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Abstract

Many proteins work together with others in groups called complexes in order to achieve

a specific function. Discovering protein complexes is important for understanding

biological processes and predict protein functions in living organisms. Large-scale and

throughput techniques have made possible to compile protein-protein interaction

networks (PPI networks), which have been used in several computational approaches for

detecting protein complexes. Those predictions might guide future biologic experimental

research. Some approaches are topology-based, where highly connected proteins are

predicted to be complexes; some propose different clustering algorithms using

partitioning, overlaps among clusters for networks modeled with unweighted or weighted

graphs; and others use density of clusters and information based on protein

functionality. However, some schemes still require much processing time or the quality

of their results can be improved. Furthermore, most of the results obtained with

computational tools are not accompanied by an analysis of false positives. We propose
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an effective and efficient mining algorithm for discovering highly connected subgraphs,

which is our base for defining protein complexes. Our representation is based on

transforming the PPI network into a directed acyclic graph that reduces the number of

represented edges and the search space for discovering subgraphs. Our approach

considers weighted and unweighted PPI networks. We compare our best alternative

using PPI networks from Saccharomyces cerevisiae (yeast) and Homo sapiens (human)

with state-of-the-art approaches in terms of clustering, biological metrics and execution

times, as well as three gold standards for yeast and two for human. Furthermore, we

analyze false positive predicted complexes searching the PDBe (Protein Data Bank in

Europe) database in order to identify matching protein complexes that have been

purified and structurally characterized. Our analysis shows that more than 50 yeast

protein complexes and more than 300 human protein complexes found to be false

positives according to our prediction method, i.e., not described in the gold standard

complex databases, in fact contain protein complexes that have been characterized

structurally and documented in PDBe. We also found that some of these protein

complexes have recently been classified as part of a Periodic Table of Protein

Complexes. The latest version of our software is publicly available at

http://doi.org/10.6084/m9.figshare.5297314.v1.

Introduction 1

Understanding biological processes at a cellular and system levels is an important task 2

in all living organisms. Proteins are crucial components in many biological processes, 3

such as metabolic and immune processes, transport, signaling, and enzymatic catalysis. 4

Most proteins bind to other proteins in groups of interacting molecules, forming protein 5

complexes to carry out biological functions. Bergg̊ard et al. [1] showed that more than 6

80% of proteins work in complexes. Moreover, many proteins are multifunctional, in the 7

sense that they are part of different complexes according to the specific function 8

required in the system. The discovery of protein complexes is of paramount relevance 9

since it helps discover the structure-function relationships of protein-protein interaction 10

networks (PPI networks), improving the understanding of the protein roles in different 11

functions. Furthermore, understanding the roles of proteins in diverse complexes is 12
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important for many diseases, since biological research has shown that the deletion of 13

some highly connected proteins in a network can have lethal effects on organisms [2]. 14

Technological advances in biological experimental techniques have made possible the 15

compilation of large-scale PPI networks for many organisms. Given the large volume of 16

PPI networks, many mining algorithms have been proposed in recent years for 17

discovering protein complexes. Research on PPI networks has shown that these networks 18

have features similar to those of complex networks based on topological structures, such 19

as small world [3] and scale free [4] properties. These networks are also formed by very 20

cohesive structures [5]. These properties have been the inspiration for different 21

computational approaches that identify protein complexes in PPI networks based on 22

topological features. Most of these strategies model PPI networks as undirected graphs, 23

where vertices represent proteins and edges are the interactions between them. Some 24

strategies are based on density-based clustering [6, 7], community detection 25

algorithms [8], dense subgraphs [9–11], and flow simulation-based clustering [12]. 26

Since there are multifunctional proteins, some strategies also consider overlap among 27

modules. Some strategies that are based on dense subgraphs use overlapping cliques, 28

such as CFinder [10], distance metrics [9], and greedy algorithms for finding overlapping 29

cohesive clusters [11] (ClusterONE). However, other methods do not consider 30

overlapping structures, such as MCL [12] and the winner of the Disease Module 31

Identification DREAM Challenge for subchallenge 1 (closed in November, 2016), which 32

we call DSDCluster. DSDCluster is a method that first applies the DSD algorithm [13], 33

which consists of computing a distance metric (Diffusion State Distance) for the 34

connected genes in the network, and then applies spectral clustering. Other known 35

algorithms for protein complex prediction are MCODE [14], RNSC [15], SPICI [16], 36

DCAFP [17] and COREPEEL [18]. Complete surveys of computational approaches are 37

available [19,20]. 38

An important characteristic of PPI networks is that they are noisy and incomplete, 39

mainly due to the imprecisions of biological experimental techniques. To deal with this 40

feature some researchers associate a weight to each edge representing the probability of 41

the interaction being real [21–23]. Weights are inferred by analyzing primary affinity 42

purification data of the biological experiments and defining scoring techniques for the 43

protein interactions. These studies have motivated research on complex prediction tools 44
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that consider weights in the topological properties, including or not overlaps among 45

complexes. Most of these computational strategies model PPI networks as undirected 46

weighted graphs. Other approaches also include functional annotations of proteins to 47

improve the quality of predicted complexes. Some of these techniques include functional 48

annotation analysis as a pre-processing or post-processing step for predicted 49

complexes [24,25]; others include functional information in the complex prediction 50

algorithms [7, 26]. Pre-processing strategies might also define weights in PPI networks 51

based on functional similarity, and then use clustering algorithms on weighted graphs. 52

In these approaches it is important both the definition of the similarity measure and the 53

clustering algorithm, which should support overlap on weighted graphs. Post-processing 54

strategies apply functional knowledge on predicted complexes, which is also biased by 55

the quality of the predicted complexes. Applying functional annotations during the 56

complex discovery is an interesting approach, but it is also biased to the quality of the 57

functional similarity definition and the algorithm time complexity. 58

In order to validate predicted complexes, all computational strategies compare their 59

results with gold standards used as references. Currently, CYC2008 [27] is the gold 60

standard that reflects the current state of knowledge for yeast. This catalog contains 61

408 manually curated heteromeric protein complexes reliably supported by small-scale 62

experiments reported in the literature. In fact CYC2008 was proposed as an update of 63

MIPS (Munich Information Center of Protein Sequences) database [28], which was used 64

as a reference until 2008. Another up-to-date reference for yeast is available at the SGD 65

(Saccharomyces Genome Database) [29]. 66

The prediction algorithms are important tools for updating the gold standards so 67

that they reflect the latest biological knowledge. For example, one of the strategies used 68

for building CYC2008 consisted in using the MCL (Markov Clustering) [12] algorithm 69

for predicting protein complexes. This provided some complexes that were not in MIPS. 70

Even though MCL is a very reliable algorithm, it does not support overlaps [19]. Using 71

better prediction algorithms can therefore improve the current state of knowledge. Still, 72

even though there are several prediction tools, there is no single method with 73

dominating performance in terms of prediction quality and execution time for both 74

small and large PPI networks. 75

PLOS 4/43



Our contribution 76

We propose an effective and efficient strategy for predicting protein complexes, using 77

dense subgraphs built from complete bipartite graph patterns. Even though finding 78

densely connected subgraphs is not a new idea and surely may not be the optimal 79

property to look for in order to identify protein complexes (indeed, it is unknown which 80

is that optimal property), this approach makes sense from different points of view. 81

First, it is biologically intuitive and evolutionarily logical to expect a low number of 82

proteins to participate in many interactions, especially considering that such proteins 83

should act as good control points for multiple related biological functions. This case is 84

common in currently known biological networks and complexes and can explain why 85

PPI networks have characteristics of “small-world” graphs. Second, analyzing the 86

structural assembly of known complexes of more than two different proteins [30, 31], the 87

majority of them implies highly connected protein nodes and cliques (see, for instance, 88

all examples in Figure 3 of Marsh et al., 2015 [31], or Figure 6 in Ahnert et al., 89

2015 [30]), and there seems to be only a few ways in which protein complexes assemble. 90

Third, protein complexes are thought to follow a few evolutionarily conserved ordered 91

assembly pathways [32], which in the practice limits how many individual PPI 92

interactions can be experimentally demonstrated for a given complex and how they can 93

be translated into real complexes. In this scenario, looking for densely connected 94

subgraphs in a PPI network may not be optimal, but it is a property representative of 95

the new discoveries in complex assembly and it is efficient to at least screen and identify 96

putative complexes. This has been demonstrated previously by the effective use of this 97

approach in other algorithms, such as ClusterONE [11] and COREPEEL [18]. 98

From an algorithmic point of view, our dense subgraph definition allows us to 99

discover cliques and complete bipartite graphs that overlap. Since finding all maximal 100

cliques in a graph is NP-complete [33], we propose a transformation of the input PPI 101

network into an acyclic graph on which we design fast mining heuristics for finding 102

dense subgraphs. 103

Our approach is somehow related to ClusterONE [11], in the sense that ClusterONE 104

also uses a greedy heuristic that builds groups of vertices with high cohesiveness 105

starting at seed vertices. In our approach, we first reduce the complexity of dense 106

PLOS 5/43



subgraph mining with the construction of the the acyclic graph from an input graph 107

representing a PPI network. Then, we apply two different objective functions; the first 108

enables the fast traversal of the acyclic graph and the second is used for detecting 109

maximal dense subgraphs. COREPEEL, on the other hand, is related to our algorithm 110

in the sense that it is also based on detecting dense subgraphs, but their approach uses 111

core decomposition for finding quasi cliques in the graph (core) and then removes nodes 112

with minimum degree (peel). Other approaches that also predict overlapping protein 113

complexes are GMFTP [26] and DCAFP [17]. GMFTP builds an augmented network 114

from a PPI network by adding functional information so that protein complexes can be 115

discovered based on cliques identified from the augmented network. DCAFP also uses 116

topological and functional information related to PPI networks. 117

We evaluate our algorithms using clustering and biological metrics on current yeast 118

PPI networks, and compare our results with state-of-the-art strategies. We analyze the 119

predicted complexes in terms of matching with three references for Saccharomyces 120

cerevisiae (CYC2008, SGD, and MIPS) and two references for Homo Sapiens 121

(PCDq [34], and CORUM [35]). We show that our approach improves upon the state of 122

the art in quality and that it is fast in practice. DSDCluster achieves average 123

performance (about the sixth best) in terms of clustering and biological metrics in all 124

PPI networks, except on Biogrid-yeast where it is able to predict the greatest number of 125

protein complexes that are in the CYC2008 gold standard (five more than the other 126

methods). ClusterONE and COREPEEL provide good results and are also fast; 127

however, our approach provides better results in terms of MMR, biological metrics and 128

number of correct protein complexes based on gold standars in most of the PPI 129

networks we analyzed in the manuscript. On the other hand, GMFTP and DCAFP 130

provide good results but are several orders of magnitude slower than our approach. 131

As said, updating the gold standards is an important application of complex 132

prediction tools. However, most prediction approaches do not discuss the predicted 133

complexes that are false positives with respect to the current complexes in the 134

references. These predicted complexes are not necessarily incorrect results; they can 135

actually be new complexes that have not yet been discovered, or can be part of 136

biological evidence not captured in the construction of the current gold standards. 137

In our work, we analyze the false-positive protein complexes predicted by our 138
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method (i.e., complexes not described in the gold standards), and report on our findings. 139

Precisely, we searched for false-positive complexes that had been purified and 140

structurally characterized in the PDBe (Protein Data Bank in Europe) database. 141

Our results show that we achieve good performance in discovering protein complexes, 142

while obtaining results of good quality. Compared with the state of the art, we are the 143

first or the second best method considering the MMR measure [11] in both small and 144

large PPI networks. Further, our automatic false positive analysis shows that many of 145

our false positives in fact contain small curated protein complexes that are reported in 146

