
Fast and simple character classes and bounded gaps
pattern matching, with application to protein searching

[Extended Abstract]

Gonzalo Navarro
�

Dept. of Computer Science
University of Chile

Blanco Encalada 2120
Santiago, Chile

gnavarro@dcc.uchile.cl

Mathieu Raffinot
Equipe génome, cellule et informatique

Université de Versailles
45 avenue des Etats-Unis
78035 Versailles Cedex

raffinot@genome.uvsq.fr

ABSTRACTThe problem of fast searhing of a pattern that ontainsClasses of haraters and Bounded size Gaps (CBG) in atext has a wide range of appliations, among whih a veryimportant one is protein pattern mathing (for instane, onePROSITE protein site is assoiated with the CBG [RK℄ �x(2; 3)� [DE℄�x(2; 3)�Y , where the brakets math any ofthe letters inside, and x(2; 3) a gap of length between 2 and3). Currently, the only way to searh a CBG in a text is toonvert it into a full regular expression (RE). However, a REis more sophistiated than a CBG, and searhing it with aRE pattern mathing algorithm ompliates the searh andmakes it slow. This is the reason why we design in thisartile two new pratial CBG mathing algorithms that aremuh simpler and faster than all the RE searh tehniques.The �rst one looks exatly one at eah text harater. Theseond one does not need to onsider all the text haratersand hene it is usually faster than the �rst one, but in badases may have to read the same text harater more thanone. We then propose a riterion based on the form ofthe CBG to hoose a-priori the fastest between both. Weperformed many pratial experiments using the PROSITEdatabase, and all them show that our algorithms are thefastest in virtually all ases.
Categories and Subject DescriptorsF.2.2 [Analysis of algorithms and problem omplex-ity℄: Nonnumerial algorithms and problems|Pattern math-ing, Computations on disrete strutures; H.3.3 [Informationstorage and retrieval℄: Information searh and retrieval|�Work developed while the author was at postdotoralstay at the Institut Gaspard-Monge, Univ. de Marne-la-Vall�ee, Frane, partially supported by Fundai�on Andes andECOS/Coniyt.

Searh proess
General TermsAlgorithms
KeywordsPattern mathing, bit-parallelism, information retrieval, om-putational biology, PROSITE
1. INTRODUCTIONThis paper deals with the problem of fast searhing of pat-terns that ontain Classes of haraters and Bounded sizeGaps (CBG) in texts. This problem ours in various �elds,like information retrieval, data mining and omputationalbiology. We are partiularly interested in the latter one.In omputational biology, this problem has many applia-tions, among whih the most important is protein mathing.These last few years, huge protein site pattern databaseshave been developed, like PROSITE [6, 9℄. These databasesare olletions of protein site desriptions. For eah proteinsite, the database ontains diverse information, notably thepattern. This is an expression formed with lasses of har-aters and bounded size gaps on the amino aid alphabet(of size 20). This pattern is used to searh a possible o-urrene of this protein in a longer one. For example, theprotein site number PS00007 has as its pattern the expres-sion [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y , where the braketsmean that the position an math any of the letters inside,and x(2; 3) means a gap of length between 2 and 3.Currently, these patterns are onsidered as full regular ex-pressions (REs) over a �xed alphabet �, i.e generalizedpatterns omposed of (i) basi haraters of the alphabet(adding the empty word " and also a speial symbol x thatan math all the letters of �), (ii) onatenation (denoted�), (ii) union (j) and (iii) Kleene losure (�). This latter op-eration L� on a set of words L means that we aept all thewords made by a onatenation of words of L. For instane,our previous pattern an be onsidered as the regular ex-pression (RjK) � x � x � (xj") � (DjE) � x � x � (xj") � Y . We notejREj the length of an RE, that is the number of symbolsin it. The searh is done with the lassial algorithms forRE searhing, that are however quite ompliated. The RE

