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Abstract

The metric space model abstracts many proximity search problems, from nearest-neighbor
classifiers to textual and multimedia information retrieval. In this context, an index is a data
structure that speeds up proximity queries. However, indexes lose their efficiency as the intrinsic
data dimensionality increases. In this paper we present a simple index called list of clusters (LC),
which is based on a compact partitioning of the data set. The LC is shown to require little space,
to be suitable both for main and secondary memory implementations, and most importantly, to
be very resistant to the intrinsic dimensionality of the data set. In this aspect our structure is
unbeaten. We finish with a discussion of the role of unbalancing in metric space searching, and
how it permits trading memory space for construction time.

1 Introduction

The problem of proximity searching has received much attention in recent times, due to an increasing
interest in manipulating and retrieving the more and more common multimedia data. Multimedia
data have to be classified, forecasted, filtered, organized, and so on. Their manipulation poses
new challenges to classifiers and function approximators. The well-known k-nearest neighbor (knn)
classifier is a favorite candidate for this task for being simple enough and well understood. One
of the main obstacles, however, of using this classifier for massive data classification is its linear
complexity to find a set of k£ neighbors for a given query.

The metric space model is gaining momentum as a paradigm to speed up proximity queries.
Metric databases permit storing objects from a metric space and performing “proximity queries”
over them efficiently, by building metric indexes that reduce the number of distance evaluations
needed [11, 18]. By using a metric index, a knn classifier can afford massive classification tasks at
reasonable time costs.

Proximity searching has applications in a vast number of fields, apart from classification tasks
and multimedia data management. Some examples are image quantization and compression (where
only some vectors can be represented and those that cannot must be coded as their closest repre-
sentable point); text retrieval (where we look for words in a text database allowing a small number
of errors), information retrieval (where we look for documents which are similar to a given query or
document); computational biology (where we want to find a DNA or protein sequence in a database
allowing some errors due to typical variations); function prediction (where we want to search the
most similar behavior of a function in the past so as to predict its probable future behavior); etc.
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The most challenging problem in metric space searching is to deal with the so-called “high
dimensional spaces” (see Section 2), where all the elements are more or less at the same distance
from each other. Many metric spaces of interest in applications are high dimensional, and most
indexes can do little on them.

In this paper we present the list of clusters (LC), a metric index based on compact partitions (see
Section 3). We present analytical and experimental results to evaluate the index and understand
its behavior. We show that our index is especially well suited to search high dimensional spaces,
where it outperforms by far several prominent alternative metric indexes. We also show how our
index could work efficiently in secondary memory and how could it be updated upon insertions and
deletions in the database.

The key to the success of the LLC in high dimensions is that it trades construction time for query
time. Alternative structures attempt to cope with high dimensions by trading memory space for
query time. Memory space is a much higher price than construction time, which is paid only once
or sparsely. In practice, memory space puts a tighter limit than those derived from construction
time.

We finish with a discussion of the role of unbalancing in metric space searching. In exact search-
ing, balanced data structures are always best. We show how this ceases to be true in metric spaces
as the intrinsic dimension grows, and how our LC can be seen as an extremely unbalanced tree,
thus explaining its better fitting to high dimensional spaces when compared, in particular, against
the many existing indexes based on balanced trees. Moreover, unbalancing gives the conceptual
framework to understand how construction time can be used instead of memory space to face high
dimensions.

2 Basic Concepts

2.1 Metric Spaces

Proximity queries extend exact searching in the sense that they retrieve objects from a database
that are close to a given query object. The query object is not necessarily a database element. The
concept can be formalized using the metric space model, where a distance function d(x,y) is defined
over pairs of elements in a set X. The distance function has metric properties, that is, it satisfies
d(xz,y) > 0 (positiveness), d(z,y) = d(y,x) (symmetry), d(z,y) = 0 iff x = y (strict positiveness),
and d(z,y) < d(x,z) + d(z,y) (triangle inequality).

The database is a set U C X, and we define the query element as ¢, an arbitrary element
of X. A proximity query involves additional information, besides ¢, and can be of two basic
types: Metric Range queries, (q,7)qg = {u € U : d(q,u) < r}; and Nearest Neighbor queries,
nng(q)g ={u; € U: Vv e U, d(q,u;) <d(q,v) and [{u;}| = k}.