PDBe and not found in gold standards: more than 50 on yeast and 300 on human 147

proteins. 148

Materials and Methods 149

In this section we present our graph definitions for modeling PPI networks, formulate 150

the problem of finding dense subgraphs, and describe the algorithms for detecting dense 151

subgraphs. Our approach enables us to find dense subgraphs that usually overlap 152

among them. We then describe different alternatives for mapping dense subgraphs to 153

protein complexes. 154

Graph models for PPI networks 155

Since the interactions among proteins in a PPI are symmetric, these networks are 156

usually modeled as undirected graphs, where proteins are vertices and interactions 157

between proteins are edges. We represent a PPI network with adjacency lists, where 158

each adjacency list contains the set of neighbors of a protein. In order to find complexes, 159

we represent each undirected edge {u, v} as two directed edges (u, v) and (v, u). 160

Therefore, u appears in the adjacency list of v and v appears in the adjacency list of u. 161

The PPI network is then modeled as a directed graph G = (V,E,w), where V is the set 162

of vertices (proteins), E ⊆ V × V is the set of edges (protein-protein interactions), and 163

w : E → [0, 1] is a function that maps an edge to a real number between 0 and 1 that 164

represents the probability that an interaction is real. 165
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Preliminaries 166

We first represent a protein-protein interaction network as a graph, where the protein 167

names of the network are represented as vertices in the graph with numeric ids. Thus, 168

each protein name must be mapped to a unique numeric id. Mapping protein names to 169

numeric ids can be done using any Node ordering algorithm, such as random, 170

lexicographic, by degree, BFS traversal, and DFS traversal, among others. 171

Our algorithm for finding dense subgraphs looks for cliques and complete bipartite 172

subgraphs in the PPI network. The process of finding good dense subgraphs is run over 173

an acyclic graph called DAPG, which is built from the input PPI network. 174

Definition 1 Directed Acyclic Prefix Graph (DAPG) 175

Given a graph G = (V,E), a set V ′ ⊆ V and a total order φ ⊆ V × V , we define a 176

directed acyclic graph DAPG = (N,A), as follows: 177

� N =
⋃
v′∈V ′ adjlistφ(v′), 178

� A = {(u1, u2) ∈ N ×N, ∃v′ ∈ V ′, u1 and u2 are consecutive in adjlistφ(v′)}, 179

where adjlistφ(v) = 〈u ∈ V, (v, u) ∈ E〉 is the adjacency list of node v in G = (V,E), 180

listed in the total order φ. 181

Using a total order φ for the adjacency lists of G ensures that DAPG has no cycles. 182

We consider two possible total orders φ: ID sorts the nodes by their ids, whereas 183

FREQUENCY sorts them by their indegree, or number of times they appear in all the 184

adjacency lists of V ′. Fig 1 shows the use of both relations. 185

We say that a node u′ is the parent of u in DAPG iff (u′, u) ∈ A, and call root a 186

node with no parents. A path is a sequence of nodes in DAPG, (ui, ui+1) ∈ A, with 187

i = 1, ..., n− 1. 188

In addition, we define attributes for any node u ∈ N in DAPG based on the input 189

graph G = (V,E), as follows: 190

� label: a unique identifier given to a node v ∈ V in G. 191

� vertexSet(u) = {v ∈ V ′, (v, u) ∈ E} . 192

In words, the vertexSet of a node u ∈ N is the set of vertices v ∈ V ′ pointing to u, 193

that is, whose adjacency lists adjlist(v) contain u. Note that the FREQUENCY order 194
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sorts nodes u by |vertexSet(u)|. 195

Let us now define the types of dense subgraphs we will detect. 196

Definition 2 Dense subgraph (DSG) 197

A dense subgraph DSG(S,C) of G = (V,E) is any graph G′(S ∪ C, S × C), where 198

S,C ⊆ V , and S × C ⊆ E, that is, it contains all the edges from a subset of nodes S to 199

another subset C. Our implementation removes possible self-loops. 200

Note that Definition 2 includes cliques (S = C) and bicliques (S ∩ C = ∅, known as 201

complete bipartite graphs), but also more general subgraphs where S ∩ C 6= 0. 202

The following lemma defines the way we will find dense subgraphs. 203

Lemma Given a DAPG D = (N,A), a path P = (u1, u2, . . . , uh) in D, and a set 204

R ⊆ P , a valid dense subgraph DSG = (S,C) is defined as S =
⋂
u∈R vertexSet(u) and 205

C = R. 206

In order to find a promising path in DAPG starting from a given node u, we define 207

an inverse traveler function, as follows. 208

Definition 3 Inverse traveler function 209

An inverse traveler in DAPG is a partial function t : N → N , such that t(u) is a parent 210

of u in DAPG. It gives no answer only when u is a root in N . 211

An inverse traveler function traverses a set of nodes in DAPG, moving from a node 212

to one of its parents, up to a root. Therefore, given a node u, the nodes in the path Pu 213

are be determined by applying the function t repeatedly on u: 214

u→ t(u)→ (t ◦ t)(u)→ · · · → root. 215

Once we have a path Pu we determine a set Ru ⊆ Pu, with u ∈ Ru, that maximizes 216

a given objective function fobj defined as follows. 217

Definition 4 An objective function is a function fobj : H → N0, where H is the 218

universe of dense subgraphs of the form H = (S,C) based on Definition 2. 219

Objective functions maximize some feature of dense subgraphs, aiming at detecting 220

good ones. The functions used in this work are based on the number of edges in the 221

dense subgraphs, or on a weighted density measure. They are listed in Table 1. 222
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Table 1. Inverse traveler and objective functions.

Inverse traveler functions
Deepest u 7→ parent p, with maximum maxDepth(p) =

maxDepth(u)− 1
Sharing u 7→ parent p, with maximum |u.vertexSet ∩ p.vertexSet|

Objective functions
UNONE Intersection size : fobj(dsg) = |S ∩ C|.
WDEGREE Weighted degree density : fobj(dsg) =

∑
a∈E(S×C) w(a)

|S∪C| where

W (a) is the weight value in the edge a.

WEDGE Weighted edge density: fobj(dsg) =
2×

∑
a∈E(S×C) w(a)

|S∪C|×(|S∪C|−1)
FWEDGREE Full Weighted degree density: WDEGREE of the induced

subgraph of S ∪ C.
FWEDGE Full Weighted degree density: WEDGE of the induced sub-

graph of S ∪ C.

An important advantage of our approach is that it enables the easy extension of new 223

traveler and objective functions. New traveler functions might improve the mining 224

process for discovering dense subgraghs and new objective functions might include 225

biological knowledge to discover subgraphs with biological significance. 226

Our problem can then be formulated as follows. 227

Problem: Detecting Maximal Dense Subgraphs 228

For a given graph G = (V,E,w), represented by a DAPG (N,A), a weight function 229

w : E → [0, 1], a traveler function t, and a given objective function fobj, output a set of 230

maximal dense subgraphs (S,C) of G. 231

Algorithms 232

Our algorithm first represents a PPI network as a graph G where each protein in the 233

network is a vertex with a numeric id. Mapping protein names to numeric ids can be 234

performed using any node ordering algorithm. In this work, we use six different 235

mappings. First maps protein names to numeric ids in the order in which proteins are 236

read from the PPI network. Lexicographic sorts the protein names and then assigns the 237

numeric ids in that order. Degree sorts the proteins by decreasing degree in the network 238

and then assigns the numeric ids in that order. Random maps protein names to numeric 239

ids randomly. Finally, BFS and DFS map proteins names based on the breadth-first or 240

depth-first search network traversal, respectively. 241
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The algorithm we propose for discovering dense subgraphs proceeds in two phases. 242

The first phase builds an acyclic graph DAPG from G, using a total ordering function 243

in the adjacency lists. As mentioned, we propose two total ordering functions: ID and 244

FREQUENCY. The second phase consists in discovering dense subgraphs based on 245

optimizing two objective functions: one guides the traversal on DAPG and the other 246

specifies which nodes to choose. 247

Lemma 1 enables the detection of dense subgraphs from DAPG, however, even for a 248

given path P , finding all the possible sets R in the path requires time exponential in the 249

number of nodes in the path. Finding the best paths P in DAPG is also 250

exponential-time. Instead, we design an efficient mining heuristic for discovering dense 251

subgraphs in DAPG. 252

The main mining heuristic is based on finding at most one dense subgraph starting 253

at each node in DAPG. This approach enables us to find dense subgraphs that might 254

overlap. The heuristic is based on finding a promising path Pu = (u1, u2, ...un) so that 255

u1 is a root in DAPG. We find a promising path in DAPG starting from a given node u 256

using an inverse traveler function given in Definition 3. 257

The core of our mining technique starts at each node v in DAPG and walks its way 258

to the previous node in the path up to a root. Along the path, we maintain in set S the 259

intersection of the vertexSet of the nodes in a subset of the visited nodes (those which 260

provide a better partial DSG), while we maintain in set C the labels of the nodes of 261

the selected subset. Note that, at each point, (S ∪ C, S × C) is indeed a valid graph. 262

From all those DSGs, we retain only the “best one”. We determine the “best DSG” 263

using and objective function (fobj), which is a configuration parameter. 264

We can customize the core of the mining technique based on an inverse traveler 265

function, t, to obtain a promising path P in DAPG, and an objective function, fobj , to 266

discover dense subgraphs given by Definition 2. This approach is flexible to favor given 267

features of dense subgraphs, and allows the exploration of different ideas for 268

determining alternative paths to improve the quality of the results. 269

We consider the inverse traveler and objective functions defined in Table 1. 270

In order to efficiently implement the inverse traveler function Deepest in Table 1, we 271

attach another attribute to each node in DAPG, called maxDepth, which corresponds 272
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Fig 1. DAPG example. (A) shows a PPI as an undirected graph. (B) shows a PPI
network as an adjacency list. (C) shows the DAPG using total order function φ (ID)
and (D) shows the DAPG using total order function φ FREQUENCY.

to the length of the longest path from a root to each node and it is defined as follows. 273

Definition 5 MaxDepth 274

Given a dag DAPG = (N,A), then ∀u ∈ N :

maxDepth(u) =


1 if u is root

max(p,u)∈A(maxDepth(p)) + 1, otherwise

Finally, the algorithm returns the best DSG it could find starting from node v. 275

We run the algorithm starting at each node u in DAPG, so one DSG is obtained per 276

starting node u. We only collect the maximal DSGs among those (i.e., DSGs that are 277

not subsets of others). 278

All algorithm pseudocodes are presented in S1 Tables 1 and 2. 279

Fig 1 shows an example of a PPI network represented with a DAPG using the 280

inverse traveler function Deepest, fobj = UNONE, using total order functions φ sorting 281

by ID (C) and by FREQUENCY (D). With this representation, we are able to discover 282

cliques C1 = (1, 2, 3), C2 = (3, 4, 5, 6) and C3 = (4, 5, 6, 7). 283

Analysis of the algorithms 284

Let n be the number of nodes in DAPG, h ≤ n be the longest path, and e ≤ n be the 285

maximum number of neighbors of a node. Then, our algorithm starts from each node in 286

DAPG, with an initial vertexSet of size at most e, and walks some path upwards to the 287

root, performing at most h steps. At each step it must compute the distance traveler 288

function, which in our examples costs O(1) or O(e) time. It also intersects the 289

vertexSet of the new node with the current candidates, in time O(e), and determines 290

whether or not to keep the current node in the set C. All the criteria we use for the 291

latter can be computed in time O(e). Therefore, the total time of this process is O(nhe). 292

Let m be the maximum number of maximal subgraphs produced along the process. 293

Once the new subgraph is produced, we compare it with the O(m) current maximal 294

PLOS 12/43



subgraphs, looking for those that include or are included in the new one, in order to 295

remove the included ones (or the new one). This costs O(nme) time. 296

The total cost is therefore O(ne(h+m)). This is O(n3) in the worst case, but much 297

less in practice. For example, in Collins we have n = 1, 622, e = 127, h = 187, and 298

m = 12, and therefore ne(h+m) is 25, 273n, which is 100 times less than 299

n3 = 2, 630, 884n 300

Protein complex prediction 301

We define protein complexes from the DSGs we discover in PPI networks. Since we 302

obtain at most one DSG starting at each node in DAPG, our algorithm is able to obtain 303

