
Pivot Selection Techniques for Proximity Searching in Metric Spaces �Benjamin Bustos Gonzalo NavarroDepto. de Ciencias de la Computaci�onUniversidad de ChileBlanco Encalada 2120, Santiago, Chilefbebustos,gnavarrog@dcc.uchile.cl Edgar Ch�avezEscuela de Ciencias F��sico-Matem�aticasUniversidad Michoacana, Edi�cio \B"Ciudad Universitaria, Morelia, Mich. M�exicoelchavez@�smat.umich.mxAbstractWith a few exceptions, proximity search algorithmsin metric spaces based on the use of pivots select themat random among the elements of the metric space.However, it is well known that the way in which thepivots are selected can a�ect the performance of the al-gorithm. Between two sets of pivots of the same size,better chosen pivots can reduce the search time. Alter-natively, a better chosen small set of pivots (requiringless space) can yield the same e�ciency as a larger,randomly chosen, set. We propose an e�ciency mea-sure to compare two pivot sets, combined with an op-timization technique that allows selecting good sets ofpivots. We obtain abundant empirical evidence show-ing that our technique is e�ective. We also show thatgood pivots are outliers, but that selecting outliers doesnot ensure that good pivots are selected.1. IntroductionMany computational applications use proximitysearching in a vast number of �elds, for example: mul-timedia databases, machine learning and classi�cation,image quantization and compression, text retrieval,computational biology, function prediction, etc.All those applications have in common that the el-ements of the database form a metric space [8], thatis, it is possible to de�ne a positive real-valued func-tion d among the elements, called distance or met-ric, that satis�es the properties of strict positive-ness (d(x; y) = 0 , x = y), symmetry (d(x; y) =d(y; x)), and triangle inequality (d(x; z) � d(x; y) +d(y; z)). For example, a vector space is a particu-lar metric space, where the elements are tuples of�This work has been partially supported by FONDECYTGrant 1-000929.

real numbers and the distance function belongs to theLs family, de�ned as Ls ((x1; : : : ; xk); (y1; : : : ; yk)) =�P1�i�k jxi � yijs�1=s. L1 is the Manhattan dis-tance, L2 is the Euclidean distance and L1 =max1�i�k jxi � yij is called the maximum distance.In general, the distance d is considered expensive tocompute. Think, for example, of a biometric devicethat computes the distance between two �ngerprints.One of the typical queries that can be posed to re-trieve similar objects from a database is a range query(see Section 2). An easy way to answer range queriesis to make an exhaustive search on the database, butthis turns out to be too expensive for real-world appli-cations.Proximity search algorithms build an index of thedatabase and perform range queries using this index,avoiding the exhaustive search. Many of these algo-rithms are based on the use of pivots, which are distin-guished elements from the database. These pivots areused, together with the triangle inequality, to �lter outelements of the database without measuring their ac-tual distance to the query, hence saving distance com-putations while answering the range query.Almost all proximity search algorithms based on piv-ots choose them randomly among the elements of thedatabase. However, it is well known that the way piv-ots are selected dramatically a�ects the search perfor-mance [10, 8, 9]. Some heuristics to choose the pivotsbetter than at random have been presented [12, 4], butin general these heuristics only work in speci�c met-ric spaces and have a bad behavior in others. In Rkwith the Euclidean metric, it is shown in [9] that it ispossible to �nd an optimal set of k+1 pivots selectingthem as the vertices of a su�ciently large regular k-dimensional simplex containing all the elements of thedatabase [9], but this result does not apply to generalmetric spaces.In this paper we present an e�ciency criterion to



compare two pivot sets, which is based on the distancedistribution of the metric space. Then, we present aselection technique based on this criterion to select agood set of pivots. We show empirically that this tech-nique e�ectively selects good sets of pivots in a vari-ety of synthetic and real-world metric spaces. Also,we show that good pivots have the characterisitc tobe outliers, that is, good pivots are elements far awayfrom each other and from the rest of the elements ofthe database, but an outlier does not always have theproperty of being a good pivot.Our technique is the �rst we are aware of in produc-ing consistently good results in a wide variety of casesand in being based on a formal theory.2. Basic proximity search algorithm us-ing pivotsThere are many proximity search algorithms inmetric spaces that are based in the use of pivots,such as