
FM-KZ: An Even Simpler Alphabet-IndependentFM-IndexRafa l Przywarski1, Szymon Grabowski1, Gonzalo Navarro2, and Alejandro Salinger31 Computer Engineering Dept., Teh. Univ. of  L�od�z, Poland.2 Dept. of Computer Siene, Univ. of Chile, Chile.3 David R. Cheriton Shool of Computer Siene, University of Waterloo, Canada.Abstrat. In an earlier work [7℄ we presented a simple FM-index variant, based on the idea ofHu�man-ompressing the text and then applying the Burrows-Wheeler transform over it. The maindrawbak of using Hu�man was its lak of synhronizing properties, foring us to supply anotherbit stream indiating the Hu�man odeword boundaries. In this way, the resulting index neededO(n(H0 + 1)) bits of spae but with the onstant 2 (onerning the main term). There are severaloptions aiming to mitigate the overhead in spae, with various e�ets on the query handling speed.In this work we propose Kautz-Zekendorf oding as a both simple and pratial replaement forHu�man. We dub the new index FM-KZ. We also present an eÆient implementation of the rankoperation, whih is the main building brik of the FM-KZ. Experimental results show that our indexprovides an attrative spae/time tradeo� in omparison with existing suint data strutures, andin the DNA test it even wins both in searh time and spae use. An additional asset of our solutionis its relative simpliity.1 IntrodutionA full-text index is a data struture that enables to determine the o ourrenes of ashort pattern P = p1p2 : : : pm in a large text T = t1t2 : : : tn without a need of sanningover the whole text T . Text and pattern are sequenes of haraters over an alphabet �of size �. The pattern may appear at any position in T , and its length is also arbitrary.In pratie one wants to know not only the value o, i.e., how many times the patternappears in the text (ounting query) but also the text positions of those o ourrenes(reporting query, and usually also a text ontext around them (display query).Classi full-text indexes, albeit powerful and versatile, need spae several times greaterthan the text itself. Hene, a natural interest in suint full-text indexes has been ob-served in reent years. A omprehensive survey of existing tehniques in this very ativeresearh area an be found in [13℄.A truly exiting perspetive has been originated in the work of Ferragina and Manzini[3℄; they showed a full-text index may disard the original text, as it ontains enoughinformation to reover the text. We denote a struture with suh a property with theterm self-index.The FM-index of Ferragina and Manzini [3℄ was the �rst self-index with spae om-plexity expressed in terms of kth order (empirial) entropy and pattern searh time linearonly in the pattern length. Its spae omplexity, however, ontains an exponential depen-dene on the alphabet size; a weakness eliminated in a pratial implementation [4℄ forthe prie of not ahieving the optimal searh time anymore. Therefore, it has been in-teresting both from the point of theory and pratie to onstrut an index with nielybound both spae and time omplexities, preferably with no (or mild) dependene on thealphabet size.



The large alphabet dependene of the original FM-index shows up not only in thespae usage, but also in the time to show an ourrene position and display text sub-strings. The FM-index needs up to 5Hkn + O �(� log � + log logn) nlog n + n��+1� bits ofspae, where 0 <  < 1. The time to searh for a pattern and obtain the number of itsourrenes in the text is the optimal O(m). The text position of eah ourrene anbe found in O �� log1+" n� time, for some " > 0 that appears in the sublinear termsof the spae omplexity. Finally, the time to display a text substring of length L isO �� (L + log1+" n)�. The last operation is important not only to show a text ontextaround eah ourrene, but also beause a self-index replaes the text and hene it mustprovide the funtionality of retrieving any desired text substring.One of the proposals to eliminate an exponential dependene on the alphabet size wasHu�man FM-index [7℄: It was based on the bakward searh idea of [4℄ but the noveltywas to Hu�man enode the text (and the pattern) so as to redue the alphabet to binary.As a result, any dependene on the alphabet size was removed. We showed that our indexan operate using n(2H0 + 3 + ")(1 + o(1)) bits, for any " > 0. No alphabet dependeneis hidden in the sublinear terms.At searh time, our index �nds the number of ourrenes of the pattern in O(m(H0+1)) average time. The text position of eah ourrene an be reported in worst