DSGs that are in overlap. Let a parameter minSize define the minimum size of a 304

candidate complex. Then, each DSG(S,C) is considered as a candidate complex with 305

nodes S ∪ C whenever |S ∪ C| ≥ minSize. 306

We generate predicted complexes from candidate complexes based on two different 307

filter options: NONE, where a predicted complex is always a candidate complex, and 308

UNION, where a predicted complex is formed by the set union of the complex pairs 309

with overlap score (Eq. 1) greater than a threshold (we used threshold = 0.8). 310

Experimental setup 311

We implemented the algorithms in C++ and executed all the experiments on a 64-bit 312

Linux machine with 8GB of main memory and with an Intel CPU with i7 2.7GHz. All 313

state-of-the-art methods are also executed on the same machine, except COREPEEL, 314

which provide its method through its web site. 315

We used yeast (Saccharomyces cerevisiae) and human (Homo Sapiens) PPI networks 316

for experimental evaluation. Specifically, we used the following yeast PPI networks: 317

Collins [21], Krogan core and Krogan extended [22], Gavin [23], DIP-yeast (available 318

in [18]) and BioGrid (version 3.4.138) for yeast (available at http://thebiogrid.org). 319

We used human PPI networks Biogrid (version 3.4.138) and HPRD [36]. We compared 320

our complex prediction results against the up-to-date complex yeast reference 321

CYC2008 [27], SGD (available at http://www.yeastgenome.org), and MIPS (obtained 322

from the ClusterONE distribution [11]). For human proteins we used PCDq [34] and 323
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CORUM [35]. Table 2 shows the main statistics of PPI networks we used and Table 3 324

displays the number of complexes of each reference plus the number of complexes 325

obtained by merging them. Since performing an exact merging of gold standards might 326

be difficult, we approximate the merge procedure as follows: If the same protein 327

complex name is found, then the merged version contains only one copy. If the protein 328

complex names are different and the complexes contain the same proteins, then the 329

merged version also contains one copy. If both the complex name and the proteins are 330

different, then the merged reference contains both complexes. 331

Table 2. Main statistics of PPI networks.

Proteins Interactions Avg degree
Saccharomyces cerevisiae (yeast)

Collins 1,622 9,074 5.59
Krogan core 2,708 7,123 2.63

Krogan extended 3,672 14,317 3.89
Gavin 1,855 7,669 4.13

DIP-yeast 4,638 21,377 4.60
Biogrid yeast 6,436 229,409 35.64

Homo sapiens (human)
HPRD 9,453 36,867 3.90

Biogrid human 17,545 233,688 13.31

Table 3. Main statistics of protein complex references.

Name Complexes URL
Saccharomyces cerevisiae

CYC2008 408 http://wodaklab.org/CYC2008/

SGD 372 http://www.yeastgenome.org/download-data/curation

MIPS 203 http://www.paccanarolab.org/clusterone/

CYC2008,SGD 582 Built
CYC2008,SGD,MIPS 614 Built

Homo sapiens
CORUM 1,679 http://mips.helmholtz-muenchen.de/genre/proj/

corum/

PCDq 1,263 http://h-invitational.jp/hinv/pcdq/

CORUM,PCDq 2,881 Built

For biological metrics, we also used current state-of-the-art gene ontology and 332

annotations, available at http://www.geneontology.org. 333

We considered state-of-the-art complex prediction methods such as ClusterONE [11], 334

MCL [12], CFinder [10], GMFTP [26], MCODE [14], RNSC [15], SPICI [16], 335

DCAFP [17] and COREPEEL [18]. For each method we used the parameters that 336

provided the best results. 337
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To evaluate the effectiveness of our clustering approach we considered clustering and 338

biological metrics. Clustering metrics measure the quality of the complexes in terms of 339

how well the predicted complexes are related to the reference complexes. Biological 340

metrics assess the probability that proteins in predicted complexes form real complexes 341

(given by a reference) based on the relationship among the proteins in terms of their 342

localization and the annotations. 343

Proposed methods usually measure the degree of matching between a predicted and 344

a real complex [19]. This metric is usually called Overlap Score (OS) or Network 345

Affinity (NA). If pc is the set of vertices forming a predicted complex and rc the set of 346

vertices forming a complex in the reference, we have Eq. 1 for OS: 347

OS(pc, rc) =
|pc ∩ rc|2

|pc| × |rc|
(1)

Many research works declare a match between a predicted and a reference complex 348

when OS ≥ w (generally w = 0.2 or 0.25 [19]). 349

We used three clustering evaluation metrics usually found in complex prediction 350

evaluations: FMeasure, Accuracy (Acc) and Maximum Matching Ratio (MMR). 351

FMeasure is defined in terms of Precision and Recall, which depend on the definition 352

of True Positives (TP), False Positives (FP) and False Negatives (FN). TP is the 353

number of predicted complexes with an OS over a threshold value for some reference 354

complex, and FP is the total number of predicted complexes minus TP. FN is the 355

number of complexes known in the reference that are not matched by any predicted 356

complex. Precision and Recall are metrics that measure, respectively, how many 357

predicted complexes are correct with respect to the total number of predicted 358

complexes, and how many reference complexes are correctly predicted. Eq. 2 gives their 359

formulas. It also gives the formula for FMeasure, which is the harmonic mean of 360

Precision and Recall and is used, among other metrics, to measure the overall 361

performance of clustering algorithms. 362
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Precision =
TP

TP + FP

Recall =
TP

TP + FN

FMeasure =
2×Recall × Precision
Recall + Precision

(2)

Acc is the geometric mean of Sensitivity Sn and Positive Predicted Value PPV . Sn 363

shows how good is the identification of proteins in the reference complexes in terms of 364

coverage, and PPV indicates the probability of that the predicted complexes are TP. 365

Eq. 3 displays the equations for Sn, PPV , and Acc. Tij is the number of proteins in 366

common between the ith reference complex and jth predicted complex; n is the number 367

of complexes in the reference and m the number of predicted complexes; Ni is the 368

number of proteins in the ith reference complex, and Tj =
∑n
i=1 Tij . 369

Sn =

∑n
i=1maxj{Tij}∑n

i=1Ni

PPV =

∑m
j=1maxi{Tij}∑m

j=1Nj

Acc = (Sn × PPV )1/2

(3)

Since several research works use FMeasure and Acc as clustering evaluation metrics, 370

we included them as well. However, they are not free of problems. For instance, Acc 371

penalizes predicted complexes that do not match any of the reference complexes, when 372

some of the predicted complexes might indeed be undiscovered complexes. 373

We also used MMR measure, introduced by Nepusz et al. [11] to avoid the 374

penalization of accuracy metrics over clusters with significant overlaps. MMR is based 375

on a maximal one-to-one mapping between predicted and reference complexes. MMR 376

represents a bipartite graph where one set of nodes is formed by the predicted 377

complexes and the other by the reference complexes. Each edge has a weight 378

representing the overlap score between the two vertices. The maximum weighted 379

bipartite matching on this graph measures the quality of predicted complexes with 380

respect to the reference complexes. The MMR score is given by the sum of the weights 381

of the edges on this graph divided by the number of reference complexes. MMR offers a 382
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good comparison between predicted and reference complexes, penalizing those cases 383

when reference complexes are found in two predicted complexes with high overlap. 384

In order to compute the MMR (Eq. 4), ClusterONE first matches each reference 385

complex (rci) to a predicted complex (pcj) that maximizes the average OS over all 386

reference complexes (considering a minimum OS ≥ 0.2). 387

MMR =

∑|RC|
i=1 OS(rci, pcj)

|RC|
(4)

One important feature of PPI networks is that they are incomplete and noisy. 388

Biological processes for discovering protein interactions are not error free. In 389

consequence, PPI networks might miss proteins with their interactions or include 390

interactions that are not real. Algorithms should consider this feature to improve 391

mining results [19]. This fact can be observed by looking at the proteins that are in PPI 392

networks and the proteins that are in the reference. Nepusz et al. [11] consider the three 393

following cases for proteins in PPI networks and the reference. 394

1. Proteins appearing in the PPI and in the reference. 395

2. Proteins appearing in the PPI, but not in the reference. 396

3. Proteins appearing in the reference, but not in the PPI. 397

Evaluating mining algorithms for the cases (1) and (2) is straightforward since 398

protein interaction can be captured by the mining algorithm. Complexes found in case 399

(2) might owe to mistakes on the mining algorithm or incompleteness of the reference, 400

therefore this last case might require an analysis of the false positives generated by the 401

mining algorithm. However, finding complexes in case (3) is impossible for any mining 402

algorithm based on clustering. A possible simple solution to evaluate a mining 403

algorithm would be not to consider reference complexes containing proteins unknown in 404

the PPI, but if these protein interactions are missing in large predicted complexes then 405

there might not be a good reason to eliminate the complete complex. Based on these 406

considerations Nepusz et al. [11] propose filtering the references for evaluating a mining 407

algorithm. The procedure is given as follows: 408

1. Identify all proteins that had at least one known interaction with other proteins in 409

the input PPI. 410
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2. For each complex in the reference, identify its proteins and compute the set 411

intersection with all proteins in the input PPI. 412

3. If the set intersection size of a reference complex in the previous step is less than 413

half of the size of the complete reference complex, such reference complex is 414

eliminated because too many proteins are missing in the input PPI, and even if 415

this complex is predicted might not be because of the quality of the algorithm. 416

4. If the set intersection size of a reference complex is greater than half of the size of 417

the complete reference complex, the reference complex is considered but all 418

proteins that are unknown to the PPI are eliminated. This action does not 419

improve the quality of the mining algorithm since all algorithms are assessed on 420

the same reference and those proteins could not be inferred anyways. 421

In order to provide a fair way to compare our approach against other proposed 422

methods, we used the implementation just described [11], available at 423

https://github.com/jboscolo/RH/find/master. Such implementation includes the 424

computation of FMeasure, Acc and MMR. 425

Biological measures 426

Besides clustering measures, we consider biological relevance metrics. In this context we 427

used Colocalization and Gene Ontology Similarity (GoSim). Colocalization measures 428

the relationship of proteins based on where they are located in the cell and organism. 429

The idea is that since protein complexes are assembled to perform a specific function, 430

proteins within the same complex tend to be close to each other [37]. The idea of 431

GoSim comes from the Gene Ontology Annotations, which basically describe the 432

functions in which proteins work. Since protein complexes are formed to perform on 433

specific functions, proteins forming a complex tend to share similar functionality [38]. 434

We used the software ProCope to measure Colocalization and GoSim. ProCope is 435

available at https://www.bio.ifi.lmu.de/software/procope/index.html [39]. 436

We also include a biological measure that measures the biological significance of 437

predicted protein complexes using enrichment analysis. In order to compute the 438

biological significance of predicted complexes we use the same method described in [40], 439
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taking into account the p-values of predicted complexes, which represent the probability 440

of co-occurrence of protein with common functions. As in [40], we also used 441

BINGO [41], which is a Cytoscape [42] plugin that computes which GO categories are 442

statistically overrepresentated using hypergeometric test in a set of genes. A low p-value 443

for a set of genes in a predicted complex indicates that those proteins are statistically 444

relevant in the complex. Typically considering a p-value < 0.01 is considered as a 445

significant predicted complex. We measure significant complexes as percentage (SC). 446

Clustering performance results 447

As mentioned in previous sections, we considered clustering metrics used by other 448

clustering strategies such as FMeasure, Accuracy (Acc) and Maximum Matching Ratio 449

(MMR). Specifically, we used the ClusterONE implementation of Acc and MMR metrics 450

and we added support for FMeasure to compare all clustering techniques considered for 451

comparison. ClusterONE implementation eliminates reference complexes that contain 452

more than 50% of proteins that are unknown (i.e., proteins that are absent in the PPI 453

network) and removes unknown proteins of complexes that contain less than 50% of 454

such proteins. 455

Parameter tuning 456

First, we define different node ordering algorithms to map the protein names to unique 457

numeric ids in the graph. We consider the node ordering algorithms already described: 458

First, Random, Degree, Lexicographic, BFS, and DFS. 459

We compared our results according to the different parameters we have in our 460

algorithms. We present a summary of the main parameters we provide in our approach 461

in Table 4. With Protein Mapping we specify the text file describing the mapping from 462

proteins to numeric ids. With Graph Type we specify the type of graph, which can be 463

undirected unweighted, UNONE, or undirected weighted, USYM. With alternative fobj , 464

we choose an objective function fobj based on weighted density in the mining algorithm. 465

to detect best dense subgraphs (the default function, fobj = |S ∩ C|, is used with option 466

UNONE ). With Sorting we specify the sorting algorithm of adjacency lists; it can be by 467

ID or by FREQUENCY. Finally, Grouping allows us to define how predicted complexes 468
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are built based on candidate complexes. Alternatives are UNION, which takes the union 469

Cx ∪ Cy of the complexes where OS(Cx, Cy) > 0.8, and NONE, where predicted 470

complexes are defined as the candidate complexes. Other parameters include the 471

minimum size, minSize, of any complex, the type of dense subgraph (only clique or 472

dense subgraphs) and an alternative mapping for input PPI networks. 473

Table 4. Parameter settings.