Burkhard-Keller Tree (BKT) [5], Fixed-QueriesTree (FQT) [2], Fixed-Height FQT (FHQT) [2], FixedQueries Array (FQA) [7], Vantage Point Tree (VPT)[12], Multi Vantage Point Tree (MVPT) [3], ExcludedMiddle Vantage Point Forest (VPF) [13], Approximat-ing Eliminating Search Algorithm (AESA) [11], LinearAESA (LAESA) [10] and Spaghettis [6].All these algorithms use, directly or indirectly, thefollowing procedure to answer range queries: if the uni-verse of objects is denoted by X, then the databaseis a �nite subset of objects U � X. Given a metricspace (U; d) (where d is the metric de�ned on U ), anobject q 2 X, called the query, and a tolerance ranger > 0; r 2 R, a range query is de�ned as the elementsin U that are whitin distance r to q, that is:(q; r) = fu 2 U; d(u; q) � rgFigure 1 shows an example of a range query in avector space of dimension 2.Given a range query (q; r) and a set of k pivotsfp1; : : : ; pkg; pi 2 U , by the triangle inequality it fol-lows for any x 2 X that d(pi; x) � d(pi; q) + d(q; x),and also that d(pi; q) � d(pi; x) + d(x; q). From bothinequalities it follows that a lower bound on d(q; x) isd(q; x) � jd(pi; x)� d(pi; q)j. The elements u 2 U ofinterest are those that satisfy d(q; u) � r, so we canexclude all the elements that satisfy the exclusion con-dition: jd(pi; u)� d(pi; q)j > r for some pivot pi (1)without actually evaluating d(q; u).
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� The value of �D is estimated as �D =1AP1�i�ADi.It is easy to see that 2k distance evaluations areneeded to compute the distance D for each pair of el-ements if there are k pivots. Therefore, 2kA distanceevaluations are needed to estimate �D .4. Pivot selection techniquesNow we present three pivot selection techniquesbased on the e�ciency criterion (3). Each techniquehas a cost measured in number of distance computa-tions at index construction time. As we do more workin optimizing the pivots, better pivots are obtained.When comparing two techniques, we give them thesame amount of work to spend. We describe the opti-mization cost of each technique.These selection techniques can be directly adaptedto work with algorithms that use a �xed number ofpivots, such as FHQT [2], FQA [7], LAESA [10] andSpaghettis [6]. They can also be adapted, with modi�-cations, to the other pivot based algorithms.4.1. Selection of N random groupsN groups of k pivots are chosen at random amongthe elements of the database, and �D is calculated foreach of this groups of pivots. The group that has themaximum �D value is selected.Optimization cost: Since the value of �D is esti-mated N times, the total optimization cost is 2kANdistance evaluations.
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Figure 3. Comparison between selection techniques in random vector spaces of dimension 16 (left) and dimension24 (right).4.2. Incremental selectionA pivot p1 is selected from a sample of N elements ofthe database, such that that pivot alone has the maxi-mum �D value. Then, a second pivot p2 is chosen fromanother sample of N elements of the database, suchthat fp1; p2g has the maximum �D value, consideringp1 �xed. The third pivot p3 is chosen from anothersample of N elements, such that fp1; p2; p3g has themaximum �D value, considering p1 and p2 �xed. Theprocess is repeated until k pivots have been chosen.Optimization cost: If the distancesDfp1;:::;pi�1g([ar]; [a0r]); 8r 2 1 : : :A are kept inan array, it is not necessary to do all the workto estimate �D when the i-th pivot is added.It is enough to calculate Dpi([ar]; [a0r]); 8r 21 : : :A, because Dfp1;:::;pig([ar]; [a0r]) =max(Dfp1 ;:::;pi�1g([ar]; [a0r]); Dpi([ar]; [a0r])). Therefore,only 2NA distance evaluations are needed to estimate�D when a new pivot is added. Since the processis reapeated k times, the total optimization cost is2kAN distance evaluations.4.3. Local optimum selectionA group of k pivots are chosen at random amongthe elements of the database. The matrix M (r; j) =Dpj ([ar]; [a0r]); r = 1 : : :A; j = 1 : : :k is calculatedusing the A pairs of elements. It follows thatD([ar]; [a0r]) = max1�i�k (M (r; j)) for every r, and thiscan be used to estimate �D. Also, it must be kept for