ase timeO �1" (H0 + 1) logn�. Any text substring of length L an be displayed in O ((H0 + 1) L)average time, in addition to the mentioned worst ase time to �nd a text position.Sine the original presentation, its implementation has been optimized and also avariant with 4-ary Hu�man has been heked [6℄. Albeit not among the most suint,the 4-ary Hu�man FM-index appears to be among the fastest and thus pratial indies.In this paper we present an alternative to Hu�man oding variants. Instead, we useKautz-Zekendorf oding [11, 17℄, apable of instant detetion of odeword boundaries.To give the avor of this idea, we note that in its basi variant, the Kautz-Zekendorfode has no odeword with any two adjaent 1's.2 The FM-index StrutureThe FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whih produesa permutation of the original text, denoted by T bwt = bwt(T ). String T bwt is a result ofthe following forward transformation: (1) Append to the end of T a speial end marker $,whih is lexiographially smaller than any other harater; (2) form a oneptual matrixM whose rows are the yli shifts of the string T$, sorted in lexiographi order; (3)onstrut the transformed text L by taking the last olumn of M. The �rst olumn isdenoted by F .The suÆx array (SA) A of text T$ is essentially the matrix M: A[i℄ = j i� the ithrow ofM ontains string tjtj+1 � � � tn$t1 � � � tj�1. Given the suÆx array, the searh for theourrenes of the pattern P = p1p2 � � � pm is trivial. The ourrenes form an interval[sp; ep℄ in A suh that suÆxes tA[i℄tA[i℄+1 � � � tn, sp � i � ep, ontain the pattern as apre�x. This interval an be searhed for by using two binary searhes in time O(m logn).The suÆx array of text T is represented impliitly by T bwt. The novel idea of theFM-index is to store T bwt in ompressed form, and to simulate the searh in the suÆxarray. To desribe the searh algorithm, we need to introdue the bakward BWT thatprodues T given T bwt: 2



1. Compute the array C[1 : : : �℄ storing in C[℄ the number of ourrenes of haratersf$; 1; : : : ; �1g in the text T . Notie that C[℄+1 is the position of the �rst ourreneof  in F (if any).2. De�ne the LF-mapping LF [1 : : : n + 1℄ as LF [i℄ = C[L[i℄℄ + O(L; L[i℄; i), whereO(X; ; i) equals the number of ourrenes of harater  in the pre�x X[1; i℄.3. Reonstrut T bakwards as follows: set s = 1 and T [n℄ = L[1℄ (beause M[1℄ = $T );then, for eah n� 1; : : : ; 1 do s LF [s℄ and T [i℄ L[s℄.We are now ready to desribe the searh algorithm given in [3℄ (Fig. 1). It �nds theinterval ofA ontaining the ourrenes of the pattern P . It uses the array C and funtionO(X; ; i) de�ned above. Using the properties of the bakward BWT, it is easy to seethat the algorithm maintains the following invariant [3℄: At the ith phase, the variable sppoints to the �rst row ofM pre�xed by P [i;m℄ and the variable ep points to the last rowofM pre�xed by P [i;m℄. The orretness of the algorithm follows from this observation.Algorithm FM Searh(P ,T bwt)(1) i = m;(2) sp = 1; ep = n;(3) while ((sp � ep) and (i � 1) do(4)  = P [i℄;(5) sp = C[℄ +O(T bwt; ; sp� 1)+1;(6) ep = C[℄ +O(T bwt; ; ep);(7) i = i� 1;(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) os".Figure 1. Algorithm for ounting the number of ourrenes of P [1 : : :m℄ in T [1 : : : n℄.Ferragina and Manzini [3℄ desribe an implementation of O(T bwt; ; i) that uses aompressed form of T bwt. They show how to ompute O(T bwt; ; i) for any  and i inonstant time. However, to ahieve this they need exponential spae (in the size of thealphabet). In a pratial implementation [4℄ this was avoided, but the onstant timeguarantee for answering O(T bwt; ; i) was no longer valid.The FM-index an also show the text positions where P ours, and display any textsubstring. The details are deferred to Setion 5.3 Rank and Selet Queries on Bit ArraysA ruial building blok we use is a data struture to perform rank operations over abit array. Given a bit sequene B[1 : : : n℄, rank(B; i) is the number of 1's in B[1 : : : i℄,rank(B; 0) = 0. This funtion an be omputed in onstant time using only o(n) extrabits [10, 12, 2℄. The solution, as well as its more pratial implementation variants, aredesribed in [5℄; here we present a novel implementation, whih seems to be fastest inpratie.For an input bit array B of size n and a given parameter bs we reate a lookup ta-ble N with dn=2bse entries. Namely, for eah k = 0 : : : bn=2bs � 1 we ompute: N [k℄ =rank(B; (k+1)�2bs). If dn=2bse > bn=2bs, then we also ompute: N [bn=2bs℄ = rank(B; n).3



