
A Pattern Matching Based Filter for AuditReduction and Fast Detection of PotentialIntrusionsJosu�e Kuri1, Gonzalo Navarro2 , Ludovic M�e3, and Laurent Heye31 ENST, Department of Computer Science and Networks, Paris, France,kuri@enst.fr2 University of Chile, Department of Computer Science, Santiago, Chile,gnavarro@dcc.uchile.cl3 Sup�elec, Campus de Rennes, France,Ludovic.Me@supelec.fr, Laurent.Heye@supelec.frAbstract. We present a pattern matching approach to the problem ofmisuse detection in a computer system, which is formalized as the prob-lem of multiple approximate pattern matching. This permits very fastsearching of potential attacks. We study the probability of matching ofthe model and its relation to the �ltering e�ciency of potential attackswithin large audit trails. Experimental results show that in a worst case,up to 85 % of an audit trail may be �ltered out when searching a set ofattacks without probability of false negatives. Moreover, by �ltering 98% of the audit trail, up to 50 % of the attacks may be detected.IntroductionResearch in intrusion detection has emerged in recent years as a major subjectin the computer security �eld because of the di�culty of ensuring that informa-tion systems are free from security aws. Computer systems su�er from securityvulnerabilities regardless of their purpose, manufacturer or origin. It is both tech-nically hard and economically costly to ensure that systems are not susceptibleto attacks.Two approaches have been proposed to address the problem: anomaly de-tection (see for example [1, 2]) and misuse detection (see for example [3]). Theformer suggests that user's activity in the system can be characterized so that apro�le of \normal utilization" of the system is established and excursions fromthis pro�le are agged as potential intrusions, or attacks in a more general sense.The latter assumes that attacks are well-known sequences of actions, called sce-narios or attack signatures, and that the activity of the system (in the form oflogs, network tra�c, etc.) may be audited in order to determine the presence ofsuch scenarios in the system.Anomaly detection leads to some di�culties: a ow of alarms is generatedin the case of a noticeable systems environment modi�cation and a user canslowly change his behavior in order to cheat the IDS. On the other hand, mis-use detection becomes an increasingly demanding task in terms of semantics



2and processing, as more sophisticated attacks are discovered every day (whichimplies an increasing number of sophisticated scenarios to search for in audittrails). These challenges have lead to a research trend aimed to a simpli�ed rep-resentation of the problem in order to improve performance and e�ciency ofdetection. In the short term, e�ective intrusion detection systems will incorpo-rate a number of techniques rather than a \one-strategy-�ts-all" approach. Thegreater the variety of available tools is, the better the IDS is.In this spirit, we introduce an original intrusion detection model inspired bythe misuse detection approach. Its main goal is to provide an intrusion detectionsystem for fast detection of potential attacks rather that accurate (i.e., exhaus-tive) detection of actual attacks. The results of such a detection (i.e., �lteredaudit trails, in which attacks may be present) would be used in turn as input fora more accurate detection algorithm. This idea was already at the root of theGasSATA IDS, which use a genetic algorithm with this aim in view [4].We formalize a concrete instance of the misuse detection problem as a patternmatching problem which permits very fast searching of potential attacks. Wethen study the statistics of this model and their relation to �ltering e�ciency ofpotential attacks in the resulting system.Section 1 explains our proposed intrusion detection model and the constraintsof the problem. Section 2 gives analytical and experimental results on the prob-ability of matching. Section 3 presents our testing system and experimentalresults. Finally, conclusions and future works are presented.1 Intrusion Detection as a Pattern Matching ProblemIn general terms, the misuse detection problem is to detect the existence of apriori known series of events within the traces of activity of a system to protect.Traces widely di�er in their origin, form and content, depending on the typeof potential attacks that they attempt to cover. For example, traces in the formof network tra�c collected by a �rewall or a sni�er may be used to detect well-known attacks to implementations of a TCP/IP protocol stack. Another exampleare the logs of commands typed by users of a multi-user computer. In bothcases, traces may be collected at a single place (e.g., an ethernet segment, a hostcomputer) or at multiple locations simultaneously. We consider the detection ofattacks using logs (audit trails) of commands typed by users of a distributedcomputer system. In this context, attacks appear to be typically short sequencesof no more than 8 commands.We propose to model the misuse detection problem as a pattern matchingproblem in the following way: auditable commands in the system can be seenas letters of an alphabet � and the audit trail as a large string of letters in �(i.e., the text). The sequences of events representing attacks to be detected arethen substrings (i.e., patterns) to be located in the main string. Since attackersmay introduce spurious commands among those that represent an actual attackin order to disperse their evidence, a limited number of spurious letters mustbe allowed when searching the pattern. We are interested in simultaneously