Given a database of |[U| = n objects, all those queries can be trivially answered by performing
n distance evaluations. Since the distance function is usually expensive to compute, the goal is to
structure the database (that is, to build an indez) so that we perform few distance evaluations at
query time. Essentially, the index maintains information on distances between database elements
that permits, using the metric properties, to prove later that some database elements are far enough
from the query, without actually measuring each distance.



The idea is that, given the database U, we first build an index on it so that we can answer many
queries later. The database can be static (never changing) or dynamic (incorporating or losing
elements along time). In the latter case, the index must support those database updates, and it is
expected that the construction and update cost is amortized by sufficient queries between updates.
Many databases are essentially static and the index construction cost is less relevant. On the other
hand, the memory space required by the index is relevant in all cases, as it has to be maintained
all the time.

We focus on range queries in this paper, as the others can be systematically built over these in
an optimal way [17, 11, 18]. The set of points of X that are at distance at most r to ¢ is called the
“query ball”, so (q,7)q is the intersection of the query ball and U. We remark that the radius r (as
well as the value k in nearest neighbor queries) is given as a part of the query and depends on the
application. For example, it may be estimated so that a certain number of elements or fraction of
the database is retrieved, or such that farther elements are known to be irrelevant.

The indexing techniques discard elements using the metric properties. There are applications,
however, where some metric properties do not hold. If the distance is not strictly positive, the
space is called a pseudo-metric space. Most techniques for metric spaces work for pseudo-metric
spaces as well, by simply identifying all the objects at distance zero as a single object. In some cases
we may have a quasi-metric, where distance is not symmetric. There exist techniques to derive
a new, symmetric, distance function from an asymmetric one, such as d'(z,y) = d(z,y) + d(y, z).
However, specific knowledge of the domain is necessary to properly adapt a search radius to the
new space. Finally, sometimes the triangle inequality holds only in relaxed form, such as d(z,y) <
ad(x, z) + fd(z,y) + d. After some scaling, those spaces can be searched using the same algorithms
designed for metric spaces. Yet, if the triangle inequality does not hold at all, and in absence of
further properties of the space, there are no known methods to avoid a linear database scan to
solve a query.

On the other hand, there are some well-studied particular cases of metric space searching. The
best known is the k-dimensional coordinate space RF, especially using the Euclidean distance.
There are effective methods for this case, such as kd-trees, R-trees, X-trees and many others [15].
However, for more than roughly 20 dimensions those structures cease to work well [3]. We focus
in this paper in general metric spaces, although the solutions are well suited also for k-dimensional
spaces. An immediate advantage of regarding a k-dimensional space as a metric space is that, if
the data embedded in the former space have lower dimension, then the real, intrinsic, dimension of
the data shows up in the latter space, independently of k.

2.2 Dimensionality

It is interesting to notice that the concept of “dimensionality” can be translated to metric spaces
as well: The typical feature in high dimensional spaces is that the probability distribution of
distances among elements has a very concentrated histogram (with larger mean as the dimension
grows), hampering the work of any proximity search algorithm [3, 5, 7]. In the extreme case we
have a space where d(z,z) = 0 and Yy # z, d(z,y) = 1, where it is impossible to avoid a single
distance evaluation at search time. We say that a general metric space is high dimensional when its
histogram of distances is concentrated. We use in this paper a quantitative measure of the intrinsic
dimensionality proposed in [11]:



Definition: The intrinsic dimensionality of a metric space is defined as p = where p and o?

are the mean and variance of its histogram of distances.

Z
202

Under this definition, a random vector space with k coordinates has intrinsic dimension O(k),
with a constant close to 1, so the definition extends naturally that of vector spaces. Note this
measure gives only a rough idea of how difficult it is to search a given dataset from a metric space.

Many metric space of interest are indeed high-dimensional. Searching them is so difficult that
the term “curse of dimensionality” has been coined to refer to this fact. Finding efficient solutions
to high-dimensional metric space searching is currently the most important open problem in metric
space searching.

