
Nordic Journal of Computing

SUCCINCT SUFFIX ARRAYS
BASED ON RUN-LENGTH ENCODING∗

VELI M ÄKINEN †

Dept. of Computer Science, University of Helsinki
Gustaf Hällströmin katu 2b, 00014 University of Helsinki, Finland

vmakinen@cs.helsinki.fi

GONZALO NAVARRO‡

Dept. of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile

gnavarro@dcc.uchile.cl

Abstract. A succinct full-text self-index is a data structure built ona textT = t1t2 . . . tn,
which takes little space (ideally close to that of the compressed text), permits efficient
search for the occurrences of a patternP = p1p2 . . . pm in T, and is able to reproduce any
text substring, so the self-index replaces the text.

Several remarkable self-indexes have been developed in recent years. Many of those
take space proportional tonH0 or nHk bits, whereHk is thekth order empirical entropy of
T. The time to count how many times doesP occur inT ranges fromO(m) to O(mlogn).

In this paper we present a new self-index, called RLFM index for “run-length FM-
index”, that counts the occurrences ofP in T in O(m) time when the alphabet size is
σ = O(polylog(n)). The RLFM index requiresnHk logσ + O(n) bits of space, for any
k ≤ α logσ n and constant 0< α < 1. Previous indexes that achieveO(m) counting time
either require more thannH0 bits of space or require thatσ = O(1). We also show that the
RLFM index can be enhanced to locate occurrences in the text and display text substrings
in time independent ofσ.

In addition, we prove a close relationship between thekth order entropy of the text and
some regularities that show up in their suffix arrays and in the Burrows-Wheeler trans-
form of T. This relationship is of independent interest and permits bounding the space
occupancy of the RLFM index, as well as that of other existingcompressed indexes.

Finally, we present some practical considerations in orderto implement the RLFM in-
dex. We empirically compare our index against the best existing implementations and
show that it is practical and competitive against those. In passing, we obtain a competitive
implementation of an existing theoretical proposal that can be seen as a simplified RLFM
index, and explore other practical ideas such as Huffman-shaped wavelet trees.

ACM CCS Categories and Subject Descriptors: E.1. Data structures; F.2.2. Nonnumer-
ical Algorithms and Problems — Computations on discrete structures, Pattern matching,
Sorting and searching; H.3. Information Storage and Retrieval

∗Parts of this work have appeared in [29, 31, 30, 32].
†Part of the work was conducted during a postdoctoral visit toBielefeld University funded by the

Deutsche Forschungsgemeinschaft (BO 1910/1-3) within the Computer Science Action Program.
Also partially funded by the Academy of Finland.

‡Funded by Millennium Nucleus Center for Web Research, GrantP04-067-F, Mideplan, Chile.

Received ...; revised ...; accepted

2 VELI M ÄKINEN AND GONZALO NAVARRO

Key words: Compressed full-text self-indexes, empiricalk-th order entropy, indexed string
matching, text retrieval, Burrows-Wheeler transform, suffix arrays, run-length compres-
sion.

1. Introduction

The classical problem in string matching is to determine theocc occurrences of
a short patternP = p1p2 . . . pm in a large textT = t1t2 . . . tn. Text and pattern
are sequences of characters over an alphabetΣ of sizeσ. Actually one may want
to know the numberocc of occurrences (this is called acounting query), the text
positions of thoseoccoccurrences (alocating query), or also a text context around
them (acontext query). Usually the same text is queried several times with different
patterns, and therefore it is worthwhile to preprocess it inorder to speed up the
searches. The preprocessing builds anindexstructure on the text.

To allow fast searches for patterns of any size, the index must allow access to
all suffixesof the text (theith suffix of T is ti ti+1 . . . tn). These kind of indexes are
called full-text indexes. Thesuffix tree [49, 36, 48, 2] is the best-known full-text
index, requiringO(m) time for counting andO(occ) for locating queries.

The suffix tree takes much more memory than the text. In general, it takes
O(n logn) bits, while the text takesn logσ bits1. In practice the suffix tree re-
quires about 20 times the text size. A smaller constant factor, close to 4 in practice,
is achieved by thesuffix array [34]. Still, the space complexity ofO(n logn) bits
does not change. Moreover, counting queries takeO(mlogn) time with the suffix
array. This can be improved toO(m+ logn) by using twice the original amount of
space [34].

Since the last decade, several attempts to reduce the space of the suffix trees or
arrays have been made [23, 25, 26, 27, 1, 28], and other structures have been pro-
posed as well [4, 47, 24]. In some cases these attempts have obtained remarkable
results in space (for example, 1.6 times the text size in practice) at a small price
in query time. Some of those structures [25, 28] have the interesting property of
requiring less space when the text is compressible.

In parallel, intensive work onsuccinct data structuresfocused on the represen-
tation of basic structures such as sequences and trees [22, 37, 38, 42, 43]. Those
representations were able to approach the information theoretic minimum space re-
quired to store the structures. Based on those results, new succinct representations
of suffix trees and arrays were proposed [6, 7, 39, 18, 44]. Yet, all ofthem still
required the text separately available to answer queries.

This trend evolved into the concept ofself-indexing. A self-index is a succinct
index that contains enough information to reproduce any text substring. Hence a
self-index that implements such functionality canreplacethe text. The exciting
possibility of an index that requires space proportional tothecompressedtext, and
yet replaces it, has been explored in recent years [8, 9, 10, 45, 46, 41, 16, 17, 33,
14, 11, 12].

1 By log we mean log2 in this paper.

SUCCINCT SUFFIX ARRAYS 3

Table I compares the space requirements, counting time, andrestrictions on the
alphabet size for those self-indexes. In the table,H0 stands for the zero-order en-
tropy of T, while Hk stands for thekth order entropy ofT, for anyk ≤ α logσ n,
where 0 < α < 1 is any constant.2 The number of bits of space required by
the indexes ranges from proportional tonH0 to proportional tonHk. A few of
those require exactlynHk + o(n) bits, which is currently the lowest asymptotic
space requirement that has been achieved. Counting time ranges fromO(m) to
O(mlogn). Finally, some indexes achieve their results only on constant-size alpha-
bets, while some others require thatσ = O(polylog(n)), and the rest works well for
anyσ = o(n/ logn).3

We also point out thatO(m/ logσ n + polylog(n)) time has been achieved on a
succinct (non-self) index [18]. This time is optimal on the RAM model if the
pattern is long enough compared to the text (that is, the polylog(n) term has to be
O(m/ logσ n)), yet notO(m) in general.

T I: Comparison of space, counting time, and restrictions on the alphabet size for the existing
self-indexes. We show the contributions ordered by the timewhen they first appeared.

Reference Space in bits Counting time Works forσ =
[8, 9] 5nHk + o(n) O(m) O(1)
[45] nH0 +O(n log logσ) O(mlogn) o(n/ logn)
[46] nH0 +O(n) O(m) O(polylog(n))
[41] 4nHk + o(n) O(m3 logσ +mlogn) o(n/ logn)
[16, 17] nHk + o(n logσ) O(mlogσ + polylog(n)) o(n/ logn)
This paper nHk logσ +O(n) O(m) O(polylog(n))
[33] nHk(logσ + log logn) +O(n) O(mlogn) o(n/ logn)
[14, 15] 2n(H0 + 1)(1+ o(1)) O(mlogσ) o(n/ logn)
[11] nHk + o(n logσ) O(mlogσ) o(n/ logn)
[12] nHk + o(n) O(m) O(polylog(n))

Table I shows the indexes in chronological order of their first publication, in-
cluding the RLFM index presented in this paper. This permitsdistinguishing the
indexes that existed when the RLFM index first appeared [29, 31, 30], from those
that appeared later, most of them deriving in some aspect from the RLFM index
ideas. The RLFM index was the first in obtainingO(m) counting time and space
proportional tonHk for anyσ = O(polylog(n)). Inspired by the results of this paper
[31], we started a joint work with the authors of the FM-index[8, 9] that ended up
in new indexes [11] that very recently superseded our original results [12]. Simi-
larly, we applied our ideas in joint work with the author of the CSA index [45, 46]
and obtained new CSA variants [33]. Yet, our index is still unique in its run-length-

2 It also holds for any constantk as long asσ = O(polylog(n)).
3 This restriction is usually not explicit in those publications, but they store at least an array of
integers in the range [1,n] indexed by characters ofΣ. Unlessσ = o(n/ logn), that array alone
requiresσ logn = Ω(n) bits.

4 VELI M ÄKINEN AND GONZALO NAVARRO

based approach to obtain space proportional tonHk, and still represents a relevant
space-time tradeoff among existing implementations.

