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Abstract. Music sequences can be treated as texts in order to perform music
retrieval tasks on them. However, the text search problems that result from this
modeling are unique to music retrieval. Up to date, several approaches derived
from classical string matching have been proposed to cope with the new search
problems, yet each problem had its own algorithms. In this paper we show that
a technique recently developed for multipattern approximate string matching
is flexible enough to be successfully extended to solve many different music
retrieval problems, as well as combinations thereof not addressed before. We
show that the resulting algorithms are close to optimal and much better than
existing approaches in many practical cases.
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1 Introduction

In this paper we are interested in music retrieval, and in particular, in a recent
approach to it where musical scores are regarded as strings and string matching
techniques can be used to solve music retrieval problems. In order to map the problem
to string matching, the alphabet of the string could simply be the set of notes in the
chromatic or diatonic notation, or the set of intervals that appear between notes
(for example, pitches may be represented as MIDI numbers and pitch intervals as
number of semitones). In both cases, we deal with numeric strings. Then, music
retrieval problems can be converted into string matching problems, that is, find the
occurrences of a short string (called the pattern) in a longer string (called the text).
This is usually not enough to fully solve all music retrieval problems, but it provides a
useful and efficient filter to leave the most promising candidates for a more profound
and costly evaluation.
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Exact string matching cannot be used to find occurrences of a particular melody,
because a number of irrelevant distortions could exist between the melody sought and
its version stored in the music database. To perform meaningful music retrieval one
must resort to diverse forms of approximate matching, where a limited amount of dif-
ferences of diverse kinds are permitted between the search pattern and its occurrence
in the text. Different versions of the approximate string matching problem arise in
different fields [23], yet those of music retrieval are unique of this area [10, 4, 27].

One approximate matching model of use in music retrieval is (δ, γ)-matching. In
this model, two strings a1a2 . . . am and b1b2 . . . bm of the same length m match if (i)
the absolute differences between corresponding characters do not exceed δ, that is,
|ai − bi| ≤ δ for all 1 ≤ i ≤ m (or, alternatively, max1≤i≤m |ai − bi| ≤ δ), and (ii) the
sum of those absolute differences does not exceed γ, that is,

∑
1≤i≤m |ai − bi| ≤ γ.

This model accounts for small differences that may arise between two versions of the
same melody, setting a limit for the individual absolute differences, as well as a global
limit to the overall differences. Searching for pattern p under (δ, γ)-matching consists
of finding all the text positions where a text substring that (δ, γ)-matches p appears.
Less popular subproblems are δ-matching and γ-matching, which only enforce one of
the two conditions.

A second relevant approximate matching model is the longest common subsequence
(LCS) and its dual indel distance. The former, LCS(a, b), is the maximum length
of a string that is subsequence both of a and b, that is, LCS(a, b) = max{|s|, s ⊑
a, s ⊑ b}. A string s = s1s2 . . . sr is a subsequence of string a1a2 . . . am, s ⊑ a, if s can
be obtained by removing zero or more characters from a, that is, s = ai1ai2 . . . air for
1 ≤ i1 < i2 < . . . < ir ≤ m. The LCS has been largely used in computational biology
to model biological similarity, and it is also relevant to identify musical passages that
are similar except for a few extra or missing notes. This is especially relevant because
music contains various kind of “decorations”, such as grace notes and ornamentations,
that are not essential for matching. The indel distance id(a, b) between strings a and
b is the number of characters one has to add or remove to a and b to make them
equal, id(a, b) = |a|+ |b| − 2 ·LCS(a, b). Searching for pattern p under indel distance
with tolerance k consists of finding all the text positions where a string p′ appears
so that id(p, p′) ≤ k. Other variants of indel distance, which are less popular in
music retrieval, are Levenshtein or edit distance (where substitutions of characters
are also permitted) and episode matching (where only insertions in the pattern are
permitted).