The above struture needs 32� dn=2bse = O(n) bits, where the onstant 32 is the numberof bits per entry of N .Now, we alulate rank(B; i) as follows. If i < 2bs, then rank(B; i) = popount(B; 0 : : : i).Otherwise, rank(B; i) = N [bi=2bs � 1℄ + popount(B; (bi=2bs � 2bs) : : : i). The operationpopount(B; a : : : b) returns the number of set bits in the interval B[a : : : b℄, a � b, makinguse of a preomputed table. As long as the interval width is on the order of mahine word,this is a onstant time operation.Sometimes we need to alulate the inverse funtion, selet(B; j), whih gives theposition of the j-th bit set in B. It an also be implemented in onstant time usingo(n) additional spae [10, 12, 2℄. More pratial implementations exist [5℄, but it is alwayssigni�antly slower than rank, and also more rarely needed.4 First Hu�man, then Burrows-WheelerWe fous now on our index representation, starting from the original variant. Imaginethat we ompress our text T$ using Hu�man. The resulting bit stream will be of lengthn0 < (H0 + 1)n, sine (binary) Hu�man poses a maximum representation overhead of 1bit per symbol4. Let us all T 0 this sequene. Let us also de�ne a seond bit array Th,of the same length of T 0, suh that Th[i℄ = 1 i� i is the starting position of a Hu�manodeword in T 0. Th is also of length n0. (We will not, however, represent T 0 nor Th in ourindex.)The idea is to searh the binary text T 0 instead of the original text T . Let us applythe Burrows-Wheeler transform over text T 0, so as to obtain B = (T 0)bwt. The terminatorharater, \$", is exluded from T 0 so as to have a binary alphabet.More preisely, let A0[1 : : : n0℄ be the suÆx array for text T 0, that is, a permutationof the set 1 : : : n0 suh that T 0[A0[i℄ : : : n0℄ < T 0[A0[i + 1℄ : : : n0℄ in lexiographi order, forall 1 � i < n0. In a lexiographi omparison, if a string x is a pre�x of y, assumex < y. SuÆx array A0 will not be expliitly represented. Rather, we represent bit arrayB[1 : : : n0℄, suh that B[i℄ = T 0[A0[i℄ � 1℄ (exept that B[i℄ = T [n0℄ if A0[i℄ = 1). We alsorepresent another bit array Bh[1 : : : n0℄, suh that Bh[i℄ = Th[A0[i℄℄. This tells whetherposition i in A0 points to the beginning of a odeword.Our goal is to searh B exatly like the FM-index. For this sake we need array Cand funtion O. Sine the alphabet is binary, however, O an be easily omputed:O(B; 1; i) = rank(B; i) and O(B; 0; i) = i� rank(B; i). Also, array C is so simple forthe binary text that we an do without it: C[0℄ = 0 and C[1℄ = n0 � rank(B; n0), thatis, the number of zeros in B (of ourse value n0 � rank(B; n0) should be preomputed inpratie). Therefore, C[℄ + O(T bwt; ; i) is replaed in our index by i � rank(B; i) if = 0 and n0 � rank(B; n0) + rank(B; i) if  = 1.There is a small twist, however, due to the fat that we are not putting a terminatorto our binary sequene T 0 and hene no terminator appears in B. Let us all \#" theterminator of the binary sequene so that it is not onfused with the terminator \$" ofT$. In the position p# suh that A0[p#℄ = 1, we should have B[p#℄ = #. Instead, we aresetting B[p#℄ to the last bit of T 0. This is the last bit of the Hu�man odeword assigned tothe terminator \$" of T$. Sine we an freely swith left and right siblings in the Hu�man4 Note that these n and H0 refer to T$, not T . However, the di�erene between both is only O(logn),and will be absorbed by the o(n) terms that will appear later.4



ode, we will ensure that this last bit is zero. Hene the orret B sequene would be oflength n0 + 1, starting with 0 (whih orresponds to T 0[n0℄, the harater preeding theourrene of \#", sine # < 0 < 1), and it would have B[p#℄ = #. To obtain the rightmapping to our binary B, we must orret C[0℄ +O(B; 0; i) = i� rank(B; i) + [i < p#℄,that is, add 1 to the original value when i < p#. The omputation of C[1℄ + O(B; 1; i)remains unhanged.Therefore, by preproessing B to solve rank queries, we an searh B exatly asthe FM-index. The extra spae required by the rank struture is o(H0n), without anydependene on the alphabet size. Overall, we have used at most n(2H0 + 2)(1 + o(1))bits for our representation. This will grow slightly in the next setions due to additionalrequirements.Our searh pattern is not the original P , but its binary oding P 0 using the Hu�manode we applied to T . Converting P to P 0 takes O(m) time. If we assume that theharaters in P have the same distribution of T , then the length of P 0 is < m(H0 + 1).This is the number of steps to searh B using the FM-index searh algorithm.The answer to that searh, however, is