Options Description
Protein mapping (-m)

mappingFile File mapping protein names to numeric ids
Sorting (-r)

FREQUENCY Sorting of adjacency list by frequency before building DAPG
ID Sorting by id in adjacency list before building DAPG
Grouping (-f): Predicted protein complex formation (PC) using OS(Cx, Cy) > 0.8
UNION PC = Cx ∪ Cy
NONE Cx and Cy

Graph Types (-g)
UNONE Undirected-unweighted graph
USYM Undirected-weighted graph

Alternative fobj (-w)
WEDGE Select the dense subgraphs with higher weighted-edge-density
WDEGREE Select the dense subgraphs with higher weighted-degree-

density
FWEDGREE Select the dense subgraphs with higher weighted-edge-density

of S ∪ C induced subgraph.
FWEDGE Select the dense subgraphs with higher weighted-degree-

density of S ∪ C induced subgraph.

In order to compare our results we tried different node ordering (protein mapping) 474

algorithms and different parameters in each experiment, given in the following format: 475

DAPGGTypeDM-rSorting-fGrouping (Protein Mapping). In this format GType can be 476

UU (undirected unweighted) or UW (undirected weighted), DM can be any of the 477

density measures; Sorting can be adjacency lists sorted by frequency (F) or ID (I); and 478

Grouping is the way we group candidate complexes to generate predicted complexes, 479

defined by the union set (U) or none (N). 480

Tables 5 and 6 show the performance of our algorithm with different node ordering 481

algorithms (protein name to numeric id mapping) and total order function φ (ID, 482

FREQUENCY). We observe that using BFS and DFS traversals provides best results 483

in seven of the eight PPI networks we tested. Also the total order function Sorting by 484

ID is very effective with these protein mappings, achieving best results in six of the 485

eight PPI networks. 486
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Table 5. Results of best clustering metrics (with CYC2008 gold standard) obtained
with DAPG (with complexes of minimum size 3) using different node ordering
algorithms and applying sorting (φ function) in small PPIs.
Network Node order-

ing
Sorting Complexes FMeasure Acc MMR

Collins First FREQUENCY 620 0.7269 0.7226 0.7020
ID 447 0.6782 0.7115 0.6749

Lexicographic FREQUENCY 623 0.7341 0.7259 0.7043
ID 410 0.6983 0.7133 0.6469

Random FREQUENCY 626 0.7466 0.7225 0.7141
ID 400 0.6517 0.7091 0.5986

Degree FREQUENCY 623 0.7280 0.7218 0.7036
ID 484 0.6782 0.7160 0.6870

BFS FREQUENCY 633 0.7248 0.7234 0.7183
ID 495 0.6578 0.7120 0.6739

DFS FREQUENCY 618 0.7289 0.7182 0.6999
ID 509 0.6641 0.7106 0.6791

Krogan
Core

First FREQUENCY 651 0.6448 0.6178 0.4699

ID 558 0.6191 0.6426 0.4814
Lexicographic FREQUENCY 627 0.6400 0.6391 0.4582

ID 472 0.6027 0.6223 0.4321
Random FREQUENCY 627 0.6373 0.6199 0.4391

ID 403 0.6030 0.5947 0.3863
Degree FREQUENCY 636 0.6516 0.6146 0.4688

ID 564 0.6023 0.6060 0.4577
BFS FREQUENCY 614 0.6388 0.6279 0.4562

ID 658 0.5784 0.6143 0.4991
DFS FREQUENCY 627 0.6353 0.6345 0.4556

ID 649 0.6782 0.6242 0.5059
Krogan
Extended

First FREQUENCY 960 0.5142 0.6152 0.4226

ID 864 0.4851 0.6248 0.4489
Lexicographic FREQUENCY 969 0.5294 0.6337 0.4321

ID 732 0.4876 0.6120 0.4108
Random FREQUENCY 943 0.5250 0.6273 0.4328

ID 809 0.4007 0.5816 0.3163
Degree FREQUENCY 947 0.5180 0.6172 0.4274

ID 895 0.4720 0.6152 0.4212
BFS FREQUENCY 943 0.5303 0.6284 0.4217

ID 970 0.4710 0.5947 0.4100
DFS FREQUENCY 967 0.5244 0.6232 0.4188

ID 830 0.5411 0.6226 0.4724
Gavin First FREQUENCY 611 0.6516 0.7083 0.5809

ID 641 0.5752 0.7055 0.5838
Lexicographic FREQUENCY 626 0.6491 0.7061 0.5827

ID 503 0.6013 0.7028 0.5446
Random FREQUENCY 667 0.6441 0.7110 0.5908

ID 474 0.5884 0.6901 0.5270
Degree FREQUENCY 612 0.6509 0.7089 0.5840

ID 529 0.6097 0.6936 0.5592
BFS FREQUENCY 621 0.6454 0.7172 0.5819

ID 715 0.6164 0.7135 0.6079
DFS FREQUENCY 620 0.6589 0.7148 0.5975

ID 723 0.5500 0.6990 0.6006

We also explore the impact of adding random edges into a PPI networks. We present 487

these results in Table 7. We observe that our scheme is robust based on the clustering 488

metrics. 489

We show our best results in Table 8 using all gold standards. We obtain our best 490

results using the objective function as fobj = |S ∪ C| and only in DIP-yeast the degree 491

density (WDEGREE) is better. We also obtain best results without merging or 492

combining dense subgraphs, which is given by the grouping option NONE as described 493

in Table 4. 494
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Table 6. Results of best clustering metrics (with CYC2008 and CORUM references)
obtained with DAPG (with complexes of minimum size 3) using different node ordering
algorithms and applying sorting (φ function) in large PPIs.
Network Node order-

ing
Sorting Complexes FMeasure Acc MMR

DIP-yeast First FREQUENCY 1,217 0.4000 0.5520 0.3615
ID 1,141 0.3942 0.5416 0.3815

Lexicographic FREQUENCY 1,199 0.3872 0.5355 0.3550
ID 1,085 0.4085 0.5565 0.3610

Random FREQUENCY 1,142 0.4070 0.5364 0.3491
ID 909 0.3438 0.4808 0.2535

Degree FREQUENCY 1,212 0.3961 0.5489 0.3682
ID 1,165 0.3835 0.5393 0.3560

BFS FREQUENCY 1,253 0.4197 0.5674 0.3751
ID 1,242 0.3622 0.5551 0.3718

DFS FREQUENCY 1,210 0.4110 0.5450 0.3671
ID 1,925 0.3830 0.5486 0.4447

Biogrid-
yeast

First FREQUENCY 5,025 0.1551 0.5691 0.3534

ID 4,945 0.1444 0.5693 0.3371
Lexicographic FREQUENCY 4,999 0.1561 0.5727 0.3687

ID 4,991 0.1740 0.5967 0.3845
Random FREQUENCY 5,017 0.1548 0.5718 0.3599

ID 5,167 0.1108 0.5368 0.2614
Degree FREQUENCY 5,049 0.1533 0.5667 0.3439

ID 5,004 0.1465 0.5677 0.3432
BFS FREQUENCY 4,977 0.1584 0.5741 0.3650

ID 5,254 0.1047 0.5355 0.2711
DFS FREQUENCY 5,009 0.1570 0.5720 0.3627

ID 4,950 0.1446 0.5800 0.3468
HPRD First FREQUENCY 2,437 0.3395 0.2140 0.1713

ID 2,442 0.3200 0.2272 0.1743
Lexicographic FREQUENCY 2,430 0.3528 0.2103 0.1783

ID 2,085 0.3542 0.2099 0.1643
Random FREQUENCY 2,430 0.3465 0.2121 0.1688

ID 1,977 0.3464 0.1879 0.1326
Degree FREQUENCY 2,449 0.3401 0.2135 0.1706

ID 2,412 0.3354 0.2127 0.1675
BFS FREQUENCY 2,441 0.3584 0.2139 0.1865

ID 2,777 0.3685 0.2119 0.2066
DFS FREQUENCY 2,443 0.3484 0.2105 0.1668

ID 2,313 0.3392 0.2340 0.1862
Biogrid-
human

First FREQUENCY 7,360 0.2380 0.2924 0.2387

ID 7,200 0.2349 0.2825 0.2372
Lexicographic FREQUENCY 7,394 0.2474 0.2920 0.2405

ID 7,313 0.2507 0.2738 0.2385
Random FREQUENCY 7,316 0.2492 0.2907 0.2332

ID 7,663 0.2587 0.2732 0.2227
Degree FREQUENCY 7,375 0.2412 0.2920 0.2418

ID 7,352 0.2352 0.2918 0.2374
BFS FREQUENCY 7,152 0.2453 0.2902 0.2354

ID 8,144 0.2204 0.2854 0.2232
DFS FREQUENCY 7,409 0.2527 0.2917 0.2539

ID 6,498 0.2309 0.2877 0.2228

Results 495

In this section we compare our best results with the state-of-the-art techniques such as 496

ClusterONE [11], MCL [12], CFinder [10], GMFTP [26], MCODE [14], RNSC [15], 497

SPICI [16], DCAFP [17], COREPEEL [18] and DSDCluster (winner of the challenge 498

Disease Module Identification DREAM Challenge for subchallenge 1, 499

https://www.synapse.org/#!Synapse:syn6156761/discussion/threadId=1073). 500

For each method we used the parameters that provided the best results. In the case 501
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Table 7. Adding random interactions in yeast and human PPI networks (with
CYC2008 and CORUM references) obtained with DAPG (with complexes of minimum
size 3).