3 Related Work

According to [11] there are two main approaches for metric index design (see also [18] for a different
characterization):

o Pivot-based algorithms, which select a number of “pivots” from the database and classify all
the other elements according to their distances to them. The distances between elements and
pivots and between the query ¢ and the pivots are used together with the triangle inequality
to filter out elements of the database without actually measuring their distance to ¢q. These
algorithms generally improve as more pivots are added, although the space requirements of
the indexes increase as well.

o Compact partitioning algorithms, which divide the set into spatial zones as compact as pos-
sible, and are able to discard complete zones by performing few distance evaluations (e.g.,
between the query ¢ and a centroid of the zone). The partition into zones can be hierarchical,
but the indexes use a fixed amount of memory and do not improve by having more space.

As shown in [11], compact partitioning algorithms deal better with high dimensional metric
spaces. Despite that pivot-based algorithms can improve by using more memory, they need more
and more memory to beat compact partitioning algorithms as the dimension grows. For intrinsic
dimension around 20 they already need impractical amounts of extra space. Therefore, compact
partitioning algorithms seem a promising alternative to index high dimensional metric spaces.

A way to see the difference between pivot-based and compact partitioning algorithms is that the
former define “rings” (elements at the same distance) around pivots, and the intersections of rings
define the zones in which the space is partitioned. To maintain those zones spatially compact as the
dimension grows, more and more rings have to be intersected, that is, more pivots are necessary.
The alternative technique uses compact partitions by construction, and takes no advantage from
additional memory. It is easier to prove that a compact region is far enough from the query than
to do the same for a sparse region.

3.1 Pivot-based Algorithms

Burkhard-Keller Trees (bk-trees) [6] are designed for discrete distance functions: they select a pivot
element p as the root of the tree, and put at child 7 the elements which are at distance ¢ to the



pivot. Each subtree is recursively built with the same technique until there are b elements or less,
in which case the elements are simply stored in a “bucket” at the tree leaf. A range query ¢ with
tolerance radius r is searched by measuring d(p, q), reporting p if appropriate, and entering only
into subtrees numbered d(p,q) — 7 to d(p,q) + r. The rest need not be considered because of the
the triangle inequality. The buckets reached are exhaustively compared against q.

Fixed Queries Trees (fg-trees) [2] are an evolution where the same pivot is used for all the nodes
of the same level of the tree. In this case the pivot does not need to belong to the subtree. Many
comparisons are saved in the backtracking process because only one different pivot per level exists.
However, the tree is taller. A variant called Fixed Height fq-tree (fhg-tree) is also proposed where
all the leaves are at the same depth h, regardless of the bucket size.

Vantage Point Trees (vp-trees) [25, 27] are designed for continuous distance functions. The root
has two equal-size subtrees that divide the elements in closer to and farther from the root. This
can be extended to m-ary trees (mvp-trees) [5, 4].

Finally, algorithms like AESA [26], LAESA [21, 20] and its variants [23, 8] and Fixed Queries
Arrays (fg-arrays [9]) are based in a common idea: k pivots are selected and each object is mapped
to k coordinates which are its distances to the pivots. Later, the query ¢ is also mapped and if
it differs from an object in more than r along some coordinate then the element is filtered out
by the triangle inequality. That is, if for some pivot p; and some element v of the set it holds
|d(q,pi) — d(v,p;)| > r, then we know that d(q,v) > r without need to evaluate d(v,q). The
elements that cannot be filtered out using this rule are directly compared.

An interesting feature of most of these algorithms is that they can reduce the number of distance
evaluations by increasing the number of pivots. Define Dy (x,y) = maxi<;<k |d(x,p;) — d(y,pj)|.
Using the pivots p1, ..., px is equivalent to discarding elements u such that Dy(q,u) > r. As more
pivots are added we need to perform more distance evaluations (exactly k) to compute Dg(q, *),
but on the other hand Dg(q,*) increases its value and hence it has a higher chance of filtering
out more elements. It follows that there exists an optimum k, This optimum, however, cannot be
normally reached because it is too high in terms of space requirements: kn distances have to be
precomputed and stored in order to use k pivots. Hence, in general these methods use as many
pivots as they can, and they are normally well below their optimum.

3.2 Compact Partitioning Algorithms

Generalized Hyperplane Trees (gh-trees) [25] use two “centers” for each tree node and divide the
space according to which of the two centers is closer to each object. At search time the query enters
into the subtrees whose zone of influence has a nonempty intersection with the query ball.