di�erent from that of the searh of T for P . Thereason is that the searh of T 0 for P 0 returns the number of suÆxes of T 0 that start withP 0. Certainly these inlude the suÆxes of T that start with P , but also other superuousourrenes may appear. These orrespond to suÆxes of T 0 that do not start a Hu�manodeword, yet they start with P 0.This is the reason why we have marked the suÆxes that start a Hu�man odewordin Bh. In the range [sp; ep℄ found by the searh for P 0 in B, every bit set in Bh[sp : : : ep℄represents a true ourrene. Hene the true number of ourrenes an be omputed asrank(Bh; ep)� rank(Bh; sp� 1).Figure 2 depits the searh algorithm.Algorithm Hu�-FM Searh(P 0,B,Bh)(1) i = m0;(2) sp = 1; ep = n0;(3) while ((sp � ep) and (i � 1)) do(4) if P 0[i℄ = 0 thensp = (sp� 1)� rank(B; sp� 1) + 1 + 1� [sp� 1 � p#℄;ep = ep� rank(B; ep) + 1� [ep � p#℄;else sp = n0 � rank(B; n0) + rank(B; sp� 1) + 1;ep = n0 � rank(B; n0) + rank(B; ep);(7) i = i� 1;(8) if ep < sp then o = 0 else o = rank(Bh; ep)� rank(Bh; sp� 1);(9) if o = 0 then return \not found" else return \found (o) os".Figure 2. Algorithm for ounting the number of ourrenes of P 0[1 : : : m0℄ in T 0[1 : : : n0℄.Therefore, the searh omplexity is O(m(H0+1)), assuming that the zero-order distri-butions of P and T are similar. It is well-known that the longest Hu�man odeword doesnot exeed O(m logn) bits. From this we immediately obtain the worst ase searh ostof O(m logn) for our index. This mathes the worst ase searh time of the ompressedsuÆx array (CSA) of Sadakane [16℄. An exeptional situation ours when P ontains a5



harater not present in T . This is easier, however, as we immediately know that P doesnot our in T .Is it in fat possible to ahieve O(m logn) searh omplexity also for the worst ase, forthe prie of 2n extra bits. Basially, the idea is to use a length-limited Hu�man odingvariant but we omit the details and analysis due to lak of spae. This idea, however,does not have muh importane in pratie beause extremely skew symbol distributionsalmost never happen and thus optimizing the worst ase is hardly worth any e�ort.5 Reporting Ourrenes and Displaying the TextUp to now we have foused on the searh time, that is, the time to determine the suÆxarray interval ontaining all the ourrenes. In pratie, one needs also the text positionswhere they appear, as well as a text ontext. Sine self-indexes replae the text, in generalone needs to extrat any text substring from the index.Given the suÆx array interval that ontains the o ourrenes found, the FM-indexreports eah suh position in O(� log1+" n) time, for any " > 0 (whih appears in thesublinear spae omponent). The CSA an report eah in O(log" n) time, where " is paidin the nH0=" spae. Similarly, a text substring of length L an be displayed in timeO(�(L + log1+" n)) by the FM-index and O(L + log" n) by the CSA.Our index an do better than the FM-index in this respet, although not as well as theCSA. Using (1 + ")n additional bits, we an report eah ourrene position in O(1"(H0 +1) logn) time and display a text ontext in time O(L log� + logn) in addition to thetime to �nd an ourrene position. On average, assuming that random text positions areinvolved, the overall omplexity to display a text interval beomes O((H0+1)(L+ 1" logn)).Those omplexities hold for all the variants of our solution: based on the binary or higherarity Hu�man, or on the Kautz-Zekendorf oding. Still, the overall idea of reportingand displaying via sampling sorted suÆxes at regular intervals was �rst presented in theseminal work on the FM-index, and is now widely used in the �eld. Details an be founde.g., in [6℄.A related query type onerns displaying the text around eah pattern ourene. Moregenerally, we want to display a text substring T [l : : : r℄ of length L = r� l+ 1. Again, wemake use of a known tehnique, on the overall obtaining the following time omplexities[6℄: O((H0 + 1)(L + 1" logn)) in the average ase, and O(L log� + (H0 + 1)1" logn) in theworst ase.6 K-ary Hu�manThe purpose of the idea of ompressing the text before onstruting the index is toremove the sharp dependene of the alphabet size of the FM index. This ompression isdone using a binary alphabet. In general, we an use Hu�man over a oding alphabet ofk > 2 symbols and use dlog ke bits to represent eah symbol. We all this generalizationthe k-ary FM-Hu�man. Varying the value of k yields interesting time/spae tradeo�s.We use only powers of 2 for k values, so eah symbol an be represented without wastingspae.The spae usage varies in di�erent aspets. Array B inreases its size sine theompression ratio gets worse. B has length n0 < (H(k)0 + 1)n symbols, where H(k)0 is6



