
An Efficient Implementation
of a Flexible XPath Extension ∗

Nieves R. Brisaboa
Fac. de Informática,

Univ. da Coruña,
A Coruña, Spain.

brisaboa@udc.es

Ana Cerdeira-Pena
Fac. de Informática,

Univ. da Coruña,
A Coruña, Spain.

acerdeira@udc.es

Gonzalo Navarro
Dept. Computer Science,

Univ. of Chile,
Santiago, Chile.

gnavarro@dcc.uchile.cl

Gabriella Pasi
DISCO, Univ. degli Studi

di Milano Bicocca,
Milano, Italy.

pasi@disco.unimib.it

ABSTRACT
In this paper we present an efficient implementation of dif-
ferent flexible queries (that constitute an extension of the
XPath query language) to be executed on XML documents
represented by using a recent structure called XML Wavelet
Tree (XWT) [3]. A XWT represents the XML document
compressed by using only about 35% of its original size,
but it also provides some implicit self-indexing features that
help to obtain not only efficient implementations of standard
XPath queries, but also of extended ones. This is shown
based on the implementation of the flexible structure based
constraints, below and near [7].

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data Com-
paction and Compression; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—search
process

General Terms
Algorithms

Keywords
Querying XML documents, XML documents representation,
XML documents compression, XML documents indexing.

1. INTRODUCTION
XML (Extensible Markup Language) is a World Wide

Web Consortium (W3C) standard markup language that
was originally defined as a simplified subset of the Stan-
dard Generalized Markup Language (SGML) for use on the
World Wide Web. Since its first introduction in 1998, the

∗Funded in part by MEC (PGE and FEDER) grant
TIN2009-14560-C03-02, for the Spanish group and the
fourth author; by MICINN ref. AP2007-02484 (FPU Pro-
gram) and Xunta de Galicia ref. IN809 A 2009/71 (INCITE
Program) for the second author; and by Fondecyt grant 1-
080019 (Chile), for the third author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RIAO ’10, 2010, Paris, France
Copyright CID .

language and its data model have soon proved their suitabil-
ity to be the basis for the data interchange on the Internet.
Today, XML is widely employed as a basic data model for
semi-structured information, and is now the basic standard
for representing semi-structured documents in Information
Retrieval. It is widely recognized that in order to exploit the
expressive power of XML, any retrieval system storing XML
documents should allow constraint formulation on both doc-
ument content and structure [2]. Current XML query lan-
guages like XPath and XQuery [2], however, assume that
the user is fully aware of the target document structure,
and allow only the formulation of exact queries [11]: either
the desired XML information is retrieved exactly as it is in
query formulation or the query result is empty. This as-
sumption is debatable since most XML documents have no
pre-set structure; even worse, it requires the user to write
a different query for each variation of the document struc-
ture itself. In other words, current XML query languages do
not support any diversity in either data structure or content
within a document base. In order to tackle this problem,
both Information Retrieval and Database communities have
proposed several approaches. In Information Retrieval, the
defined proposals are classified as content-only search (CO)
and content and structure search (CAS) [1]. Both proposals
aim at introducing some degree of flexibility in the retrieval
of information stored in XML documents by either focusing
on keyword-based queries (as used by unstructured Infor-
mation Retrieval) or by taking into account the structure of
the information without being so strict as traditional XML
querying.

In [7, 9, 10] an extension of the XPath query language
has been proposed, aimed at allowing the specification of
flexible constraints on both textual content (in the IR style)
and document structure. This way the user can decide the
extent and the type of flexibility in identifying the relevant
information items. In the above mentioned papers the ad-
dressed research problems are the following: i) definition of
flexible constraints on the content of documents, ii) defini-
tion of flexible constraints on the structure of documents, in
order to find close matches to structural query conditions;
iii) focused search aimed at retrieving only the most relevant
document fragments. One of the most important outcomes
of this research is that the list of results produced by a flex-
ible query evaluation is a ranked list of fragments, while the
XPath query evaluation produces a set of results. In this
paper we just focus on two structure based constraints first
proposed in [7], namely below and near. The aim of this pa-
per is to implement and to evaluate these constraints on a

compressed self-indexed representation of XML documents,
the XML Wavelet Tree (XWT) [3].

Related to research in text compression, in [12, 8, 5, 6]
some word-based byte-oriented semi-static statistical com-
pression methods for text documents were presented and
evaluated. All of them have the interesting property of being
very useful for text retrieval purposes because the search of
words and phrases can be done directly over the compressed
text, without decompressing it, up to 8 times faster than
over the uncompressed version [12]. Among those compres-
sors the one called (s,c)-DC was used in [3] to encode XML
documents using the structure we called XML Wavelet Tree.

XWT is a compressed and self-indexed representation of a
XML document where the different bytes of the codewords
used to represent words and tags of the XML document are
placed in different nodes of a Wavelet Tree [4]. XWT is,
therefore, a rearrangement of the codeword bytes similar to
the one presented in [4]. In [3], a description of the XWT
and a previous approach to its use were presented. As it was
mentioned before, here we show how some useful queries that
extend the XPath constraints can be efficiently evaluated by
using the XWT.

2. STATE OF THE ART: XML WAVELET
TREE (XWT)

In [4] we presented a rearrangement of the codeword bytes
of a text compressed with any word-based byte-oriented
semi-static statistical prefix-free compression method. This
reorganization, called Wavelet Tree, consists basically on
placing the different bytes of each codeword at different
nodes of a tree instead of sequentially concatenating them,
as in a typical compressed text. The XWT follows the same
idea, but it encodes the text with a compressor called (s,c)-
DC [6]. This compressor encodes each word with a sequence
of bytes, in a way that allows to select a specific range of
bytes to be used as the last bytes of the codewords. Those
last bytes, called stoppers, mark the end of each codeword.
XWT represents the text by using about 35% of its origi-
nal size, and to build the XWT takes the same time as to
compress the document, that is, the rearrangement of the
codewords bytes is made with a very slight cost over the
compression time.