needs to be onverted into an automaton and then searhedin the text. It an be onverted into a deterministi automa-ton (DFA) in worst ase time O(2jREj), and then the searhis linear in the size n of the text, giving a total omplexityof O(2jREj + n). It an also be onverted into a nondeter-ministi automaton (NFA) in linear time O(jREj) and thensearhed in the text in O(n � jREj) time, giving a totalof O(n � jREj) time. We give a review of these methodsin Appendix A. The majority of the PROSITE mathingsoftwares use these tehniques [11, 18℄.None of the presented tehniques are fully adequate for CBGs.First, the algorithms are intrinsially ompliated to under-stand and to implement. Seond, all the tehniques performpoorly for ertain types of REs. The \diÆult" REs are ingeneral those whose DFAs are very large, a very ommonase when translating CBGs to REs. Third, espeially withregard to the sizes of the DFAs, the simpliity of CBGs isnot translated into their orresponding REs. At the veryleast, resorting to REs implies solving a simple problem byonverting it into a more ompliated one. Indeed, the ex-perimental time results when applied to our CBG expres-sions are far from reasonable in regard of the simpliity ofCBGs and ompared to the searh of expressions that justontain lasses of haraters [15℄.This is the motivation of this paper. We present two newsimple algorithms to searh CBGs in a text, that are also ex-perimentally muh faster than all the previous ones. Thesealgorithms make plenty use of \bit-parallelism", that on-sists in using the intrinsi parallelism of the bit manipula-tions inside omputer words to perform many operations inparallel. Competitive algorithms have been obtained usingbit parallelism for exat string mathing [2, 22℄, approxi-mate string mathing [2, 22, 23, 3, 14℄, and REs mathing[12, 21, 17℄. Although these algorithms generally work wellonly on patterns of moderate length, they are simpler, moreexible (e.g. they an easily handle lasses of haraters),and have very low memory requirements.We performed two di�erent types of experiments, ompar-ing our algorithms against the fastest known ones for REsearhing. We use as CBGs the patterns of the PROSITEdatabase. We �rst ompared them as \pure pattern math-ing", i.e. searhing the CBGs in a ompilation of 6 megabytesof protein sequenes (from the TIGR Mirobial database).We then ompared them as \library mathing", that is searha large set of PROSITE patterns in a protein sequene of 300amino aids. Our algorithms are by far the fastest in bothases. Moreover, in the seond ase, the searh time im-provements are dramati, as our algorithms are about 100times faster than the best RE mathing algorithms whenpattern preproessing times beome important.The two algorithms we present are patented by the FrenhCentre National de la Reherhe Sienti�que (CNRS)1.We use the following de�nitions throughout the paper. � isthe alphabet, a word on � is a �nite sequene of haratersof �. �� means the set of all the words build on �. Aword w 2 �� is a fator (or substring) of p 2 �� if p an be1Frenh priority patent appliation n0 0011093 �led on Au-gust 8th , 2000 by the CNRS.

written p = uwv, u; v 2 ��. A fator w of p is alled a suÆxof p is p = uw, u 2 ��, and a pre�x of p is p = wu, u 2 ��.We note with brakets a subset of elements of �: [ART ℄means the subset fA;R; Tg (a single letter an be expressedin this way too). We add the speial symbol x to denote asubset that orresponds to the whole alphabet. We also adda symbol x(a; b); a < b, for a bounded size gap of minimallength a and maximal b, and use x(a) as a short for x(a; a)(so x = x(1) = x(1; 1)). A CBG on � is formally a �nitesequene of symbols that an be (i) brakets, (ii) x and (iii)bounded size gaps x(a; b). We de�ne m as the total numberof suh symbols in a CBG.We use the notation T = t1t2 : : : tn for the text of n har-aters of � in whih we are searhing the CBGs. A CBGmathes T at position j if there is an alignment of tj�i : : : tjwith the CBG, onsidering that (i) a braket mathes withany text letter that appears inside brakets; (ii) an xmathesany text letter; and (iii) a bounded gap x(a; b) mathesat minimum a and at maximum b arbitrary haraters ofT . We denote by ` the minimum size of a possible align-ment and L the size of a maximum one. For example,[RK℄�x(2; 3)� [DE℄�x(2; 3)�Y (where ` = 7 and L = 9)mathes the text T = AHLRKDEDATY at position 11 by3 di�erent alignments K��D��Y , R���D��Y andR��E ��� Y .Definition 1. Searhing a CBG in a text T = t1t2 : : : tnonsists in �nding all the positions j of T in whih there isan alignment of the CBG with a suÆx of t1 : : : tj.We use some notation to desribe the operations on bits. Weuse exponentiation to denote bit repetition, e.g. 031 = 0001.We denote as b` : : : b1 the bits of a mask of length `, whihis stored somewhere inside the omputer word of length w.We use C-like syntax for operations on the bits of omputerwords, i.e. \j" is the bitwise-or, \&" is the bitwise-and, \�"omplements all the bits, and \<<" moves the bits to theleft and enters zeros from the right, e.g. b`b`�1 : : : b2b1 <<3 = b`�3 : : : b2b1000. We an also perform arithmeti oper-ations on the bits, suh as addition and subtration, whihoperate the bits as if they formed a number, for instaneb` : : : bx10000 � 1 = b` : : : bx01111.
2. PREVIOUS WORKBit-parallelism for simple pattern mathingThe bit-parallelism tehnique [1℄ onsists in taking advan-tage of the intrinsi parallelism of the bit operations insidea omputer word. By using leverly this fat, the numberof operations that an algorithm performs an be ut downby a fator of at most w, where w is the number of bits inthe omputer word. Sine in urrent arhitetures w is 32or 64, the speedup is very signi�ative in pratie.We present now the Shift-And algorithm [2, 22℄. Figure 1shows a non-deterministi automaton that searhes a pat-tern in a text. Given a pattern P = p1p2 : : : pm 2 �� and atext T = t1t2 : : : tn 2 ��, the algorithm builds �rst a tableB whih for eah harater stores a bit mask bm : : : b1. The

mask in B[℄ has the i-th bit set if and only if pi = . Thestate of the searh is kept in a mahine word D = dm : : : d1,where di is set whenever p1p2 : : : pi mathes the end of thetext read up to now (another way to see it is to onsider thatdi tells whether the state numbered i in Figure 1 is ative).Therefore, we report a math whenever dm is set.
b a a b b a a