Precisely, this paper presents the following contributions:
(1) We show that there is a close relationship between thekth order entropy of

T and (i) the zones in the suffix array that appear replicated in another area
with the values incremented by 1, and (ii) the runs of equal letters that ap-
pear onceT undergoes the Burrows-Wheeler transform [5]. This proof has
independent interest and not only permits analyzing some existing succinct
indexes [28, 29, 33], but also gives the baseline to develop new indexes of
size proportional tonHk.

(2) We use the previous idea to develop a new self-index basedon the runs
of equal letters that result from the Burrows-Wheeler transform of T. The
index, calledrun-length FM-index (RLFM), requiresnHk logσ + O(n) bits
of space, and it is able to answer counting queries inO(m) time, for any
σ = O(polylog(n)). We show different ways to answer locating queries and
displaying text.

(3) We focus on a practical RLFM implementation, and developsimpler versions
that perform better in practice. In passing we obtain an implementation of
an existing proposal [46], that we call SSA for “succinct suffix array”. We
compare our implementations against the best existing onesfor alternative
indexes and show that the RLFM and SSA are competitive in practice and
achieve space-time tradeoffs that are not reached by others.

2. Basic concepts

Let us first recall some definitions. Astring S= s1s2 . . . sn is a sequence ofchar-
acters(also calledsymbolsor letters) from an alphabetΣ. The size of the alphabet
is σ, and for clarity of exposition, we sometimes assume thatΣ = {1, . . . , σ}. The
lengthof S is |S| = n, and its individual characters areS[i] = si. A substringof
S is denoted byS[i, j] = si si+1 . . . sj. An empty stringis denotedǫ. If i > j, then
S[i, j] = ǫ. A suffix of S is any substringS[i, n]. A prefix of S is any substring
S[1, i]. A cyclic shiftof S is any stringsi si+1 . . . sns1s2 . . . si−1. The lexicographic
order of two strings is the natural order induced by the alphabet order: If two
strings have the same firstk letters, then their order depends on the order of their
(k+1)th letter. We denote byT = t1t2 . . . tn our textstring. We assume that a special
endmarker tn = $ has been appended toT, such that the endmarker is smaller than
any other text character. We denote byP = p1p2 . . . pn ourpatternstring, and seek
to find theoccurrencesof P in T, that is, the positions inT whereP appears as a
substring ofT.

We now survey some existing results used in our paper.

2.1 Empirical kth order entropy

We recall some basic facts and definitions related to the empirical entropy of texts
[35]. Let nc denote the number of occurrences inT of symbolc ∈ Σ. The zero-

SUCCINCT SUFFIX ARRAYS 5

order empirical entropy of stringT is

H0(T) = −
∑

c∈Σ

nc

n
log

nc

n
,

where 0 log 0= 0. If we use a fixed codeword for each symbol in the alphabet,
thennH0(T) bits is the smallest encoding we can achieve forT.

If the codeword is not fixed, but it depends on thek symbols that follow the
character inT, then the smallest encoding one can achieve forT is nHk(T) bits,
whereHk(T) is thekth order empirical entropy ofT. This is defined as

Hk(T) =
1
n

∑

W∈Σk

|WT |H0(WT), (1)

whereWT is the concatenation of all symbolst j (in arbitrary order) such thatt jW
is a substring ofT. StringW is thek-contextof each sucht j .4 Note that the order
in which the symbolst j are permuted inWT does not affectH0(WT).

We useH0 andHk as shorthands forH0(T) andHk(T) in this paper. We note that
empirical entropies can beo(n) for compressible texts. As an extreme example,
consider the family{(ab)n, n ≥ 0}, whereH0 = 1 andH1 = O(logn/n). This is
in contrast with the classical notion of entropy, which is applied to infinite streams
and is always constant [3]. By expressing the space requirement of indexes in
terms of empirical entropies, we relate their size with compressibility bounds of
each particular text.

2.2 The Burrows-Wheeler transform

TheBurrows-Wheeler transform (BWT)[5] of a textT produces a permutation of
T, denoted byTbwt. Recall thatT is assumed to be terminated by the endmarker
“$”. String Tbwt is the result of the following transformation: (1) Form acon-
ceptualmatrixM whose rows are the cyclic shifts of the stringT, call F its first
column andL its last column; (2) sort the rows ofM in lexicographic order; (3)
the transformed text isTbwt = L.

The BWT is reversible, that is, givenTbwt we can obtainT. Note the following
properties [5]:

a. Given theith row ofM, its last characterL[i] precedes its first characterF[i]
in the original textT, that is,T = . . . L[i]F[i]

b. Let L[i] = c and letr i be the number of occurrences ofc in L[1, i]. Take
the rowM[j] as ther i th row ofM starting withc. Then the character cor-
responding toL[i] in the first columnF is located atF[j] (this is called the
LF mapping: LF(i) = j). This is because the occurrences of characterc are
sorted both inF and L using the same criterion: by the text following the
occurrences.

4 Note that our contexts are the charactersfollowing each text positiont j . This has been chosen for
technical convenience. Alternatively one can chooseWtj , that is, the characterspreceding tj . Should
this be problematic for the generality of our results, we canindex the reversed text and search it for
the reversed patterns to obtain the other definition.

6 VELI M ÄKINEN AND GONZALO NAVARRO

The BWT can then be reversed as follows:
(1) Compute the arrayC[1, σ] storing inC[c] the number of occurrences of char-

acters{$, 1, . . . , c− 1} in the textT. Notice thatC[c] + 1 is the position of the
first occurrence ofc in F (if any).

(2) Define theLF mappingas follows: LF(i) = C[L[i]] + Occ(L, L[i], i), where
Occ(L, c, i) is the number of occurrences of characterc in the prefixL[1, i].

(3) ReconstructT backwards as follows: sets = 1 (sinceM[1] = $t1t2 . . . tn−1)
and, for eachn − 1, . . . , 1 do T[i] ← L[s] and s ← LF[s]. Finally put the
endmarkerT[n] = $.

The BWT transform by itself does not compressT, it just permutes its characters.
However, this permutation is more compressible than the original T. Actually, it is
not hard to compressTbwt to O(nHk + σ

k) bits, for anyk ≥ 0 [35].

2.3 Suffix arrays

Thesuffix arrayA[1, n] of text T is an array of pointers to all the suffixes ofT in
lexicographic order. SinceT is terminated by the endmarker “$”, all lexicographic
comparisons are well defined. Theith entry ofA points to text suffix T[A[i], n] =
tA[i] tA[i]+1 . . . tn, and it holdsT[A[i], n] < T[A[i + 1], n] in lexicographic order.

Given the suffix array, the occurrences of the patternP = p1p2 . . . pm can be
counted inO(mlogn) time. The occurrences form an intervalA[sp, ep] such that
suffixestA[i] tA[i]+1 . . . tn, for all sp≤ i ≤ ep, contain the patternP as a prefix. This
interval can be searched for using two binary searches in time O(mlogn). Once
the interval is obtained, a locating query is solved simply by listing all its pointers
in O(occ) time.

We note that the suffix arrayA is essentially the matrixM of the BWT (Sec-
tion 2.2), as sorting the cyclic shifts ofT is the same as sorting its suffixes given
the endmarker “$”:A[i] = j if and only if the ith row ofM contains the string
t j t j+1 . . . tn−1$t1 . . . t j−1.

A feature of suffix arrays that is essential for their compression is that they(may)
containself-repetitions. A self-repetition inA is an intervalA[j . . . j + ℓ] that
appears elsewhere, say inA[i . . . i + ℓ], so that all values are displaced by 1. This
is, for any 0≤ r ≤ ℓ, it holdsA[j + r] = A[i + r] + 1. Self-repetitions were one of
the first tools used to compact suffix arrays [28].

2.4 The FM-index

The FM-index [8, 9] is a self-index based on the Burrows-Wheeler transform. It
solves counting queries by finding the interval ofA that contains the occurrences
of patternP. The FM-index uses the arrayC and functionOcc(L, c, i) defined in
Section 2.2. Fig. 1 shows the counting algorithm. Using the properties of the
BWT, it is easy to see that the algorithm maintains the following invariant [8]: At
the ith phase, variablesspandeppoint, respectively, to the first and last row ofM
prefixed byP[i,m]. The correctness of the algorithm follows from this observation.
Note thatP is processed backwards, frompm to p1.

SUCCINCT SUFFIX ARRAYS 7

Algorithm FMcount(P[1,m],Tbwt[1, n])
(1) i ← m;
(2) sp← 1; ep← n;
(3) while (sp≤ ep) and (i ≥ 1) do
(4) c← P[i];
(5) sp← C[c] +Occ(Tbwt, c, sp− 1)+1;
(6) ep← C[c] + Occ(Tbwt, c, ep);
(7) i ← i − 1;
(8) if (ep< sp) then return “not found” else return “found (ep− sp+ 1) occurrences”.