To construct the XWT representation we create two dif-
ferent vocabularies, one for the tags and the other for the
rest of the words in the XML document, and we flexibly
select how many stoppers we want to use to identify the
last byte of a tag, and how many stoppers we want to use
to identify the last byte of non-tag words. This gives us
the possibility of obtaining the best compression of each vo-
cabulary. (s,c)-DC also allows to use specific first bytes to
identify tag codewords. Therefore, just looking at the first
byte of a codeword we can know if it is encoding a tag or a
non-tag word of the text. In this way, as we will see later,
specific nodes of the XWT are devoted to represent the tags,
that is, the structure of the XML document. More details
can be found in [3]; in this paper, by using comprehensive
but easy examples, we will explain how a XWT is built and
used.

To build a XWT we need to perform two steps or phases.
The first step consists of parsing the input XML document
to create the two vocabularies, one for start- and end-tags
and the other for the rest of the words. In the left side of
Figure 1 it is possible to see that all tag codewords start by

the byte b4, that the stoppers used for non-tag codewords
are bytes b1, b2 and b3 and that b1, b2, b3, b4 and b5 are the
stoppers for the tag codewords. The number of stoppers of
each vocabulary depends on both its size and its frequency
distribution of words, and it is automatically selected by the
(s,c)-DC compressor to improve the compression [5].

The parsing process distinguishes different kind of words
depending on their role 1. For example, the word love ap-
pears in the text of the example, as an attribute value but
also as a normal text word. Therefore it has two different
entries in the vocabulary leading to two different codewords.
This increases the vocabulary size but gives us flexibility and
efficiency when querying. It is also in the parsing phase that
some normalization operations take place.

Once codewords are assigned to words by using the (s,c)-
DC encoding method, we do a second pass over the text by
replacing each word by its codeword, and by storing these
codeword bytes along the different nodes of the XWT. The
root of the XWT is formed by a vector with all the first bytes
of the codewords, following the same order as the words they
encode in the original text. Each node X in the second level
contains all the second bytes of the codewords whose first
byte is x, following again the same order of the text. That
is, the second byte corresponding to the jth occurrence of
byte x in the root, is placed at position j in node X, and
so on. Therefore, the resulting XWT has as many levels as
bytes have the longest codewords.

In Figure 1 we can see that the fifth byte in the root is b5

because the fifth word of the text, Shakespeare, is encoded
as b5b4b3. The second byte of its codeword, b4, appears in
the second position of node B5 because Shakespeare is the
second word in the text encoded with a codeword starting
by b5. Its third byte is at the first position of node B5B4
because its second byte is the first b4 in node B5, that is,
Shakespeare is the first word in the text encoded with a
codeword starting by b5b4.

2.1 Using XWT
The two basic procedures when using the XWT are to

search for a word in the text, and to decode the word placed
at a certain position. Both are easily solved using select
and rank operations, respectively. That is, original code-
words can be rebuilt from the bytes spread along the dif-
ferent XWT nodes by using rank operations and words can
be efficiently found in the text, taking advantage of the self-
indexing properties of XWT, by using select operations. Let
B be a sequence of bytes, b1, b2. . . bn. Then, rank and select
are defined as:

• rankb(B,p) = i if there are i bytes b in vector B until
the position p.

• selectb(B,j) = p if the jth occurrence of byte b in vector
B is at position p.

The performance of the XWT depends on the implementa-
tion of the rank and select operations, because they are the
base for any procedure over this structure 2.
1Division implicitly given by the different kind of XPath
queries[2].
2A detailed description of their implementation can be found
in [4]. It is based on a structure of partial counters to avoid
counting the number of occurrences of a searched byte from
the beginning of a WT node. There is a tradeoff between
space and time. If we use more partial counters, we need
more space, but rank and select operations will be more
efficient.

Non-tag vocabulary (3,3)-DC Tags vocabulary (5,1)-DC

Text:

<journal>

<filmtitle=”Shakespeare in love”>

<critic>

<name>JohnOne</name>

<name>One</name>

</critic>

<opinion>

Oneof themost fascinating

lovehistories ever written

</opinion>

</film>

</journal>

SYMBOL

b1

b2

b3

b5b1

b5b2

b5b3

b6b1

b6b2

b6b3

b5b4b1

b5b4b2

b5b4b3

b5b5b1

b5b5b2

b5b5b3

b5b6b1

CODEFREQUENCY

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SYMBOL FREQUENCY

2

2

1

1

1

1

1

1

1

1

b4 b1

b4 b2

b4 b3

b4 b4

b4 b5

b4 b6b1

b4 b6b2

b4 b6b3

b4 b6b4

b4 b6b5

CODE

One

“

>

lovetext

of

title=

most

loveatt

in

John

histories

Shakespeare

ever

fascinating

written

the

<name

</name>

<opinion

</opinion>

<critic

</critic>

<film

</film>

<journal

</journal>

B6

b3 b2 b1

lo
v

e
a

tt

in m
o

s
t

B5

ti
tl

e
=

S
h

a
k

e
s

p
e

a
re

w
ri

tt
e

n

...