Σ

1 2 3 4 5 6 70Figure 1: A nondeterministi automaton to searhthe pattern P = baabbaa in a text.We set D = 0m originally, and for eah new text hara-ter tj , we update D using the formula D0 ((D <<1) j 0m�11) & B[tj ℄ whih mimis the movement that o-urs in the automaton.It is very easy to extend to handle lasses of haraters,where eah pattern position may not only math a singleharater but a set of haraters. If Ci is the set of haratersthat math the position i in the pattern, we set the i-th bitof B[℄ for all 2 Ci. No other hange is neessary to thealgorithm.Combining bit-parallelism and suÆx automataThe BNDM pattern mathing algorithm [15℄, a ombinationof Shift-Or and BDM [8, 7℄, has all the advantages of thebit-parallel forward san algorithm, and in addition it is ableto skip some text haraters.BNDM is based on a suÆx automaton. A suÆx automatonon a pattern P = p1p2 : : : pm is an automaton that reog-nizes all the suÆxes of P . The nondeterministi version ofthis automaton is shown in Figure 2. Note that the automa-ton will not run out of ative states as long as it has read afator of P . In the original BDM this automaton is made de-terministi. BNDM, instead, simulates the automaton usingbit-parallelism. Just as for Shift-And, we keep the state ofthe searh using m bits of a omputer word D = dm : : : d1.
b a a b b a a

1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε εFigure 2: A nondeterministi suÆx automaton forthe pattern P = baabbaa. Dashed lines represent "-transitions (i.e. they our without onsuming anyinput).To searh a pattern P = p1p2 : : : pm in a text T = t1t2 : : : tn,the suÆx automaton of P r = pmpm�1 : : : p1 (i.e the patternread bakwards) is built. A window of length m is slid alongthe text, from left to right. The algorithm searhes bak-ward inside the window for a fator of the pattern P usingthe suÆx automaton, i.e. the suÆx automaton of the re-verse pattern is fed with the haraters in the text windowread bakward. This bakward searh ends in two possibleforms: (A) We fail to reognize a fator, i.e we reah a win-dow letter � that makes the automaton run out of ative

states. This means that the suÆx of the window we haveread is not anymore a fator of P . We then shift the windowto the right, its starting position orresponding to the po-sition following the letter � (we annot miss an ourrenebeause in that ase the suÆx automaton would have founda fator of it in the window). (B) We reah the beginningof the window, therefore reognizing the pattern P sine thelength-m window is a fator of P (indeed, it is equal to P).We report the ourrene, and shift the window by 1.This algorithm is O(mn) worst ase time, but optimal onaverage (O(n log�m=m) time).The bit-parallel simulation works as follows. Eah time weposition the window in the text we initialize D = 1m andsan the window bakward. For eah new text haraterread in the window we update D. If we run out of 1's inD then there annot be a math and we suspend the san-ning and shift the window. If we an perform m iterationsthen we report the math. We use a mask B whih for eahharater stores a bit mask. This mask sets the bits or-responding to the positions where the reversed pattern hasthe harater (just as in the Shift-And algorithm). Theformula to update D is D0 (D & B[tj ℄) << 1.BNDM is not only faster than Shift-Or and BDM (for 5 �m � 100 or so), but it an aommodate all the extensionsmentioned. Of partiular interest to this work is that itan easily deal with lasses of haraters by just altering thepreproessing, and it is by far the fastest algorithm to searhthis type of patterns [15, 16℄.Regular expression searhingMany algorithms have been designed to searh a regularexpression in a text. A survey of the di�erent tehniquesand automata built is given in the Appendix A.
3. A FORWARD SEARCH ALGORITHM FOR

CBG PATTERNSWe express the searh problem of a pattern with lasses ofharaters and gaps using a non-deterministi automaton.Compared to the automaton for simple patterns (Setion 2),this one permits the existene of gaps between onseutivepositions, so that eah gap has a minimum and a maximumlength. The automaton we use does not orrespond to anyof those obtained with the regular expression simulations(see Appendix A), although the funtionality is the same.Figure 3 shows an example for the pattern a�b��x(1; 3)�d � e. Between the letters and d we have inserted threetransitions that an be followed by any letter, whih orre-sponds to the maximum length of the gap. Two "-transitionsleave the state where ab has been reognized and skip oneand two subsequent edges, respetively. This allows skippingone to three text haraters before �nding the de at the endof the pattern. The initial self-loop allows the math tobegin at any text position.We are now interested in an eÆient simulation of the aboveautomaton. Despite that this is a partiular ase of a regularexpression, its simpliity permits a more eÆient simulation.In partiular, a fast bit-parallel simulation is possible.

