU ost of�nding the andidate points, but not in their numberof distane evaluations.There are a number of tree-like data strutures thatuse this idea in a more indiret way: they selet a pivotas the root of the tree and divide the spae aordingto the distanes to the root. One slie orresponds toeah subtree (the number and width of the slies di�ersaross the strategies). At eah subtree, a new pivot isseleted and so on. The searh baktraks on the treeusing the triangle inequality to prune subtrees, that is,if a is the tree root and b is a hildren orrespondingto d(a; b) 2 [x1; x2℄, then we an avoid entering in thesubtree of b whenever [d(q; a) � r; d(q; a) + r℄ has nointersetion with [x1; x2℄.Several data strutures use this idea [3, 22, 14, 24,4, 25℄.



Clustering algorithms. The seond trend onsistsin dividing the spae in zones as ompat as possible,normally reursively, and storing a representative point(\enter") for eah zone plus a few extra data thatpermits quikly disarding the zone at query time. Tworiteria an be used to delimit a zone.The �rst one is the Voronoi area, where we selet aset of enters and put eah other point inside the zoneof its losest enter. The areas are limited by hyper-planes and the zones are analogous to Voronoi regionsin vetor spaes. Let f1 : : : mg be the set of en-ters. At query time we evaluate (d(q; 1); : : : ; d(q; m)),hoose the losest enter  and disard every zonewhose enter i satis�es d(q; i) > d(q; ) + 2r, as itsVoronoi area annot interset with the query ball.The seond riterion is the overing radius r(i),whih is the maximum distane between i and an el-ement in its zone. If d(q; i)� r > r(i), then there isno need to onsider zone i.The tehniques an be ombined. Some tehniquesusing only hyperplanes are [22, 19, 12℄. Some teh-niques using only overing radii are [11, 9℄. One usingboth riteria [5℄.Nearest neighbor queries. To answer 1-NNqueries, we simulate a range query with a radius thatis initially r� =1, and redue r� as we �nd loser andloser elements to q. At the end, we have in r� thedistane to the losest elements and have seen themall. Unlike a range query, we are now interested inquikly �nding lose elements in order to redue r� asearly as possible, so there are a number of heuristis toahieve this. One of the most interesting is proposed in[21℄, where the subtrees yet to be proessed are storedin a priority queue in a heuristially promising order-ing. The traversal is more general than a baktraking.Eah time we proess the root of the most promisingsubtree, we may add its hildren to the priority queue.At some point we an preempt the searh using a uto�riterion given by the triangle inequality.k-NN queries are handled as a generalization of 1-NN queries. Instead of one losest element, the k los-est elements known are maintained, and r� is the dis-tane to the farthest to q among those k. Eah timea new andidate appears we insert it into the queue,whih may displae another element and hene reduer�. At the end, the queue ontains the k losest ele-ments to q.3. The Spatial Approximation TreeWe desribe briey in this setion the sa-tree datastruture. It needs linear spae O(n), reasonable

onstrution time O(n log2 n= log logn) and sublinearsearh time O(n1��(1= log logn)) in high dimensions andO(n�) (0 < � < 1) in low dimensions. It is experi-mentally shown to improve over other data strutureswhen the dimension is high or the query radius is large.For more details see the original referenes [16, 17℄.3.1. ConstrutionWe selet a random element a 2 S to be the rootof the tree. We then selet a suitable set of neighborsN(a) satisfying the following property:Condition 1: (given a; S) 8x 2 S, x 2 N(a) ,8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set suh that anyneighbor is loser to a than to any other neighbor. The\only if" (() part of the de�nition guarantees that ifwe an get loser to any b 2 S then an element in N(a)is loser to b than a, beause we put as diret neigh-bors all those elements that are not loser to anotherneighbor. The \if" part ()) aims at putting as fewneighbors as possible.Notie that the set N(a) is de�ned in terms of itselfin a non-trivial way and that multiple solutions �t thede�nition. For example, if a is far from b and  andthese are lose to eah other, then both N(a) = fbgand N(a) = fg satisfy the de�nition.Finding the smallest possible set N(a) seems to bea nontrivial ombinatorial optimization problem, sineby inluding an element we need to take out others(this happens between b and  in the example of theprevious paragraph). However, simple heuristis whihadd more neighbors than neessary work well. We be-gin with the initial node a and its \bag" holding all therest of S. We �rst sort the bag by distane to a.Then, we start adding nodes to N(a) (whih is ini-tially empty). Eah time we onsider a new node b, wehek whether it is loser to some element of N(a) thanto a itself. If that is not the ase, we add b to N(a).At this point we have a suitable set of neighbors.Note that Condition 1 is satis�ed thanks to the fatthat we have onsidered the elements in order of in-reasing distane to a. The \only if" part of Condition1 is learly satis�ed beause any element not satisfyingit is inserted in N(a). The \if" part is more deliate.Let x 6= y 2 N(a). If y is loser to a than x then y wasonsidered �rst. Our onstrution algorithm guaran-tees that if we inserted x inN(a) then d(x; a) < d(x; y).If, on the other hand, x is loser to a than y, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor annotbe removed by a new neighbor inserted later).