Finally, a third similarity concept of relevance in music retrieval is transposition
invariance. Two strings a = a1a2 . . . am and b = b1b2 . . . bm are one the transposed
version of the other if there is a constant t such that a+t = (a1+t)(a2+t) . . . (am+t) =
b. Transposition invariance is very relevant because Western people tend to listen to
music analytically, by observing the intervals between consecutive pitch values rather
than the actual pitch values themselves. As a result, a melody performed in two
distinct pitch levels is perceived as equal regardless of whether it is performed in a
lower or higher level of pitches.

As a string matching problem, dealing with transposition invariance is trivial
because it suffices to represent text and pattern as differences between consecutive
notes and then apply exact string matching. However, the above problems in most
cases of interest appear in combined form. In particular, transposition invariance
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is usually combined with longest common subsequence. The longest common trans-
position invariant subsequence between two strings a and b, LCTS(a, b), permits
transposing a or b as necessary to find the longest common subsequence among them,
LCTS(a, b) = maxt∈Z LCS(a + t, b).

In recent years, there has been much activity around developing specific string
matching techniques to solve diverse music retrieval problems, mostly consisting of
combinations of those outlined above. Several theoretical and practical results of
interest have been achieved. We cover these in the next section.

Our contribution in this paper is to show that a particular approach recently devel-
oped for multiple approximate string matching [16] is flexible enough to be successfully
adapted to solve most of the combinations of problems sketched above. Basically the
same search technique, coupled with slightly different pattern preprocessings, yield
algorithms that solve each combination. We also characterize those combinations
that cannot be addressed by our approach. In theoretical terms, we show that the
resulting algorithms are sublinear (that is, they do not inspect all text characters)
and can be argued to be close to optimal. Yet, the most important aspect is the
practical side, where we show that our technique largely outperforms all the existing
ones in most cases of interest.

2 Related Work

In which follows, we assume that a long text T = t1t2 . . . tn is searched for a compar-
atively short pattern p = p1p2 . . . pm. Both are sequences over alphabet Σ, a finite
contiguous subset of Z, of size σ.

2.1 (δ, γ)-Matching

Several recent algorithms exist to solve this problem. These can be classified as
follows:

Bit-parallel: The idea is to take advantage of the intrinsic parallelism of the bit
operations inside a computer word of w bits [26], so as to pack several values
in a single word and manage to update them all in one step [5, 6, 12]. The
best complexity achieved [12] is O(n m log(γ)/w) in the worst case and O(n)
on average.

Occurrence heuristics: Inspired by Boyer-Moore techniques [3], they skip some text
characters according to the position of some characters in the pattern [5, 11].
In general, only δ is used to skip characters, while the γ-condition is used to
verify candidates. This makes these algorithms weak for large δ and small γ.

Substring heuristics: Based on suffix automata [14], these algorithms skip text char-
acters according to the position of some pattern substrings [11, 12]. In the
second article, they use bit-parallelism to filter the text using both δ and γ,
unlike previous approaches. This is shown to be the approach examining the
least number of text characters.

FFT-related: It is possible to solve the problem in O(δn logm) time [7] using Fast
Fourier Transform (FFT) based techniques. Other FFT based o(mn) solutions
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exist for related problems, see e.g. [8] and especially related to δ-matching [1, 9].
Matching under γ-restriction is possible in O(mn/ logσ n) time [21] without
using FFT (but using the Four-Russians trick).

In practice, the best current algorithms for (δ, γ)-matching are those in [12], as
demonstrated by the experiments in [11, 12]. In [12] they present a plain bit-parallel
and a substring heuristic. The first is shown to be the best in most cases, but for
short patterns and small δ and γ, the character-skipping technique is better.

The FFT based techniques, although elegant, have considerably large overheads to
make them practical. Our preliminary tests show that they only become faster than
the naive algorithm on very long patterns. Searching for long patterns is not typical
in music retrieval. The solution based on the Four-Russians trick is only practical for
small alphabets, much smaller than what is required for music retrieval.