Network Edges increased (%) Complexes FMeasure Acc MMR
Collins 5 522 0.7195 0.7102 0.6619

10 501 0.7041 0.7270 0.6447
Krogan Core 5 611 0.6605 0.6165 0.4844

10 591 0.6574 0.6290 0.4908
Krogan Extended 5 790 0.5287 0.6128 0.4430

10 740 0.5506 0.6177 0.4410
Gavin 5 681 0.5996 0.7095 0.5879

10 664 0.6072 0.7185 0.5733
DIP-yeast 5 1,989 0.3852 0.5471 0.4476

10 2,011 0.3820 0.5499 0.4499
Biogrid-yeast 5 4,971 0.1686 0.5956 0.3787

10 4,966 0.1615 0.5963 0.3737
HPRD 5 2,692 0.3582 0.2191 0.2000

10 2,167 0.3462 0.2153 0.1897
Biogrid-human 5 7,047 0.2402 0.2998 0.2392

10 6,857 0.2373 0.2925 0.2297

Table 8. Our best results of clustering metrics obtained with DAPG (with complexes
of minimum size 3)
Network Algorithm Complexes Reference FMeasure Acc MMR
Collins DAPGU(BFS) rFfN 633

CYC2008 0.7248 0.7234 0.7183
SGD 0.6037 0.5409 0.5956
MIPS 0.5449 0.5417 0.4956

Krogan
Core

DAPGU(DFS) rIfN 649

CYC2008 0.6782 0.6242 0.5059
SGD 0.6266 0.4519 0.4153
MIPS 0.4612 0.3793 0.3085

Krogan
Extended

DAPGU(DFS) rIfN 830

CYC2008 0.5411 0.6226 0.4724
SGD 0.4836 0.4400 0.3662
MIPS 0.3724 0.3679 0.2747

Gavin DAPGU(BFS) rIfN 715
CYC2008 0.6164 0.7135 0.6079

SGD 0.5188 0.5270 0.4956
MIPS 0.4376 0.4827 0.4304

DIP-yeast DAPGUWD(DFS) rIfN 1,925
CYC2008 0.3830 0.5486 0.4447

SGD 0.3473 0.4008 0.3620
MIPS 0.2992 0.3475 0.3607

Biogrid-
yeast

DAPGU(Lex) rIfN 4,991

CYC2008 0.1740 0.5967 0.3845
SGD 0.1671 0.4627 0.3737
MIPS 0.1292 0.3925 0.2994

HPRD DAPGU(BFS) rIfN 2,777
CORUM 0.3685 0.2119 0.2066

PCDq 0.3431 0.2992 0.1681
Biogrid-
human

DAPGU(DFS) rFfN 7,409

CORUM 0.2527 0.2917 0.2539
PCDq 0.1599 0.3495 0.1272

of GMFTP we use default parameters (τ = 0.2, K = 1000, λ = 4, T = 400, ρ = 1e− 6) 502

and set repeat times = 10 instead of the default, which was 100. With this change we 503

could actually get results in a little more than 12 hours for each PPI network. For 504

CFinder the most sensible parameter is t, which is the allowed time to spend in the 505

detection for clique search per node. We used t = 1 and t = 10 and took the best result. 506

Since GMFTP took too much execution time for small PPI networks (over 12 hours) we 507
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did not try to run it with larger PPIs. Also, we were unable to execute CFinder with 508

the two largest PPI networks, and with DCAFP we have a memory error with 509

Biogrid-human, therefore we do not report results for these cases. The main parameter 510

for executing DSDCluster is the number of clusters (K). We executed DSDCluster with 511

K between 100 and 700, increasing by 100 in Collins, Krogan Core, Krogan Extended, 512

and Gavin. In DIP-yeast we reach K = 1600. For Bigrid-yeast, HPRD and 513

Biogrid-human we define K = 500, 1000, 1500, 2000, 2500. We obtain the best results 514

with K = 200 in Collins, K = 500 in Krogan Core, K = 700 in Krogan Extended, 515

K = 500 in Gavin, K = 1200 in DIP-yeast, K = 1000 in Biogrid-yeast, K = 2000 in 516

HPRD, and K = 2500 in Biogrid-human. 517

Tables 9 to 14 show our results compared with the state-of-the-art techniques 518

available for protein complex prediction for yeast. Similarly, Table 15 show the results 519

for human. We evaluated clustering metrics and biological metrics. We observed that 520

we are able to obtain the best MMR measure in Collins, Gavin, DIP-yeast and 521

Biogrid-yeast PPI networks using the three gold standards and our combinations. In the 522

Krogan Core PPI we obtain the second best after GMFTP, which is the best for the 523

three gold standards, but we are better in the combined references. In the Krogan 524

Extended PPI we are best using CYC2008, GMFTP is best with SGD and COREPEEL 525

is best in MIPS, in the merged gold standards COREPEEL is the best, and we are 526

second. We also observed that, for most human PPIs, COREPEEL is the best and we 527

are second. We also report execution times, where all methods were executed locally, 528

except COREPEEL, which provide the execution through its web site and report 529

execution time as a result. SPICI is the fastest method. 530

Evaluating overlap on predicted complexes 531

In this section we evaluate how well protein complexes in gold standards are matched 532

with predicted complexes. We first evaluated and compared the protein complex overlap 533

as described earlier using cumulative histograms. We compute the cumulative histogram 534

of all pairs of reference complex and predicted complex (ci, pcj) obtained when 535

computing the MMR (where OS(ci, pcj) ≥ 0.2). We also compute the MMR varying 536

the overlap score threshold. Fig 2 and Fig 3 (left column) shows the cumulative 537
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Fig 2. Cumulative histogram for predicted complexes matches with
reference complexes based on MMR on small PPIs. Matching predicted
complexes to reference complexes cumulative histogram for various yeast PPI networks
and references CYC2008. Figures on right column show how MMR varies when
changing the overlap score.

Fig 3. Cumulative histogram for predicted complexes matches with
reference complexes based on MMR on large PPIs. Matching predicted
complexes to reference complexes cumulative histogram for a large yeast PPI network
using references CYC2008, and two Human PPI networks using gold standard CORUM.
Figures on right column show how MMR varies when changing the overlap score.

histogram for overlap between predicted and reference complexes for all PPIs. Fig 2 and 538

Fig 3 (right column) shows the MMR for different overlap scores. We observed that 539

DAPG is best in Collins and DIP-yeast, although, we did not tried GMFTP in 540

DIP-yeast because it was several orders of magnitude slower than DAPG in smaller 541

PPIs (as seen in Tables 9 to 12). We also show that DAPG has the best MMR results 542

considering different overlap scores. 543

In addition, we show in Table 16 the number of predicted complexes that are 544

correctly predicted (OS = 1.0) by DAPG and the state-of-the-art methods. We 545

observed that GMFTP provides the greatest number of perfect matches in all small 546

yeast references, except in Krogan Extended, where we get one more complex. We are 547

second best, except on Krogan Core (where RNSC gets one more complex) and in 548

Biogrid-yeast (where DSDCluster identifies 5 more complexes than DAPG, COREPEEL 549

and RNSC). Also, in the human PPIs, we are second after COREPEEL. 550

We also compared our algorithm with the most competitive methods, GMFTP and 551

COREPEEL, based on some patterns we detected in the PPIs. We considered the four 552

following complexes for yeast, described in the gold standard CYC2008. 553

� HIR complex: HIR1, HIR2, HIR3, HPC2 554

� Phosphatidylinositol (PtdIns) 3-kinase complex (functions in CPY sorting): 555

VPS15, VPS30, VPS34, VPS38 556

� AP-3 Adaptor complex: APL5, APL6, APM3, APS3 557

� EKC/KEOPS complex: CGI121, BUD32, GON7, KAE1 558

Table 17 shows the results, where we include the graph pattern in which the complex 559
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is present in each PPI. We mark each complex with a 3 mark if the method is able to 560

detect the protein complex with OS >= 0.8 and with a 7 mark otherwise. 561

Besides, we found two more complexes in DIP-yeast that follow the same pattern, 562

i.e., a clique of four proteins missing an edge in the PPI. In both cases DAPG detects 563

them, but COREPEEL does not. These complexes are: 564

� alpha,alpha-trehalose-phosphate synthase complex: TPS1, TPS3, TPS2, TSL1 565

� STE5-MAPK complex: FUS3, STE5, STE7, STE11 566

Finally, we performed a comparison based on the ability of the method to detect 567

protein complexes with proteins that participate in more than one complex. We 568

considered complexes in the CYC2008 gold standard. Table 18 shows how well each 569

method detects these protein complexes. 570

False positive analysis 571

Predicting protein complexes is challenging because PPI networks are noisy and 572

incomplete, and references are also incomplete and not systematically updated. All 573

prediction techniques report false positives (i.e., predicted complexes that are not in 574

references), although they can be real complexes not included in references or not 575

discovered yet. In this work, we perform an automatic false positive evaluation of 576

predicted complexes for yeast and human that are absent in available references. Our 577

goal is to see if the reported false positives contain interesting gene sets. In this work, 578

we analyze the reported false positives by looking into curated biological databases such 579

as PDBe (Protein Database Bank in Europe, http://www.ebi.ac.uk/pdbe) which 580

contain information about protein complexes that have purified and structurally 581

characterized. Most of the protein complexes in PDBe are small and are absent in gold 582

standards such as CYC2008 and CORUM, mainly because these gold standards have 583

not been updated recently. In addition, PDBe does not have directly available a 584

repository of all the protein complexes it contains. Therefore, here we propose an 585

automated procedure to query the database to find out whether sets of genes are 586

registered as purified complexes in PDBe. Our analysis do not include protein 587

complexes already found in gold standards (i.e., CY2008, SGD, and MIPS for yeast, and 588
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CORUM and PCDq for human). In addition, we also include information of protein 589

complexes that have been topologically characterized, a study done by Ahnert et al. [30] 590

and available in the periodic table of protein complexes 591

(http://www.periodicproteincomplexes.org). However, this periodic table is not up 592

to date. In order to automate the procedure we use the following PDBe related 593

databases. 594

� Uniprot (http://www.uniprot.org). To obtain protein ids related to pdb ids. 595

� EMBL-EBI Sifts (https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html). To 596

get chain information of proteins. 597

� PDBe REST API (http://www.ebi.ac.uk/pdbe/pdbe-rest-api). To query for 598

specific PDB id entry summary information (structure, name, title, release dates). 599

� Protein Complex Periodic Table (http://www.periodicproteincomplexes.org). 600

To query and visualize topology information of heteromeric complexes. 601

The false positive automatic analysis can be summarized in the following steps. 602

1. Obtain the yeast and human database including PDB ids from Uniprot database, 603

and the Sifts database, which contain the protein domains or chains associated 604

with proteins. 605

2. For each false positive complex, we find the pdb ids for each protein with 606

corresponding chains. 607

� We define a potential protein complex if the complex contains at least two 608

proteins that share the same pdb id. 609

� We discard a potential protein complex if the complex is part of a protein 610

complex in a gold standard. 611

3. Look up the pdb ids of potential protein complexes using PDBe REST API 612

database and checking whether it is a heteromeric complex or not based on the 613

entry summary information. 614

4. Look up the potential protein complex in the Complex Periodic Table and 615

obtaining its information about of subunits and number of repeats as well as its 616
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topology. It is important to note that it might be a variation in the number of 617

subunits and repeats with respect to the information on PDBe. This variation 618

might be because the periodic table is not up to date. 619

Tables 19 and 20 display a subset of candidate protein complexes in PDBe for yeast 620

and human that are not in any gold standard and are present in the Periodic Table of 621

Protein Complexes. The complete list of candidate protein complexes we detected for 622

both organisms is available in the software distribution (files with extension .csv). 623

Discussion and conclusions 624

We have introduced a novel scheme for detecting protein complexes. Our approach is 625

based on modeling PPI networks as directed acyclic graphs, which allowed us to design 626

an efficient mining heuristic for detecting overlapping dense subgraphs considering 627

weighted and unweighted PPI networks. We define protein complexes based on dense 628

subgraphs that usually overlap. An important advantage of our approach is that it 629

enables the easy extension of new traveler and objective functions. New traveler 630

functions might improve the mining process for discovering dense subgraghs and new 631

objective functions might include biological knowledge to discover subgraphs with 632

biological significance. Therefore, further extensions to our framework are based on 633

adding biological information that might improve the discovery of protein complexes or 634

other protein relationships of biological relevance. 635

We compare our results with state-of-the-art techniques and show that we provide 636

good performance in terms of clustering using different gold standards and biological 637

metrics, as well as good execution times. We show that our method is able to achieve 638

very good results in terms of matching perfectly (OS = 1.0) protein complexes in the 639

gold standards. We also provide a post-processing analysis to study false positive 640

complexes that contain proteins in PPI networks that are absent in the gold standards. 641

In order to study false positives, we consider the information available on protein 642

complexes that have been purified and structurally characterized in PDBe. We used 643

this information together with a recent approach that proposes a periodic table for 644

protein complexes that studies different topologies according to the subunits that 645

compose protein complexes. In this study we discovered that more than 50 yeast 646
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complexes and more than 300 of false positive human complexes, not present in gold 647

standards, have actually been already characterized and their information is available in 648