We now must deide in whih neighbor's bag weput the rest of the nodes. We put eah node not infag [ N(a) in the bag of its losest element of N(a)(best-�t strategy). Observe that this requires a seondpass one N(a) is fully determined.We are done now with a, and proess reursively allits neighbors, eah one with the elements of its bag.Note that the resulting struture is a tree that an besearhed for any q 2 S by spatial approximation fornearest neighbor queries. The reason why this works isthat, at searh time, we repeat exatly what happenedwith q during the onstrution proess (i.e. we enterinto the subtree of the neighbor losest to q), until wereah q. This is is beause q is present in the tree, i.e.,we are doing an exat searh after all.Finally, we save some omparisons at searh time bystoring at eah node a its overing radius, i.e. the max-imum distane R(a) between a and any element in thesubtree rooted by a. The way to use this informationis made lear in Setion 3.2.Figure 1 depits the onstrution proess. It is�rstly invoked as BuildTree(a,S � fag) where a isa random element of S. Note that, exept for the �rstlevel of the reursion, we already know all the distanesd(v; a) for every v 2 S and hene do not need to re-ompute them. Similarly, d(v; ) at line 10 is alreadyknown from line 6. The information stored by the datastruture is the root a and the N() and R() values ofall the nodes.BuildTree (Node a, Set of nodes S)N(a)  ; /* neighbors of a */R(a)  0 /* overing radius */Sort S by distane to a (loser first)for v 2 S doR(a)  max(R(a); d(v; a))if 8b 2 N(a); d(v; a) < d(v; b)then N(a)  N(a) [ fvgfor b 2 N(a) do S(b)  ;for v 2 S �N(a) doLet  2 N(a) be the one minimizing d(v; )S()  S() [ fvgfor b 2 N(a) do BuildTree (b, S(b))Figure 1. Algorithm to build the sa-tree.3.2. SearhingOf ourse it is of little interest to searh only for ele-ments q 2 S. The tree we have desribed an, however,be used as a devie to solve queries of any type for anyq 2 U . We start with range queries with radius r.

The key observation is that, even if q 62 S, the an-swers to the query are elements q0 2 S. So we use thetree to pretend that we are searhing for an elementq0 2 S. We do not know q0, but sine d(q; q0) � r, wean obtain from q some distane information regard-ing q0: by the triangle inequality it holds that for anyx 2 U , d(x; q) � r � d(x; q0) � d(x; q) + r.Hene, instead of simply going to the losest neigh-bor, we �rst determine the losest neighbor  of qamong fag [ N(a). We then enter into all neighborsb 2 N(a) suh that d(q; b) � d(q; ) + 2r. This is be-ause the virtual element q0 sought an di�er from q byat most r at any distane evaluation, so it ould havebeen inserted inside any of those b nodes. In the pro-ess, we report all the nodes q0 we found lose enoughto q.Moreover, notie that, in an exat searh for a q0 2S, the distanes between q0 and the nodes we traverseget redued as we step down the tree. That is,Observation 1: Let a; b;  2 S suh that b desendsfrom a and  from b in the tree. Then d(; b) � d(; a).The same happens, allowing a tolerane of 2r, in arange searh with radius r. That is, for any b in thepath from a to q0 it holds d(q0; b) � d(q0; a), so d(q; b) �d(q; a)+2r. Hene, while at �rst we need to enter intoall the neighbors b 2 N(a) suh that d(q; b)� d(q; ) �2r, when we enter into those b the tolerane is not 2ranymore but it gets redued to 2r � (d(q; b)� d(q; )).The overing radiusR(a) is used to further prune thesearh, by not entering into subtrees suh that d(q; a) >R(a) + r, sine they annot ontain useful elements.Figure 2 illustrates the searh proess, starting fromthe tree root p11. Only p9 is in the result, but all thebold edges are traversed. Figure 3 gives the searh al-gorithm, initially invoked as RangeSearh(a,q,r,2r),where a is the tree root. Note that in the reursiveinvoations d(a; q) is already omputed.Nearest neighbor searhing. We an also performnearest neighbor searhing by simulating a range searhwhere the searh radius is redued, just as explained atthe end of Setion 2. We have a priority queue of sub-trees, most promising �rst. Initially, we insert the sa-tree root in the data struture. Iteratively, we extratthe most promising subtree, proess its root, and insertall its subtrees in the queue. This is repeated until thequeue gets empty or its most promising subtree an bedisarded (i.e., its promise value is bad enough). Forlak of spae we omit further details.
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Figure 2. An example of the searh proess.RangeSearh (Node a, Query q, Radius r,Tolerane t)if d(a; q) � r then Report aif d(a; q) � R(a) + r thendmin  minfd(; q);  2 fag [N(a)gfor b 2 N(a) doif d(b; q)� dmin � t thenRangeSearh (b,q,r,t� (d(b; q)� dmin))Figure 3. Searhing q with radius r in a sa-tree.4. Inremental ConstrutionThe sa-tree is a struture whose onstrution algo-rithm needs to know all the elements of S in advane.In partiular, it is diÆult to add new elements un-der the best-�t strategy one the tree is already built.Eah time a new element is inserted, we must go downthe tree by the losest neighbor until the new elementmust beome a neighbor of the urrent node a. Allthe subtree rooted at a must be rebuilt from srath,sine some nodes that went into another neighbor ouldprefer now to get into the new neighbor.In this setion we disuss and empirially evaluatedi�erent alternatives to permit insertion of new ele-ments into an already built sa-tree. For the experi-ments we have seleted two metri spaes. The �rst isa ditionary of 69,069 English words, from where werandomly hose queries. The distane in this ase isthe edit distane, that is, minimum number of har-ater insertions, deletions and replaements to makethe strings equal. The seond spae is the real unitaryube in dimension 15 using Eulidean distane. Wegenerated 100,000 random points with uniform distri-bution. For the queries, we build the indexes with 90%of the points and use the other 10% (randomly hosen)