a b c x x x d e

ε

εΣ

1 2 3 4 5 6 7 80Figure 3: Our non-deterministi automaton for thepattern a� b� � x(1; 3)� d� e.We represent eah automaton state by a bit in a omputerword. The initial state is not represented beause it is alwaysative. As with the normal Shift-And, we shift all the bitsto the left and use a table of masks B indexed by the urrenttext harater. This aounts for all the arrows that go fromstates Sj to Sj+1.The remaining problem is how to represent the "-transitions.For this sake, we hose2 to represent ative states by 1 andinative states by 0. We all \gap-initial" states those statesSi from where an "-transition leaves. For eah gap-initialstate Si orresponding to a gap x(a; b), we de�ne its \gap-�nal" state to be Si+b�a+1, i.e. the one following the laststate reahed by an "-transition leaving Si. In the exampleof Figure 3, we have one gap-initial state (S3) and one gap-�nal state (S6).We reate a bit mask I whih has 1 in the gap-initial states,and another mask F that has 1 in the gap-�nal states. Then,if we keep the state of the searh in a bit mask D, then afterperforming the normal Shift-And step, we simulate all the"-moves with the operationD0 D j ((F � (D & I)) & � F)The rationale is as follows. First, D & I isolates the ativegap-initial states. Subtrating this from F has two possibleresults for eah gap-initial state Si. First, if it is ativethe result will have 1 in all the states from Si to Si+b�a,suessfully propagating the ative state Si to the desiredtarget states. Seond, if Si is inative the result will have 1only in Si+b�a+1. This undesired 1 is removed by operatingthe result with \& � F". One the propagation has beendone, we or the result with the already ative states in D.Note that the propagations of di�erent gaps do not interferwith eah other, sine all the subtrations have loal e�et.The omplete algorithm is given in Appendix B. The prepro-essing takes O(Lj�j) time, while the sanning needs O(n)time. If L > w, however, we need several mahine words forthe simulation, whih thus takes O(ndL=we) time.
4. A BACKWARD SEARCH ALGORITHM

FOR CBG PATTERNSWhen the searhed patterns ontain just lasses of har-aters, the bakward bit-parallel approah (see Setion 2)leads to the fastest algorithm BNDM [15, 16℄. The searh isdone by sliding over the text (in forward diretion) a windowthat has the size of the minimum possible alignment (`). Weread the window bakwards trying to reognize a fator ofthe pattern. If we reah the beginning of the window, then2It is possible to devise a formula for the opposite ase, butunlike Shift-Or, it is not faster.

we found an alignment. Else, we shift the window to thebeginning of the longest fator found.We extend now BNDM to deal with CBGs. To reognizeall the reverse fators of a CBG, we use quite the sameautomaton built in Setion 3 on the reversed pattern, butwithout the initial self-loop, and onsidering that all thestates are ative at the beginning. We reate an initial stateI and "-transitions from I to eah state of the automaton.Figure 4 shows the automaton for the pattern a � b � �x(1; 3) � d� e. A word read by this automaton is a fatorof the CBG as long as there exists at least one ative state.
a b c x x x d e

1 2 3 4 5 6 70

εεεεεεεεε

8

ε

ε

IFigure 4: The non-deterministi automaton built inthe bakward algorithm to reognize all the reversedfators of the CBG a� b� � x(1; 3)� d� e.The bit-parallel simulation of this automaton is quite thesame as that of the forward automaton (see Setion 3). Theonly modi�ations are (a) that we build it on P r, the re-versed pattern; (b) that the the bit mask D that registersthe state of the searh has to be initialized with D = 1L toperform the initial "-transitions; and () that we do not orD with 0L�11 when we shift it, for there is no more initialself-loop.The bakward CBG mathing algorithm shifts a windowof size ` along the text. Inside eah window, it traversesbakward the text trying to reognize a fator of the CBG(this is why the automaton that reognizes all the fatorshas to be built on the reverse pattern P r).If the bakward searh inside the window fails (i.e. thereare no more ative states in the bakward automaton) be-fore reahing the beginning of the window, then the searhwindow is shifted to the beginning of the longest fator re-ognized, exatly like in the �rst ase of the lassi BNDM(see Setion 2).If the begining of the window is reahed with the automa-ton still holding ative states, then some fator of length `of the CBG is reognized in the window. Unlike the ase ofexat string mathing, where all the ourrenes have thesame length of the pattern, this does not automatially im-ply that we have reognized the whole pattern. We needa way to verify a possible alignment (that an be longerthan `) starting at the beginning of the window. So we readthe haraters again from the beginning of the window withthe forward automaton of Setion 3, but without the initialself-loop. This forward veri�ation ends when (1) the au-tomaton reahes its �nal state, in whih ase we found thepattern; (2) there are no more ative states in the automa-ton, in whih ase there is no pattern ourrene starting atthe window. As there is no initial loop, the forward veri�-ation surely �nishes after reading at most L haraters ofthe text. We then shift the searh window one harater to