Bisector Trees [19, 24] are similar but the zones are not defined according to which is the closest
center but using the concept of “covering radius”. The covering radius of a zone is the minimum
radius of a sphere that is necessary to contain all the points in the zone, and the elements are
inserted in the subtrees trying to minimize covering radii. This is generalized to Voronoi Trees
(v-trees) in [13] to reduce more the covering radii.

Gh-trees are generalized to an m-ary partition in the Geometric Near-neighbor Access Tree
(gna-tree) [5], which makes a Voronoi-like partition of the space [1] among the m centers at each
node of the tree. However, the gna-tree uses also the covering radius criterion to prune the search
even more.



The M-tree [12] also takes m elements and divides the space among its zones of influence, but
it uses only the covering radius information to classify and search the elements. The M-tree is able
of dynamic insertion and deletion of points and is optimized for secondary memory.

The D-Index [14] data structure is also designed for secondary memory. It partitions the data
using the concept of “separable partitions”, where a minimum distance is guaranteed among objects
of different partitions. They combine their idea with pivots to get the best of each approach.

Spatial Approximation Trees (sa-trees) [22] are based on approaching the query spatially: the
search starts at the root of the tree and moves to neighbors that are closer to the query. The ideal
data structure to obtain this is a Voronoi graph, which in the paper is proven impossible to build
on a general metric space. Therefore the sa-tree is a simplification which forces some backtracking
in the tree. Dynamic and secondary memory improvements have been recently added.

4 A New Compact Partitioning Technique

We propose now a simple but effective technique to index a metric space. We start by choosing a
“center” ¢ € U and a radius r. whose value is discussed later (do not confuse with the search radius
r, whose possible values are unknown at indexing time). We define the center ball of (¢, r.) (or just
¢ if no ambiguity is possible) as the subset of elements of X which are at distance at most r. from
c. Now we define

Ijer., = {ueU—{c}, dlc,u) <rc}
as the bucket of “internal” elements, which lie inside center ball of ¢, and
Eyer. = {uelU, d(c,u)>r}

as the rest of the elements (the “external” ones). Now the process is repeated recursively inside F.
The construction procedure returns a list of triples (¢;, 7, I;) (center,radius,bucket) and it is shown
in Figure 1.

The data structure that is built looks rather symmetric, but it is not. The first center chosen
has preference over subsequent centers in case of overlapping balls, as illustrated on the right of
Figure 1. All the elements that lie inside the ball of the first center (¢; in the figure) are stored in
its I bucket, despite that they may also lie inside the I buckets of subsequent centers (¢y and c3 in
the figure). The figure also shows how the data structure can be seen as a list.

The search algorithm is depicted in Figure 2. The idea is that if the first center chosen is ¢ and
its radius is r., then the search for a query (g, r) starts by measuring d(c, ¢) and adding ¢ to the set
of results if appropriate. Then, we search exhaustively the bucket I only if the query ball has some
intersection with the center ball of ¢. After considering the first ball, we go on with E. However,
given the asymmetry of the data structure, we can also prune the search in the other way: If the
query ball is totally contained in the center ball of ¢, then we do not consider F, as by construction
we know that all the elements that are inside the query ball have been inserted into 1.

This is an essential feature absent in other compact partitioning algorithms, where the search
needs to enter into all the partitions which are intersected by the query ball. With our data
structure, the consideration of relevant partitions can be preempted as soon as the query ball is
totally contained in a partition. Figure 2 (right) illustrates.



Build (U)
if U= then return an empty list
Select c€ U
Select a radius 7.
I — {ueU—{c}, dlc,u)<r.}
EFE — U-1I
return (c,r.,I):Build(F)

E E E
(c1rl) ——= (c2r2) ——= (c3,r3) ——=

Figure 1: The construction algorithm. The operator ":" is the list constructor. It is not hard to
remove the tail recursion to make it iterative. On the right, the influence zones of three centers
taken in this order: c1, c2, c3. We also show a list arrangement for the data structure.