2.2 Transposition Invariant LCS and Indel Distance

Plain (non-transposed) LCS among strings p and T can be computed in O(mn) time
using dynamic programming [17]. In general, any LCTS algorithm can be adapted to
text searching with indel distance. The LCTS problem was first stated in [20], where
O(σmn) time was obtained by trying out all the 2σ + 1 possible transpositions one
by one. Further solutions to the problem can be classified as follows.

Brute-force: The idea is to pick any LCS algorithm and try it for all the 2σ + 1
possible transpositions. Apart from the original proposal [20], several others
have been attempted considering different practical LCS algorithms based on
bit-parallelism [13, 18]. The best complexity achieved is O(σmn/w).

Sparse dynamic programming: An evolution over the above scheme is to notice that
the LCS(a + t, b) problem for each transposition t has only a few character
matches between a and b, mn in total. Those sparse problems are best handled
by sparse dynamic programming algorithms. This idea lead to several solutions
[22, 25, 15]. The best complexity achieved is O(mn log log min(m, σ)), yet a
version with complexity O(mn log σ/ log w) is shown to be better in practice.

Branch and bound: In this case the idea is to search for the best possible trans-
position t by a backtracking method, recursively dividing the space of 2σ + 1
transpositions into ranges until finding the best one [19]. This yields a best-case
complexity of O((mn + log log σ) log σ), and the method works well in practice.
Yet, it cannot be extended to searching with indel distance.

Experiments in [19, 18, 15] demonstrate that the O(mn log σ/ log w) algorithm in
[15] is the fastest in practice. This method can be adapted to searching with indel
distance.

3 Optimal Multiple Approximate String Matching

In [16], new algorithms for single and multiple approximate string matching were
presented. Those algorithms were not only optimal on average, but also very efficient
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in practice, even in the more competitive area of single approximate string matching.
It was shown that, to search for the occurrences of r patterns of length m in a text
of length n, all them uniformly distributed over an alphabet of size σ, the algorithm
required O(n(k + logσ(rm))/m) time on average. Here k is the maximum number of
missing, extra, or substituted characters permitted to match a pattern against a text
string (searching under edit distance). This average complexity is optimal [28, 24].

We first explain how to search for a single pattern p. We first choose a block length
ℓ, and compute med(b, p) for every possible block b ∈ Σℓ (that is, every possible ℓ-
gram). Here, med(b, p) is the minimum edit distance between b and a substring of
p,

med(b, p) = min{ed(b, p′), ∃x, y, p = xp′y},

being ed(b, p′) the edit distance between b and p′.
Now, the text T = t1t2 . . . tn is scanned as follows. Since the minimum length of

an occurrence of p = p1p2 . . . pm in T with edit distance at most k has length at least
m−k (when k deletions occur on p), we slide a window of length m−k along the text.
For each window tried, ti+1ti+2 . . . ti+m−k, we read its ℓ-grams right to left. That is, we
read at most ⌊(m− k)/ℓ⌋ ℓ-grams b1, b2, and so on, so that b1 = ti+m−k−ℓ+1 . . . ti+m−k

is the rightmost, b2 = ti+m−k−2ℓ+1 . . . ti+m−k−ℓ precedes b1, etc. The invariant is that
any occurrence of p starting at positions ≤ i has already been reported.

For each such ℓ-gram bj = ti+m−k−jℓ+1 . . . ti+m−k−jℓ+ℓ, we find med(bj , p) in the
precomputed table. If, after reading bj , we have med(b1, p) + med(b2, p) + . . . +
med(bj , p) > k, then no possible occurrence of p can contain the text bjbj−1 . . . b2b1,
thus the window is slid forward to start at the second character of bj , that is, we set
i← i + m− k − jℓ + 1 (as the new window will start at i + 1).

If, on the other hand, all the ℓ-grams of the window are scanned and yet the
window cannot be shifted, then it must be verified for a real occurrence. At this
point, we must check if there is an occurrence p′ of p starting at text position i + 1.
Since the maximum length of an occurrence is m + k (where k insertions occur into
p), any potential p′ mush finish between positions i + m − k and i + m + k. So we
compute

led(p, i) = min{ed(p, ti+1 . . . ti+m−k+d), 0 ≤ d ≤ 2k},

which can be done in O(m2) time by computing ed( ) incrementally in d. If led(p, i) ≤
k, we report i + 1 as the starting position of an occurrence. Finally, we advance the
window by one position, i← i + 1.