the zero order entropy of the text omputed using base k logarithm, that is, H(k)0 =�P�i=1 nin logk �nin � = H0= log2 k. Therefore, the size of B is bounded by n0 log k = (H0 +log k)n bits. The size of Bh is redued sine it needs one bit per symbol, and hene its sizeis n0. The total spae used by these strutures is then n0(1+log k) < n(H(k)0 +1)(1+logk),whih is not larger than the spae requirement of the binary version, 2n(H0 + 1), for1 � log k � H0.The rank strutures also hange their size. The rank strutures for Bh are omputedin the same way of the binary version, and therefore they redue their size, using o(H(k)0 n)bits. For B, we no longer an use the rank funtion to simulate O. Instead, we needto alulate the ourrenes of eah of the k symbols in B. For this sake, we prealulatesublinear strutures for eah of the symbols, inluding k tables that ount the ourrenesof eah symbol in a hunk of b = dlogk(n)=2e symbols. Hene, we need o(kH(k)0 n) bits forthis strutures. In total, we need n(H(k)0 + 1)(1 + log k) + o(H(k)0 n(k + 1)) bits.Regarding the time omplexities, the pattern has length < m(H(k)0 + 1) symbols, sothis is the searh omplexity, whih is redued as we inrease k. For reporting queries anddisplaying text, we need the same additional strutures TS, ST and S that for the binaryversion. The k-ary version an report the position of an ourrene in O�1� (H(k)0 +1) logn�time, whih is the maximum distane between two sampled positions. Similarly, the timeto display a substring of length L beomes O((H(k)0 + 1)(L + 1� logn)) on average andO(L log� + (H(k)0 + 1)1� logn) in the worst ase.7 Kautz-Zekendorf CodingThe ondition for getting rid of the Bh array is to have a oding for whih the bitstream enables instant synhronization at odeword boundaries. A solution ould be basedon the representation of integers, �rst advoated by Kautz [11℄ for its synhronizationproperties, whih presents eah number in a unique form as a sum of Fibonai numbers.This tehnique is better known from a work by Zekendorf [17℄, therefore we will all itKautz-Zekendorf oding.Consider the Fibonai sequene f1 = 1, f2 = 2, and fi+2 = fi+1 + fi. The resultingsequene of Fibonai numbers is 1, 2, 3, 5, 8, 13, : : : It is easy to prove by indution thatany integer number N an be uniquely deomposed into a sum of Fibonai numbers,where eah number is summed at most one and no two onseutive numbers are used inthe deomposition. (If two onseutive numbers fi and fi and fi+1 appear in the deom-position we an use fi+2 instead.) Thus we an represent N as a bit vetor, whose i-th bitis set i� the i-th Fibonai number is used to represent N . No two onseutive bits an beset in this representation beause this would mean that we used two onseutive numbersin the deomposition. This an be generalized to k onseutive ones [11℄. The reurreneis now fi = i for i � k and fi+k = fi+k�1 + fi+k�2 + : : :+ fi+1 + fi. In this representationwe do not permit a sequene of k onseutive numbers in the deomposition, and thus nostream of k 1's appears in the bit vetor.We use this enoding as follows. We sort the soure symbols by frequeny and thenassign the binary enoding of number N to the N -th most frequent symbol. In addition,all the enodings are prepended with a sequene of k 1's followed by one 0. Note thatnowhere else in the enoding are there k adjaent 1's.7



If, during the LF-mapping, we read a 0 and then k suessive 1's from T 0, we knowthat we are at a odeword beginning. Thus, Bh is no longer needed. A pratial side-e�etis also that there is no need for selet to �nd the suessive mathes: they all are in aontiguous range of the matrix rows. All the rest of the operatory remains unhanged.Let us onsider the performane of Kautz-Zekendorf oding with the two most prati-al (at least for natural languages) parameters, k = 2 and k = 3. The regular expressionsfor all valid odewords in those ases are 110(0j10) � ("j1) and 1110(0j10j110) � ("j1j11),respetively. We alulated the average odeword length for the 80 MB English text usedin Setion 8. Note that all we needed to know for this estimation was the knowledge ofzero-order symbol distribution in the text. For k = 2 and k = 3 the average lengths were5:696 and 6:420 bits per symbol, respetively. The only omponent of the index, apartfrom the B array, is the rank struture for B. The fastest rank in the new implementa-tion needs 25% of the text size. Taking this �gure, we