Fig. 1: FM-index algorithm for counting the number of occurrencesof P[1,m] in T[1,n].

Note that while arrayC can be explicitly stored in little space, implementing
Occ(Tbwt, c, i) is problematic. The first solution [8] implementedOcc(Tbwt, c, i) by
storing a compressed representation ofTbwt plus some additional tables. With this
representation,Occ(Tbwt, c, i) could be computed in constant time and therefore the
counting algorithm requiredO(m) time.

The representation ofTbwt requiredO(nHk) bits of space, while the additional
tables required space exponential inσ. Assuming thatσ is constant, the space
requirement of the FM-index is 5nHk + o(n). In a practical implementation [9]
this exponential dependence onσ was avoided, but the constant time guarantee for
answeringOcc(Tbwt, c, i) was no longer valid.

Let us now consider how to locate the positions inA[sp, ep]. The idea is that
T is sampled at regular intervals, so that we explicitly storethe positions inA
pointing to the sampled positions inT (note that the sampling is not regular inA).
Hence, using theLF mapping, we move backward inT until finding a position that
is known inA. Then it is easy to infer our original text position. Fig. 2 shows the
pseudocode.

Algorithm FMlocate(i,Tbwt[1,n])
(1) i′ ← i, t ← 0;
(2) whileA[i′] is not knowndo
(3) i′ ← LF(i′) = C[Tbwt[i′]] +Occ(Tbwt,Tbwt[i′], i′);
(4) t ← t + 1;
(5) return “text position isA[i′] + t”.

Fig. 2: FM-index algorithm for locating the occurrenceA[i] in T.

We note that, in addition toC andOcc, we need access to charactersTbwt[i′] as
well. In the original paper [8] this is computed inO(σ) time by linearly looking for
the characterc such thatOcc(Tbwt, c, i′) , Occ(Tbwt, c, i′ − 1). Finally, if we sam-
ple one out of log1+ε n positions inT, for any constantε > 0, and use logn bits to

8 VELI M ÄKINEN AND GONZALO NAVARRO

represent each corresponding knownA value, we requireO(n/ logε n) = o(n) ad-
ditional bits of space and can locate theoccoccurrences ofP in O(occσ log1+ε n)
time.5

Finally, let us consider displaying text contexts. To retrieveT[l1, l2], we first find
the position inA that points tol2, and then issueℓ = l2 − l1 backward steps inT,
using theLF mapping. Starting at the lowest marked text position that follows l2,
we performO(log1+ε n) steps until reachingl2. Then we performℓ additionalLF
steps to collect the text characters. The resulting complexity is O(σ (ℓ+ log1+ε n)).

2.5 The compressed suffix array (CSA)

The compressed suffix array (CSA)[45] is a self-index based on an earlier suc-
cinct data structure [18]. In the CSA, the suffix arrayA[1, n] is represented by
a sequence of numbersΨ(i), such thatA[Ψ(i)] = A[i] + 1.6 The sequenceΨ is
differentially encoded,Ψ(i + 1)− Ψ(i).

Note that if there is a self-repetitionA[j . . . j + ℓ] = A[i . . . i + ℓ] + 1 (recall
Section 2.3), thenΨ(i . . . i + ℓ) = j . . . j + ℓ, and thusΨ(i + 1)−Ψ(i) = 1 in all that
area. This property was used to representΨ using run-length compression in space
proportional tonHk [30, 29, 33], using ideas from this paper.

Yet, the original CSA achieved space proportional tonH0 by different means.
Note that theΨ values are increasing in the areas ofA where the suffixes start
with the same characterc, becausecX < cY if and only if X < Y in lexicographic
order. It is enough to store those increasing values differentially with a method like
Elias coding to achieveO(nH0) overall space [45]. Some additional information is
stored to permit constant time access toΨ. This includes the sameC array used by
the FM-index. Considering all the structures, the CSA takesn(H0 + O(log logσ))
bits of space.

A binary search on suffix arrayA is simulated by extracting strings of the form
tA[i] tA[i]+1tA[i]+2 . . . from the CSA, for any indexi required by the binary search.
The first charactertA[i] is easy to obtain because all the first characters of suffixes
appear in order when pointed fromA, sotA[i] is the characterc such thatC[c] < i ≤
C[c+ 1]. This is found in constant time by using small additional structures. Once
the first character is obtained, we move toi′ ← Ψ(i) and go on withtA[i′] = tA[i]+1.
We continue until the result of the lexicographical comparison against the pattern
P is clear. The overall search complexity is the same as with the original suffix
array,O(mlogn).

The method to locate occurrences could have been the same as for the FM-index
(Section 2.4), usingΨ to move forward in the text instead of using theLF mapping
to move backward. Note that the times are not multiplied byσ, so they can locate
theoccoccurrences inO(occ log1+ε n) time and display a text substring of lengthℓ
in O(ℓ+log1+ε n) time, for any constantε > 0. The reason behind the independence

5 Actually, if one insists in thatσ = O(1), and thus the locate time isO(occ log1+ε n), then it is
possible to achieveO(occ logε n) time by enlarging the alphabet. This is not a choice ifσ = ω(1).
6 SinceA[1] = n becauseT[n,n] = $ is the smallest suffix, it should holdA[Ψ(1)] = n + 1. For
technical convenience we setΨ(1) so thatA[Ψ(1)] = 1, which makesΨ a permutation of [1,n].

SUCCINCT SUFFIX ARRAYS 9

of σ is that the CSA encodesΨ explicitly (albeit compressed), whereas the FM-
index does not encode the LF mapping but it needs to compute itusingTbwt[i], so
it needs to know the current character in order to move.

Yet, the CSA locates even faster (inO(logε n) steps) with a more complicated
structure: the inverse ofA. This inverse permits moving by more than one text
position at a time, and is implemented in succinct space using ideas in previous
work [18]. The price is that the main term of the space complexity is actually
nH0(1+ 1/ε).

A more recent variant of the CSA [46] achievesO(m) counting time ifσ =
O(polylog(n)), by means of simulating an FM-index-like backward search(Sec-
tion 2.4). This is interesting because it shows a deep connection between the
FM-index and the CSA structures. Even more important for this paper is that
they solve the problem of computingOcc(Tbwt, c, i) of the FM-index in constant
time using |T |H0(T) + O(|T |) bits of space, provided the alphabet size ofT is
σ = O(polylog(|T |)). This is done by storingσ bit arraysBc such thatBc[i] = 1
if and only if Tbwt[i] = c, and thusOcc(Tbwt, c, i) = rank1(Bc, i) (Section 2.6).
They manage to use a succinct representation for theBc arrays [43] so as to get the
desired space bounds.

2.6 Succinct data structures for binary sequences

Binary sequences are among the most basic data structures, and they are intensively
used by succinct full-text indexes. Hence their succinct representation is of interest
for these applications. In particular,rank andselectqueries over the compressed
sequence representations are the most interesting ones.

Given a binary sequenceB = b1b2 . . . bn, we denote byrankb(B, i) the number
of times bitb appears in the prefixB[1, i], and by selectb(B, i) the position inB
of the ith occurrence of bitb. By default we assumerank(B, i) = rank1(B, i) and
select(B, i) = select1(B, i).

There are several already classical results [22, 37, 6] thatshow howB can be
represented usingn+ o(n) bits so as to answerrank andselectqueries in constant
time. The best current results [42, 43] are able to answer those queries in constant
time, yet using onlynH0(B) + o(n) bits of space. More precisely, the former [42]
usesnH0(B) + O(n log logn/ logn) bits, and it answers in constant time allrank
queries, also retrieving any bitbi . The latter [43], on one hand, adds support for all
selectqueries within the samenH0(B) +O(n log logn/ logn) bits of space used by
the former [42]. On the other hand, it presents a more limitedstructure answering
rank0(B, i) andrank1(B, i) only if bi = 1, only select1(B, i) but notselect0(B, i), and
retrieving any bitbi . In exchange, this last structure needs less space on sparsebit
vectors:nH0(B) + o(ℓ) +O(log logn) bits, whereℓ is the number of bits set inB.

We remark that these space bounds include that for representing B itself, so the
binary sequence is being compressed, yet it allows those queries to be answered in
optimal time.

10 VELI M ÄKINEN AND GONZALO NAVARRO

2.7 Wavelet trees

SequencesS = s1s2 . . . sn on general alphabets of sizeσ can also be represented
usingnH0(S)+o(n logσ) bits by using awavelet tree[16]. Queriesrankandselect
can be defined equivalently on general sequences. The wavelet tree takesO(logσ)
time to answer those queries, as well as to retrieve character si.