Search (L,q,r)
if L is empty then return
Let L= (c,re,]): E
Compute d(c,q)
if d(c,q) <r then add ¢ to the list of results
if d(c,q) < 7.+ r then search [ exhaustively
if d(c,q) > r. —r then Search (F,q,r)

Figure 2: The search algorithm. It is not hard to remove the tail recursion to make it iterative.
On the right we illustrate three cases of query ball versus center ball. For ¢; we need to consider
the current bucket and the rest of centers. For gy we can prune the search inside the rest of the
partitions. For g3 we can avoid considering the current bucket.



5 Building and Updating the Data Structure

5.1 Center and Radius Selection

We have not discussed until now how centers ¢ and radii r. are chosen when the structure is built.
This affects only performance, not correctness. We show several alternatives here and test them in
Section 6.

Center selection. We can apply different heuristics to select the i-th center.

pl) At random.
p2

(p1)

(p2) The element closest to ¢;—1 in the remaining set.
(p3) The element farthest from ¢;_; in the remaining set.
(p4)
(p5)

p4) The element minimizing the sum of distances to previous centers.

p5) The element maximizing the sum of distances to previous centers.

The first alternative is the simplest but not necessarily the best one. The second one aims
at building a bucket ordering that moves slowly across the metric space. The third one aims at
minimizing the overlap between partitions. (p4) and (p5) are more global versions of (p2) and
(p3), respectively. Moreover, (p2) and (p4) aim at finding a next center close to the current one,
as in sa-trees, while (p3) and (p5) try that the volumes of different partitions do not overlap, as
gna-trees.

Radius selection. Two simple alternatives are:

Partitions of Fixed Radius: The simplest alternative seems to be selecting a fixed radius r* for all
the balls in the list. This implies that, as we advance in the list, they get emptier.

Partitions of Fixed Size: Another choice is to try to have a fixed number m™* of elements inside
each center ball, and to define the radii accordingly. This also fixes the length of the list to
[n/(m* 4 1)]. As we advance in the list, the balls will be spatially larger.

5.2 Construction

Our data structure can be built by brute force in O(n?/p*) time for fixed radius partitions and
O(n?/m*) time for fixed size partitions, where p* is the expected bucket size. Although in principle
this cost is independent of the dimension, it gets higher in practice as the dimension grows because
m™* or p* have to be reduced to ensure low query times on higher dimensions.

This cost, however, can be reduced by noting that I is defined as the result of a range query
(c;, r*) for fixed radius partitions and of a nearest neighbor nn,,«(¢;) query for fixed size partitions.
Therefore, another (cheaper to build) data structure built on the metric space could be used as
an auxiliary data structure to build ours. This matches especially well with the center selection
heuristics (pl) and (p2), while the others may need extra work. It is also worthwhile to note that
this auxiliary data structure should be able of efficient deletion of the elements that are inserted
into each new partition, in order to answer queries on the remaining set.



5.3 Updating

Let us consider the process of inserting a new element into the fixed radius data structure. The
insertion can be done by traversing the list of partitions until the element falls inside some center
ball, or otherwise creating a new partition for it at the end of the list.

Deletion can be trivially done except if a center is deleted, in which case a first choice is to keep
it anyway as a fake element. A safer choice is to remove the whole bucket from the list and reinsert
all the elements (note that the insertion of those elements can be done just in the tail of the list,
as we already know that they do not lie inside any previous center ball).

If r* has been correctly computed in the beginning, it should not change as we insert more
elements. However, a massive insertion of elements may affect the optimality of the r* value
chosen. In those cases a periodic rebuild of the whole data structure may be benefical for the
performance.

These update operations are a bit more complex if we have a fixed bucket size. When inserting
an element, as soon as we find its appropriate ball 4, the bucket will overflow. Hence we take the
element of the bucket which is farthest from the center ¢;, remove it from the bucket (modifying r;
accordingly), and continue the insertion process in the tail of the list with the new element. Hence
we are guaranteed to traverse the whole list of centers for every insertion. Deletion presents a more
difficult problem, since the bucket underflows and we have to find the next nearest neighbor of ¢; in
the rest of the elements. This can be done using the same data structure, but it is costly anyway.
Two choices are lazy deletion (i.e., leave the hole hoping that a new insertion will fit the place) and
setting a range of values for m* instead of a fixed value. Deletion of a center can be handled as for
the fixed radius data structure.