We show now that the way we shift the window is safe, that is, no occurrence can
start at positions i + 1 to i + m− k− jℓ + 1. Any such occurrence, of length at least
m− k, must contain the sequence of ℓ-grams bj . . . b1. Let p′ = xbj . . . b1y be such an
occurrence. This is a split of p′ into j + 2 pieces. The main point is that the edit
distance is decomposable: For any strings p and p′, given any split p′ = p′1 . . . p′j+2,
there is a split p = p1 . . . pj+2 such that ed(p′, p) = ed(p′1, p1) + . . . + ed(p′j+2, pj+2).
But each such ed(p′s, ps) ≥ med(p′s, p) ≥ 0, by definition of med( ).

Hence, in our particular case, ed(p′, p) ≥ med(bj , p)+ . . .+med(b1, p). Thus if the
latter exceeds k, there can be no occurrence of p containing bj . . . b1.

The extension of the algorithm for multiple patterns is trivial. We only have to
change the preprocessing so that p is now a set of patterns p = {p1 . . . pr} and now
med(b, p) = min1≤i≤r med(b, pi). So med(b, p) is a lower bound to the cost of matching
b anywhere inside any pattern of the set.
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By appropriately choosing ℓ = Θ(logσ(rm)), we obtain the promised complexity.

3.1 Extensions

Several other improvements are studied in [16]. We briefly review some that are used
in our experiments. For more details see [16].

On the windows that have to be verified, we could simply run the verification for
every pattern, one by one. A more sophisticated choice is hierarchical verification [2].
We form a tree whose nodes have the form [i, j] and represent the group of patterns
pi . . . pj . The root is [1, r], and the leaves have the form [i, i]. Every internal node
[i, j] has two children [i, ⌊(i + j)/2⌋] and [⌊(i + j)/2⌋+ 1, j].

The preprocessing is done first for the leaves, as in the single pattern case,
that is, we compute a table for med(b, pi). The internal nodes contain tables for
mini≤h≤j med(b, ph), computed as minimizing over the two tables of the subtrees. In
the filtering phase, we first use the table for the root, corresponding to the full set of
patterns, and if the current window has to be verified with respect to a node in the
hierarchy, we rescan the window considering the two children of the current node. It
is possible that the window can be discarded for both children, for one, or for none.
We recursively repeat the process for every child that does not permit discarding the
window. If we process a leaf node and still have to verify the window, then we run
the verification algorithm for the corresponding single pattern.

The second improvement is to have bit-parallel counters. In this case we reserve
only O(log2 k) bits to accumulate the differences med(bj , p). This means that if we
have a computer word of w bits, we can process O(w/ log2 k) patterns in parallel.
This technique can also be used with the hierarchical verification, to increase the
arity of the tree to O(w/ log2 k).

The third improvement is to use ordered ℓ-grams, where each bj is permit-
ted to match only in the area of p where it could be aligned in an occurrence
starting at i + 1. In an approximate occurrence of bj . . . b1 inside the pattern,
bi cannot be closer than (i − 1)ℓ positions to the end of the pattern. There-
fore, we compute tables for medj(b, p), 1 ≤ j ≤ ⌊(m − k)/ℓ⌋, where medj(b, p) =
min{ed(b, p′), ∃x, y, |y| ≥ (j − 1)ℓ, p = xp′y}. This allows us to discard a window
whenever med1(b1, p)+med2(b2, p)+ . . .+medj(bj , p) > k. This reduces verifications
but increases preprocessing time and space.

Finally, it is possible to improve the preprocessing time by using a trie of all the
possible ℓ-grams to reuse preprocessing work. All the improvements can be combined
into a single algorithm.