The wavelet tree is a perfectly balanced binary tree where each node corresponds
to a subset of the alphabet. The children of each node partition the node subset
into two. A bitmap at the node indicates to which children does each sequence
position belong. Each child then handles the subsequence ofthe parent’s sequence
corresponding to its alphabet subset. The leaves of the treehandle a single letter of
the alphabet and require no space.

More formally, the root partition puts characters in [1, ⌊σ/2⌋] on the left child,
and characters in [⌊σ/2⌋ + 1, σ] on the right child. A bitmapBroot[1, n] is stored
at the root node, so thatB[i] = 0 if and only if 1 ≤ S[i] ≤ ⌊σ/2⌋ (that is, if the
ith character ofS belongs to the left child) and 1 otherwise. The two children are
processed recursively. However, each of them considers thetext positions whose
character belongs to their subset. That is, the bitmap of theleft child of the root
will have onlyn1+ . . .+n⌊σ/2⌋ bits and that of the right child onlyn⌊σ/2⌋+1+ . . .+nσ,
wherenc is the number of occurrences ofc in S.

To answer queryrankc(S, i), we first determine to which branch of the root does
c belong. If it belongs to the left, then we recursively continue at the left subtree
with i ← rank0(Broot, i). Otherwise we recursively continue at the right subtree
with i ← rank1(Broot, i). The value reached byi when we arrive at the leaf that
corresponds toc is rankc(S, i). To answerselectc(S, i) the process is bottom-up,
starting at the leaf that corresponds toc and updatingi ← select0(Bnode, i) and
i ← select1(Bnode, i) depending on whether the current node is a left or right child.
Finally, to find outsi we go left or right in the tree depending on whetherBroot[i] =
0 or 1, and we end up at the leaf that corresponds tosi. All those queries take
O(logσ) time.

If every bitmap in the wavelet tree is represented using a data structure that takes
space proportional to its zero-order entropy (Section 2.6), then it can be shown that
the whole wavelet tree requiresnH0(S) + o(n logσ) bits of space [16].

Whenσ = O(polylog(n)), a generalization of wavelet trees takesnH0(S) + o(n)
bits and answers all those queries in constant time [12].

3. Relating the kth order entropy with self-repetitions

In this section we prove a relation between thekth order entropy of a textT and
both the number of self-repetitions in its suffix array (Section 2.3) and the number
of runs of equal letters in the Burrows-Wheeler transformedtextTbwt (Section 2.2).
In this proof we use some techniques already presented in a much more complete
analysis [35]. Our analysis can be regarded as a simplified version that turns out to
be enough for our purposes.

The concept of self-repetition has been used [28] to compactsuffix arrays, essen-
tially by replacing the areasA[i . . . i + ℓ] that appear elsewhere asA[j . . . j + ℓ] =

SUCCINCT SUFFIX ARRAYS 11

A[i . . . i + ℓ] + 1, by pointers of the form (j, ℓ). Let us define the minimum number
of self-repetitions necessary to cover a suffix array.

D 1. Given a suffix arrayA, nsr is the minimum number of self-repetitions
necessary to cover the wholeA. This is the minimum number of nonoverlapping
intervals [is, is + ℓs] that cover the interval[1, n] such that, for any s, there exists
[js, js + ℓs] such thatA[js + r] = A[is + r] + 1 for all 0 ≤ r ≤ ℓs. (Note that
Ψ(is + r) = js+ r for 0 ≤ r ≤ ℓs.)

We show now that, in a cover of minimum size of self-repetitions, these have to
be maximal, and that if self-repetitions are maximal, then the cover is of minimum
size.

L 1. Let [is, is+ ℓs] be a cover of[1, n] using nonoverlapping self-repetitions.
Assume them to be sorted, thus is+1 = is+ ℓs+ 1. If some self-repetition[is, is+ ℓs]
is not maximal, then the cover is not of minimum size.

P. Let js be such thatA[js] = A[is] + 1. Assume that the interval [is, is+ ℓs]
can be extended to the right, that is,A[js + ℓs + 1] = A[is + ℓs + 1] + 1. Then,
since js is unique for eachis (actually js = Ψ(is)), and sinceis + ℓs + 1 = is+1, we
have js+1 = Ψ(is+1) = js + ℓs + 1. Moreover,A[js + ℓs + 1 + r] = A[js+1 + r] =
A[is+1 + r] + 1 = A[is+ ℓs+ 1+ r] + 1 for 0≤ r < ℓs+1. Thus, intervals [is, is+ ℓs]
and [is+1, is+1+ ℓs+1] can be merged into one. The argument is similar if [is, is+ ℓs]
can be extended to the left.�

L 2. Let [is, is + ℓs] be a cover of[1, n] using nonoverlapping maximal self-
repetitions. Then the cover is of minimum size.

P. We simply note that there is only one possible cover where self-repetitions
are maximal. Consider again that the intervals are sorted. Thus i1 = 1 andℓ1 is
maximal. Thusi2 is fixed ati2 = i1 + ℓ1 + 1 andℓ2 is maximal, and so on.�

The size of thecompact suffix array [28] is actuallyO(nsr logn). No useful bound
onnsr was obtained before. Our results in this section will permitbounding the size
of the compact suffix array in terms of thekth order entropy ofT.

Let us first define more conveniently the number of self-repetitions nsr in a suffix
arrayA. As explained in Section 2.5, a self-repetitionA[j . . . j + ℓ] = A[i . . . i +
ℓ]+1 translates into the conditionΨ(i . . . i+ℓ) = j . . . j+ℓ. The following definition
is convenient.

D 2. A run inΨ is any maximal interval[i, i + ℓ] in sequenceΨ such that
Ψ(r + 1) − Ψ(r) = 1 for all i ≤ r < i + ℓ. Note that the number of runs inΨ is n
minus the number of positions r such thatΨ(r + 1)− Ψ(r) = 1.

The following lemma gives us an alternative definition of self-repetitions, which
will be more convenient for us and is interesting in its own right to analyze the
CSA.

12 VELI M ÄKINEN AND GONZALO NAVARRO

L 3. The number of self-repetitions nsr to coverA is equal to the number of
runs inΨ.

P. As explained in Section 2.5, there exists a self-repetitionA[j . . . j + ℓ] =
A[i . . . i+ℓ]+1 if and only ifΨ(i . . . i+ℓ) = j . . . j+ℓ, that is, ifΨ(r+1)−Ψ(r) = 1
for all i ≤ r < i + ℓ. Therefore, each maximal self-repetition is also a (maximal)
run inΨ and vice versa.�

Let us now consider the number of equal-letter runs inTbwt = L. The following
definition and theorem permit us boundingnsr in terms of those runs.

D 3. Given a Burrows-Wheeler transformed text Tbwt[1, n], nbw is the num-
ber of equal-letter runs in Tbwt, that is, n minus the number of positions j such that
Tbwt[j + 1] = Tbwt[j].

T 1. The following relation between nsr and nbw holds: nsr ≤ nbw ≤ nsr+σ,
whereσ is the alphabet size of T.

P. Let L = Tbwt be the last column in matrixM of the BWT. If L[j] =
L[j + 1] = c, thenT[A[j] − 1] = cX, T[A[j + 1] − 1] = cY, T[A[j]] = X, and
T[A[j + 1]] = Y. Let i be such thatj = Ψ(i) and i′ such thatj + 1 = Ψ(i′), then
A[j] = A[i]+1 andA[j+1] = A[i′]+1. HenceT[A[i]] = cX andT[A[i′]] = cY.
SinceX < Y, it follows thatcX < cY and thereforei < i′. Moreover, there cannot
be any suffix cZ such thatcX < cZ < cY because in this caseX < Z < Y, and thus
the pointer to suffix Z should be betweenj and j + 1. Since there is no such suffix,
it follows that i′ = i + 1, that is,Ψ(i′) − Ψ(i) = Ψ(i + 1) − Ψ(i) = (j + 1) − j = 1,
and thereforei andi + 1 belong to the same maximal self-repetition.

Recall thatnbw is n minus the number of cases whereL[j] = L[j + 1], and
similarly nsr is n minus the number of cases whereΨ(i + 1)−Ψ(i) = 1. Since there
is a bijectionΨ betweeni and j, and thus everyj such thatL[j] = L[j + 1] induces
a differenti such thatΨ(i + 1) − Ψ(i) = 1, it follows immediately thatnsr ≤ nbw.
Actually, the inverse of the above argument is also true except for the possibility of
a self-repetition spanning an area where the first characterof the suffixes changes.
As this happens at mostσ times, we havensr ≤ nbw ≤ nsr + σ. �

We have established the relation between the runs inΨ, the self-repetitions inA,
and the runs inTbwt. We now prove that the number of equal-letter runs inTbwt is
nbw ≤ nHk + σ

k, for anyk ≥ 0.