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ReportedFig. 1. Attack signature searching as a multiple approximate pattern matching prob-lem.searching a set of patterns. Thus, the misuse detection problem can be regardedas a particular case of the multiple approximate pattern matching problem, whereinsertion in the pattern is the only allowed edit operation. Figure 1 illustrates ourproposed model to map the misuse detection problem as a multiple approximatepattern matching problem. The set of commands in the audit trail and attacksignatures is translated into letters of �. The resulting string and patterns arepassed to a multiple approximate pattern matching algorithm which in turnsearches for the occurrences of substrings in the main string. Matches representpotential attacks in the audit trail.We formalize the above problem as follows: Our text, T1::n, is a sequence ofn characters from an alphabet � of size �. Our patterns, P 1 : : :P r, are (short)sequences of characters from �. Let us consider such a pattern P1::m of lengthm. We want to report all the text positions that match P , where at most kinsertions between characters of P are allowed in its occurrence in T . We call� = k=m the \error level".Our problem can be modeled using the concept of insertion distance. Theinsertion distance from a to b, denoted id(a; b), is the number of insertions neces-sary to convert a into b. We say that id(a; b) =1 if this is not possible. Clearly,id(a; b) = jbj � jaj if a is a subsequence of b, and 1 otherwise.We search for the pattern P in a text T allowing insertions. At each textposition j 2 1::n we are interested in the minimum number of insertions needed



4to convert P into some su�x of T1::j. This is de�ned aslid(P; T1::j) = minj021::j id(P; Tj0::j) :The search problem can therefore be formalized as follows: given P 1 : : :P r, Tand k, report all text positions j such that lid(P i; T1::j) � k for some i 2 1 : : : r.In [5], two di�erent multipattern search algorithms speci�cally tailored forthis pattern matching problem are presented. They are based on \bit-parallelism",a technique to represent the state of the search using the bits of a computer wordof w bits (typically w = 32 or 64). The basic algorithm takes O(nm log(k)=w)time to scan the text for one pattern. A �rst multipattern search algorithm isO(nr(1 + �)1+�=(���)), which is better than r applications of the basic algo-rithm whenever � < (�=e) � 1. A second multipattern search algorithm takesO(nr log(m + k)=w) time and is useful for � < (�=m) � 1.It is shown in [5] that the algorithms can achieve impressive scanning speedsin practice. For example, they show the case of 4-letters patterns searched allow-ing 4 insertions, which is a case of interest in intrusion detection applications. Ona Sun Enterprise 450 server, these algorithms allow searching for 100 patternsat a rate of 4 megabytes per second.The focus of this paper lies in the probabilistic model for the occurrences ofpatterns in text when insertions are allowed, and its relation to the problem offalse detection of nonexistent attacks (i.e., \false positives") and misdetectionof existing attacks (i.e., \false negatives"). By characterizing this relation, theoptimal �ltering e�ciency of the model may be determined.2 Probability of MatchingWe start by giving an upper bound on the matching probability of a randompattern of length m at a random text position, with up to k insertions. Considera random text position j. The pattern P appears with k insertions at a textposition ending at j if and only if the text window Tj�m�k+1::j contains the mpattern letters in order. The window positions that match the pattern letterscan be chosen in �m+km � ways. Those letters are �xed but the other k can takeany value. Therefore the probability that the text window matches the patternwith k insertions is at most�m+ km � �k�m+k = �m+ km � 1�m (1)where we are overestimating because not all the selections of window positionsgive di�erent windows. For instance the pattern "abcd" matches in text window"abccd" with k = 1 in two ways, but only one text window should be counted.In particular, our overestimation includes the case of k0 < k insertions, which isobtained by selecting the �rst k� k0 characters of the text window as insertionsand distributing the k0 remaining insertions in the remaining text window oflength m + k0.