obtain approximately 0:89n and1:00n overall spae oupany, respetively. Those results are better than of any othervariant of our index, but the prie is a longer searh time. Note that even less spae anbe obtained with a rank implementation using 10% of the text size [5℄, for a relativelylittle slow-down. Other options an be better for other text types, e.g., for DNA usingk = 1 (atually a unary ode) is a better hoie.8 Experimental ResultsWe implemented our indexes, both the original, the k-ary and the KZ versions, makingsome pratial onsiderations that di�er from the theoretial ones. The main di�ereneis the alulation of rank and O, where we used the solution desribed in [5℄, for theolder index variants, or the new rank implementation desribed in Setion 3. The newindexes will be alled FM-KZ1 and FM-KZ2, orresponding to the parameters k = 1 andk = 2, respetively.In this setion we show experimental results on ounting, reporting and displayingqueries and ompare the eÆieny to existing indexes. The indexes used for the experi-ments were the FM-index implemented by Navarro [15℄, Sadakane's CSA [16℄, the RLFMindex [14℄, the SSA index [14℄ and the LZ index [15℄. Other indexes whose implementa-tions are available were not inluded beause they are not omparable to the FM Hu�man/ FM-KZ index due either to their large spae requirement or their high searh times .We onsidered three types of text for the experiments: 80 MB of English text obtainedfrom the TREC-3 olletion 5 (�les WSJ87-89), 60 MB of DNA and 55 MB of protein se-quenes, both obtained from the BLAST database of the NCBI6 (�les month.est_othersand swissprot respetively).Our experiments were run on an Intel(R) Xeon(TM) proessor at 3.06 GHz, 2 GB ofRAM and 512 KB ahe, running Gentoo Linux 2.6.10. We ompiled the ode with g3.3.5 using optimization option -O9.Now we show the results regarding the spae used by our index and later the resultsof the experiments divided in query type.5 Text Retrieval Conferene, http://tre.nist.gov6 National Center for Biotehnology Information, http://www.nbi.nlm.nih.gov8



8.1 Spae resultsFor the experiments we onsidered the binary, the 4-ary, and the KZ versions of our index.It is interesting to know how the spae requirement of the Hu�man-based index variesaording to the parameter k. Table 1 (left) shows the spae that the index takes as afration of the text for di�erent values of k and the three types of �les onsidered. Thesevalues do not inlude the spae required to report positions and display text.We an see that the spae requirements are lowest for k = 4. For higher values thisspae inreases, although staying reasonable until k = 16. With higher values the spaesare too high for these indexes to be omparable to the rest. It would be interesting tostudy the time performane to the versions of the index with k = 8 and k = 16. Withk = 8 we do not expet an improvement on the query time sine log k is not a power(reasons omitted) of 2 and therefore the omputation of O is slower. The version withk = 16 ould lead to a redution in query time, but the aess to 4 mahine words forthe alulation of O ould negatively a�et it. It is important to say that this valuesare only relevant for the English text and proteins, sine it does not make sense to usethem for DNA.It is also interesting to see how the spae requirement of the index is divided amongits di�erent strutures. Table 1 (right) shows the spae used by eah of the strutures forthe index with k = 2 and k = 4 for the three types of texts onsidered.k Fration of textEnglish DNA Proteins2 1,68 0,76 1,454 1,52 0,74 1,308 1,60 0,91 1,4316 1,84 | 1,5732 2,67 | 1,9264 3,96 | |
FM-Hu�man k = 2 FM-Hu�man k = 4Struture Spae [MB℄ Spae [MB℄English DNA Proteins English DNA ProteinsB 48:98 16:59 29:27 49:81 18:17 29:60Bh 48:98 16:59 29:27 24:91 9:09 14,80Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55Total 134,69 45,61 80,48 121,41 44,30 72,15Text 80,00 60,00 55,53 80,00 60,00 55,53Fration 1:68 0:76 1:45 1:52 0:74 1:30Table 1. On the left, spae requirement of our index for di�erent values of k. The value orresponding to therow k = 8 for DNA atually orresponds to k = 5, sine this is the total number of symbols to ode in this�le. Similarly, the value of row k = 32 for the protein sequene orresponds to k = 24. On the right, detailedomparison of k = 2 versus k = 4. We omit the spaes used by the Hu�man table, the onstant-size tables forRank, and array C, sine they are negligible.For higher values of k the spae used by B will inrease sine the use of more