b3 b4 … b5

B4

b6 b6 b5 b1b2 b1 b2 b6 b3 b4b6b6

<
jo

u
rn

a
l

<
fi

lm

ti
tl

e
=

“ S
h

a
k

e
s

p
e

a
re

in lo
v

e
a

tt

<
o

p
in

io
n

b4 b4b5b2 b5 b6b6 … b4 … b5 b6 b5 b5 … b4 b4b4

fa
s

c
in

a
ti

n
g

lo
v

e
te

x
t

<
/f

il
m

>

<
/j

o
u

rn
a

l>

<
/o

p
in

io
n

>

...th
e

m
o

s
t

CompleteXMLdocument structure

B5B4 B5B5 B5B6

fa
s

c
in

a
ti

n
g

e
v

e
r

w
ri

tt
e

n

b2 b1b3b3b1b2

S
h

a
k

e
s

p
e

a
re

J
o

h
n

h
is

to
ri

e
s

th
e

b1

B4B6

b4 b2 b1 b3 b5

<
/o

p
in

io
n

>

<
jo

u
rn

a
l

<
c

ri
ti

c

<
fi

lm

<
n

a
m

e

<
/n

a
m

e
>

<
n

a
m

e

<
/n

a
m

e
>

<
/c

ri
ti

c
>

<
o

p
in

io
n

<
/f

il
m

>

<
/j

o
u

rn
a

l>

<
/j

o
u

rn
a

l>

<
jo

u
rn

a
l

<
fi

lm

<
/c

ri
ti

c
>

<
/f

il
m

>

Figure 1: Example of XWT.

2.1.1 Searching in the XWT
To locate a word (typical XPath queries as //book, //@ti-

tle, etc.) we search its last byte in the corresponding XWT
node, and perform consecutive select operations up to the
root. For example, to locate the first occurrence of Shake-
speare in Figure 1, we begin looking at node B5B4, since
the codeword of Shakespeare is b5b4b3. There, we search
the byte b3 computing selectb3(B5B4, 1) = 1. In this way,
we obtain that the position of node B5B4 where the first
occurrence of byte b3 (the last byte of Shakespeare) is rep-
resented, is 1. We know that all the words whose last bytes
are stored in node B5B4, are represented in node B5 with a
byte b4, and that they are in the same text order. Therefore,
the value 1 we obtained with the select operation indicates
that the first byte b4 in node B5 corresponds to the first
occurrence of Shakespeare in the text. Again, we compute
selectb4(B5, 1) = 2, that newly indicates that our codeword
is the second one starting by b5 in the root node. Finally,
by calculating selectb5(root, 2) = 5, we can answer that the
first occurrence of Shakespeare is at 5th position in the text.

If we want to locate all the occurrences of a word, this
process is repeated for each of them. Since the traversed
XWT nodes are the same for each occurrence, and these will
be processed consecutively, both the select operations and
consequently the whole process, can be sped up by using
pointers to the already found positions in the XWT nodes.

To locate a phrase pattern we start by locating the first
occurrence of the least frequent word of the pattern in the
root node. Then we check if all the first bytes of the code-
words of each word of the phrase pattern match the previous
and next bytes of the root node. If those matches happen,
we continue by validating the rest of the bytes of the cor-
responding codewords. But if it is not the case, we avoid
going down into the XWT, and we simply locate the next
occurrence of the least frequent word to be processed in a
same way.

If we are interested in locating element nodes containing
a certain word to solve XPath predicates over the text, like
//title [contains(.,Egypt)], we use a procedure that allows
to save processing time by skipping some text. Here this
procedure will not be detailed 3, as this global strategy will

3A complete explanation of the specific implementation for

be later explained, but applied to a more complex query (see
Section 4.2).

As shown in [3] those operations are performed very ef-
ficiently requiring just some milliseconds as average, which
means that any search can be done a lot much faster than
over the plain XML text or even over the compressed text.
In [4] we also showed that the strategy of placing codewords
bytes in nodes of a wavelet tree compete with the classical
inverted index when little space is available4. Specifically,
by spending about 40% of the size of the original text to
represent both the compressed text and the inverted index,
and by spending the same space in the wavelet tree, the last
is faster than the inverted index in any task.

2.1.2 Decompression
To decode a word we use rank operations. For example,

to know which is the second word in the source text of Fig-
ure 1, we start by reading root[2] = b4. According to the
encoding scheme, we know that the codeword is not com-
plete, so we will have to read a second byte in the second
level of the XWT, more precisely, in the node B4. To find
out which position of that node we have to read, we use
rankb4(root, 2) = 2 that means that there are 2 bytes b4 in
the root until position 2. Therefore, B4[2] = b6, gives us
the second byte of the codeword. Again b6 is not a stopper,
so we need to continue the procedure. In the child node
B4B6, that corresponds to the two first bytes of the code-
word we are decoding, we have to read the byte at position
rankb6(B4, 2) = 2. Finally, we obtain B4B6[2] = b2. But b2

is a stopper and, therefore, it marks the end of the searched
codeword, that have resulted to be b4b6b2, corresponding
to the tag 〈film, which is precisely the second word in the
source text, as expected.

If we want to decompress the whole text we can follow a
more efficient procedure. Given that the sequences of bytes
of all the XWT nodes follow the original order of the words
in the source text, full decompression can be efficiently im-
plemented by using pointers to the next positions to be read
in each node. That is, when going to a child node to read
the following byte of an uncomplete codeword, we do not
need to compute any rank operation to find out which byte

this case can be consulted in [3].
4That is, when pointed blocks of text are not to small.

of this child node sequence we have to read. It always will
be the next one to process in that child node.

In [4] we showed that decompressing the whole text takes
approximately the same time when the text is settled in a
wavelet tree shape than when it is not rearranged.