each row of M the index of the pivot where the max-imum value is, which will be denoted rmax, and thesecond maximum value, denoted rmax2. The contribu-tion of the pivot pj is the sum over the A rows of howmuch does pj help increase the value of D([ar]; [a0r]),that is M (r; rmax) �M (r; rmax2) if j = rmax for thatrow, and 0 otherwise.The pivot whose contribution to the value of �Dis minimal with respect to the other pivots is markedas the victim, and it is replaced, when possible, by abetter pivot selected from a sample of X elements ofthe database. The process is repeated N 0 times.Optimization cost: The construction cost of theinitial matrix M is 2Ak distance evaluations. Thesearch cost of the victim is 0, because no extra distanceevaluations are needed, all information is in M . Find-ing a better pivot from the X elements sample costs2AX distance evaluations, and the process is repeatedN 0 times, so the total optimization cost is 2A(k+N 0X)distance evaluations. Considering kN = k + N 0X, i.e.N 0X = k(N � 1), the optimization cost is 2AkN dis-tance evaluations.Note that it is posible to exchange the values ofN 0 and X while mantaining the optimization cost.In the experiments we use two possible value selec-tions: (N 0 = k) ^ (X = N � 1) (called local opti-mum A) and (N 0 = N � 1) ^ (X = k) (called localoptimum B). We also try with another value selection,N 0 = X = pk(N � 1), but the obtained result doesnot show any improvement on the algorithm perfor-mance.
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Figure 4. Comparison between random and incremental selection (using an optimal number of pivots) when varyingthe dimension (left) and the database size (right).4.4. Some advantages of the incremental se-lectionThe only way to determine the optimum number ofpivots k�, for a �xed tolerance range, is calculating anaverage of the total complexity of the algorithm fordi�erent values of k, where k� is equal to the valueof k which minimizes the total complexity. That is,it is worth to add pivots to the index until the totalcomplexity does not improve.The incremental selection technique for choosingpivots allows us to add more pivots to the index at anytime without doing all the optimization work again,if the distances Dfp1 ;:::;pkg([ar]; [a0r]); 8r 2 1 : : :A arekept. On the other hand, selection of N random groupsand local optimum selection techniques must redo allthe optimization work to obtain a new set of pivots, be-cause these techniques can not take advantage of thework done previously.For this reason, it is much easier to calculate theoptimum number of pivots k� using the incrementalselection technique.5. Experimental resultsWe have tested the selection techniques on a syn-thetic set of random points in a k-dimensional vec-tor space treated as a metric space, that is, we havenot used the fact that the space has coordinates, buttreated the points as abstract objects in an unknownmetric space. The advantage of this choice is that itallows us to control the exact dimensionality we areworking with, which is very di�cult to do in general

metric spaces. The points are uniformily distributedin the unitary cube, our tests use the L2 (Euclidean)distance, the dimension of the vector space is in therange 2 : : :24, the database size is n = 10; 000 (exceptwhen otherwise stated) and we perform range queriesreturning 0.01% of the total database size, taking anaverage from 1,000 queries.About the parameters A and N of the opti-mization cost: Our experiments show that, givenan amount of work to spend, it is better to have a highvalue of A and a low value of N . This indicates that itis worth to make a good estimation of �D, while smallsamples of candidate elements su�ce to obtain goodsets of pivots. For the experiments in this section theseparameters have �xed values as follows: A = 10; 000and N = 20.5.1. Comparison between the selection tech-niquesFigure 3 shows the comparison between all the se-lection techniques, when varying the number of pivotsand keeping the dimension of the space �xed. This re-sults show that the incremental selection technique isthe one that obtains the best performance in practice,but there is no big di�erence with local optimum Aselection, although this di�erence increases with largerdimensions. Local optimum B and selection of N ran-dom groups show no great improvement over randomselection even in low dimensions.Since incremental and local optimum A selectiongive the same e�ciency, we choose the former tech-



nique as our method for choosing pivots. The reasonsare those stated in Section 4.4, and that incrementalselection is a much simpler technique.5.2. Comparison between random selectionand incremental selectionFigure 4 shows a comparison for internal and totalcomplexity (see Section 2) between random and incre-mental selection when using the optimum number ofpivots for each technique. The left plot shows a com-parison when varying the dimension of the space. Sincek� is equal to the internal complexity of the algorithm,it follows that not only the optimum number of pivotsis lower when using the incremental selection, but so isalso the total complexity of the algorithm. The rightplot shows a comparison in a vector space of dimension8 and varying the database size. Again we obtain thatthe optimum number of pivots and the total complexityof the algorithm is lower when using the incrementalselection.The pro�t