PDBe. Many of these complexes have also been found as having an associated type in 649

the periodic table of protein complexes [30]. We propose these “new” real complexes 650

discovered by our approach and already present in such structural databases, to be 651

considered as new candidates for inclusion in the gold standards of protein complexes. 652

Considering these results, we present our list of predicted false-positive protein 653

complexes to the scientific community, conjecturing that at least part of them could be, 654

in fact, true real complexes awaiting to be studied and characterized. 655
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Table 9. Performance comparison results of clustering and biological metrics in Collins.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

Collins CYC2008
DAPG 633 0.7248 0.7234 0.7183 0.9692 0.7692 0.9435 2.36
GMFTP 189 0.7631 0.7858 0.6410 0.9542 0.7489 0.9052 > 12hrs.
ClusterONE 187 0.6940 0.7677 0.5711 0.9211 0.7124 0.8225 1.37
MCL 195 0.6897 0.7635 0.5729 0.9268 0.7310 0.8823 0.74
CFinder 113 0.6583 0.6518 0.4361 0.8641 0.6173 0.9027 119.54
DCAFP 880 0.8433 0.6784 0.5575 0.9386 0.7212 0.9234 231.18
RNSC 178 0.6980 0.7756 0.5812 0.9313 0.7397 0.8930 1.42
MCODE 93 0.6233 0.6035 0.3213 0.8750 0.6345 0.9125 0.52
SPICI 104 0.6579 0.7145 0.4115 0.9476 0.7546 0.9214 0.14
COREPEEL 458 0.6751 0.7037 0.6718 0.9501 0.7377 0.9334 0.23
DSDCluster 142 0.4626 0.6065 0.2863 0.9179 0.7533 0.8943 41.93

SGD
DAPG 633 0.6037 0.5409 0.5956
GMFTP 189 0.6795 0.5988 0.5295
ClusterONE 187 0.5817 0.6017 0.4357
MCL 195 0.6039 0.5885 0.4500
CFinder 113 0.5126 0.5143 0.3215
DCAFP 880 0.7091 0.5103 0.4959
RNSC 178 0.6207 0.5899 0.4432
MCODE 93 0.5048 0.5050 0.2430
SPICI 104 0.5845 0.5456 0.3096
COREPEEL 458 0.5646 0.5251 0.5151
DSDCluster 142 0.3838 0.4595 0.2124

MIPS
DAPG 633 0.5449 0.5417 0.4956
GMFTP 189 0.5356 0.5338 0.4269
ClusterONE 187 0.5517 0.5439 0.4110
MCL 195 0.4742 0.5070 0.3856
CFinder 113 0.5023 0.4430 0.3042
DCAFP 880 0.6930 0.5275 0.4302
RNSC 178 0.5147 0.5182 0.4070
MCODE 93 0.5532 0.4804 0.2808
SPICI 104 0.5500 0.5046 0.3063
COREPEEL 458 0.4739 0.5271 0.4402
DSDCluster 142 0.3838 0.4595 0.2124

CYC2008,SGD
DAPG 633 0.7157 0.5591 0.5837
GMFTP 189 0.7202 0.5846 0.4549
ClusterONE 187 0.6325 0.5842 0.3955
MCL 195 0.6424 0.5709 0.4034
CFinder 113 0.5348 0.5005 0.2914
DCAFP 880 0.8193 0.5332 0.5008
RNSC 178 0.6624 0.5794 0.4044
MCODE 93 0.5508 0.4745 0.2274
SPICI 104 0.5772 0.5343 0.2743
COREPEEL 458 0.6667 0.5375 0.5032
DSDCluster 142 0.2834 0.4295 0.1688

CYC2008,SGD,MIPS
DAPG 633 0.7101 0.5480 0.5723
GMFTP 189 0.7143 0.5770 0.4376
ClusterONE 187 0.6265 0.5765 0.3825
MCL 195 0.6424 0.5616 0.3903
CFinder 113 0.5201 0.4907 0.2803
DCAFP 880 0.8119 0.5253 0.4891
RNSC 178 0.6581 0.5713 0.3939
MCODE 93 0.5424 0.4700 0.2185
SPICI 104 0.5645 0.5279 0.2640
COREPEEL 458 0.6620 0.5269 0.4961
DSDCluster 142 0.4407 0.4628 0.2101
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Table 10. Performance comparison results of clustering and biological metrics in
Krogan Core.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

Krogan Core CYC2008
DAPG 649 0.6782 0.6242 0.5059 0.8976 0.7099 0.8533 2.19
GMFTP 287 0.6079 0.7731 0.5370 0.8524 0.6741 0.7026 > 12hrs.
ClusterONE 411 0.5844 0.7409 0.5065 0.7937 0.6542 0.6830 1.65
MCL 377 0.4226 0.7362 0.4119 0.6794 0.5975 0.6072 8.62
CFinder 113 0.4719 0.5477 0.2783 0.7203 0.5329 0.7653 0.33
DCAFP 384 0.8494 0.5814 0.3278 0.8587 0.7269 0.9043 640.06
RNSC 293 0.4732 0.6951 0.4378 0.7970 0.6818 0.6110 0.68
MCODE 83 0.4615 0.5282 0.1829 0.7807 0.6345 0.7271 5.68
SPICI 133 0.5714 0.6581 0.3293 0.9076 0.7132 0.8125 0.18
COREPEEL 723 0.6042 0.6032 0.4869 0.8733 0.7086 0.7869 0.24
DSDCluster 368 0.4208 0.7044 0.4064 0.6579 0.5667 0.5667 121.96

SGD
DAPG 649 0.6266 0.4519 0.4153
GMFTP 287 0.5536 0.5550 0.4270
ClusterONE 411 0.5261 0.5520 0.3833
MCL 377 0.3680 0.5336 0.2970
CFinder 113 0.4014 0.3994 0.2051
DCAFP 384 0.7637 0.4234 0.2842
RNSC 293 0.4340 0.5056 0.3220
MCODE 83 0.3745 0.3950 0.1324
SPICI 133 0.5300 0.4881 0.2604
COREPEEL 723 0.5497 0.4406 0.3967
DSDCluster 368 0.3804 0.5041 0.3137

MIPS
DAPG 649 0.4612 0.3793 0.3085
GMFTP 287 0.3990 0.4597 0.3479
ClusterONE 411 0.3443 0.4363 0.3356
MCL 377 0.2729 0.4362 0.2681
CFinder 113 0.3030 0.3417 0.1638
DCAFP 384 0.6396 0.3835 0.2731
RNSC 293 0.2843 0.4142 0.2560
MCODE 83 0.3415 0.3625 0.1257
SPICI 133 0.3443 0.4000 0.1952
COREPEEL 723 0.4118 0.3699 0.2829
DSDCluster 368 0.2672 0.4123 0.2720

CYC2008,SGD
DAPG 649 0.6760 0.4206 0.4115
GMFTP 287 0.5921 0.5327 0.3682
ClusterONE 411 0.5868 0.5284 0.3526
MCL 377 0.4007 0.5140 0.2677
CFinder 113 0.3939 0.3810 0.1849
DCAFP 384 0.7929 0.4048 0.2797
RNSC 293 0.4555 0.4863 0.2878
MCODE 83 0.3436 0.3774 0.1149
SPICI 133 0.5128 0.4592 0.2164
COREPEEL 723 0.6053 0.4073 0.3943
DSDCluster 368 0.4135 0.4899 0.2805

CYC2008,SGD,MIPS
DAPG 649 0.6734 0.4116 0.4022
GMFTP 287 0.5914 0.5251 0.3578
ClusterONE 411 0.5918 0.5196 0.3487
MCL 377 0.4007 0.5041 0.2617
CFinder 113 0.3871 0.3737 0.1788
DCAFP 384 0.7756 0.3951 0.2752
RNSC 293 0.4590 0.4772 0.2836
MCODE 83 0.3467 0.3678 0.1122
SPICI 133 0.5000 0.4513 0.2094
COREPEEL 723 0.6046 0.3981 0.3883
DSDCluster 368 0.4885 0.4799 0.2692
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Table 11. Performance comparison results of clustering and biological metrics in
Krogan Extended.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)
Krogan Extended CYC2008
DAPG 830 0.5411 0.6226 0.4724 0.8268 0.6798 0.6783 8.33
GMFTP 364 0.4510 0.7389 0.4509 0.7634 0.6165 0.5792 > 12 hrs.
ClusterONE 402 0.5751 0.7043 0.4551 0.7960 0.6546 0.6741 2.18
MCL 480 0.3328 0.7154 0.3113 0.5977 0.5231 0.4987 19.50
CFinder 118 0.2993 0.4126 0.1682 0.6154 0.4466 0.6365 1.43
DCAFP 519 0.7302 0.5928 0.3356 0.8924 0.7442 0.7343 750.23
RNSC 326 0.3589 0.6657 0.3322 0.7233 0.6399 0.4923 0.24
MCODE 55 0.2807 0.4365 0.1044 0.6687 0.5143 0.7872 13.12
SPICI 147 0.5364 0.6370 0.3126 0.8700 0.6971 0.7172 0.10
COREPEEL 1223 0.4842 0.6236 0.4564 0.8302 0.6886 0.6884 0.26
DSDCluster 530 0.3105 0.6619 0.3250 0.5856 0.5212 0.4301 480.08

SGD
DAPG 830 0.4836 0.4400 0.3662
GMFTP 364 0.4400 0.5221 0.3532
ClusterONE 402 0.4992 0.5187 0.3259
MCL 480 0.2708 0.5040 0.2121
CFinder 118 0.2531 0.3155 0.1312
DCAFP 519 0.6551 0.4244 0.2714
RNSC 326 0.3230 0.4754 0.2455
MCODE 55 0.2162 0.3157 0.0761
SPICI 147 0.4969 0.4655 0.2424
COREPEEL 1,223 0.4350 0.4486 0.3762
DSDCluster 530 0.2639 0.4715 0.2408

MIPS
DAPG 830 0.3724 0.3679 0.2747
GMFTP 364 0.3056 0.4430 0.2980
ClusterONE 402 0.3417 0.4184 0.2904
MCL 480 0.2065 0.4075 0.1928
CFinder 118 0.2022 0.2491 0.1059
DCAFP 519 0.5392 0.3795 0.2451
RNSC 326 0.2495 0.3927 0.2165
MCODE 55 0.2079 0.2938 0.0608
SPICI 147 0.3286 0.3804 0.1847
COREPEEL 1,223 0.3325 0.3787 0.2806
DSDCluster 530 0.1898 0.3749 0.2061

CYC2008,SGD
DAPG 830 0.5344 0.4076 0.3603
GMFTP 364 0.4582 0.5000 0.2974
ClusterONE 402 0.5606 0.4954 0.3013
MCL 480 0.3145 0.4906 0.1970
CFinder 118 0.2398 0.2964 0.1127
DCAFP 519 0.7045 0.4074 0.2699
RNSC 326 0.3517 0.4610 0.2186
MCODE 55 0.2105 0.3036 0.0653
SPICI 147 0.4833 0.4416 0.2054
COREPEEL 1,223 0.4937 0.4151 0.3661
DSDCluster 530 0.3009 0.4538 0.2177

CYC2008,SGD,MIPS
DAPG 830 0.5362 0.3996 0.3563
GMFTP 364 0.4577 0.4897 0.2905
ClusterONE 402 0.5714 0.4859 0.2985
MCL 480 0.3169 0.4788 0.1930
CFinder 118 0.2376 0.2894 0.1096
DCAFP 519 0.7022 0.3968 0.2720
RNSC 326 0.3531 0.4508 0.2122
MCODE 55 0.2018 0.2965 0.0628
SPICI 147 0.4796 0.4316 0.1989
COREPEEL 1,223 0.4943 0.4041 0.3612
DSDCluster 530 0.3018 0.4939 0.2093
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Table 12. Performance comparison results of clustering and biological metrics in
Gavin.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