3. FLEXIBLE EXTENSIONS OF XPATH
The W3C has defined the language XPath for selecting

XML node sets via tree traversal expressions. XPath selec-
tion is Boolean in nature: it partitions XML nodes into those
which fully satisfy the selection condition, and those which
do not. However, Boolean conditions are, in some scenarios,
not suitable for effectively querying XML documents. To
justify this claim we note that even when XML schemas do
exist, they may be not available to users. Moreover doc-
ument trees with the same schema may be very different
(both in used tags and nesting), and hence the schema will
allow for diverse instantiations, making it difficult to predict
a particular document structure (from the schema). Finally,
the same XML tree can be sometimes described using dif-
ferent schemas. As a consequence, users often end up in
defining blind queries, i.e. queries written without a precise
knowledge of the schema. In these cases the availability of
a flexible query language allowing for approximate queries
can be of great help. In [7, 9, 10] a new approach aimed at
introducing flexibility in XPath has been presented, based
on the definition of some flexible constraints on both XML
document structure and content; the flexible constraints can
be specified as extensions of the XPath syntax.

In this paper we address the problem of implementing
two flexible structure based constraints, namely below and
near, on a compressed self-indexed data structure able to
both represent and enquire XML documents, the XWT, ex-
plained in Section 2. In this section both the semantics and
the evaluation function of the two flexible constraints are
summarized.

3.1 Flexible structure based constraints
The constraint below, inserted as flexible axis of a path ex-

pression, is defined to the aim of selecting elements nodes,
attributes or text from all nodes that are direct descendants
of the current element node. For instance, the following
query: //books BELOW //author retrieves all document
fragments that contain the element node author which has
the tag books in its path from the root. In Figure 3 a), 3 b)
and 3 c), some examples of possible fragments retrieved in
response to the previous query are shown. The constraint
near, inserted as a flexible axis of a path expression, is de-
fined to the aim of selecting elements, attributes or text from
all element nodes that are either descendants, ancestors or
that surround the current node.

For example, the following query: //books NEAR //au-
thor retrieves all document fragments that contain the el-
ement node author which has the node books in its sur-
roundings but not necessarily in the same path. In Figure
3 d) an example of fragment that would be recovered in
response to the previous query is shown. We can say that
near represents a generalization of below, since the similarity
evaluation is performed within any axis.

In order to introduce the function that defines the flex-
ible matching between the flexible query path and a doc-
ument path, we first informally analyze the constraint im-
posed by the below operator, and by the near operator sub-

sequently. A query such as //A BELOW//B identifies
all paths in which the node B is direct descendent of the
node A. This means that the following paths are compatible
with the above query: i) A/B, ii) A/∗/B, iii) A/∗/∗/B,
iv) A/∗/∗/∗/B, etc. where ∗ represents a node in the path
from A to B. In theory, infinite paths are identified by the
flexible query //A BELOW//B ; in practice, a maximum
path length is defined, which is dependent on the considered
XML document, and can be set to the maximum length that
a path can assume in that document.

a) b) c)

author

books

author

books

author

books

x x

y author

books

x

y

d)

Figure 3: Sample fragments retrieved by BELOW
(a), b), c)) and NEAR (d)) queries.

From a semantic point of view, the path that matches
at best the flexible query (i.e. the ideal fragment) is the
one in which B is child of A, that is, A/B. The higher the
distance between A and B, the lower the relevance of the
path to the query. As a consequence of this assumption, the
function evaluating the match between the flexible query
path and a document path should be inversely proportional
to the distance between A and B. We propose to define such
a function as: Match(qp, dp) = 1/d(A, B), where qp is the
flexible query path, dp is the considered document path,
and d(A, B) is the distance between nodes A and B in the
document path dp. We define d(A, B) as the number of arcs
between nodes A and B. The value Match(qp, dp) is also
called the Retrieval Status Value (RSV) of a fragment with
respect to the query.

Here below an example of paths retrieved in response
to the query //location BELOW//author is presented to-
gether with their RSVs. The query asks for an author el-
ement node which contains the location element node as
ancestor in its path. The example supposes that the maxi-
mum path length in the considered document is equal to 3:

i) location/author, RSV=1

ii) location/∗/author, RSV=1/2=0.5
iii) location/∗/∗/author, RSV=1/3=0.33

In the case of the near constraint evaluation, the paths
that match at best the flexible query are the following ones:
A/B and B/A. Also in this case the higher the distance
between A and B, the lower the relevance of the consid-
ered path to the query, by still implying the definition of a
matching function like: Match(qp, dp) = 1/d(A, B), where
qp is the flexible query path, dp is the considered document
path, and d(A, B) is the distance between nodes A and B
in the document path dp (defined again as the number of
arcs between nodes A and B). Like in the case of the be-
low constraint, the value Match(qp, dp) is also known as the
Retrieval Status Value of the fragment with respect to the
query. Given the nature of near constraint, that includes
a broader selection context, in practice we consider a maxi-
mum path length selected by the user. For instance, //loca-
tion NEAR3 //author will retrieve all document fragments
that contain the element node author which has the node
location in its surroundings at a distance not higher than 3.

1

QUERY: //sectionBELOW2 //title

B6

...

B5

...

B4

... b1 b3 b4 b1 b3 b4 b2 b1 b3 b4 b2 b2 ...

<
b

o
o

k

<
ti

tl
e

X
P

a
th

e
x

te
n

s
io

n
s

<
/t

it
le

>

<
s

e
c

ti
o

n

... b4 b4 b5 b2 b4 … b4 b4 b6 b5 b4 b4 b4 b6 b4 b4 b4 b4 b5 b4 b4 b4 … b4 ...