D 4. Let rle(S) be therun-length encodingof string S , that is, sequence
of pairs (si , ℓi) such that si , si+1 and S= sℓ11 sℓ22 . . ., where sℓii denotes character
si repeatedℓi times. The length|rle(S)| of rle(S) is the number of pairs in it.

Hence, we want to boundnbw = |rle(Tbwt)|. An important observation for our
development follows:

O 1. For any partition ofS into consecutive substringsS = S1S2 . . .Sp,
it holds |rle(S)| ≤ |rle(S1)| + |rle(S2)| + . . . + |rle(Sp)|, as the runs are the same
except in the frontiers betweenSi andSi+1, where a run inS can be split into two.

SUCCINCT SUFFIX ARRAYS 13

Recall stringWT as defined in Section 2.1 for ak-contextW of string T. Note
that we can apply any permutation toWT so that Eq. (1) still holds. Now, characters
in Tbwt = L are sorted by the text suffix that follows them (that is, by their row in
M), and thus they are ordered by theirk-context, for anyk. This means that all
the characters inWT , for anyW ∈ Σk, appear consecutively inTbwt. Thus,Tbwt

is precisely the concatenation of all the stringsWT for W ∈ Σk, if we take the
order of characters inside eachWT according to how they appear inTbwt [35]. As
a consequence, we have that7

nbw = |rle(Tbwt)| ≤
∑

W∈Σk

|rle(WT)|, (2)

where the permutation of eachWT is now fixed byTbwt. In fact, Eq. (2) holds
also if we fix the permutation of eachWT so that|rle(WT)| is maximized. This
observation gives us a tool to upper bound|rle(Tbwt)| by the sum of code lengths
when zero-order entropy encoding is applied to eachWT separately. We next show
that |rle(WT)| ≤ 1+ |WT |H0(WT).

Let us callσS the alphabet size ofS. First notice that ifσWT = 1 then|rle(WT)| =
1 and|WT |H0(WT) = 0, so our claim holds. Let us then assume thatσWT = 2. Let
x andy (x ≤ y) be the number of occurrences of the two letters, saya andb, in WT ,
respectively. It is easy to see analytically that

H0(WT) = −(x/(x+y)) log(x/(x+y))−(y/(x+y)) log(y/(x+y)) ≥ 2x/(x+y). (3)

The permutation ofWT that maximizes|rle(WT)| is such that there is no run of
symbola longer than 1. This makes the number of runs inrle(WT) to be 2x+ 1 in
that case. By using Eq. (3) and since|WT | = x+ y we have that

|rle(WT)| ≤ 2x+ 1 = 1+ 2|WT |x/(x+ y) ≤ 1+ |WT |H0(WT). (4)

We are left with the caseσWT > 2. This case splits into two sub-cases: (i) the
most frequent symbol occurs at least|WT |/2 times inWT; (ii) all symbols occur
less than|WT |/2 times inWT . Case (i) becomes analogous to caseσWT = 2 oncex
is redefined as the sum of occurrences of symbols other than the most frequent. In
case (ii) |rle(WT)| can be|WT |. On the other hand,|WT |H0(WT) must also be at least
|WT |, since it holds that− log(x/|WT |) ≥ 1 for x ≤ |WT |/2, wherex is the number
of occurrences of any symbol inWT . Therefore we can conclude that Eq. (4) holds
for anyWT .

Combining Eqs. (1), (2) and (4) we get the following result:

T 2. The length nbw of the run-length encoded Burrows-Wheeler trans-
formed text Tbwt[1, n] is at most nHk(T) + σk, for any k≥ 0. In particular, this
is nHk(T) + o(n) for any k≤ α logσ n, for any constant0 < α < 1.

7 Note that, since the endmarker “$”∈ Σ, we are including inΣk contexts that include the endmarker.
Those let us account for the lastk characters ofT: Instead of considering that those characters have
a context shorter thank, we assumetn−i belongs to contexttn−i+1 . . . tn$k−i .

14 VELI M ÄKINEN AND GONZALO NAVARRO

This theorem has two immediate applications to existing compressed indexes, all
valid for anyk ≤ α logσ n, for any constant 0< α < 1. Note that of coursenbr ≤ n,
soHk actually stands for min(1,Hk).

(1) The size of the compact suffix array [28] isO(nHk logn) bits. This is because
the compact suffix array stores a constant number of pointers for each max-
imal self-repetition of the text, and there arensr ≤ nbw self-repetitions. No
previous useful analysis existed for this structure.

(2) A run-length compression of arrayΨ permits storing the compressed suffix
array (CSA) [45] innHk(logσ + log logn) + O(n) bits. It is still possible to
search that CSA inO(mlogn) time. This was already shown [33] using the
ideas from this paper [29]. Yet, an extra constant 2 appearedin that case [33]
due to our unnecessarily pessimistic previous analysis [29].

(3) A combination of the compact suffix array and the CSA, called CCSA for
“compressed compact suffix array” [29] is a self index usingO(nHk logn)
bits. Actually, this analysis was first presented in that paper to analyze the
CCSA.

In the next section we use the result to design a new compressed index.

4. RLFM: A run-length-based FM-index

In Section 3, we have shown that the number of runs in the BWT transformed text
is nHk + o(n) for k ≤ α logσ n, 0 < α < 1. We aim in this section at indexing only
the runs ofTbwt, so as to obtain an index, calledrun-length FM-index (RLFM),
whose space is proportional tonHk.

We exploit run-length compression to representTbwt as follows. An arrayS
contains one character per run inTbwt, while an arrayB containsn bits and marks
the beginnings of the runs.

D 5. Let string Tbwt = cℓ11 cℓ22 . . . c
ℓnbw
nbw consist of nbw runs, so that the ith

run consists ofℓi repetitions of character ci . Our representation of Tbwt consists of
string S= c1c2 . . . cnbw of length nbw, and of bit array B= 10ℓ1−110ℓ2−1 . . .10ℓnbw−1.

It is clear thatS andB contain enough information to reconstructTbwt: Tbwt[i] =
S[rank(B, i)]. Since there is no useful entropy bound onB, we assume thatrank is
implemented in constant time using some succinct structurethat requiresn+ o(n)
bits [22, 6, 37]. Hence,S and B give us a representation ofTbwt that permit us
accessing any character in constant time.

The problem, however, is not only how to accessTbwt, but also how to compute
C[c] +Occ(Tbwt, c, i) for anyc andi (recall Fig. 1). This is not immediate, because
we want to add up all the run lengths corresponding to character c up to positioni.

In the following we show that the above can be computed by means of a bit array
B′, obtained by reordering the runs ofB in lexicographic order of the characters of
each run. Runs of the same character are left in their original order. The use ofB′

will add othern+ o(n) bits to our scheme. We also useCS, which plays the same
role ofC, but it refers to stringS.

SUCCINCT SUFFIX ARRAYS 15

D 6. Let S= c1c2 . . . cnbw of length nbw, and B= 10ℓ1−110ℓ2−1 . . .10ℓnbw−1.
Let d1d2 . . . dnbw be the permutation of[1, nbw] such that, for all1 ≤ i < nbw,
either cdi < cdi+1, or cdi = cdi+1 and di < di+1. Then, bit array B′ is defined as
B′ = 10ℓd1−110ℓd2−1 . . . 10ℓdnbw

−1. Let also CS[c] = |{i, ci < c, 1 ≤ i ≤ nbw}|.

We now prove our main results. We start with two general lemmas.

L 4. Let S and B′ be defined for a string Tbwt. Then, for any c∈ Σ it holds

C[c] + 1 = select(B′,CS[c] + 1).

P. CS[c] is the number of runs inTbwt that represent characters smaller than
c. Since inB′ the runs ofTbwt are sorted in lexicographic order,select(B′,CS[c] +
1) indicates the position inB′ of the first run belonging to characterc, if any.
Therefore,select(B′,CS[c] + 1)− 1 is the sum of the run lengths for all characters
smaller thanc. This is, in turn, the number of occurrences of characters smaller
thanc in Tbwt, C[c]. Henceselect(B′,CS[c] + 1)− 1 = C[c]. �

L 5. Let S , B, and B′ be defined for a string Tbwt. Then, for any c∈ Σ and
1 ≤ i ≤ n, such that i is the final position of a run in B, it holds

C[c] +Occ(Tbwt, c, i) = select(B′,CS[c] + 1+Occ(S, c, rank(B, i))) − 1.