4 Adapting to Music Retrieval

The method above was designed for multiple string matching under edit distance. Yet
its main idea is much more general and can be used to solve many other problems. In
this section we demonstrate that the idea solves most of the music retrieval problems
we have focused on in this paper. We note that this gives immediately a solution to
the multipattern version of the same problems.
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4.1 Transposition Invariant Indel Distance

Let us start with searching with transposition invariant indel distance. For each
ℓ-gram b ∈ Σℓ, we compute

mtid(b, p) = min{id(b + t, p′), ∃x, y, p = xp′y, − σ ≤ t ≤ σ}.

This is the minimum transposition invariant indel distance to match b anywhere inside
p. The same algorithm of the previous section is used, and the same argument shows
that we cannot discard a window that starts an occurrence of p in T . Indel distance
is decomposable just like edit distance, that is, for any split p′ = p′1 . . . p′j+2, there is
a split p = p1 . . . pj+2 such that id(p′, p) = id(p′1, p1) + . . . + ed(p′j+2, pj+2). Assume
p matches t the current window xbj . . . b1y starting at position i + 1. That is, there
exists a transposition t such that id(p′, p) ≤ k, p′ = (x + t)(bj + t) . . . (b1 + t)(y + t).
Now, id(p′, p) ≥ id(bj + t, p2)+ . . . id(b1 + t, pj+1) ≥ mtid(bj , p)+ . . .mtid(b1, p). Thus
if the latter exceeds k we can safely shift the window.

When a window starting at position i + 1 cannot be shifted, we simply com-
pute LCTS(p, ti+1 . . . ti+m−k+d) for any 0 ≤ d ≤ 2k, and report position i + 1 if
LCTS(p, ti+1 . . . ti+m−k+d) ≥ (m + m − k + d − k)/2 = m − k + d/2 for some d, as
this is equivalent to id(p, ti+1 . . . ti+m−k+d) ≤ k for some transposition t.

Fig. 1 shows simplified pseudocode.

4.2 (δ, γ)-Matching

Alternatively, we can search for (δ, γ)-matches of p in T . In this case the window is
of length m, as occurrences are all of the same length. For each ℓ-gram b ∈ Σℓ, we
compute

mdg(b, p) = min{γ′, ∃x, y, p = xp′y, b (δ, γ′)-matches p′}.

This is the minimum total number of absolute differences obtained by b inside p,
where we restrict those positions to δ-match as well. The same algorithm of the
previous section is used with this preprocessing (and the threshold is γ instead of k).

Being γ-matching a cumulative measure, the sum of mdg(bj, p) values is a
lower bound to the γ needed to match the window inside p. Consider window
p′ = ti+1 . . . ti+m = xbj . . . b1. Assume p′ (δ, γ)-matches p. Then, by definition of
(δ, γ)-matching, b1 (δ, γ1)-matches pm−ℓ+1 . . . pm, and so on until bj , which (δ, γj)-
matches pm−jℓ+1 . . . pm−jℓ+ℓ, so that γ1 + . . . + γj ≤ γ. As each bs (δ, γs)-matches
pm−sℓ+1 . . . pm−sℓ+ℓ, it holds mdg(bs, p) ≤ γs, and thus mdg(bj, p)+ . . .+mdg(b1, p) ≤
k.

When a window ti+1 . . . ti+m cannot be shifted, we check whether p (δ, γ)-matches
the window in time O(m), and report position i + 1 if this is the case.

The pseudocode of Fig. 1 can be easily adapted to this model. One needs only to
replace mtid() with mdg(), k with γ, and adjust the window size from m − k to m,
and verification area from ti+1 . . . ti+m+k to ti+1 . . . tm.