symbolsfor the Hu�man odes inreases the resulting spae. On the other hand, the size of Bhdereases at a rate of log k and so do its rank strutures. However, the spae of the rankstrutures of B inreases rapidly, as we need k strutures for an array that redues itssize at a rate of log k, whih is the reason of the large spae requirement for high valuesof k.Now, let us take a look at the FM-KZ1 and FM-KZ2 spae/time behavior. For DNA,the FM-KZ1 is a lear winner: among the fastest and de�nitely the most suint, also itis hard to imagine a simpler full-text index (as the enoding is merely the unary ode).On the English text, FM-KZ2 is takes about 1:0n spae, muh less than other indexesfrom our family, but is also onsiderably slower, e.g. more than 1:5 times slower than FMHu�man with k = 4. 9



8.2 Counting queriesFor the three �les, we show the searh time as a funtion of the pattern length, varyingfrom 10 to 100, with a step of 10. For eah length we used 1000 patterns taken fromrandom positions of eah text. Eah searh was repeated 1000 times. We obtained anaverage error of 2.6% with a on�dene of 95%. Figure 3 (left) shows the time for ountingthe ourrenes for eah index and for the three �les onsidered. As the CSA index needsa parameter to determine its spae for this type of queries, we adjusted it so that it woulduse approximately the same spae that the binary FM-Hu�man index.We also show the average searh time per harater along with the minimum spaerequirement of eah index to ount ourrenes. Unlike the CSA, the other indexes do notneed a parameter to speify their size for ounting queries. Therefore, we show a pointas the value of the spae used by the index and its searh time per harater. For theCSA index we show a line to resemble the spae-time tradeo� for ounting queries. Thetime per harater for eah pattern length is the searh time divided by the value of thelength. The time per harater shown on the plot is the average of these times for eahlength. Figure 3 (right) shows the searh time per harater for eah index and for eahtype of text.8.3 Reporting queriesWe measured the time that eah index took to searh for a pattern and report the positionsof the ourrenes found. From the English text and the DNA sequene we took 1000random patterns of length 10. From the protein sequene we used patterns of length 5.We measured the time per ourrene reported varying the spae requirement for everyindex exept the LZ, whih has a �xed size. For the CSA we set the two parameters,namely the size of the strutures to report and the strutures to ount, to the same value,sine this turns out to be optimal. Our measures have a 2:2% error with 95% on�dene.Figure 4 shows the times per ourrene reported for eah index as a funtion of its size.8.4 Displaying textWe measured the time that eah index took to show the �rst harater of a text ontextaround the ourrenes found. More preisely, this is the time of searhing for a pattern,loating the position of an ourrene and showing one harater of the text in theontext area of the position loated. Usually this harater is the one at the position ofthe ourrene, but it an also be a di�erent lose one, depending on eah index. Wemeasured this time as a funtion of the size used by eah index. We used the same 1000patterns used for the reporting experiment, obtaining an average error of 1:6% with 95%on�dene. Figure 5 (left) shows the time to display the �rst harater as a funtion ofthe spae requirement for eah index and for eah type of text.In addition, we measured the time to display a ontext per harater displayed. Thatis, we searhed for the 1000 patterns and displayed 100 haraters around eah of thepositions of the ourrenes found. We subtrated from this time the time to display the�rst harater and divided it by the amount of haraters displayed. For this experiment,we obtained an average error of 6% with 95% on�dene. Figure 5 (right) shows this timealong with the minimum spae required for eah index for the ounting funtionality,10
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Figure 3. On the left, searh time as a funtion of the pattern length over, English (80 MB), DNA (60 MB),and a proteins (55 MB). The times of the LZ index do not appear on the English text plot, as they range from0:5 to 4:6 ms. In the DNA plot, the time of the LZ index for m = 10 is 2:6. The reason of this inrease is thelarge number of ourrenes of these patterns, whih inuenes the ounting time for this index. On the right,average searh time per harater as a funtion of the size of the index.