5.4 Secondary Memory

Our data structure has the advantage of a rather predictable access pattern. The partition centers
are compared always in the same order. Sometimes we need to retrieve a whole bucket, sometimes
not. Finally, we can stop the search at any moment in the list of centers.

A simple linear arrangement of the centers yields an efficient disk layout for this search algo-
rithm, with minimal seek time. The buckets should be similarly arranged in a separate list. Fixed
size buckets make this extremely simple, while fixed radius partitions need an expansion mecha-
nism to accommodate their varying size. There are well known mechanisms of that type, and the
histogram can be used as a tool to upper bound overflow probabilities.

6 Experimental Results

We present now experiments that compare different choices of our data structure, as well as alter-
native structures.

Our metric space is the unitary real cube in k dimensions ([0, 1)¥) under the Euclidean distance.
We generate a fixed number n of random points and search random queries ¢ with a radius r such
that 0.01% to 0.1% of the set of points is retrieved. We show the results as a function of the
dimension k of the space. Despite that this is a restricted case of vector space, we can in this



case effectively control the dimension, which is difficult to do in real-world examples. We make the
experiments with n = 100,000 elements.

Our first experiment tries to determine the best choice among (pl) — (p5). Figure 3 shows
the results using two different choices for m* (12 and 100) and r* (1/4 and 1/8 of the maximum
distance).

For fixed bucket size (p3) and (p5) are better choices, which favors heuristics that try to minimize
the intersection among partitions [27, 5]. The difference among (p3) and (p5) is not statistically
significant when using a large bucket size. With a smaller bucket size (12) the (p5) heuristic is
clearly better and therefore we use (p5) from now on, as it is a more elaborated version of (p3) that
should work in more complex scenarios (such as clustered data).

For balls of fixed radius the results are quite different. For a large radius r* the difference
between the five heuristics is not statistically significant. For a smaller radius r* the best heuristic
is (p4). Observe also that the results for the fixed radius alternative are quite promising, though
the tuning of the algorithm is far more complicated than for the fixed bucket strategy. Figure 3
(bottom) shows that a relatively small change in the fixed radius yields a very large difference in
performance.
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Figure 3: Number of distance evaluations for center selection techniques (pl) to (p5), as the di-
mension grows. On the top row, fixed bucket sizes m* = 12 and m* = 100, capturing 0.01% of
the database. On the bottom row, fixed radii r* = 1/4 and r* = 1/8 of the maximum distance,
capturing 0.05% of the database.

Let us from now on focus in partitions of fixed size, and consider the optimal m* parameter.
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Figure 4 shows that there exist optimal bucket sizes. These depend on the search radius and the
intrinsic dimension of the dataset. In the left of the figure, we have used a smaller search radius,
showing how the optimum shifts to the right as the search radius increases.
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Figure 4: Selection of the optimal bucket sizes, for varying dimension. On the left we used a small
search radius (0.01% of the dataset), and a larger one on the right (0.1% of the dataset).

We now compare our data structure against some existing techniques. Observe in Figure 5 that
three pivot-based algorithms (fhq-trees, fq-arrays and LAESA) have needed at least 64 times more
memory than the other compact partitioning algorithms (gna-trees and sa-trees) in order to beat
them in medium dimension. This experimental evidence favors the use of compact partitioning
algorithms instead of pivot-based ones in high dimensions. In particular, we had not enough
memory in our machine to give them enough pivots so that they beat our LC in 20 dimensions, and
this would be even more difficult for them in higher dimensions or larger search radii. Our index,
instead, does not need more memory to cope with higher dimensions. Moreover, its complexity
grows much slower as the dimension grows. In particular, the combination we have chosen is by far
the best in 20 dimensions, even if we allow using 64 times more memory to competing pivot based
algorithms.

Finally, in Figure 6 we contrast the construction cost versus the space usage. We note that
LC uses a constant amount of space per bucket (all the rest is solved by a suitable arrangement
of elements), while the best representative of pivots uses an increasing number of pivots in each
dimension to keep up with the LC. The efficiency of LC in space usage (right) is paid in the
construction cost (left).