the right and resume the searh.The omplete algorithm is given in Appendix C. The worstase omplexity of the bakward sanning algorithm is O(nL),whih is quite bad in theory. However, on the average, thebakward algorithm is expeted to be faster than the forwardone. The next setion gives a good experimental riterion toknow in whih ases the bakward algorithm is faster thanthe forward one. The experimental searh results (see Se-tion 6) on the PROSITE database shows that the bakwardalgorithm is almost always the fastest.
5. WHICH ALGORITHM TO USE ?We have now two di�erent algorithms, a forward and a bak-ward one, so a natural question is whih one should be ho-sen for a partiular problem. We seek for a simple riterionthat enables us to hoose the best algorithm.In partiular, let us onsider the maximum gap length Gin the CBG. If G � `, then every text window of length` is a fator of the CBG, so we will surely traverse all thewindow during the bakward san and always shift in 1, fora omplexity of
(n`) at least. Consequently, the bakwardapproah we have presented must be restrited at least toCBGs in whih G < `.This an be arried on further. Eah time we position awindow in the text, we know that at least G+ 1 haratersin the window will be inspeted before shifting. Moreover,the window will not be shifted by more than `�G positions.Hene the total number of harater inspetions aross thesearh is at least (G + 1)n=(` � G), whih is larger thann (the number of haraters inspeted by a forward san)whenever ` < 2G+ 1.Hene, we de�ne (G+1)=` as a simple parameter governingmost of the performane of the bakward san algorithm,and predit that 0.5 is the point above whih the bakwardsanning is worse than forward sanning. Of ourse thismeasure is not perfet, as it disregards the e�et of othergaps, lasses of haraters and the ost of forward hek-ing in the bakward san, but a full analysis is extremelyompliated and, as we see in the next setion, this simpleriterion gives good results.Aording to this riterion, we an design an optimized ver-sion of our bakward sanning algorithm. The idea is thatwe an hoose the \best" pre�x of the pattern, i.e. the pre�xthat minimizes (G + 1)=`. The bakward sanning an bedone using this pre�x, while the forward veri�ation of po-tential mathes is done with the full pattern. This ould beextended to seleting the best fator of the pattern, but theode would be more ompliated (as the veri�ation phasewould have to san in both diretions, bu�ering would beompliated, and, as we see in the next setion, the di�er-ene is not so large.
6. EXPERIMENTAL RESULTSWe have tested our algorithms over an example of 1,168PROSITE patterns [11, 9℄ and a 6 megabytes (Mb) textontaining a onatenation of protein sequenes taken fromthe TIGR Mirobial database. The set had originally 1,316patterns from whih we seleted the 1,230 whose L (maxi-

mum length of a math) does not exeed w, the number ofbits in the omputer word of our mahine. This leaves uswith 93% of the patterns. From them, we exluded the 62(5%) for whih G � `, whih as explained annot be reason-ably searhed with bakward sanning (we had to resort toforward sanning for them). This leaves us with the 1,168patterns.We have used an Intel Pentium III mahine of 500 MHzrunning Linux. We show user times averaged over 10 trials.Three di�erent algorithms are tested: Fwd is the forward-san algorithm desribed in Setion 3, Bwd is the bakward-san algorithm of Setion 4 and Opt is the same Bwd wherewe selet for the bakward searhing the best pre�x of thepattern, aording to the riterion of the previous setion.A �rst experiment aims at measuring the eÆieny of thealgorithms with respet to the riterion of the previous se-tion. Figure 5 shows the results, where the patterns havebeen lassi�ed along the x axis by their (G+1)=` value. Aspredited, 0.5 is the value from whih Bwd starts to be worsethan Fwd exept for a few exeptions (where the di�ereneis not so big anyway). It is also lear that Opt avoids manyof the worst ases of Bwd. Finally, the plot shows that thetime of Fwd is very stable. While the forward san runs al-ways at around 5 Mb/se, the bakward san an be as fastas 20 Mb/se.

(G+1)/l

se
cs

/M
b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

0.5

Fwd
Bwd

(G+1)/ l

se
cs

/M
b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

0.5

Bwd
Opt

Figure 5: Searh times (in seonds per Mb) for allthe patterns lassi�ed by their (G+ 1)=` value.

What Figure 5 fails to show is that in fat most PROSITEpatterns have a very low (G + 1)=` value. Figure 6 plotsthe number of patterns ahieving a given searh time, afterremoving a few outliers (the 12 that took more than 0.4 se-onds for Bwd). Fwd has a large peak beause of its stabletime, while the bakward sanning algorithms have a widerhistogram whose main body is well before the peak of Fwd.Indeed, 95.6% of the patterns are searhed faster by Bwdthan by Fwd, and the perentage raises to 97.6% if we on-sider Opt. The plot also shows that there is little statistialdi�erene between Bwd and Opt. Rather, Opt is useful toremove some very bad ases of Bwd.

secs/Mb

fr
eq

ue
nc

y

0.1 0.2 0.30.05 0.15 0.25 0.35

0

100

200

300

400

500

600 Fwd
Bwd
Opt

Figure 6: Histogram of searh times for our di�erentalgorithms.Our third experiment aims at omparing our searh methodagainst onverting the pattern to a regular expression andresorting to general regular expression searhing. From theexisting algorithms to searh for regular expressions we haveseleted the following:� Dfa: Builds a deterministi �nite automaton anduses it to searh the text.� Nfa: Builds a non-deterministi �nite automatonand uses it to searh the text, updating all the statesat eah text position.� Myers: Is an intermediate between Dfa and Nfa[12℄, a non-deterministi automaton formed by a fewbloks (up to 4 in our experiments) where eah blok isa deterministi automaton over a subset of the states.� Agrep: Is an existing software [22, 21℄ that im-plements another intermediate between Dfa and Nfa,where most of the transitions are handled using bit-parallelism and the "-transitions with a deterministitable.� Grep: Is Gnu Grep with the option "-E" to makeit aept regular expressions. This software uses aheuristi that, in addition to (lazy) deterministi au-tomaton searhing, looks for long enough literal pat-tern substrings and uses them as a fast �lter for thesearh.