P. Note thatrank(B, i) gives the position inS of the run that finishes at
i. Therefore,Occ(S, c, rank(B, i)) is the number of runs inTbwt[1, i] that rep-
resent repetitions of characterc. Hence it is clear thatCS[c] < CS[c] + 1 +
Occ(S, c, rank(B, i)) ≤ CS[c+1]+1, from which follows thatselect(B′,CS[c]+1+
Occ(S, c, rank(B, i))) points to an area inB′ belonging to characterc, or to the char-
acter just following that area. Inside this area, the runs are ordered as inB because
the reordering inB′ is stable. Henceselect(B′,CS[c] + 1 + Occ(S, c, rank(B, i)))
is select(B′,CS[c] + 1) plus the sum of the run lengths representing characterc
in Tbwt[1, i]. That sum of run lengths isOcc(Tbwt, c, i). The argument holds
also if Tbwt[i] = c, becausei is the last position of its run and therefore count-
ing the whole runTbwt[i] belongs to is correct. Henceselect(B′,CS[c] + 1 +
Occ(S, c, rank(B, i))) = select(B′,CS[c]+1)+Occ(Tbwt, c, i), and then, by Lemma 4,
select(B′,CS[c] + 1+Occ(S, c, rank(B, i))) − 1 = C[c] +Occ(Tbwt, c, i). �

We now prove our two fundamental lemmas that cover different cases in the
computation ofC[c] +Occ(Tbwt, c, i).

L 6. Let S , B, and B′ be defined for a string Tbwt. Then, for any c∈ Σ and
1 ≤ i ≤ n, such that Tbwt[i] , c, it holds

C[c] +Occ(Tbwt, c, i) = select(B′,CS[c] + 1+Occ(S, c, rank(B, i))) − 1.

P. Let i′ be the last position of the run that precedes that ofi. Since
Tbwt[i] , c in the runi belongs to, we haveOcc(Tbwt, c, i) = Occ(Tbwt, c, i′) and
alsoOcc(S, c, rank(B, i)) = Occ(S, c, rank(B, i′)). Then the lemma follows trivially
by applying Lemma 5 toi′. �

16 VELI M ÄKINEN AND GONZALO NAVARRO

L 7. Let S , B, and B′ be defined for a string Tbwt. Then, for any c∈ Σ and
1 ≤ i ≤ n, such that Tbwt[i] = c, it holds

C[c] +Occ(Tbwt, c, i) = select(B′,CS[c] +Occ(S, c, rank(B, i)))

+ i − select(B, rank(B, i)).

P. Let i′ be the last position of the run that precedes that ofi. By Lemma 5 we
haveC[c]+Occ(Tbwt, c, i′) = select(B′,CS[c]+1+Occ(S, c, rank(B, i′)))−1. Now,
rank(B, i′) = rank(B, i)− 1, and sinceTbwt[i] = c, it follows thatS[rank(B, i)] = c.
Therefore,Occ(S, c, rank(B, i′)) = Occ(S, c, rank(B, i)−1) = Occ(S, c, rank(B, i))−
1. On the other hand, sinceTbwt[i′′] = c for i′ < i′′ ≤ i, we haveOcc(Tbwt, c, i) =
Occ(Tbwt, c, i′) + (i − i′). Thus, the outcome of Lemma 5 can now be rewritten as
C[c] +Occ(Tbwt, c, i) − (i − i′) = select(B′,CS[c] +Occ(S, c, rank(B, i))) − 1. The
only remaining piece to prove the lemma is thati − i′−1 = i − select(B, rank(B, i)),
that is, select(B, rank(B, i)) = i′ + 1. But this is clear, since the left term is the
position of the first runi belongs to andi′ is the last position of the run preceding
that of i. �

Since functionsrank andselectcan be computed in constant time, the only ob-
stacle to complete the RLFM using Lemmas 6 and 7 is the computation of Occ
over stringS. We use the idea explained at the end of Section 2.5 [46]. Instead
of representingS explicitly, we store one bitmapSc per text characterc, so that
Sc[i] = 1 if and only if S[i] = c. HenceOcc(S, c, i) = rank(Sc, i). It is still possi-
ble to determine in constant time whetherTbwt[i] = c or not (so as to know whether
to apply Lemma 6 or 7):Tbwt[i] = c if and only if Sc[rank(B, i)] = 1. Thus the
RLFM can answer counting queries inO(m) time.

From the space analysis of the original article [46], we havethat the bit arraysSc

can be represented in|S|H0(S)+O(|S|) bits. The length of sequenceS is |S| = nbw ≤

nHk +σ
k, which isnHk + o(n) for k ≤ α logσ n, for any constant 0< α < 1. So the

space for theSc arrays is (nHk+o(n))(H0(S)+O(1)). Since run-length compression
removes some redundancy, it is expected thatH0(S) ≥ H0(T) (although this might
not be the case). Yet, the only simple bound we know of isH0(S) ≤ logσ. Thus
the space can be upper bounded by (nHk + o(n))(logσ +O(1)). Note that theo(n)
term comes from Theorem 2, and it is in factO(nα) for someα < 1, so it is still
o(n) after multiplying it by logσ = O(logn). Thus, the space requirement can be
written asnHk(logσ +O(1))+ o(n).

In addition to arraysSc, the representation of our index needs the bit arrays
B and B′, plus the sublinear structures to performrank and/or selectover them,
and finally the small arrayCS. These add 2n + o(n) bits, for a grand total of
n(Hk(logσ +O(1)) + 2) + o(n) bits. AsHk actually stands for min(1,Hk) (see the
end of Section 3), we can simplify the space complexity tonHk logσ +O(n) bits.

We recall that the solution we build on [46] works only forσ = O(polylog(|S|)).
This is equivalent to the conditionσ = O(polylog(n)) if, for example,nbw ≥ nβ

for some 0< β < 1. In the unlikely case that the text is so compressible that
nbw = o(nβ) for any 0< β < 1, we can still introducenβ artificial cuts in the runs so

SUCCINCT SUFFIX ARRAYS 17

as to ensure that polylog(n) and polylog(nbw) are of the same order.8 This increases
the space by a smallo(n) factor that does not affect the main term. In exchange,
the RLFM index works for anyσ = O(polylog(n)).

We have chosen to build over Sadakane’s work [46] for historical reasons. How-
ever, we would like to remark that very recent developments [12] use multi-ary
wavelet trees to obtain the same result with a somewhat simpler approach. That
is, they can represent a sequenceS over alphabet of sizeσ = O(polylog(|S|)) and
answerrank andselectqueries overS in constant time.

Let us now consider the task of locating occurrences and displaying text. For
this sake we can use the same marking strategy of the FM-index. Furthermore, to
accessTbwt[i] we can use the equivalenceTbwt[i] = S[rank(B, i)], so the problem
of accessingTbwt[i] becomes the problem of accessingS[j]. Just as in the FM-
index, we can use the sameOcc function to find outS[j] in O(σ) time, which
yields the same FM-index complexities in all cases.

Note, however, that in this case we can afford the explicit representation ofS in
addition to the bit arraysSc, at the cost ofnHk logσ + o(n) more bits of space.
This gives us constant time access toTbwt and thus completely removesσ from all
RLFM index time complexities.

T 3. The RLFM index, of size nmin(Hk, 1) logσ + O(n) = nHk logσ +
O(n) bits for any k≤ α logσ n, for any constant0 < α < 1, can be built on a
text T[1, n] whose alphabet is of sizeσ = O(polylog(n)), so that the number of
occurrences of any pattern P[1,m] in T can be counted in time O(m) and then
each such occurrence can be located in time O(σ log1+ε n), for any constantε > 0
determined at index construction time. Also, any text substring of lengthℓ can be
displayed in time O(σ (ℓ + log1+ε n)). By letting it use2nmin(Hk, 1) logσ + O(n)
bits of space, the RLFM index can count in O(m) time, locate occurrences in time
O(log1+ε n), and display text substrings of lengthℓ in O(ℓ + log1+ε n) time.

Binary alphabets.It is interesting to consider the case of a textT over a binary
alphabet, sayΣ = {a, b}. In this case, since the runs alternate, we haveS[2i] = a
andS[2i + 1] = b or vice versa depending on the first valueS[1]. One has also
to consider the onlyj for which S[j] = $, as the even/odd rule may change after
j. Thus, it should be clear that we do not need to representS at all, and that,
moreover, it is easy to answerOcc(S, c, i) in constant time without any storage:
For example, ifS[1] = a andS[j + 1] = a, thenOcc(S, a, i) = ⌊(i + 1)/2⌋ for i < j
andOcc(S, a, i) = ⌊ j/2⌋ + ⌊(i − j + 1)/2⌋ for i ≥ j. Similar rules can be derived
for the other three cases ofS[1] andS[j + 1]. Therefore, on a binary alphabet the
RLFM index requires only arraysB andB′, which take 2n+ o(n) bits of space, and
maintains the complexities of Theorem 3. This result almostmatches some recent
developments [20], albeit for this case the FM-index [8] still obtains better results.