4.3 Feasible and Unfeasible Combinations

We can also combine transposition invariant indel distance with δ-matching. In this
case we count indels, but two characters match whenever they do not differ by more
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Search ( )
1. D ← Preprocess ( )
2. i← 0
3. While i ≤ n− (m− k) Do

4. pos← Shift (i, D)
5. If pos = i Then

6. Run verification in text area ti+1 . . . ti+m+k

7. pos← pos + 1
8. i← pos

Shift (i, D)
1. M ← 0
2. c← m− k
3. While c ≥ ℓ Do

4. c← c− ℓ
5. M ←M + D[ti+c+1 . . . ti+c+ℓ]
6. If M > k Then Return i + c + 1
7. Return i

Preprocess ( )
1. ℓ← Θ(logσ m)
2. For b ∈ Σℓ Do D[b]← mtid(b, p)
3. Return D

Figure 1: Simple description of the algorithm. The main variables are global for all
the algorithms, to simplify the presentation. The code corresponds to transposition
invariant indel.

than δ units. This is easily handled by modifying mtid(b, p) formula so that id(b+t, p′)
considers matches in the more relaxed way. Transposition invariance can also be
combined with (δ, γ)-matching, by using mtdg(b, p) instead of mdg(b, p), so that

mtdg(b, p) = min{γ′, ∃x, y, p = xp′y, b + t (δ, γ′)-matches p′, − σ ≤ t ≤ σ}.

Interestingly, we cannot directly combine transposition invariant indel distance
with (δ, γ)-matching. The reason is that we do not have here a single value to mini-
mize, such as the number of indels or γ, but both of them at the same time. It was
possible to combine transposition invariant indel distance with δ-matching because
the latter is not a parameter to optimize but a condition for matching. Likewise, it
was possible to combine γ-matching with δ-matching to obtain (δ, γ)-matching. Yet,
if we want to combine indel distance (even without transposition invariance) with
γ-matching, the problem is that each pair (b, p′) produces some number of indels and
some γ, so different pairs will yield the minimal of each and it is not clear which to
choose.

Of course we can count indels and γ separately in different tables (each achieved
by a different pair). This is equivalent to filtering each window with k and with γ
separately, and verifying those that pass both filters. Yet, this is not the same as a
combined filter, but it could be practical.
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4.4 Complexity Considerations

We are not able to analyze our algorithms, but we can give some clues about their
average case performance. As we have described it, our algorithm for transposition
invariant indel distance is equivalent to multipattern search with indel distance for the
set p1 = p−σ, p2 = p−σ+1, . . ., p2σ+1 = p+σ. Since id(a, b) ≥ ed(a, b) for any strings
a and b, we can use the analysis of [16] on edit distance for indel distance and the
result is pessimistic (yet tight). According to that analysis, searching for r = 2σ + 1
random patterns in random text yields average complexity O(n(k + logσ(rm))/m) =
O(n(k + logσ m)/m). This value is optimal even for one pattern [28], and it would
show that our algorithm is optimal too.

Yet, the problem is that our 2σ + 1 patterns are not random, but are all the
transpositions of a random pattern. For example, if ℓ = 1, then our 2σ + 1 patterns
necessarily match any string of length 1, whereas the same number of random pat-
terns do not. Thus our analysis is optimistic and therefore not conclusive. Yet, we
conjecture that the result of the analysis is valid.

In case δ-matching is permitted together with transposition invariance indel dis-
tance in the model, then the probability of matching is not 1/σ but O(δ/σ), and
therefore the base of the logarithm is not σ but O(σ/δ). Redoing the analysis we get
O(n(k+logσ/δ(δm))/m). With δ-matching alone (no transposition invariance) we get
O(n logσ/δ m/m), and with δ-matching with transposition invariance (without indels)
we get O(n logσ/δ(δm)/m). We are not able to account for the analytical effect of a
γ-restriction in these analyses, but of course they can only improve.

The preprocessing time is O(mσℓ+1/w) for transposition invariant indels, O(mσℓ)
for (δ, γ)-matching, and O(mσℓ+1) for transposition invariant (δ, γ)-matching. With
ordered ℓ-grams the preprocessing cost for indels increases to O(mσℓ+1). For the other
models the costs remain the same. The space requirement is O(σℓ) and O(σℓm/ℓ)
for the basic algorithm and for the ordered ℓ-grams, respectively. These have to be
multiplied by O(σ) if hierarchical verification is used. All the bounds are polynomial
in m (as ℓ = Θ(logσ m)).