� BNDM: Uses the bakward approah we have ex-tended to CBGs, but adapted to general REs instead[17℄. It needs to build to deterministi automata, onefor bakward searh and another for forward veri�a-tion.� Multipattern: Redues the problem to multipat-tern Boyer-Moore searhing of all the strings of length` that math the RE [20℄. We have used \agrep -f"as the multipattern searh algorithm.To these, we have added our Fwd and Opt algorithms. Fig-ure 7 shows the results. From the forward sanning algo-rithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip textharaters), the fastest is our Fwd algorithm thanks to itssimpliity. Agrep has about the same mean but muh morevariane. Dfa su�ers from high preproessing times andlarge generated automata. Nfa needs to update many statesone by one for eah text harater read. Myers su�ers froma ombination of both and shows two peaks that ome fromits speialized ode to deal with small automata.The bakward sanning algorithms Opt and Grep (able toskip text haraters) are faster than the previous ones inalmost all ases. Among them, Opt is faster on averageand has less variane, while the times of Grep extend overa range that surpasses the time of our Fwd algorithm for anon-negligible portion of the patterns. This is beause Grepannot always �nd a suitable �ltering substring and in thatase it resorts to forward sanning. Note that BNDM andMultipattern have been exluded from the plots due to theirpoor performane on this set of patterns.Apart from the faster text sanning, our algorithms alsobene�t from lower preproessing times when ompared tothe algorithms that resort to regular expression searhing.This is barely notieable in our previous experiment, but itis important in a ommon senario of the protein searhingproblem: all the patterns from a set are searhed inside anew short protein. In this ase the preproessing time forall the patterns is muh more important than the sanningtime over the (normally rather short) protein.We have simulated this senario by seleting 100 randomsubstrings of length 300 from our text and running the pre-vious algorithms on all the 1,168 patterns. Table 1 showsthe time averaged over the 100 substrings and aumulatedover the 1,168 patterns. The di�erene in favor of our newalgorithms is drasti. Note also that this problem is aninteresting �eld of researh for multipattern CBG searh al-gorithms.
7. CONCLUSIONSWe have presented two new searh algorithms for CBGs, i.e.expressions formed by a sequene of lasses of haraters andbounded gaps. CBGs are of speial interest to omputa-tional biology appliations. Our algorithms are spei�allydesigned for CBGs and are based on BNDM, a ombina-tion of bit-parallelism and bakward searhing with suÆxautomata.We have presented experiments showing that our new algo-rithms are muh faster and more preditable than all the

secs/Mb

fr
eq

ue
nc

y

0 1 20.5 1.5

0

100

200

300

50

150

250

Fwd
Opt
Dfa
Nfa
Myers
Agrep
Grep

Figure 7: Histogram of searh times for our best algorithms and for regular expression searhing algorithms.Fwd reahes 600.Algorithm TimeFwd 0.058Bwd 0.056Opt 0.050Dfa 125.91Nfa 4.43Myers 7.84Agrep 10.22Grep 9.42Table 1: Searh time in seonds for all the 1,168patterns over a random protein of length 300.other algorithms based on regular expression searhing. Inaddition, we have presented a riterion to selet the bestamong the two that has experimentally shown to be veryreliable. This makes the algorithms of speial interest forpratial appliations, suh as protein searhing.We plan to extend the present work by allowing negativegaps and errors in the mathes (see, e.g. [13℄). Our algo-rithms are espeially easy to extend to permit errors and weare pursuing in that diretion.
8. REFERENCES[1℄ R. Baeza-Yates. Text retrieval: Theory and pratie. In12th IFIP World Computer Congress, volume I, pages465{476. Elsevier Siene, September 1992.[2℄ R. Baeza-Yates and G. Gonnet. A new approah to text

searhing. CACM, 35(10):74{82, Otober 1992.[3℄ R. Baeza-Yates and G. Navarro. Faster approximate stringmathing. Algorithmia, 23(2):127{158, 1999.[4℄ G. Berry and R. Sethi. From regular expression todeterministi automata. Theor. Comput. Si.,48(1):117{126, 1986.[5℄ A. Br�uggemann-Klein. Regular expressions into �niteautomata. Theoretial Computer Siene, 120(2):197{213,November 1993.[6℄ P. Buher and A. Bairoh. A generalized pro�le syntax forbiomoleular sequenes motifs and its funtion in automatisequene interpretation. In Proeedings 2nd InternationalConferene on Intelligent Systems for Moleular Biology,pages 53{61, AAAIPress, Menlo Park,, 1994.[7℄ Maxime Crohemore and W. Rytter. Text algorithms.Oxford University Press, 1994.[8℄ A. Czumaj, Maxime Crohemore, L. Gasienie,S. Jarominek, Thierry Leroq, W. Plandowski, andW. Rytter. Speeding up two string-mathing algorithms.Algorithmia, 12:247{267, 1994.[9℄ K. Hofmann, P. Buher, L. Falquet, and A. Bairoh. ThePROSITE database, its status in 1999. Nulei Aids Res.,27:215{219, 1999.[10℄ Juraj Hromkovi�, Sebastian Seibert, and Thomas Wilke.Translating regular expression into small "-freenondeterministi automata. In STACS 97, Leture Notes inComputer Siene, pages 55{66. Springer-Verlag, 1997.[11℄ L.F. Kolakowski Jr., J.A.M. Leunissen, and J.E. Smith.ProSearh: fast searhing of protein sequenes with regularexpression patterns related to protein struture andfuntion. Biotehniques, 13:919{921, 1992.