8 This can be done because we never used the fact that consecutive runs must correspond to different
characters.

18 VELI M ÄKINEN AND GONZALO NAVARRO

5. Practical considerations

Up to now we have considered only theoretical issues. In thissection we focus
on practical considerations on the implementation of the RLFM index. Several
theoretical developments in this area require considerable work in order to turn
them into practical results [9, 45, 41, 17].

The most problematic aspect of our proposal (and of several others) is the heavy
use of techniques to represent sparse bitmaps in a space proportional to its zero-
order entropy [43, 46, 12]. Those techniques, albeit theoretically remarkable, are
not so simple to implement. Yet, previous structures supporting rank in n + o(n)
bits [22, 37, 6] are considerably simpler.

The problem is that, if we used the simpler techniques for oursparse bitmapsSc,
we would neednbw(1 + o(1)) bits for each of them, and would requirenHkσ bits
at least for the RLFM index, far away from the theoreticalnHk logσ. This can be
improved by using a wavelet tree (Section 2.7) built on theS string of the RLFM
index (that is, the run heads), instead of the individual bitmapsSc. The wavelet tree
is simple to implement, and if it uses structures ofn+o(n) bits to represent its binary
sequences, it requires overallnbw logσ(1+o(1)) = nHk logσ(1+o(1)) bits of space
to representS. This is essentially the same space used by the individual bit arrays
(in a worst-case sense, as the real space complexity of Section 4 isnHkH0(S)).

With the wavelet tree, both theO(1) time to computeOcc(S, c, i) = rankc(S, i)
and theO(σ) time to computeS[i], becomeO(logσ). Therefore, a RLFM index
implementation based on wavelet trees counts inO(mlogσ) time, locates each
occurrence inO(logσ log1+ε n) time, and displays any text substring of lengthℓ in
O(logσ (ℓ + log1+ε n)), for any constantε > 0.

The same idea can also be applied on the structure that uses sparse bit arrays
without run-length compression [46]. Let us call SSA (for “succinct suffix array”)
this implementation variant of the original structure [46]. Since in the SSA the
bit arraysBc are built over the wholeT (not only over the heads of runs), the
SSA index requiresn logσ(1 + o(1)) space, which is at least as large as the plain
representation ofT.

We propose now another simple wavelet tree variant that permits us representing
the SSA usingn(H0 + 1)(1+ o(1)) bits of space, and obtains on averageO(H0)
rather thanO(logσ) time for the queries on the wavelet tree.

Imagine that instead of a balanced binary tree, we use the Huffman tree ofT
to define the shape of the wavelet tree. Then, every characterc ∈ Σ will have its
corresponding leaf at depthhc, so that

∑
c∈Σ hcnc ≤ n(H0 + 1) is the number of bits

of the Huffman compression ofT (recall from Section 2.1 thatnc is the number of
times characterc occurs inT).

Let us now consider the size of the Huffman-shaped wavelet tree. Note that each
text occurrence of each characterc ∈ Σ appears exactly inhc bit arrays (those found
from the root to the leaf that corresponds toc), and therefore it takeshc bits spread
over the different bit arrays. Summed over all the occurrences of all the characters
we obtain the very same length of the Huffman-compressed text,

∑
c∈Σ hcnc. Hence

the overall space isn(H0 + 1)(1+ o(1)) bits.
Note that the time to retrieveTbwt[i] is proportional to the length of the Huff-

SUCCINCT SUFFIX ARRAYS 19

man code forTbwt[i], which is O(H0) if i is chosen at random. In the case of
Occ(Tbwt, c, i) = rankc(Tbwt, i), the time corresponds again toTbwt[i] and is in-
dependent ofc. Under reasonable assumptions, one can say that on average this
version of the SSA counts inO(H0m) time, locates an occurrence inO(H0 log1+ε n)
time, and displays a text substring of lengthℓ in O(H0(ℓ+ log1+ε n)) time. It is pos-
sible (but not good in practice) to force the Huffman tree to haveO(logσ) height
and still have average depth limited byH0 + 2, so we can ensure the same worst
case factorO(logσ) instead ofO(H0) [14].

Finally, we note that the Huffman-shaped wavelet tree can be used instead of the
balanced version for the RLFM index. This lowers its space requirement again
to nHkH0(S), just like the theoretical version. It also reduces the average time to
computerankc(S, i) or S[i] to O(H0(S)), which is no worse thanO(logσ).

6. Experiments

In this section we compare our SSA, CCSA9 and RLFM implementations against
other succinct index implementations we are aware of, as well as other more clas-
sical solutions. All these are listed below .

FM [8, 9]: The originalFM-index(Section 2.4) implementation by the authors.
The executables can be downloaded fromhttp://www.mfn.unipmn.it/
˜manzini/fmindex.

FM-Nav [40]: An implementation of theFM-indexby G. Navarro, downloadable
from http://www.dcc.uchile.cl/˜gnavarro/software. This imple-
mentation is faster than the original but uses more space, asit represent the
Burrows-Wheeler transformed text as such.

CSA [45]: The Compressed Suffix Array (Section 2.5) implementation by the
author. The code can be downloaded fromhttp://www.dcc.uchile.cl/
˜gnavarro/software.

LZ [41]: TheLempel-Ziv self-indeximplementation by the author. The code can
be downloaded fromhttp://www.dcc.uchile.cl/˜gnavarro/software.
The implementation has been improved since the original publication.

CompactSA [28]: TheCompact Suffix Array implementation by the author. This
is not a self-index but a succinct index based on suffix array self-repetitions,
useful to show which is the price of not having the text directly available. The
code can be downloaded fromhttp://www.cs.helsinki.fi/u/vmakinen
/software.

SA [34]: The classical suffix array structure, using exactlyn⌈logn⌉ bits. We use
it to test how much the above succinct structures lose in query times to the
simpleO(mlogn) binary search algorithm.

9 The CCSA belongs to the development that finished with the RLFM index [29]. We have excluded
it from this paper because it is superseded by the RLFM index.Yet, it is interesting to show its
relative performance.

20 VELI M ÄKINEN AND GONZALO NAVARRO

BMH [21]: Our implementation of the classical sequential search algorithm, re-
quiring only the plain text. This is interesting to ensure that there is some
value in indexing versus sequentially scanning the text. Yet, note that just the
plain text requires more space than several self-indexes.

The codes for the SSA, CCSA and RLFM index used in these experiments can
be downloaded fromhttp://www.cs.helsinki.fi/u/vmakinen/software.
We made use of the practical considerations of Section 5. In particular, we use
Huffman-shaped wavelet trees in both cases. Another complicated and time-critical
part were the rank and select structures, as our indexes makeheavier use of them
compared to other implementations. Although the existing theoretical solutions
[22, 37, 6] are reasonably efficient in practice, we needed to engineer them fur-
ther to make them faster and less space consuming [13]. Thoseoptimized variants
were also used to improve other existing structures that used them, namely LZ and
CCSA.

Our experiments were run over an 83 MB text collection obtained from the
“ZIFF-2” disk of TREC-3 [19]. The exact size is of thisT is n = 87, 415, 922
and its alphabet size isσ = 96. The number of runs inTbwt is nbw = 29, 014, 589,
sonbw/n ≈ 0.33. The zero-order entropy ofT is 5.04 bits/symbol, and that of the
run heads,S, is very close, 5.03 bits/symbol. With this we can predict that our
RLFM will take about43(nbwH0(S)+ 2n)/8 = 50.86 megabytes, that is, 61% of the
text size. The rationale is as follows:nbw is the length of the textS we actually
represent, in space close toH0(S) bits/symbol using the Huffman-shaped wavelet
trees; arraysB andB′ taken bits each; and we use rank/select structures over all
that data, which in our implementation [13] takes 1/3 extra space overhead. As one
can see in Table II, the estimation is quite accurate (the real size is 63% of the text
size, without the structures for reporting).

Figure 3 displays some more statistical data on this text. Weshow the evolution
of Hk and the number of different contexts ask grows. We also give a reality check
of the theoretical boundnbw ≤ nHk + σ

k given in Theorem 2. For this sake, we
divide nHk + c(k), beingc the real number of contexts of orderk, by nbw (note that
we use the empiricalc(k), which is much smaller than its brute boundσk). This
ratio is minimized fork = 17, where the theoretical prediction is still 2.659 times
the realnbw value of this text. This explains why, as we see soon, our practical
results on RLFM index size are far better than those we can prove in theory.

The tests ran on a Pentium IV processor at 2.6 GHz, 2 GB of RAM and 512 KB
cache, running Red Hat Linux 3.2.2-5. We compiled the code with gcc 3.2.2
using optimization option-O3. Times were averaged over 10,000 search patterns.
As we work only in main memory, we only consider CPU times. Thesearch pat-
terns were obtained by pruning random text lines to their first mcharacters, but we
avoided lines containing tags and non-visible characters.