5 Experimental Results

We have implemented the algorithms in C, compiled using icc 8.0 with full op-
timizations. The experiments were run in a 2GHz Pentium 4, with 512mb ram,
running Linux 2.4.18. The computer word length is w = 32 bits.

For the text we used a concatenation of 7543 music pieces, whose total length
is 1828089 bytes. The file was obtained by extracting the pitch values from MIDI
files. The pitch values are in the range [0 . . . 127]. A set of 100 patterns were ran-
domly extracted from the text. Each pattern was then searched for separately, and
we report the average search times. We measured user times. We have separated the
preprocessing and search times, which makes it easier to compare the search perfor-
mance. Our preprocessing cost is considerably high, but this is amortized by large
music collections that arise in practical applications.
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5.1 Implementation

Several variants of the optimal multipattern algorithm were considered in [16]. For
(δ, γ)-matching without transpositions, we used the basic single pattern algorithm.
As the transpositions were implemented as multipattern search, we used bit-parallel
counters and hierarchical verification in these cases, which give a considerable speed-
up. For indels, we used the IndelMYE algorithm [18] for the final verifications. We
ran each experiment with and without ordered ℓ-grams. The former is an order of
magnitude faster in many cases, but it has higher preprocessing cost, justified only
for large texts.

For all experiments we used ℓ = 2. Due to the considerably large alphabet size,
larger ℓ values were not practical. On the other hand, ℓ = 1 gives in general poor re-
sults, especially combined with transpositions (but note that with bit-parallel counters
even 1-grams are not guaranteed to match always, as different transposition ranges
are mapped to different counters).

As the alphabet size was large (128), but most of the values occur in the middle
of the range, we mapped the alphabet into the range 0 . . . 63. That is, values 32 . . . 95
were mapped to 0 . . . 63, values 0 . . . 31 to 0, and values 96 . . . 127 to 95. This map-
ping allows us to use the original δ values. Verification was done using the original
alphabet. This improves the preprocessing times, without worsening the search times.

5.2 Preprocessing Time

Table 1 gives the preprocessing times. For mtid() and mtdg() we have considered hi-
erarchical verification because it gave consistently better results, so the preprocessing
timings include all the hierarchy construction. Using ordered ℓ-grams increases the
preprocessing cost, but improves the search performance.

mtid(), m = 32 mdg(), m = 8 mdg(), m = 64 mtdg(), m = 32
0.0699 / 0.2680 0.0048 / 0.0052 0.0067 / 0.0092 0.0936 / 0.5177

Table 1: Preprocessing times in seconds for ℓ = 2. The second timings are for ordered
ℓ-grams.

5.3 Transposition Invariant Indel Distance

We compared our approach against the LCTS algorithm [15], whose running time
is O(mn log σ/ log w). Although the algorithm solves the dual problem, it could be
adapted to searching with indel distance as well. We also compared against the bit-
parallel dynamic programming algorithm IndelMYE [18], whose running time for a
single transposition is O(mn/w). We superimposed [2] all the transpositioned pat-
terns and used hierarchical verification, in the same manner as in [16] with BPM
algorithm. This works very well in practice, although the worst case complexity is
still O(σmn/w). Fig. 2 shows the results for m = 8 . . . 64 and k = 1 . . . 5. Our al-
gorithm is by far the fastest for small k/m. LCTS is competitive only for very large
k/m, while IndelMYE is the best choice for moderate k/m. Our algorithm clearly
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improves with ordered ℓ-grams, at the cost of higher preprocessing effort and memory
requirements.
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Figure 2: Left: Search time in seconds for transposition invariant indel/LCS for
m = 8...64. Right: The same with ordered ℓ-grams.