<
/b

o
o

k
>

... ...

F
le

x
ib

le

q
u

e
ri

e
s

<
/t

it
le

>

<
s

e
c

ti
o

n

<
/t

it
le

>

<
ti

tl
e

<
s

e
c

ti
o

n

<
ti

tl
e

<
/t

it
le

>

<
/s

e
c

ti
o

n
>

<
s

e
c

ti
o

n

<
ti

tl
e

<
/s

e
c

ti
o

n
>

<
/s

e
c

ti
o

n
>

<
ti

tl
e

<
/t

it
le

>

<
s

e
c

ti
o

n

B
E

L
O

W

<
ti

tl
e

<
/t

it
le

>

<
/s

e
c

ti
o

n
>

<
/s

e
c

ti
o

n
>

Distances: 1 2 2

1

b4b1

b4b2

b4b3

b4b4

SYMBOL CODE

<section

</section>

<title>

</title>

<
s

e
c

ti
o

n

N
E

A
R

<
ti

tl
e

<
/t

it
le

>

<
/s

e
c

ti
o

n
>

......

X
P

a
th

q
u

e
ri

e
s

N
E

A
R

F
le

x
ib

le

B
E

L
O

W

Distance

comparison

Figure 2: Example of BELOW constraint.

4. IMPLEMENTATION OF FLEXIBLE
XPATH QUERIES

Since the XWT structure is an exact representation of
the XML document, any operation over the original text
can be done over such representation. Therefore, all XPath
queries, and any extension of them can be answered by us-
ing the XWT but taking advantage of the implicit indexing
properties provided by the XWT structure itself.

4.1 Answering flexible structure based
queries

In XWT we use specific byte(s) to mark the beginning of
a tag codeword. In Figure 1 the byte b4 (bytes shaded in the
CODE column of the tags vocabulary) is the first byte of tag
codewords. As a result, all tags are in the same branch(es)
of the XWT (branch B4 in the example), where they are
placed following the document order. Therefore we can solve
structural queries by using only those nodes of the XWT 5.

4.1.1 BELOW
Although the below operator does not impose any con-

straint on the maximum distance between the involved
nodes, and therefore, the only limit is the maximum length
that a path can assume in the specific XML document, our
implementation sets a limit (because we need to call a lim-
ited below function in the implementation of the near op-
erator). As a consequence, in what follows we explain our
implementation by using always a parameter of maximum
distance allowed between the nodes. It is clear that when the
user performs a below query, we set the maximum distance
parameter to the maximum depth of the XML document.

The below constraint can be solved in two different ways,
depending on the frequency of the element nodes that are
involved into the query. For example, let us suppose to have
the following query: //section BELOW2 //title. That is,
we are interested in retrieving all the title element nodes
that are descendants of a section element node, and whose
distance is up to 2. In this way, the first step is to compute
the frequency of each element node, with a simple count()

5We also have a bit structure to speed up the navigation
through the tags of the document. Given a position of an
element node, that very well known structure [13] , can di-
rectly report the position of its parent and its different chil-
dren in constant time. We do not explain that structure
here for space constraints and because it is not necessary to
understand the procedure, but only its efficiency.

operation [3]. Once this information has been obtained, we
begin locating the first occurrence of the less frequent el-
ement node. In the case of being the child element node
(in this example, title), we simply check its ancestors until
reaching the maximum path distance (in this case, 2) or until
an occurrence of the parent element node (in the example,
section) is found. In the opposite case, we locate the first
occurrence of section, and then we look for an occurrence
of title by checking all its descendants that are not farther
than a 2 distance 6. Then, the corresponding procedure is
repeated with the next occurrence of the less frequent ele-
ment node.

Remember that the below constraint evaluation is based
on computing the distance between the nodes involved in
the query to give to the retrieved element nodes a penalty
proportional to it. So, if self nesting is allowed, we have
to take into account it in the global procedure, when the
parent element nodes are the less frequent ones. Each time
an occurrence of a child node we are looking for is found,
we have to check if it has already been reported by another
occurrence of the parent element node. In this case, a com-
parison between the previous related distance and the new
one is done, to chose the best one. In Figure 2, an example
of this situation is shown. There we can see that the second
and third occurrence of title are first retrieved by the first oc-
currence of section at distance 2. However, these distances
are then updated to the better value 1, when the second and
third occurrence of section are respectively checked.

Although here we have just explained the algorithm in the
case where the retrieved nodes are the specified on the right
side of the query, a similar procedure can be applied when
the retrieved nodes are the ones specified on the left side
(e.g. //section[BELOW2 //title]).

4.1.2 NEAR
This constraint not only involves descendants and ances-

tors, as below does, but also another kind of relationship.
Let us consider the following example: //award NEAR3

//author. In this case, we want to find all the author ele-
ment nodes, that are near an award element node. This one
can be not only in the same path from the root as a descen-
dant or an ancestor, but also it can appears in its document
surroundings. The only restriction is that the distance be-
tween both of them can not be greater than 3.

6In this situation, efficiency can be influenced by the number
of descendants.