as queries. The results on these two spaes are rep-resentative of those on many other metri spaes wetested: NASA images, ditionaries in other languages,Gaussian distributions, other dimensions, et.As a omparison point for whih follows, a stationstrution osts about 5 million omparisons for theditionary and 12.5 million for the vetor spae.4.1. Rebuilding the SubtreeThe naive approah rebuilds the whole subtreerooted at a one a new element x being inserted has tobeome a new neighbor of a. This has the advantageof preserving the same tree that is built statially, but,as Figure 4 shows for the ase of the ditionary, the dy-nami onstrution beomes too ostly in omparisonto a stati one (140 times more ostly in this example,almost 230 times more in our vetor spae).
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Figure 5. Constrution osts using overow bukets.Figure 5 shows the ost of the onstrution usingdi�erent buket sizes, whih exhibits interesting u-tuations and in some ases osts even less than a stationstrution. This is possible beause many unlassi-�ed elements are left in the bukets. For example, forbuket size 1,000, almost all the elements are in over-ow bukets in the ditionary ase and almost 60%in the vetor ase. These utuations appear beausea larger buket size may produe more rebuilds thana smaller one for a given set size n. The e�et is wellknown, for example it appears when studying the num-ber of splits as a funtion of the B-tree page size [1℄.Figure 6 shows the searh osts using overow buk-ets. We searhed with �xed radius 1 to 4 in the ditio-nary example and with radii retrieving 0.01%, 0.1%and 1% of the set in the vetor example. We alsoperformed nearest neighbor searh experiments, whihyielded similar results and are omitted for lak of spae.As an be seen by omparing the results to thoseof Figure 8, this tehnique is ompetitive against the
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TimestampFigure 8. Searh osts using �rst-�t and the twoversions of the timestamping tehnique.Figure 8 shows searh times. As an be seen, thesearh overhead of the �rst-�t strategy is too high, at apoint that makes the struture not ompetitive againstother existing ones.4.4. TimestampingAn alternative that has resemblanes with the twoprevious but is more sophistiated onsists in keeping atimestamp of the insertion time of eah element. Wheninserting a new element, we add it as a neighbor at theappropriate point using best-�t and do not rebuild thetree. Let us onsider that neighbors are added at theend, so by reading them left to right we have inreasinginsertion times. It also holds that the parent is alwaysolder than its hildren.As seen in Figure 7, this alternative an ost a bitmore or a bit less than stati best-�t depending on the