[12℄ E. Myers. A four-russian algorithm for regular expressionpattern mathing. J. of the ACM, 39(2):430{448, 1992.[13℄ E. Myers. Approximate mathing of network expressionswith spaers. Journal of Computational Biology,3(1):33{51, 1996.[14℄ G. Myers. A fast bit-vetor algorithm for approximatestring mathing based on dynami programming. Journalof the ACM, 46(3):395{415, 1999.[15℄ G. Navarro and M. RaÆnot. A bit-parallel approah tosuÆx automata: Fast extended string mathing. In Pro.CPM'98, LNCS v. 1448, pages 14{33. Springer-Verlag,1998.[16℄ G. Navarro and M. RaÆnot. Fast and exible stringmathing by ombining bit-parallelism and suÆx automata.Tehnial Report TR/DCC-98-4, Dept. of ComputerSiene, Univ. of Chile, August 1998. To appear in ACMJournal of Experimental Algorithmis (JEA).[17℄ G. Navarro and M. RaÆnot. Fast regular expression searh.In Pro. WAE'99, LNCS 1668, pages 198{212, 1999.[18℄ R. Staden. Sreening protein and nulei aid sequenesagainst libraries of patterns. DNA Sequene, 1:369{374,1991.[19℄ K. Thompson. Regular expression searh algorithm.CACM, 11(6):419{422, 1968.[20℄ B. Watson. Taxonomies and toolkits of regular languagealgorithms. PhD thesis, Eindhoven Univ. of Tehnology,The Netherlands, 1995.[21℄ S. Wu and U. Manber. Agrep { a fast approximatepattern-mathing tool. In Pro. of USENIX TehnialConferene, pages 153{162, 1992.[22℄ S. Wu and U. Manber. Fast text searhing allowing errors.CACM, 35(10):83{91, Otober 1992.[23℄ S. Wu, U. Manber, and E. Myers. A sub-quadratialgorithm for approximate limited expression mathing.Algorithmia, 15(1):50{67, 1996.

APPENDIX
A. REGULAR EXPRESSION SEARCHINGThe usual way of dealing with an expression with haraterlasses and bounded gaps is atually to searh it as a fullregular expression (RE) [11, 18℄. A gap of the form x(a; b)is onverted into a letters x followed by b�a subexpressionsof the form (xj").The traditional tehnique [19℄ to searh an RE of lengthO(m) in a text of length n is to onvert the expression into anondeterministi �nite automaton (NFA) with O(m) nodes.Then, it is possible to searh the text using the automa-ton at O(mn) worst ase time, or to onvert the NFA intoa deterministi �nite automaton (DFA) in worst ase timeO(2m) and then san the text in O(n) time.Some tehniques have been proposed to obtain a good trade-o� between both extremes. In 1992, Myers [12℄ presenteda four-russians approah whih obtains O(mn= log n) worst-ase time and extra spae. Other simulation tehniques thataim at good tradeo�s based on ombinations of DFAs andbit-parallel simulation of NFAs are given in [22, 17℄.There exist urrently many di�erent tehniques to build anNFA from a regular expression R. The most lassial oneis Thompson's onstrution [19℄, whih builds an NFA withat most 2m states and 4m transitions (where m is ountedas the number of letters and "'s in the RE). A seond one isGlushkov's onstrution, popularized by Berry and Sethi in[4℄. The NFA resulting of this onstrution has the advan-tage of having just m+1 states (where m is ounted as thenumber of letters in the RE).A lot of researh on Gluskov's onstrution has been pur-sued, like [5℄, where it is shown that the resulting NFA isquadrati in the number of edges in the worst ase. In [10℄,a long time open question about the minimal number ofedges of an NFA (without �-transition) with linear numberof states was answered, showing a onstrution with O(m)states and O(m(logm)2) edges, as well as a lower boundof O(m logm) edges. Hene, Glushkov onstrution is notspae-optimal.We show in Figure 8 the Thompson and Gluskov automatafor an example CBG a � b � � x(1; 3) � d � e, whih wetranslate into the regular expression a�b��x�(xj")�(xj")�d�e.Both Thompson and Gluskov automata present some par-tiular properties. Some algorithms like [12, 22℄ make useof Thompson's automaton properties and some others, like[17℄, make use of Gluskov's ones.Finally, some work has been pursued in skipping haraterswhen searhing for an RE. A simple heuristi that has veryvariable suess is implemented in Gnu Grep, where they tryto �nd a plain substring inside the RE, so as to use the searhfor that substring as a �lter for the searh of the ompleteRE. In [20℄ they propose to redue the searh of a RE to amultipattern searh for all the possible strings of some lengththat an math the RE (using a multipattern Boyer-Moorelike algorithm). In [17℄ they propose the use of an automatonthat reognizes reversed fators of strings aepted by theRE (in fat a manipulation of the original automaton) using