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Figure 5. On the left, time to show the �rst harater of a text ontext around the positions of the ourrenesas a funtion of the size of the index. From top to bottom, we show the results of searhing 80 MB of Englishtext, 60 MB of DNA and 55 MB of proteins. In the plot of the DNA sequene, the point orresponding to theLZ index is overed. Its value is: spae=1.18, time=0.03. On the right, time per harater displayed around anourrene and spae for eah index.
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For reporting queries, our index loses to the FM-index for English and proteins, mainlybeause of its large spae requirement. Also, it only surpasses the RLFM and CSA forlarge spae usages. For DNA, however, our index, with the two versions, is better thanthe FM-index. This redution in spae is due to the low zero-order entropy of the DNA,whih makes our index ompat and fast.Regarding the time for displaying the �rst harater, the FM-index is faster than ourindex. Again, our index takes more spae than the other indexes to get ompetitive timefor English and proteins, and redues its spae for DNA. Regarding display time perharater, our index with k = 4 is the fastest for DNA with a low spae requirement,beoming an interesting alternative for this type of query.The version of our index with k = 4 improved both the spae and time with respetto the binary version and it beame a very good alternative for ounting and reportingqueries, espeially for DNA, due to the low zero-order entropy of this text.9 ConlusionsWe have foused in this paper on a pratial data struture inspired by the FM-index [3℄,whih removes its sharp dependene on the alphabet size �. Our key idea is to enodethe text with the Kautz-Zekendorf oding, o�ering instant synhronization at odewordboundaries (a property missing in Hu�man oding, thus implying a signi�ant spaepenalty in FM indexes), at still being quite suint. While not ompetitive to the bestsuint indexes in theory, our solutions fare well in pratie, and are simpler oneptuallyand easier to implement than the other strutures.AknowledgementsThis work was partially funded by Fondeyt Grant-1-050493, Chile (Gonzalo Navarro).Referenes1. M. Burrows and D. J. Wheeler. A blok-sorting lossless data ompression algorithm. DEC SRC ResearhReport 124, 1994.2. D. Clark. Compat Pat Trees. PhD thesis, University of Waterloo, 1996.3. P. Ferragina and G. Manzini. Opportunisti data strutures with appliations. In Pro. FOCS'00, pp.390{398, 2000.4. P. Ferragina and G. Manzini. An experimental study of an opportunisti index. In Pro. SODA'01, pp.269{278, 2001.5. R. Gonz�alez, Sz. Grabowski, V. M�akinen, and G. Navarro. Pratial implementation of rank and seletqueries. In Poster Pro. WEA'05, pp. 27{38, 2005.6. Sz. Grabowski, V. M�akinen, G. Navarro, and A. Salinger. A Simple Alphabet-Independent FM-index. InPro. PSC'05, pp. 230{244, 2005.7. Sz. Grabowski, V. M�akinen, and G. Navarro. First Hu�man, then Burrows-Wheeler: an alphabet-independentFM-index. In Pro. SPIRE'04, pp. 210{211, 2004. Poster.8. R. Grossi and J. Vitter. Compressed suÆx arrays and suÆx trees with appliations to text indexing andstring mathing. In Pro. STOC'00, pp. 397{406, 2000.9. D. Harman. Overview of the Third Text REtrieval Conferene. In Pro. TREC-3, pages 1{19, 1995. NISTSpeial Publiation 500-207.10. G. Jaobson. Suint Stati Data Strutures. PhD thesis, CMU-CS-89-112, Carnegie Mellon University,1989.11. W. H. Kautz. Fibonai odes for synhronization ontrol. IEEE Trans. on Inf. Th., 11, pp. 284{292, 1965.14
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