As it has been reported in Section 3.1, the near constraint
is a generalization of below. Therefore, to evaluate near
we proceed in the following way. We begin by doing two
below operations, //award BELOW3 //author and //au-
thor BELOW3 //award, respectively (see Figure 4 a)). By
doing this, we cover all the descendant and ancestor situa-
tions that could happen between award and author in the
XML document. After that, the base algorithm consists of
locating each occurrence of the less frequent element node,
and checking the descendants of consecutive ancestors, un-
til reaching the maximum distance. To better understand,
let us suppose that, in our example, award is the less fre-
quent element node. Once located an occurrence of award,
we start locating its first ancestor and then we look for an
occurrence of author between the descending element nodes
up to the 2nd level. That is because the first ancestor is
at distance 1 and the maximum allowed distance is 3 (see
Figure 4 b)). Then, the same procedure is repeated, but
taking the second ancestor, and checking the descendants
up to the 1st level (since the second ancestor is at distance
2 and the maximum allowed distance is 3. See Figure 4 c)).
This procedure will be repeated until reaching the ancestor’s
order that matches the maximum query distance minus one,
reducing the maximum level of the descendants to be visited
at each step.

QUERY: //awardNEAR3 //author award

a) b) c)

1

2

3

4

33

2

11

2 2

2
2

4

33

4

3

44

checkednodes

1
st

ancestor

2
nd

ancestor

1, 2, 3 ... distances from

Figure 4: Example of NEAR constraint: a) BELOW
operations, b) Descendants of 1st ancestor, c) De-
scendants of 2nd ancestor

The slight differences of performance of this global proce-
dure, depend on which element node of the two ones involved
in the query is the less frequent. In case it is the one that
appears in the left side of the query, each time an occurrence
is checked, we can save processing time by avoiding to visit
ancestors already visited by another previous occurrence at
the same distance. In case the less frequent is the one on
the right side, we stop the procedure as soon as an occur-
rence of the left side element node is found, and if it is not
possible to find another one at a better distance. In this last
situation, it is also possible to avoid visiting an ancestor and
its corresponding descendants, but only when it was visited
by a previous occurrence, and any left side node was found.

Again, as it has been mentioned for the below con-
straint, we always keep the best distance found for each
occurrence of the retrieved element nodes. Also, a sim-
ilar procedure is performed in case the left side element
nodes of the query are the ones we want to retrieve (e.g.
//award[NEAR3//author]).

4.2 Answering flexible structure based
queries with content based constraints

Queries involving only flexible structure based constraints
are answered using the procedures explained in Section 4.1.
To evaluate queries with constraints on both the structure
and the content, we can use a more sophisticated strategy.

In this case, we are interested in solving queries like for
example: //city [contains(.,Paris)] BELOW2 //museum
or //description [contains(., economy)] NEAR3 //ref. The
first query looks for all museum element nodes that are
below a city at a distance not greater than 2 but also con-
taining the word Paris (e.g. 〈city〉 . . . Paris . . . 〈museum〉
. . . 〈/museum〉 . . . 〈/city〉). In the last example, we want
to retrieve all ref element nodes that are near a description
element node not farther than 3 arcs, and which must con-
tain the word economy (e.g. 〈book〉 . . . 〈description〉 . . .
〈summary〉 . . . the national economy in . . . 〈/summary〉
. . . 〈/description〉 . . . 〈ref〉 . . . 〈/ref〉 . . . 〈/book〉).

We will use the first example (that is, //city
[contains(.,Paris)] BELOW2 //museum) to explain the
procedure to answer this kind of queries (see Figure 5).
First, we begin by locating the first occurrence of Paris in
the root node. Then, by counting the number of occurrences
of the start-tag 〈city placed before that position and that of
the corresponding end-tag, 〈/city〉, we know how many city
element nodes contain that occurrence of the word. How-
ever, we are only interested in those occurrences of city that
also satisfy the city BELOW2 museum constraint, so this
operation is performed with each located occurrence of city.
In the example, we can easily see that the first occurrence
of Paris is surrounded by the first occurrence of city. Nev-
ertheless this one does not fulfill the below constraint, and
therefore it is not considered.

Now, instead of performing the same process with the next
occurrence of the word (in the example, the 2nd occurrence
of Paris), we can skip some text looking for the next oc-
currence of 〈city placed after the position of the just located
occurrence of Paris, but which also must satisfy the con-
straint city BELOW2 museum. As it is shown in Figure 5,
the third occurrence of 〈city is the one we are looking for,
not the second one, because it does not fulfill the structural
constraint. Then we look for an occurrence of Paris inside
it. Given that there is one occurrence (the 5th occurrence
of Paris), the museum element nodes related to that oc-
currence of city (the ones marked in bold face in Figure 5)
are reported as results to be ranked. Notice that by doing
this, we skip the occurrences of Paris that are before the
third occurrence of 〈city, and which are not interesting for
the search (see the occurrences of Paris inside the striped
rectangle in Figure 5). After that, the whole process is re-
peated by taking the first occurrence of Paris placed after
the position of the just located third occurrence of 〈city (in
case self nesting is allowed) or after the position of its cor-
responding end-tag (if self nesting is not allowed). Again,
this allows skipping those occurrences of the city element
node that not contain any occurrence of Paris, thus avoid-
ing to process them (see the occurrences of city inside the
striped rectangle in Figure 5).

Note that this same procedure can be used not only with
the flexible structural constraints below and near presented
in this paper, but also with any other structural constraint,
and when the content based constraint is applied over a
phrase or even a certain attribute value, as well.

...

B5

...

B4

b1b2 b1 ... b2b1b3…b4b3 …b4b2 b1…b2b1…b2b1 b3 …b4 b2

<
c

it
y

P
a

ri
s

<
/c

it
y

>

b4 b5 b4 …b5 … b5…b5 b4 …b4 b4 b5 b4… b4b4 … b4b4b4 ... b4b4 … b4b4 b5 b4 …b4b4

... ...

//city [contains(., Paris)]

BELOW2 //museum

b4b1

b4b2

b4b3

b4b4

b5b4b2

SYMBOL CODE

<city

</city>

<museum>

</museum>

Paris

<
m

u
s

e
u

m

<
/m

u
s

e
u

m
>

...