ase. Two versions of this methods, labeled \up" and\down" in the plot, orrespond to how to handle thease of equal distanes to the root and to the losestneighbor when inserting a new element. The formerinserts the element as a new neighbor and the lattersends it to the subtree of the losest neighbor. Thismakes a di�erene only in disrete distanes.At searh time, we onsider the neighborsfv1; : : : ; vkg of a from oldest to newest. We performthe minimization while we traverse the neighbors, ex-atly as in Setion 4.3. This is beause between theinsertion of vi and vi+j there may have appeared newelements that preferred vi just beause vi+j was notyet a neighbor, so we may miss an element if we do notenter into vi beause of the existene of vi+j .Note that, although the searh proess is the same asunder �rst-�t, the insertion puts the elements into theirlosest neighbor, so the struture is more balaned.Up to now we do not really need timestamps butjust to keep the neighbors sorted. Yet a more so-phistiated sheme is to use the timestamps to re-due the work done inside older neighbors. Say thatd(q; vi) > d(q; vi+j) + 2r. We have to enter into vibeause it is older. However, only the elements withtimestamp smaller than that of vi+j should be onsid-ered when searhing inside vi; younger elements haveseen vi+j and they annot be interesting for the searhif they are inside vi. As parent nodes are older thantheir desendants, as soon as we �nd a node inside thesubtree of vi with timestamp larger than that of vi+jwe an stop the searh in that branh, beause its sub-tree is even younger.An alternative view, equivalent as before but fous-ing on maximum allowed radius instead of maximumallowed timestamp, is as follows. Eah time we enterinto a subtree y of vi, we searh for the siblings vi+jof vi that are older than y. Over this set, we omputethe maximum radius that permits to avoid proessingy, namely ry = max(d(q; vi)� d(q; vi+j ))=2. If it holdsr < ry, we do not need to enter into the subtree y.Let us now onsider nearest neighbor searhing. As-sume that we are urrently proessing node vi and in-sert its hildren y in the priority queue. We omputery as before and insert it together with y in the priorityqueue. Later, when the time to proess y omes, weonsider our urrent searh radius r� and disard y ifr� < ry. If we insert a hildren z of y, we put it thevalue min(ry ; rz).Figure 8 ompares this tehnique against the statione. As it an be seen, this is an exellent alterna-tive to the stati onstrution in the ase of our ve-tor spae example, providing basially the same on-strution and searh ost with the added value of dy-

namism. In the ase of the ditionary, the timestamp-ing tehnique is signi�antly worse than the stati one(although the \up" behaves slightly better for nearestneighbor searhing). The problem is that the \up" ver-sion is muh more ostly to build, needing more than3 times the stati onstrution ost.4.5. Inserting at the FringeYet another alternative is as follows. We an relaxCondition 1 (Setion 3.1), whose main goal is to guar-antee that if q is loser to a than to any neighbor inN(a) then we an stop the searh at that point. Theidea is that, at searh time, instead of �nding the los-est  among fag[N(a) and entering into any b 2 N(a)suh that d(q; b) � d(q; ) + 2r, we exlude the sub-tree root fag from the minimization. Hene, we alwaysontinue to the leaves by the losest neighbor and oth-ers lose enough. This seems to make the searh timeslightly worse, but the ost is marginal.The bene�t is that we are not fored anymore to puta new inserted element x as a neighbor of a, even whenCondition 1 would require it. That is, at insertion time,even if x is loser to a than to any element in N(a), wehave the hoie of not putting it as a neighbor of a butinserting it into its losest neighbor of N(a). At searhtime we will reah x beause the searh and insertionproesses are similar.This freedom opens a number of new possibilitiesthat deserve a muh deeper study, but an immediateonsequene is that we an insert always at the leavesof the tree. Hene, the tree is read-only in its top partand it hanges only in the fringe.However, we have to permit the reonstrution ofsmall subtrees so as to avoid that the tree beomesalmost a linked list. So we permit inserting x as aneighbor when the size of the subtree to rebuild is smallenough, whih leads to a tradeo� between insertion ostand quality of the tree at searh time.Figure 9 shows the onstrution ost for di�erentmaximum tree sizes that an be rebuilt. As an be seen,permitting a tree size of 50 yields the same onstrutionost of the stati version.Finally, Figure 10 shows the searh times using thistehnique. As an be seen, using a tree size of 50 per-mits the same and even better searh time omparedto the stati version, whih shows that it may be benef-ial to move elements downward in the tree. This fatmakes this alternative a very interesting hoie deserv-ing more study.
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Figure 9. Constrution osts inserting at the fringe.5. ConlusionsWe have presented several tehniques to modify thesa-tree in order to make it a dynami data struturesupporting insertions, without degrading its urrentperformane. We have shown that there are manymore alternatives than what appears at a �rst glane,and that the invariants of the sa-tree an be relaxed inways unforeseen before this study (e.g. the fat thatwe an deide whether or not to add neighbors).From the hoies we have onsidered, the use of over-ow bukets shows that it is possible to obtain on-strution and searh times similar to those of the stativersion, although the hoie of the buket size deservesmore study. Timestamping has also shown ompetitivein some metri spaes and not so attrative in others,a fat deserving more study. Finally, inserting at thefringe has shown the potential of even improving theperformane of the stati version, although studyingthe e�et of the size of the fringe is required.
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