a b c x
1 2 30

x

ε

ε ε

εε
x

ε

ε ε

εε

d e

13

14 15 16

10

11

127

9

86

5

4(a) Thompson onstrution
a b c x x x d e

1 2 3 4 5 6 7 80

d

d(b) Gluskov onstrutionFigure 8: The two lassial NFA onstrutions onour example a � b � �x � (xj") � (xj") � d � e. We reall thatx mathes the whole alphabet �. The Gluskov au-tomaton is " free, but both present some diÆultiesto perform an eÆient bit-parallelism on them.a BNDM-like sheme to searh those fators (see Setion 2).However, none of the presented tehniques seems fully ad-equate for CBGs. First, the algorithms are intrinsequelyompliated to understand and to implement. Seond, allthe tehniques perform poorly for a ertain type of REs.The \diÆult" REs are in general those whose DFAs arevery large, a very ommon ase when translating CBGs toREs. Third, espeially with regard to the sizes of the DFAs,the simpliity of CBGs is not translated into their orre-sponding REs. For example, the CBG \[RK℄ � x(2; 3) �[DE℄� x(2; 3)� Y " onsidered in the Introdution yields aDFA whih needs about 600 pointers to be represented.At the very least, resorting to REs implies solving a sim-ple problem by onverting it into a more ompliated one.Indeed, the experimental time results when applied to ourCBG expressions are far from reasonable in regard of thesimpliity of CBGs, as seen in Setion 6. As we show inthat setion, CBGs an be searhed muh faster by design-ing spei� algorithms for them. This is what we do in thenext setions.
B. FORWARD SEARCH PSEUDOCODEFigure 9 shows the omplete algorithm. For simpliity theode assumes that there annot be gaps at the beginning orat the end of the pattern (whih are meaningless anyway).The value L (maximum length of a math) is obtained inO(m) time by a simple pass over the pattern P , summingup the maximum gap lengths and individual lasses (reallthat m is the number of symbols in P).
C. BACKWARD SEARCH PSEUDOCODEFigure 10 shows the omplete algorithm. Some optimiza-tions are not shown for larity, for example many tests anbe avoided by breaking loops from inside, some variables anbe reused, et.

Searh (P1:::m,T1:::n)/* Preproessing */L maximum length of a mathfor 2 � do B[℄ 0LI 0L, F 0Li 0for j 2 1 : : :mif Pj is of the form x(a; b) then /* a gap */I I j (1 << (i� 1))F F j (1 << (i+ b� a))for 2 �, k 2 i : : : i+ b� 1 doB[℄ B[℄ j (1 << k)i i+ belse /* Pj is a lass of haraters */for 2 Pj do B[℄ B[℄ j (1 << i)i i+ 1nF � FM 1 << (L� 1) /* final state *//* Sanning */D 0Lfor j 2 1 : : : nif D & M 6= 0L thenreport a math ending at j � 1D ((D << 1) j 0L�11) & B[tj ℄D D j ((F � (D & I)) & nF)Figure 9: Forward searh pseudoode
D. MULTIPLE WORD EXTENSIONThe two previous algorithms an be used for longest word bysimulating the omputer words operations on table of words.All the ommands used to update the state of the searh inone omputer word D are trivially extended to a sequene ofwords D1 : : : Dd (where the lowest bits are in D1). The onlyexeption is the subtration operation, where the operationonDi an a�et Di+1. Let us say that we have two omputermulti-words A = A1 : : : Ad and B = B1 : : : Bd, and we wantto ompute C = A � B = C1 : : : Cd. The algorithm is asfollows (we assume that the numbers are unsigned)arry 0for i 2 1 : : : dCi Ai �Bi � arryif Ai < Bi + arry or Bi + arry < Bithen arry 1else arry 0where the fourth line has two heks: a �rst one overs thenormal ases and the seond one overs the speial ase Bi =1w.

Bakward searh (P1:::m,T1:::n)/* Preproessing */L maximum length of a math` minimum length of a mathfor 2 � do Bf [℄ 0L; Bb[℄ 0LIf 0L, Ff 0L, Ib 0L, Fb 0Li 0for j 2 1 : : :mif Pj is of the form x(a; b) then /* a gap */If If j (1 << (i� 1))Ib Ib j (1 << (L� (i+ b)� 1))Ff Ff j (1 << (i+ b� a))Fb Fb j (1 << (L� i� a))for 2 �, k 2 i : : : i+ b� 1 doBf [℄ Bf [℄ j (1 << k)Bb[℄ Bb[℄ j (1 << (L� k � 1))i i+ belse /* Pj is a lass of haraters */for 2 Pj doBf [℄ Bf [℄ j (1 << i)Bb[℄ Bb[℄ j (1 << (L� i� 1))i i+ 1nFf � Ff ; nFb � FbM 1 << (L� 1)/* Sanning */pos 0while pos � n� ` doj `, Db 1Lwhile Db 6= 0L and j > 0Db Db & Bb[tpos+j℄Db Db j ((Fb � (Db & Ib)) & nFb)j j � 1if Db 6= 0L and j = 0 /* forward san */Df 0L�11, v 1while Df 6= 0L and pos+ v � nDf Df & Bf [tpos+v℄Df Df j ((Ff � (Df & If)) & nFf)if Df & M 6= 0L thenreport a math beginning at pos+ 1Df 0LDf (Df << 1)v v + 1Db (Db << 1)pos pos+ j + 1Figure 10: The bakward sanning algorithm.