Fig. 3 shows the results for m = 32, k = 1 . . . 6 and δ = 0 . . . 2. The LCTS
algorithm cannot be applied for this setting. Being bit-parallel algorithm, IndelMYE
can be easily adapted to this case by using classes of characters to implement δ. In
this case we are again competitive against IndelMYE for small k/m, but only for very
small δ. Ordered ℓ-grams boost the search considerably.
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Figure 3: Left: Search times in seconds for transposition invariant indel for δ = 1...3,
and m = 32. Right: The same with ordered ℓ-grams.

5.4 (δ, γ)-Matching

For (δ, γ)-matching we compared against the bit-parallel Forward matching algorithm
(Fwd) of [12]. Fig. 4 shows the results for m = 8 . . . 64, δ = 1 . . . 3 and γ = mδ/2. Our
algorithm is much more sensitive to increasing δ than Fwd, but for small δ values we
are an order of magnitude faster. Using ordered ℓ-grams makes our algorithm more
tolerant for increasing γ (but note that γ/m is constant here).

In [12] they give also bit-parallel backward matching algorithm, that is able to
skip some text characters. The implementation restricts the pattern lengths to be at
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most Θ(w/ log2(γ)). This means that in this experiment this algorithm is applicable
only for the case m = 8, δ = 1, and γ = 8 ∗ 1/2 = 4. The algorithm takes 0.0063s
average time, in this case, and marginally beats our algorithm (0.0065s)

Timings for m = 32, δ = 1 . . . 3, and γ = 4 . . . 40 are shown in Fig. 5. (Note
that for δ = 1 there is no point for using γ > m.) Again, Fwd becomes eventually
faster for large δ and γ, while our algorithm dominates for small parameter val-
ues. Fig. 6 repeats the experiment for transposition invariant (δ, γ)-matching. Note
that no competitors exist in this case, although transposition superimposition and
hierarchical verification could be applied for some of the existing (δ, γ) matching al-
gorithms. However, observe that our transposition invariant algorithm is faster than
Fwd algorithm (without transpositions) for small δ and γ.
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Figure 4: Left: Search times in seconds for (δ, γ)-matching for m = 8 . . . 64 and
δ = 1 . . . 3. For each data point γ = mδ/2. Right: The same with ordered ℓ-grams.
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Figure 5: Left: Search times in seconds for (δ, γ)-matching for m = 32, δ = 1 . . . 3,
and γ = 4 . . . 40. Right: The same with ordered ℓ-grams.

5.5 Comparison

We have separated the preprocessing and searching times in presenting the experi-
mental results. This may seem unfair against the competing algorithms, and so it is
for short texts. To show that our algorithms are competitive, Table 2 gives estimates
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Figure 6: Left: Search times in seconds for (δ, γ)-matching with transpositions for
m = 32, δ = 1 . . . 3, and γ = 4 . . . 40. Right: The same with ordered ℓ-grams.

for the minimum file sizes required to beat the competing approaches for various
problem instances. These limits are quite modest, and for smaller parameter values
even shorter files are sufficient.

Indels (δ, γ)-matching
k = 4, δ = 0 k = 1, δ = 1 (1,∞) (2,∞) (3, 24)
> 0.61 Mb > 1.77 Mb > 0.46 Mb > 0.71 Mb > 1.52 Mb

Table 2: Examples of music file sizes where we begin to win for a few settings. The
first row shows the parameter values, and the second row gives an estimate of the
minimum file size where our algorithm wins its competitor. For smaller parameters
shorter files would suffice. The estimates are for m = 32.

6 Conclusions

We have presented new filtering algorithms for music retrieval. Our algorithms are
very efficient in practice, and are conjectured to be optimal on average. The experi-
ments show that for small to moderate error thresholds our algorithms are substan-
tially faster than previous approaches for all but very short texts. These are the
parameter values that are most interesting in most music retrieval applications.

The algorithms are extremely flexible. We can solve many different problem vari-
ants essentially without any modifications to the search algorithms, only preprocess-
ing changes according to the search model. In particular, we are able to solve some
variants where no competing algorithms currently exist. These are transposition in-
variant indel with δ > 0, and transposition invariant (δ, γ)-matching. Moreover, our
algorithms can be used for multipattern search as well.
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