7 Discussion

7.1 Balancing versus Unbalancing

Note that it is possible to see our list of clusters as a particular case of vp-trees, by considering I and
E as the left and right subtrees of the root c. There is, however, a fundamental difference. While
vp-trees and many related data structures try to build balanced trees, our structure is extremely
unbalanced, as I is much smaller than E. Moreover, our I bucket does not have any internal
structure.
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One of the first lessons learned in any elementary book of algorithms is that balanced data
structures (trees in general) provide the best performance. Indeed, as a tree becomes more unbal-
anced it becomes more similar to a linked list, and the search cost raises from O(logn) to O(n).
Different techniques to have balanced data structures are proposed, such as 2-3 trees, AVL trees
and red-black trees for the worst case; splay trees for the amortized worst case; and randomized
trees and skip lists for the average case [16].

However, all the concept of balancing is based on the implicit assumption of exact searching:
We have a search query and want to find its exact replica in the tree. Hence, we enter only one
branch of the tree, and therefore a balanced tree minimizes the cost. More sophisticated queries
such as range searching are still based on the assumption that there exists a total linear order on
the keys. Hence, these queries are reduced to a couple of exact searches to find the extremes of the
range of interest.

None of these assumptions is valid in proximity searching. The only tool to organize a data
structure on metric spaces is the distances among elements. Many proposals still manage to design
tree data structures, where a total linear order is imposed by sorting the elements according to their
distances to the root. Probably influenced by a strong algorithmic background, most authors try
as well to obtain a balanced data structure by splitting the range of distances so that the subtrees
have the same size'.

The real problem with this approach appears when one considers the type of search carried
out on these balanced trees. As explained, the search is not exact, but it has a tolerance radius r
which is fixed at query time and is insensitive to the slices assigned by the tree. Low dimensional
metric spaces have a histogram of distances which is more uniform than those of high dimensional
spaces. In low dimensional spaces, therefore, the query is compared against the root and a range
of the histogram is selected (see Figure 7). This range contains a reasonably small fraction of the
distribution and therefore the problem is reduced well along the iterations. Moreover, since the
histogram is not concentrated, a partition where the subtrees have the same number of elements
yields slices of approximately the same width, and therefore the search enters into a reasonable
number of subtrees.

Consider now a high dimensional space (right hand of Figure 7). All the histogram is concen-
trated in a small range, where the query also lies with high probability when compared to the root
of the tree. Hence a large proportion of the elements will now be selected by the query range. This
is the basic reason that makes searching in high dimensional spaces so difficult.

However, balancing the trees adds an extra inefficiency to this. As the histogram becomes more
concentrated, the slices to partition the elements in equal sized groups become thinner (Figure 8).
Since the search radius stays the same, it will intersect more slices and the search will need to enter
more subtrees. This shows why the search model for proximity queries makes balanced trees a poor
choice for high dimensional metric spaces.

A tree where the slices have fixed width avoids this last problem. Since the width is independent
on the dimension of the space, the search will not enter more subtrees of a node as the dimension
grows (Figure 8). However, a new consequence shows up when fixed slices are used: The subtrees
corresponding to the slices containing the core of the distribution will have much more elements

'This approach is sometimes of value if we are also interested in disk access costs, as an unbalanced tree might
access more disk pages.
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that on high dimensions virtually all the elements become candidates for the exhaustive evaluation.
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Figure 8: The same query intersects more rings when the slices have the same number of elements
(outer rings are denser).

than the rest, and therefore the tree will be more and more unbalanced as the dimension grows.

As the tree becomes more unbalanced and hence taller as the dimension grows, the leaves of
the tree will know their (approximate) distance to more pivots: from O(logn) in a balanced tree
to O(n) in a very unbalanced tree. Also a random query will be compared against more pivots as
it traverses the tree. This effect is very similar to having a large number k of pivots in plain pivot-
based algorithms. Unlike those, however, this unbalanced tree takes always linear space. The main
problem is its construction cost, which moves from O(nlogn) to O(n?) as the tree loses balance.