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α∗Fig. 2. On the left, matching probability for increasing k values and �xed m = 300.On the right, the �� limit as m grows.An asymptotic simpli�cation (for large m and � = k=m considered constant)of the cost can be obtained using Stirling's approximation to the factorial m! =(m=e)mp2�m(1 +O(1=m)): �(1 + �)1+���� �m (2)which, as � moves from zero, grows from 1=�m to 1. To determine where theprobability reaches 1, we require that ��� � (1 + �)1+�, i.e., � � (1 + �)(1 +1=�)�. A su�cient condition can be obtained by noticing that 1 � (1+1=�)� � e,and therefore � � (�=e)� 1 su�ces.This means that a model based on insertions can be useful only if we keep kreasonably low, i.e., k < m((�=e) � 1). However, this is a pessimistic analyticalmodel that needs experimental veri�cation.We test experimentally the probability that a random pattern matches at arandom text position. We generated a random text and 100 random patterns foreach experimental value shown. Figure 2 (left) shows the probability of matchingin a text of 3 Mb for a pattern with m = 300, where pattern and text wererandomly generated over an alphabet of size � = 68. The reason to choose sucha long pattern is given shortly.As can be seen, there is a k value from where the matching probability startsto grow abruptly, moving from almost 0 to almost 1 in a short range of values.This phenomenon is sharp enough to make this k value the most importantparameter governing the behavior of the algorithm. We call k� this point, and�� = k�=m the corresponding error level.On the right part of �gure 2 we have shown this limiting �� value for di�erentpattern lengths, showing that �� tends to a constant for large m, despite that itis smaller for short patterns. The fact that �� tends to a constant limit when mgrows motivated us to use m = 300 to show the process at a stable point. On theother hand, it must be noted that the limit is much lower for short patterns than
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α∗ Fig. 3. The �� limit as � grows.its asymptotic value, and therefore the exact combinatorial formula of Eq. (1)should be preferred, leaving Eq. (2) just as a conceptual tool to understand howthe process behaves in general.Finally, we show in �gure 3 how the alphabet size � a�ects the �� value. Ascan be seen, the curve looks as a straight line, where least squares estimationyields �� = (�=1:0856)� 0:8878. Again, this corresponds to long patterns, whilethe real values for short patterns should be obtained from the exact formula.All this matches our analytical results in the sense that (a) there is a clearerror level �� where the matching probability goes almost from 0 to 1; (b) thispoint does not depend on m asymptotically; and (c) it depends on � linearlyas predicted by the analysis (�� = (�=e) � 1) except because the e has beenchanged to about 1.09. Interestingly, this is similar to the result obtained for thek di�erences problem in [6,7] when relating their analytical predictions (�� =1 � e=p�) with the experiments (�� = 1 � 1:09=p�) and shows a consistentbehavior of the pessimistic analytical model used in both cases.3 Experimental ResultsWe experimentally studied how the probabilistic model of string matching al-lowing insertions relates to the problem of false negatives and positives. Ourinterest is to determine how �� relates to the ratio between false negatives andpositives and the total number of reported attacks and, consequently, to the�ltering e�ciency of the model.The experimental input data consists of an audit trail and an attack database.Both of them are very simple. The audit trail was collected using the GasSATAIDS in a real environment. The format of events given to GasSATA is for themoment an extension of the one proposed in [8]:#S#version=suntrad5.6#system=SOLARIS#deamon=system#ahost=amstel#no=28#event=AUE_EXECVE#date=2000.3.14@14.29.41#program=/var/audit/ls#



7file=/var/audit/ls#euid=root#egid=other#ruid=root#rgid=other#pid=13949#error=-1#return=KO#E#I##S#version=suntrad5.6#system=SOLARIS#deamon=system#ahost=lancelot#no=29#event=AUE_EXECVE#date=2000.3.14@14.29.41#program=/usr/bin/ls#file=/usr/bin/ls#arg=ls,-als#euid=root#egid=other#ruid=root#rgid=other#pid=13949#error=0#return=OK#E#I#The attack database consists of attacks signatures with the following format:>>> Attack_loginrule1rule1rule1>>> Attack_file_creationrule2>>> Attack_ps_cmdrule3rule7Rules are de�ned in the following way:rule1 ::= ( (event=AUE_login)||(event=AUE_rlogin) ) && (return=KO) ;rule2 ::= (event=AUE_CREAT) && ( (file co ls)||(file co cd) ) ;rule3 ::= (event=AUE_EXECVE) && (program=/usr/bin/ps) ;rule4 ::= (event=AUE_EXECVE) && (program co crack) ;rule5 ::= (event=AUE_su);where the co operator stands for \contains".The audit trail and attack signatures are translated into a pattern matchingrepresentation in three steps. First, a di�erent letter is assigned to each rule (e.g.,rule1 = 'a'). Attack signatures