when using k� pivots with incremental se-lection seems low in high dimensional spaces. However,consider that much fewer pivots (i.e. less memory) areneeded to obtain the same result than with random se-lection. Figure 5 shows an example of this in a vectorspace of dimension 16. k = 500 is the optimum numberof pivots using random selection, while incremental se-lection only needs 200 pivots to achieve the same totalcomplexity, hence saving 60% of the memory used inthe index.The results obtained show that the incremental se-lection technique e�ectively produces good sets of piv-ots.5.3. Properties of a good set of pivotsWhen studying the characteristics of the good setsof pivots, we found that good pivots have the followingproperties:� Good pivots are far away from each other, i.e.,the mean distance between pivots is higher thanthe mean distance between random elements of themetric space.� Good pivots are far away from the rest of the ele-ments of the metric space.The elements that satisfy these properties are calledoutliers. It is clear that pivots must be far away fromeach other, because two very close pivots give almostthe same information for discarding elements. This isin accordance with previous observations [9, 12, 4].
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Figure 6. Comparison between incremental and outliers selection techniques in random vector spaces of dimension16 (left) and dimension 24 (right).5.5. Real-world examplesNow we present three examples of the use of theincremental selection and the outliers selection, wherethe elements of the metric space are not uniformelydistributed.Figure 7 (left) shows the results of the experimentwhen the elements of the database are a set of 40,700images from NASA archives [1]. Those images weretransformed into 20-dimensional vectors, and the 10%of the database was de�ned as the query set. We useda tolerance range which returns on average 0.01% ofthe elements of the database per query. The �gureshows that for more than 25 pivots the outliers selec-tion technique has worse performance that the randomselection, while incremental selections always performsbetter. This result is in contrast with those obtainedon uniformly distributed vector spaces.Figure 7 (right) shows the results of the experimentwhen the elements of the database are points in a 30-dimensional vector space, where the elements are notuniformly distributed but have a Gaussian distribution,that is, the elements form clusters. The result showsthat both incremental and outliers selection improvethe performance of the algorithm in comparison withthe random selection, but incremental selection per-forms better for few pivots.Figure 8 shows the results of the experiment overa string space, that is, the elements of the databasewere strings taken from a Spanish dictionary of about80,000 terms, and a 10% of the database was used asthe query set. The distance function used was the editdistance (the minimum number of character insertions,

deletions and substitutions to make two strings equal),and the tolerance range was r = 2, which retrieves anaverage of 0.02% of the database size per query. Inthis case the incremental selection improves the per-formance of the algorithm with respect to the randomselection, while the outliers selection obtained worseperformance than with random selection.6. ConclusionsWe have de�ned an e�ciency criterion to comparetwo sets of pivots, and have shown experimentally thatthis criterion consistently selects good sets of pivotsin a variety of synthetic and real-world metric spaces,reducing the total complexity of pivot-based proxim-ity searching when answering range queries. We pre-sented three di�erent pivot selection techniques, whichuse the e�ciency criterion de�ned, and showed that theso-called incremental selection technique is the best se-lection method in practice. We have found that goodpivots have the property of being outliers, but outliersare not necesarily good pivots. It is interesting to notethat outliers sets have good performance in uniformlydistributed vector spaces, but have bad performance ingeneral metric spaces, even worse than random selec-tion in some cases. This result leads to questioning if itis valid to test pivot selection techniques in uniformlydistributed vector spaces.Future work involves testing some new heuristics forpivots selection (e.g. select pivots from a set of outlierspreviously chosen from the database), and testing al-ternative e�ciency estimators (e.g. select pivots thatmaximize the minimum D distance of the histogram),
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Figure 7. Experiments with NASA images database (left) and a vectorial space with Gaussian distribution (right).
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