To summarize, unbalancing permits, in essence, to have a large number of pivots without
incrementing the space cost (the price is paid in construction cost). Hence we can reach the
optimum number of pivots, which grows with the dimension. Needless to say, this shows that the
division into pivoting and compact partitioning schemes can be blurred and one can consider them
as quantitative variants of a single general concept.
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7.2 Optimum Unbalance

Let us still see our data structure as an unbalanced binary tree. We focus now on how to split the
range of distances so as to optimize the average search time. Our goal is to show analytically why
it might be benefical to unbalance the tree in high dimensions.

Let us assume that we choose a tree root p at random and cut the interval of distances to the
tree root at value s. Let us call F(z) the cumulative distribution of the histogram of distances,
that is, F'(x) = Prob(d(a,b) < x). The fraction of elements that are stored inside the left subtree
is Py = F(s), while P, =1 — F(s) go to the right subtree.

At search time, the probability of entering the left subtree with a query of radius r is that of
[d(q,p) — r,d(q,p) + r] intersecting the interval [0, s, that is, d(q,p) —r < s, or d(q,p) < s+r. Let
us call Qg this probability, so Qo = F(s +r) > Py. Similarly, @1 =1 — F(s —r) > Pj for the right
subtree.

Let us assume that the subtrees conserve the same probabilistic structure (this is a simplification,
but serves to illustrate our point). In this case the average cost of a query with radius 7 in a tree
of n elements is T'(1) = 1 and

T(n) = 14 Q()T(Pon) + QlT(PlTL)

whose rationale is as follows. The first comparison is for the root of the tree. Then, each subtree
is entered with probability ); and inside it we have recursively the same problem on P;n elements.
Despite that entering into different subtrees are not independent events, the average is still the
same as if they were.

It is easy to prove by substitution that T'(n) = (Sn®—1)/(S—1) = O(n%), where S = Qo+ Q1 >
1 and « is the solution to the trascendental equation

QP+ P = 1

where we see that 0 < o < 1, as this summation goes from Qg + Q1 > 1 to QoFPy + Q1P <1 as
a moves from zero to one. Note that if » = 0 then the solution is different, O(logn), as it is exact
searching. Proximity searching has an entirely different analytical structure.

Our optimization problem is then to choose s values so as to minimize the search complexity,
that is, to satisfy ) Q;P®* = 1 for the least possible a. Note that s determines the P; values and,
together with r, the (); values. So the optimum choice will depend on the r of interest.

Consider now the case of low dimension. The histogram is relatively flat, and therefore the
differences @); — P; are relatively independent of s (they do depend on 7). In this case the optimum
solution is at s = 1/2, that is, a balanced structure. On the other hand, when the histogram is
concentrated around its mean, (); — P; is much larger around the mean (close to s = 1/2). As
the @; values grow, a goes to 1 and the complexity increases. In order to reduce this effect, it
is preferable to shift s to an area of the histogram where the mass of the histogram in the area
[s — 7,8 + r] is small. This occurs at the tails of the distribution, hence advising an unbalanced
partition. A larger radius only increases this effect, as the area [s — r, s + r] is enlarged.
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8 Conclusions

We have presented a new compact partitioning index for proximity searching, which is experimen-
tally shown to be much more efficient than others in high dimensions. It is also simple to program
and use, needs little space, and is amenable of a secondary memory implementation.

Unlike existing approaches, which face high dimensions by increasing the memory space of the
index, ours increases instead construction time. This is a much more affordable cost in practice and
it permits handling higher dimensions efficiently. Given the good properties of the data structure,
it is worth to explore parallel and distributed algorithms for the index construction.

We have shown how our structure can be seen as the result of unbalancing some classical tree
approaches for metric space searching, which work well only on low dimensions. Moreover, we have
shown how unbalancing is a key feature to deal with high dimensional spaces, and how it is the key
to use more construction time instead of more memory space.

Future work involves improving the construction procedure, possibly by using auxiliary data
structures to build the I buckets. We also plan to pursue in the problem of obtaining a dynamic
data structure that supports insertion and removal of elements.

The List of Clusters give a sui-generis hierarchical view of the data. It could be interesting
to further investigate the relationship between classical data cluster detection algorithms and the
clusters obtained with our algorithm.

Finally, it would be interesting to devise I/O efficient variants that are able to compete with
M-trees and D-indexes in secondary memory. We have sketched possible alternatives but a deeper
study is necessary.

We wish to thank the anonymous referees who helped us to improve the presentation.
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