Gavin CYC2008
DAPG 715 0.6164 0.7135 0.6079 0.8750 0.6687 0.8041 1.66
GMFTP 242 0.6096 0.7705 0.5861 0.8586 0.6761 0.7561 > 12hrs
ClusterONE 194 0.6854 0.7498 0.5378 0.8934 0.6810 0.8367 1.41
MCL 254 0.5372 0.7435 0.4828 0.7865 0.6342 0.7124 2.01
CFinder 183 0.4466 0.6210 0.3391 0.7335 0.5370 0.6412 598.84
DCAFP 804 0.7118 0.6296 0.4416 0.8855 0.6626 0.7843 133.79
RNSC 241 0.5556 0.7551 0.5106 0.8188 0.6566 0.7135 0.056
MCODE 107 0.5281 0.6092 0.2547 0.8081 0.5954 0.7982 11.28
SPICI 91 0.6574 0.5905 0.3381 0.8965 0.7458 0.8972 0.09
COREPEEL 690 0.5795 0.6998 0.5686 0.8643 0.6883 0.7753 0.15
DSDCluster 265 0.5390 0.6918 0.4662 0.8101 0.6587 0.6603 63.70

SGD
DAPG 715 0.5188 0.5270 0.4956
GMFTP 242 0.5393 0.5842 0.4448
ClusterONE 194 0.5855 0.5702 0.3974
MCL 254 0.4641 0.5502 0.3510
CFinder 183 0.3529 0.4794 0.2526
DCAFP 804 0.6393 0.4849 0.4062
RNSC 241 0.4638 0.5703 0.3731
MCODE 107 0.3964 0.4763 0.1784
SPICI 91 0.5481 0.4509 0.2473
COREPEEL 690 0.4692 0.5067 0.4643
DSDCluster 265 0.4543 0.5102 0.3419

MIPS
DAPG 715 0.4376 0.4827 0.4304
GMFTP 242 0.4602 0.5240 0.4206
ClusterONE 194 0.4846 0.4981 0.3728
MCL 254 0.3746 0.4983 0.3266
CFinder 183 0.3559 0.4382 0.2618
DCAFP 804 0.5552 0.4628 0.3732
RNSC 241 0.4012 0.4990 0.3560
MCODE 107 0.4038 0.4362 0.2007
SPICI 91 0.4375 0.3737 0.2182
COREPEEL 690 0.4049 0.4679 0.4262
DSDCluster 265 0.3552 0.4520 0.3092

CYC2008,SGD
DAPG 715 0.6163 0.5137 0.4893
GMFTP 242 0.6114 0.5686 0.4197
ClusterONE 194 0.6566 0.5476 0.3706
MCL 254 0.5168 0.5440 0.3296
CFinder 183 0.3988 0.4768 0.2365
DCAFP 804 0.7074 0.4606 0.4016
RNSC 241 0.5308 0.5542 0.3452
MCODE 107 0.4471 0.4601 0.1707
SPICI 91 0.5992 0.4303 0.2357
COREPEEL 690 0.5752 0.5000 0.4607
DSDCluster 265 0.5255 0.4995 0.3246

CYC2008,SGD,MIPS
DAPG 715 0.6177 0.5022 0.4840
GMFTP 242 0.6078 0.5570 0.4070
ClusterONE 194 0.6465 0.5358 0.3549
MCL 254 0.5103 0.5308 0.3174
CFinder 183 0.3851 0.4637 0.2234
DCAFP 804 0.7024 0.4508 0.4001
RNSC 241 0.5255 0.5430 0.3314
MCODE 107 0.4479 0.4488 0.1651
SPICI 91 0.5868 0.4195 0.2273
COREPEEL 690 0.5749 0.4882 0.4503
DSDCluster 265 0.5243 0.4891 0.3121
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Table 13. Performance comparison results of clustering and biological metrics in
DIP-yeast.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

DIP-yeast CYC2008
DAPG 1,925 0.3830 0.5486 0.4447 0.8133 0.6664 0.8082 6.23
ClusterONE 1,042 0.2436 0.6236 0.2794 0.6353 0.5682 0.4432 1.44
MCL 598 0.2685 0.6259 0.2389 0.5986 0.5355 0.4523 2.31
CFinder 198 0.2721 0.4272 0.1598 0.5843 0.4173 0.4371 3.02
DCAFP 492 0.7212 0.5631 0.2972 0.8897 0.7187 0.8289 3,848.32
RNSC 517 0.0108 0.2966 0.0063 0.8001 0.6218 0.1043 0.53
MCODE 78 0.2007 0.3734 0.0663 0.6784 0.4546 0.8023 33.42
SPICI 517 0.3007 0.5826 0.2394 0.6650 0.5697 0.6342 0.12
COREPEEL 742 0.5160 0.5679 0.3239 0.8287 0.6500 0.8277 0.16
DSDCluster 645 0.2787 0.5688 0.2606 0.6233 0.5442 0.4728 2,520.67

SGD
DAPG 1,925 0.3473 0.4008 0.3620
ClusterONE 1,042 0.2236 0.4684 0.2179
MCL 598 0.2377 0.4454 0.1818
CFinder 198 0.2133 0.3171 0.1145
DCAFP 492 0.6089 0.4043 0.2329
RNSC 517 0.0102 0.2116 0.0053
MCODE 78 0.1641 0.2784 0.0530
SPICI 517 0.2884 0.4322 0.1859
COREPEEL 742 0.4854 0.4153 0.2761
DSDCluster 645 0.2503 0.4079 0.2109

MIPS
DAPG 1,925 0.2992 0.3475 0.3607
ClusterONE 1,042 0.1422 0.3697 0.1865
MCL 598 0.1695 0.3598 0.1713
CFinder 198 0.1739 0.2584 0.1069
DCAFP 492 0.6181 0.3727 0.2649
RNSC 517 0.0029 0.1717 0.0014
MCODE 78 0.1562 0.2572 0.0451
SPICI 517 0.2101 0.3561 0.1759
COREPEEL 742 0.3938 0.3619 0.2428
DSDCluster 645 0.1776 0.3525 0.1768

CYC2008,SGD
DAPG 1,925 0.4138 0.3769 0.3654
ClusterONE 1,042 0.2690 0.4441 0.2076
MCL 598 0.2835 0.4358 0.1725
CFinder 198 0.2366 0.3053 0.1045
DCAFP 492 0.6743 0.3806 0.2282
RNSC 517 0.0092 0.1991 0.0040
MCODE 78 0.1691 0.2663 0.0485
SPICI 517 0.3041 0.4126 0.1651
COREPEEL 742 0.5395 0.3871 0.2695
DSDCluster 645 0.2866 0.3966 0.1896

CYC2008,SGD,MIPS
DAPG 1,925 0.4213 0.3684 0.3684
ClusterONE 1,042 0.2718 0.4368 0.2009
MCL 598 0.2832 0.4269 0.1646
CFinder 198 0.2389 0.3003 0.1039
DCAFP 492 0.6704 0.3723 0.2321
RNSC 517 0.0089 0.1938 0.0037
MCODE 78 0.1606 0.2588 0.0462
SPICI 517 0.3131 0.4042 0.1620
COREPEEL 742 0.5437 0.3788 0.2711
DSDCluster 645 0.2914 0.3894 0.1840
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Table 14. Performance comparison results of clustering and biological metrics in
Biogrid-yeast.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

Biogrid-yeast CYC2008
DAPG 4,991 0.1740 0.5967 0.3845 0.7143 0.5410 0.6524 144.58
ClusterONE 369 0.3132 0.5426 0.1599 0.8241 0.6370 0.4203 42.74
MCL 136 0.0919 0.2872 0.0303 0.5624 0.5794 0.5156 63.23
DCAFP 1,545 0.4250 0.4642 0.2846 0.6590 0.4149 0.9043 20,063.2
RNSC 755 0.1264 0.5868 0.1301 0.6680 0.5822 0.4351 128.29
MCODE 24 0.0077 0.1220 0.0014 0.4582 0.3355 0.7523 5,562.32
SPICI 389 0.1618 0.5154 0.0839 0.6317 0.4797 0.5434 0.82
COREPEEL 5,406 0.2048 0.5490 0.3412 0.7356 0.5611 0.6918 23.02
DSDCluster 557 0.3019 0.5576 0.2282 0.6414 0.5340 0.6879 4.5 hrs.

SGD
DAPG 4,977 0.1484 0.4386 0.3405
ClusterONE 369 0.3062 0.4341 0.1438
MCL 136 0.0852 0.2313 0.0296
DCAFP 1,545 0.4048 0.3729 0.2731
RNSC 755 0.1263 0.4685 0.1174
MCODE 24 0.0067 0.0885 0.0012
SPICI 389 0.1469 0.4156 0.0680
COREPEEL 5,406 0.1654 0.4116 0.3038
DSDCluster 557 0.2686 0.4144 0.1885

MIPS
DAPG 4,977 0.1038 0.3787 0.2700
ClusterONE 369 0.2094 0.3769 0.1096
MCL 136 0.0559 0.1943 0.0221
DCAFP 1,545 0.3666 0.3819 0.2667
RNSC 755 0.0905 0.4016 0.1026
MCODE 24 0.0094 0.1074 0.0017
SPICI 389 0.1117 0.3861 0.0684
COREPEEL 5,406 0.1437 0.3570 0.2431
DSDCluster 557 0.1951 0.3510 0.1597

CYC2008,SGD
DAPG 4,977 0.1834 0.4098 0.3294
ClusterONE 369 0.3412 0.4167 0.1332
MCL 136 0.0797 0.2113 0.0247
DCAFP 1,545 0.4578 0.3507 0.2552
RNSC 755 0.1469 0.4610 0.1057
MCODE 24 0.0050 0.0875 0.0008
SPICI 389 0.1603 0.3964 0.0614
COREPEEL 5,406 0.2164 0.3802 0.2935
DSDCluster 557 0.3177 0.4083 0.1783

CYC2008,SGD,MIPS
DAPG 4,977 0.1885 0.4032 0.3219
ClusterONE 369 0.3342 0.4065 0.1281
MCL 136 0.0795 0.2055 0.0236
DCAFP 1,545 0.4569 0.3430 0.2593
RNSC 755 0.1447 0.4518 0.0999
MCODE 24 0.0047 0.0857 0.0008
SPICI 389 0.1585 0.3876 0.0590
COREPEEL 5,406 0.2217 0.3751 0.2897
DSDCluster 557 0.3131 0.4003 0.1691
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Table 15. Performance comparison results of clustering and biological metrics in
HPRD and Biogrid-human.
Approach #C FM Acc MMR GoSim Coloc. SC Time(s)

HPRD PCDq
DAPG 2,777 0.3431 0.2992 0.1681 0.9225 0.4192 0.6564 30.78
ClusterONE 2,186 0.2923 0.5122 0.1718 0.7735 0.4106 0.3114 4.6
MCL 1,248 0.2167 0.4717 0.1120 0.7430 0.3831 0.4150 10.39
CFinder 416 0.1637 0.2935 0.0598 0.6283 0.3284 0.2383 12.42
DCAFP 123 0.1185 0.1654 0.0086 0.8532 0.3440 0.8848 25,470.12
RNSC 1,081 0.2250 0.4445 0.1122 0.8235 0.4241 0.3862 2.32
MCODE 16 0.0170 0.1003 0.0041 0.8033 0.5806 0.6553 10.23
SPICI 722 0.2410 0.4148 0.0835 0.7856 0.3801 0.4510 0.82
COREPEEL 3,420 0.3577 0.2943 0.1852 0.9249 0.4074 0.6667 1.01
DSDCluster 1,247 0.2012 0.4181 0.0994 0.7389 0.3874 0.5405 3.8 hrs.