... b2 b2 b2 b2 … b2 b2

B5B4

...

P
a

ri
s

...

P
a

ri
s

...

P
a

ri
s

<
c

it
y

...

<
/c

it
y

>

<
c

it
y

P
a

ri
s

<
m

u
s

e
u

m

...

...

...

<
/m

u
s

e
u

m
>

<
/c

it
y

>

<
c

it
y

...

<
/c

it
y

>

<
c

it
y

...

<
/c

it
y

>

<
m

u
s

e
u

m

<
c

it
y

P
a

ri
s

<
/m

u
s

e
u

m
>

<
/c

it
y

>

QUERY:

<
c

it
y

<
/c

it
y

>

<
c

it
y

<
/c

it
y

>

...

<
c

it
y

<
m

u
s

e
u

m

...

<
/m

u
s

e
u

m
>

<
m

u
s

e
u

m

...

<
/m

u
s

e
u

m
>

<
/c

it
y

>

<
c

it
y

...

<
/c

it
y

>

<
c

it
y

...

<
/c

it
y

>

<
c

it
y

<
m

u
s

e
u

m

...

<
/m

u
s

e
u

m
>

<
/c

it
y

>

P
a

ri
s

P
a

ri
s

P
a

ri
s

P
a

ri
s

P
a

ri
s

P
a

ri
s

Figure 5: Example of a flexible structure based query with a content based constraint.

5. EXPERIMENTAL RESULTS
We have implemented the flexible constraints detailed in

Section 4, and run some experiments aimed to evaluate the
efficiency of the XWT representation in answering flexible
queries.

An isolated Intel R©Pentium R©Core 2 Duo 2.13 GHz system,
with 4 GB dual-channel DDR-667Mhz RAM was used in
our tests. It ran Ubuntu 8.04 GNU/Linux (kernel version
2.6.24.23). The compiler used was gcc version 4.2.4 and -

O9 compiler optimizations were set. Time results measure
cpu user time in seconds. We used three different XML
documents to run our experiments:

• nasa: file from the NASA XML Project
(http://xml.nasa.gov/).

• 0.5d and 1d: files generated with xmlgen, an XML
data generator developed inside the XMark Project
(http://monetdb.cwi.nl/xml/).

A general description of the XML documents used is
shown in Table 1. It presents, for each document, its size in
MBytes, its number of XML element nodes (EN)(x103), its
maximum depth level (MD), the number of different words
in tag (VT) and non-tag (VNT)(x103) vocabularies, and the
number of total words (x103), following that division (#T
and #NT), that compose the document. The last three
columns of Table 1 also show, respectively, the compression
ratios (in %) obtained by XWT (R), as well as the compres-
sion (CT) and decompression (DT) times (in seconds). No-
tice that XWT represents each XML file using only about
30%-35% of its original size. To run the experiments, we
have used a XWT implementation with a waste of 3% of ex-
tra space for the structures of partial counters used to speed
up rank and select operations.

Table 1: Documents and compression properties.

doc. size EN MD VT VNT #T #NT R CT DT

nasa 23,89 476 8 122 78 953 4,236 31.64 1.99 0.28

0.5d 55,32 832 12 148 85 1,665 9,468 32.18 4.28 0.66

1d 111,12 1,666 12 148 128 3,332 18,991 31.91 8.28 1.32

On the one hand, we evaluated the XWT performance in
answering flexible structure based queries containing the be-
low and near constraints (e.g. //section NEAR3 //book).
On the other hand, we also used sets of flexible struc-
ture based queries with a content based constraint (e.g.

//section [contains(.,Europe)] NEAR3 //book), like the
sample queries seen in Section 4. In both cases, we dis-
tinguished 2 groups of queries depending on the frequency
f (high or low) of the involved element nodes, according to
each document features. Indeed, we have also set a maxi-
mum distance parameter in all the experiments, as the exe-
cution time depends on it.

In the first scenario (see Table 2), 25 different pairs of
element nodes were randomly chosen from each frequency
group for the nasa and 0.5d XML documents. In this way,
we created two sets of 25 flexible queries (one for each doc-
ument), that were then evaluated by using the below and
near constraints, with maximum path distances of 2 and 3.
Notice that the same set of queries used for the evaluation of
the 0.5d XML document, was also used for the evaluation
of the 1d XML document, since both documents share the
same structure and tag vocabulary.

Table 2: Average execution times of flexible struc-
ture based queries.

nasa 0.5d 1d

BLW NEAR BLW NEAR BLW NEAR
(ms) (ms) (ms) (ms) (ms) (ms)

Dist.2 f low 7.30 18.33 37.02 228.84 74.34 504.81
f high 33.26 109.26 93.16 286.43 194.73 582.24

Dist.3 f low 7.73 25.93 37.81 577.41 75.14 1121.54
f high 33.46 137.73 97.64 429.96 200.52 1097.09