are then translated into patterns by mappingtheir rules to the corresponding letters. Finally, the audit trail is scanned and itsevents are matched against the rules. Events which match more than one ruleare assigned the corresponding letters. Events which do not match a rule areassigned arbitrary letters. The �nal string is constructed by concatenating thesequence of letters corresponding to matches of rules and the arbitrary letters.We used an audit �le of 24,847 events and studied three di�erent series ofactions1:Chained who: represented as a pattern of four events of a "who" command.The probability of the corresponding letter in our audit �le is 0.004382 andthere are four real attacks of this kind in the audit �le.1 These are not really attacks, but it makes no di�erence from the algorithmic pointof view.



8 Attack m Occs. Prob. letter Nec. k Max. k Fract. of textChained who 4 4 0.004382 225 500 8.21%Sensitive commands 10 2 0.007187 580 620 14.50%Chained whois 4 1 0.001402 1425 1570 5.74%Table 1. Main parameters for the three search patterns.Sensitive commands: represented as a pattern of ten events of any commandin the set f "last", "ps", "who", "whois" g. The probability of the corre-sponding letter in our audit �le is 0.007187 and there are two real attacks ofthis kind in the audit �le.Chained whois: represented as a pattern of four events of a "whois" command.The probability of the corresponding letter in our audit �le is 0.001402 andthere is one real attack of this kind in the audit �le.We have searched the three patterns in our audit �le allowing an increasingnumber of insertions k. Our goal is to determine the e�ectiveness of the proposed�ltering algorithm2. That is: how much text is it able to �lter out in order toretrieve what fraction of the real attacks that occur in the audit �le?By applying the analytical predictions of Section 2 to our real data, we com-puted the maximum k value for which the matching probability does not reach1 (recall that the model is pessimistic). To compute that maximum value, wehave used the most precise formula (Eq. (1)) for the matching probability. Giventhat the text is biased we have replaced 1=�m by pm, where p is the relative fre-quency of the letter that forms the pattern (all the attacks are repetitions of asingle letter, otherwise we can just multiply the probabilities of the participatingletters).Together with the maximum k recommended by the model we have com-puted the fraction of the text that the �lter selects (for that k) as a candidatefor further evaluation. This is simply the m+k characters preceding every match,avoiding to count multiple times the overlapping areas.Table 1 shows that using the maximum k recommended by the model selectsjust 6% to 15% of the text to be processed by a more costly algorithm. Moreover,we show in the column of \necessary k" the minimum k value that is necessaryto detect all the attacks present in the audit �le. This turns out to be below (andgenerally close to) the maximum k recommended by the model. Therefore, themodel can be used to obtain a good estimator of the k value to use in order todetect all the real attacks. Of course, it is also possible to use speci�c knowledge2 The text that our �lter is not able to discard has to be processed by a more so-phisticated algorithm in order to determine the presence of a real attack. As thosealgorithms are much slower than our pattern matching based approach, the e�ec-tiveness of the �lter is crucial.
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Fig. 4. Fraction of attacks detected versus fraction of text left for further processing.of the application to determine the appropriate k.Regarding the false negatives, we evaluated, for our three particular patterns,the fraction of text �ltered as a function of the fraction of attacks detected (see�gure 4). As can be seen, the curve is concave, which suggests that consideringa very small fraction of the text permits to detect most of the attacks. For ex-ample, with a k value that leaves just 2% of the text for further evaluation weget 50% of the attacks (and thus 50% of false negatives). We have here a way tobalance the false negatives rate and the speed of detection. Of course, in manycases, no false negative is required. In that situation, the value of k determinedby the model is an upper bound of the value to be used for the correspondingpattern.Regarding the false positives, we studied the evolution of the number ofmatches as a function of k for the three patterns (se �gure 5). Of course, forsome patterns, using a too large k value leads to many false positives. Let'snote that these false positives may be discarded by the more accurate detectionalgorithm which may analyse the output of our pattern matching mechanism(recall that we give a part of the trail containing a potential attack). To limitfalse positives without allowing false negatives, the value of k determined by themodel appears as a near-optimum.