CORUM
DAPG 2,777 0.3685 0.2119 0.2066
ClusterONE 2,186 0.1348 0.3162 0.0730
MCL 1,248 0.1048 0.3042 0.0488
CFinder 416 0.0769 0.1982 0.0270
DCAFP 123 0.1490 0.1460 0.0270
RNSC 1,081 0.1234 0.2773 0.0565
MCODE 16 0.0154 0.0786 0.0047
SPICI 722 0.1095 0.2566 0.0357
COREPEEL 3,420 0.4017 0.2131 0.2360
DSDCluster 1,247 0.1056 0.2671 0.0510

CORUM,PCDq
DAPG 2,777 0.4757 0.1987 0.1788
ClusterONE 2,186 0.2887 0.3485 0.1101
MCL 1,248 0.1936 0.3233 0.0701
CFinder 416 0.1166 0.2036 0.0368
DCAFP 123 0.0898 0.1161 0.0155
RNSC 1,081 0.2080 0.3010 0.0743
MCODE 16 0.0094 0.0652 0.0027
SPICI 722 0.1946 0.2761 0.0506
COREPEEL 3,420 0.5168 0.1970 0.2033
DSDCluster 1,247 0.1884 0.2837 0.0661
Biogrid Human PCDq

DAPG 7,409 0.1599 0.3495 0.1272 0.8213 0.4041 0.5443 620.32
ClusterONE 4,254 0.0863 0.4802 0.0653 0.6476 0.4008 0.2532 201.32
MCL 1,433 0.0431 0.3594 0.0190 0.6225 0.3695 0.2392 54.21
RNSC 2,194 0.0774 0.4491 0.0502 0.8235 0.3971 0.2206 35.23
MCODE 20 0.0063 0.0883 0.0013 0.8312 0.3695 0.5262 475.23
SPICI 1,063 0.0803 0.3784 0.0263 0.6763 0.3729 0.3829 1.01
COREPEEL 9,772 0.1995 0.3200 0.1550 0.8468 0.4059 0.5782 10.83
DSDCluster 1,593 0.0610 0.3673 0.0307 0.6344 0.3601 0.4148 5.5 hrs.

CORUM
DAPG 7,409 0.2527 0.2917 0.2539
ClusterONE 4,254 0.0529 0.3625 0.0417
MCL 1,433 0.0403 0.2610 0.0179
RNSC 2,194 0.0637 0.3632 0.0418
MCODE 20 0.0105 0.1046 0.0032
SPICI 1,063 0.0643 0.3013 0.0235
COREPEEL 9,772 0.3477 0.2778 0.3063
DSDCluster 1,593 0.0824 0.3118 0.0409

CORUM,PCDq
DAPG 7,409 0.3002 0.2585 0.1847
ClusterONE 4,254 0.1020 0.3709 0.0485
MCL 1433 0.0512 0.2655 0.0165
RNSC 2,194 0.0921 0.3596 0.0402
MCODE 20 0.0069 0.0878 0.0018
SPICI 1,063 0.0836 0.2899 0.0217
COREPEEL 9,772 0.3965 0.2414 0.2250
DSDCluster 1,593 0.0848 0.2904 0.0305
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Table 16. Number of predicted complexes with perfect matching with complexes in
references (CYC2008 and CORUM) (OS = 1.0).

Small networks
Approach Collins Krogan Core Krogan Extended Gavin

DAPG 51 25 23 28
GMFTP 52 30 22 34

ClusterONE 42 23 19 28
MCL 40 17 8 19

CFinder 38 16 11 20
DCAFP 4 4 3 3
RNSC 45 26 15 24

MCODE 24 9 5 10
SPICI 23 12 18 23

COREPEEL 39 26 18 23
DSDCluster 11 17 8 20

larger networks
Approach DIP-yeast Biogrid-yeast HPRD Biogrid-human

DAPG 22 2 39 8
ClusterONE 3 1 8 1

MCL 6 1 7 2
CFinder 13 - 4 -
DCAFP 8 0 2 -
RNSC 0 2 8 1

MCODE 3 0 2 1
SPICI 7 1 1 1

COREPEEL 11 2 46 11
DSDCluster 10 7 10 3

Table 17. Comparison detection results for a small dense subgraph pattern.
Collins

Method HIR Phosphatidy. 3-kinase (CPY) AP3 adaptor EKC/KEOPS

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

DAPG 3 3 3 3
GMFTP 3 7 3 3
COREPEEL 7 7 7 7

Krogan Core
Method HIR Phosphatidy. 3-kinase (CPY) AP3 adaptor EKC/KEOPS

1

2

3

4 Missing prots.

1

2

3

4

1

2

3

4

DAPG 7 7 7 7
GMFTP 3 7 7 7
COREPEEL 7 7 7 7

Krogan Extended
Method HIR Phosphatidy. 3-kinase (CPY) AP3 adaptor EKC/KEOPS

In a larger
DS.

Unconnected prots. In a larger DS.

1

2

3

4

DAPG 7 7 7 3
GMFTP 7 7 7 3
COREPEEL 7 7 7 3

Gavin
Method HIR Phosphatidy. 3-kinase (CPY) AP3 adaptor EKC/KEOPS

Missing
prots.

1

2

3

4

1

2

3

4

1

2

3

4

DAPG 7 3 3 3
GMFTP 7 3 3 7
COREPEEL 7 3 3 3

DIP-yeast
Method HIR Phosphatidy. 3-kinase (CPY) AP3 adaptor EKC/KEOPS

Missing
prots.

Missing prots.

1

2

3

4

1

2

3

4

DAPG 7 7 3 3
COREPEEL 7 7 7 7
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Table 18. Performance comparison results based on Overlap Score (OS) in detecting
overlapping complexes in Collins with gold standard CYC2008.

Collins
Protein Complex DAPG OS GMFTP OS COREPEEL OS

TAF14
Ino80p 1.000 0.758 1.000
TFIIF 0.231 0.750 -
NuA3 - - -
SWI/SNF - - -
TFIID - - -

SWD2
Compass 1.000 1.000 0.875
mRNA cleavage and
polyadenylation

0.933 0.871 0.871

ARP4, ACT1
NuA4 0.923 0.923 0.923
Swr1p 0.852 - 0.769
Ino80p - - -

NGG1
SAGA 0.789 0.895 0.895
SLIK 0.663 - 0.420
Ada2p 0.267 - -

TAF5, TAF6, SAGA 0.789 0.895 0.895
TAF9, TAF10 SLIK 0.663 - 0.420

TFIID 0.667 0.733 0.667

ARP7, ARP9
RSC 1.000 1.000 1.000
SWI/SNF 0.833 0.833 0.750

Table 19. Predicted complexes in Yeast not present in CYC2008, SGD, and MIPS
references. Column with Gene ids contains the genes we found in a complex (number of
gene ids
Pdb
id

Form
name

Gene
ids

PDBe Title url Periodic
Table

2cg9 hetero
tetramer

HSP82
SBA1
(2/2)

CRYSTAL STRUCTURE
OF AN HSP90-SBA1
CLOSED CHAPERONE
COMPLEX (release date :
20060412)

http://www.ebi.ac.uk/
pdbe/entry/pdb/2cg9

2 subunits,
2 repeats

3rui hetero
tetramer

ATG7
ATG8
(2/2)

Crystal structure of Atg7C-
Atg8 complex (release date
: 20111123)

http://www.ebi.ac.uk/
pdbe/entry/pdb/3rui

2 subunits,
2 repeats

2z5c hetero
trimer

IRC25
POC4
(2/3)

Crystal Structure of a
Novel Chaperone Complex
for Yeast 20S Proteasome
Assembly (release date :
20080122)

http://www.ebi.ac.uk/
pdbe/entry/pdb/2z5c

3 subunits,
1 repeat

3m1i hetero
trimer

CRM1
GSP1
YRB1
(3/3)

Crystal structure of yeast
CRM1 (Xpo1p) in com-
plex with yeast RanBP1
(Yrb1p) and yeast RanGTP
(Gsp1pGTP) (release date :
20100602)

http://www.ebi.ac.uk/
pdbe/entry/pdb/3m1i

3 subunits,
1 repeat

2r25 hetero
dimer

SLN1
YPD1
(2/2)

Complex of YPD1 and
SLN1-R1 with bound Mg2+
and BeF3- (release date :
20080115)

http://www.ebi.ac.uk/
pdbe/entry/pdb/2r25

2 subunits,
1 repeat

2v6x hetero
dimer

DID4
VPS4
(2/2)

STRACTURAL INSIGHT
INTO THE INTER-
ACTION BETWEEN
ESCRT-III AND VPS4
(release date : 20071016)

http://www.ebi.ac.uk/
pdbe/entry/pdb/2v6x

2 subunits,
1 repeat

2z5b hetero
dimer

IRC25
POC4
(2/2)

Crystal Structure of a
Novel Chaperone Complex
for Yeast 20S Proteasome
Assembly (release date :
20080122)

http://www.ebi.ac.uk/
pdbe/entry/pdb/2z5b

2 subunits,
1 repeat

3cmm hetero
dimer

UBA1
UBI4
(2/2)

Crystal Structure of the
Uba1-Ubiquitin Complex
(release date : 20080805)

http://www.ebi.ac.uk/
pdbe/entry/pdb/3cmm

2 subunits,
1 repeat

3qml hetero
dimer

KAR2
SIL1
(2/2)

The structural analysis of
Sil1-Bip complex reveals
the mechanism for Sil1
to function as a novel
nucleotide exchange factor
(release date : 20110629)

http://www.ebi.ac.uk/
pdbe/entry/pdb/3qml

2 subunits,
1 repeat
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Table 20. Predicted complexes in Human not present in CORUM and PCDq
references.
Pdb
id

Form
name

Gene ids PDBe Title url Periodic
Table

4aj5 hetero
30-mer

SKA1
SKA2
SKA3 (3/3)

Crystal structure of the Ska
core complex (release date :
20120523)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
4aj5

3 subunits,
10 repeats

1zgl hetero
20-mer

HLA-DRA
HLA-DRB5
(2/5)

Crystal structure of 3A6 TCR
bound to MBP/HLA-DR2a
(release date : 20051018)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
1zgl

4 subunits,
4 repeats

2io3 hetero
12-mer

SENP2
SUMO2
(2/3)

Crystal structure of human
Senp2 in complex with
RanGAP1-SUMO-2 (release
date : 20061114)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
2io3

3 subunits,
4 repeats

1d0g hetero
hex-
amer

TNFRSF10B
TNFSF10
(2/2)

CRYSTAL STRUCTURE
OF DEATH RECEPTOR
5 (DR5) BOUND TO
APO2L/TRAIL (release date
: 19991022)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
1d0g

2 subunits,
3 repeats

3l4g hetero
tetramer

FARSA
FARSB
(2/2)

Crystal structure of
Homo Sapiens cytoplas-
mic Phenylalanyl-tRNA
synthetase (release date :
20100309)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
3l4g

2 subunits,
2 repeats

1hcf hetero
tetramer

NTF4
NTRK2
(2/2)

CRYSTAL STRUCTURE
OF TRKB-D5 BOUND
TO NEUROTROPHIN-4/5
(release date : 20011206)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
1hcf

2 subunits,
2 repeats

4dxr hetero
hex-
amer

SUN2
SYNE1
(2/2)

Human SUN2-KASH1 com-
plex (release date : 20120606)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
4dxr

1 subunit,
3 repeats

3oj4 hetero
trimer

TNFAIP3
UBC
UBE2D1
(3/3)

Crystal structure of the
A20 ZnF4 (release date :
20101208)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
3oj4

3 subunits,
1 repeat

1kmc hetero
tetramer

CASP7
XIAP (2/2)

Crystal Structure of the
Caspase-7 / XIAP-BIR2
Complex (release date :
20020116)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
1kmc

1 subunit,
2 repeats

2ibi hetero
dimer

UBC USP2
(2/2)

Covalent Ubiquitin-USP2
Complex (release date :
20061024)

http://www.ebi.ac.
uk/pdbe/entry/pdb/
2ibi

2 subunits,
1 repeat
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