Table 2 summarizes the average times obtained to answer
those queries. The results show the good performance of the
XWT representation, but also some other singular features,
like the influence of the maximum path distance, that de-
serves a particular discussion. As expected, the greater the
maximum path distance the greater the time consumed to
answer the same group of queries, but note that this differ-
ence of time is lower in below queries than in near ones. That
is because, in below queries, each increment of the distance
implies to check the descendants of one more level down,
but only in case of element nodes that have enough nesting
level; or to check only the ancestor of one more level up, in
the best scenario (when the less frequent element nodes are
the ones on the right side of the query). However, when we
work with the near flexible constraint, to increase the dis-
tance means to visit the ancestors of one or more levels up
and then to check all its descendants until a certain level.
The upper the ancestor to be visited the higher the possibil-

ities to be closer to the root, and hence to have to check a
greater number of descendants. What is even more, this is
also the reason for finding a change of performance between
queries involving low frequent element nodes and queries in-
volving high frequent element nodes. As it can be seen, the
average times of the first ones is lower than the average times
of the second ones when using a distance of 2, since there is
a lower number of element nodes to be evaluated. However,
the opposite situation is also possible, when the distance is
increased (see values marked in bold face in Table 2). Since
the less frequent element nodes use to lie in the levels close to
the root in the XML document structure (unlike the most
frequent ones), and they usually have a higher number of
descendants; to increase the distance can imply to visit a
considerably higher number of descendants element nodes
consuming more processing time. While, in the case of the
most frequent element nodes (normally placed at the deep-
est levels of the XML document structure), this situation is
less probable.

Table 3: Average and standard deviation of the exe-
cution times of flexible structure based queries with
a content based constraint.

nasa 0.5d

Dist.3 BLW NEAR BLW NEAR
(ms) (ms) (ms) (ms)

Avg f low 2.81 4.21 202.13 3790.61
f high 21.79 472.84 49.32 2140.43

Std f low 4.10 7.83 503.16 4438.68
f high 20.09 1033.16 37.02 2088.35

To run the experiments in the second scenario, related to
the flexible queries mixing the structure based constraints,
below and near, with a content based constraint, we used
the same sets of pairs of element nodes that in the queries
of the previous scenario, and we also used words of frequency
between 50 and 100 randomly chosen from the non-tag vo-
cabularies. Table 3 shows the average times obtained to
answer the queries by using a maximum path distance of 3.
On the one hand, we can see the benefits of applying the
jumping strategy explained in Section 4.2, that saved pro-
cessing time, if we compare the underlined values in Table 3
with respect to the corresponding ones in Table 2. On the
other hand, and to properly valuate the data in which this
benefit is not appreciated, it is important to remark that the
benefits of that strategy may not be always profited. This
is the case of queries where the difference of frequency of
the involved element nodes is significant and the container
element node is the most frequent, and also when there are
a few number of structurally related element nodes through
the below or near constraints. These kind of queries can
have a strong influence over the average. As a consequence,
we have also computed the standard deviation, correspond-
ing to the different average times, that are shown in Table
3, as well. Notice that the values of this table where the
benefits of the jumping strategy are not easily appreciated,
correspond exactly to the values with the highest standard
deviation (see values marked in bold face in Table 3).

6. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how different flexible exten-

sions of the XPath query language can be efficiently imple-
mented over the compressed and self-indexed structure we
called XWT. This structure represents the XML document

compressed in about 35% of its original size giving, at the
same time, some interesting implicit self-indexing properties.

In XWT, the structure of the documents, provided by the
XML element nodes, is represented in a very compact way in
specific nodes of the XWT. The XWT also uses a bit struc-
ture to speed up the navigation through the element nodes
providing, in a efficient way, the parent of any element node
or even the i-th child. In this way, pure structural queries
as well as queries involving constraints on both document
structure and textual content can be efficiently solved.

We have also explained how any query can be answered
by using XWT because it is really a representation of the
XML document and therefore any query that can be per-
formed over the XML document can be also answered us-
ing its XWT representation, but a lot more efficiently, be-
cause XWT is compressed, and has self-indexing capabili-
ties. Some experiments were done to prove the efficiency
of using the XWT over flexible queries involving below and
near constraints, but more work needs to be done to improve
the execution plan for any query and more extensive exper-
iments will be needed by taking into account some other in-
teresting features, like the depth level of the element nodes
involved in the queries, or even their number of children.

7. REFERENCES
[1] INitiative for the Evaluation of XML Retrieval.

http://inex.is.informatik.uni-duisburg.de/.

[2] XML 1.0, XPath 2.0 and XQuery 1.0, W3C
Recommendations. http://www.w3.org/TR.

[3] N. R. Brisaboa, A. Cerdeira-Pena, and G. Navarro. A
compressed self-indexed representation of xml
documents. In ECDL’09, pages 273–284, 2009.

[4] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro.
Reorganizing compressed text. In SIGIR’08, pages
139–146, 2008.

[5] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R.
Paramá. (s, c)-dense coding: An optimized
compression code for natural language text databases.
In SPIRE’03, LNCS 2857, pages 122–136, 2003.

[6] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R.
Paramá. Lightweight natural language text
compression. Inf. Retr., 10:1–33, 2007.

[7] A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi,
and P. Spoletini. A fuzzy extension of the xpath query
language. J. Intell. Inf. Syst., 33(3):285–305, 2009.

[8] J. S. Culpepper and A. Moffat. Enhanced byte codes
with restricted prefix properties. In SPIRE’05, pages
1–12, 2005.

[9] E. Damiani, S. Marrara, and G. Pasi. A flexible
extension of xpath to improve xml querying. In
SIGIR’08, pages 849–850, 2008.

[10] E. Damiani, S. Marrara, and Ga. Pasi. Fuzzyxpath:
Using fuzzy logic an ir features to approximately query
xml documents. In IFSA’07, pages 199–208, 2007.

[11] E. Damiani and L. Tanca. Blind queries to xml data.
In DEXA’00, pages 345–356, 2000.

[12] E. Moura, G. Navarro, N. Ziviani, and
R. Baeza-Yates. Fast and flexible word searching on
compressed text. TOIS, 18(2):113–139, 2000.

[13] K. Sadakane and G. Navarro. Fully-functional static
and dynamic succinct trees. CoRR, abs/0905.0768,
2009.