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Fig. 5. Number of matches found as a function of k.Conclusions and Future WorkWe have addressed a performance problem in intrusion detection. The problem isthat the algorithms that accurately detect attacks in audit trails are complex andslow, and therefore can not cope with huge amounts of data that are generatedwhen a system or a network is monitored.We have presented a pattern matching based �lter for intrusion detection.The idea is that, despite that it may be di�cult and slow to determine that anattack has occurred, it is possible to quickly determine that there is no attackin large portions of the audit trail.The pattern matching model is based on the concept of insertion distance,where the attack is seen as a sequence of letters (events) and the algorithmsdetect the text portions where all the events of the attack appear in order withina window of k other events. Recent pattern matching algorithms [5] specializedfor this problem are able to spot the suspicious areas of the audit trail by scanningmillions of events per second. In this way, the pattern matching algorithm quickly�lters out a large portion of the text, leaving the rest to be examined by a moresophisticated (and slower) algorithm.We have presented an analytical model and preliminary experimental resultsabout the �tness of the insertion distance model to detect attacks in a realapplication. We have shown that the k value predicted by the model is largeenough to detect virtually all the relevant attacks, yet it still �lters out most ofthe text (85% to 94%). This means that only 6% to 15% of the original text needsto be analyzed by a more sophisticated algorithm. Moreover, we have shown thatmost of the attacks are indeed found with a much smaller k value, so that speed



11can be traded for precision. For example, leaving just 2% of the text to examinewe were able to detect 50% of the attacks. An optimal value for k can be foundwhich minimizes false negatives and false positives for groups of patterns withspeci�c characteristics.Some work to undergo to improve the proposed approach follows.Further experiments with larger and more realistic data sets must be carriedout in order to provide more accurate estimations of the �ltering e�ciency.The algorithm is assumed to take a random text with uniform distributionas input, which is not the case of our converted audit trails. The study of theimplications of that fact is to be done.Our experiments were conducted o�-line. We now need to conduct some on-line experiments. In that context, the e�ciency of the mapping process will haveto be studied with care.To conclude, the proposed approach was used for misuse detection. It couldbe also used for anomaly detection. The algorithm may then be used to verifythat a process behaves as during a training period, as proposed by [9].References1. J.P. Anderson. Computer security threat monitoring and surveillance. Technicalreport, James P. Anderson Company, Fort Washington, Pennsylvania, April 1980.2. Teresa F. Lunt. A survey of intrusion detection techniques. Computers and Security,12, 1993.3. T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of the14th National Computer Security Conference, October 1991.4. Ludovic M�e. Gassata, a genetic algorithm as an alternative tool for security audittrails analysis. In First international workshop on the Recent Advances in IntrusionDetection, 1998.5. J. Kuri and G. Navarro. Fast multipattern search algorithms for intrusion detec-tion. Technical Report TR/DCC-99-11, Dept. of Computer Science, Univ. of Chile,December 1999. To appear in 7th International Symposium on String Processingand Information Retrieval (SPIRE'00), IEEE CS Press.6. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,23(2):127{158, 1999.7. G. Navarro. Approximate Text Searching. PhD thesis, Dept. of Computer Sci-ence, Univ. of Chile, December 1998. Technical Report TR/DCC-98-14. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/thesis98.ps.gz.8. M. Bishop. A standard audit log format. In Proceedings of the 19th NationalInformation Systems Security Conference, pages 136{145, October 1995.9. P. D'haeseleer, S. Forrest, and P. Helman. An immunological approach to changedetection: Algorithms, analysis and implications. In Proceedings of the 1996 IEEESymposium on Research in Security and Privacy. IEEE Computer Society, IEEEComputer Society Press, May 1996.