We prepared the following test setups to compare different indexes.

Count settings: We tuned the indexes so that they only support counting queries.
This usually means that they take the minimum possible spaceto operate.

SUCCINCT SUFFIX ARRAYS 21

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 5 10 15 20 25 30 35 40 45 50

th
eo

re
tic

al
/r

ea
l s

iz
e

ra
tio

k (context length)

ZIFF compressed size estimation

k Hk # contexts nHk+σ
k

nbw

(bits/symb) (≤ σk)
0 5.036 1 15.171
1 3.736 97 11.256
2 2.824 7,215 8.510
3 2.128 105,441 6.416
4 1.725 579,007 5.216
5 1.493 1,841,918 4.561
6 1.324 4,059,661 4.130
7 1.176 7,250,505 3.793
8 1.034 11,492,049 3.511
9 0.896 16,703,680 3.276

10 0.766 22,588,340 3.088

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40 45 50

H
k

(b
its

/s
ym

bo
l)

k (context length)

ZIFF entropy

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 c

on
te

xt
s

k (context length)

ZIFF # of contexts

Fig. 3: Some statistics on our test text. In the theoretical prediction we replaceσk by the real number
of different contexts.

Same sample rate: For reporting queries most of the compared indexes use the
same text tracking mechanism. It is thus interesting to see what happens
when exactly the same number of suffixes are sampled (one out of 28 in our
experiment).

Same size: We tuned all indexes to use about the same size (1.6 times thetext
size) by adjusting the space-time tradeoff for locating queries.

Control against other solutions: It is interesting to see how our compressed in-
dexes behave against classical full-text indexes, plain sequential search, or
non-self indexes.

Table II shows the index sizes under the different settings, as a fraction of the
text size. Recall that these are self-indexes that replace the text. For consistency
we have added the text size (that is, 1.00) to the options CompactSA, SA and BMH,
as they need the text separately available.

Only the CSA has a space-time tradeoff on counting queries. For this reason we
ran the counting experiment on several versions of it. Theseversions are denoted

22 VELI M ÄKINEN AND GONZALO NAVARRO

by CSAX in the table, whereX is the tradeoff parameter (sample rate inΨ array).
For reporting queries (row labeled CSA), we used the defaultvalue X = 128.
Other cells are missing because we could not make FM take thatmuch space in the
“same size” setting, or because alternative structures cannot take that little space,
or because some structures have no concept of sampling rate.

T II: Sizes of the indexes tested under different settings.

index count same sample rate same size
FM 0.36 0.41 —
FM-Nav 1.07 1.21 1.57
CSA 0.44 0.58 1.59
CSA10 1.16 — —
CSA16 0.86 — —
CSA32 0.61 — —
CSA256 0.39 — —
LZ 1.49 — 1.49
SSA 0.87 1.33 1.58
CCSA 1.65 — 1.65
RLFM 0.63 1.09 1.60
CompactSA 2.73 — —
SA 4.37 — —
BMH 1.00 — —

Fig. 4 (left) shows the times to count pattern occurrences oflengthm= 5 tom=
60. To avoid cluttering the plot we omit CSA10 and CSA16, whose performace is
very similar to CSA32. It can be seen that FM-Nav is the fastest alternative, but it
is closely followed by our SSA, which needs 20% less space (0.87 times the text
size). The next group is formed by our RLFM and the CSA, both needing around
0.6 times the text size. Actually RLFM is faster, and to reachits performance
we need CSA10, which takes 1.16 times the text size. For long patterns CCSA
becomes competitive in this group, yet it needs as much as 1.65 times the text size.

On the right of Fig. 4 we chosem = 30 and plot the times as a function of
the space. This clearly shows which indexes represent an interesting space-time
tradeoff for counting. SSA and RLFM indexes are among the relevant ones. Note
for example that the SSA is the fastest counting index among those that take less
space than the text. Also, the RLFM index counts faster than aCSA of the same
size.

Fig. 5 shows the times to locate all the pattern occurrences.On the left we con-
sider the same sampling rate for all applicable indexes. That is, all indexes make
about the same number of steps to traverse the text until finding the occurrence
position. It can be seen that FM-Nav is the best choice, albeit closely followed by
SSA.

On the right of Fig. 5 we show the fairer comparison that givesabout the same
space to all structures. The space was chosen to be around 1.6times the text size
because this is close to the space requirement of LZ, an indexthat is relevant for this

SUCCINCT SUFFIX ARRAYS 23

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
c)

Pattern length (m)

Time to count occurrences

 FM
 FM-Nav
 CSA32

 CSA256
 LZ

 SSA
 CCSA
 RLFM

 0.01

 0.1

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

U
se

r
tim

e
(m

se
c)

Space (fraction of text)

Space vs counting time for m=30

FM
FM-Nav

CSA
LZ

SSA
CCSA
RLFM

Fig. 4: Query times for counting the number of occurrences. On the left, time versusm. On the right,
time versus space form= 30.

task and whose size cannot be tuned. The other indexes were tuned by increasing
their sampling rate.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
c)

Pattern length (m)

Time to locate occurrences, same sample rate

FM
FM-Nav

CSA
SSA

RLFM

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
c)

Pattern length (m)

Time to locate occurrences, same size

FM-Nav
CSA

LZ
SSA

CCSA
RLFM

Fig. 5: Times for locating the pattern occurrences. On the left, under the same sample rate setting.
On the right, all indexes using about the same space.

In this case LZ shows up as the fastest structure for locating, followed by FM-
Nav, which takes over as soon as there are less occurrences tolocate and the high
counting times of LZ render it non-competitive. Our indexesperform reasonably
well but are never the best for this task. Fig. 6 shows the space-time tradeoffs for
locating times, illustrating our conclusions. Note that RLFM gives more interesting
locating tradeoffs than SSA.

Our final experiment is to compare how our new structures compare against some
alternative structures such as the original suffix array and the (succinct but not self-
index) compact suffix array. It is also interesting to see how much slower or faster
is sequential search compared to our indexes. The results are shown in Fig. 7.

It can be seen that the self-indexes are considerably fast for counting, especially
for short patterns. For longer ones, their small space consumption is paid in a 10X
slowdown for counting. Yet, this is orders of magnitude faster than a sequential
search, which still needs more space as the text has to be in uncompressed form

24 VELI M ÄKINEN AND GONZALO NAVARRO

 0.001

 0.01

 0.1

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
U

se
r

tim
e

pe
r

oc
cu

rr
en

ce
 (

m
se

c)
Space (fraction of text)

Space vs locating time

FM
FM-Nav

CSA
LZ

SSA
CCSA
RLFM

Fig. 6: Comparison of locating performance versus space requirement, form= 5. We show the time
per occurrence, not per pattern as in the rest of the experiments.

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
c)

Pattern length (m)

Time to count occurrences

SSA
CCSA
RLFM

CompactSA
SA

BMH

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

U
se

r
tim

e
(m

se
c)

Pattern length (m)

Time to locate occurrences

SSA
CCSA
RLFM

CompactSA
SA

BMH

Fig. 7: Our self-index implementations against suffix array, compact suffix array and sequential
search. We show counting times on the left and locating timeson the right (with self indexes taking
around 1.6 times the text size).

for reasonable performance. For locating, the slowdown is closer to 1000X and
the times get closer to those of a sequential scan, albeit they are still much bet-
ter in space and time. Some succinct indexes support output-sensitive locating
queries [18, 10, 41, 20]. The technique, as described in [20], can be plugged into
our indexes as well (or into any other index supporting efficient backward search
mechanism). As a further experimental study, it would be interesting to see how
this technique works in practice.

7. Conclusions

In this paper we have explored the interconnection between the empiricalkth order
entropy of a text and the regularities that appear in its suffix array, as well as in the
Burrows-Wheeler transform of the text. We have shown how this connection lies
at the heart of several existing compressed indexes for full-text retrieval.

Inspired by the relationship between thekth order empirical entropy of a text
and the runs of equal letters in its Burrows-Wheeler transform, we have designed a

SUCCINCT SUFFIX ARRAYS 25

new index, the RLFM index, that answers the mentioned counting queries in time
linear in the pattern length for any alphabet whose size is polylogarithmic on the
text length. The RLFM index was the first in achieving this.

We have also considered practical issues of implementing the RLFM index, ob-
taining an efficient implementation. We have in passing presented anotherindex,
the SSA, which is a practical implementation of an existing proposal [46]. The
SSA is larger and faster than the RLFM index. We have comparedboth indexes
against the existing implementations, showing that ours are competitive and obtain
practical space-time tradeoffs that are not reached by any other implementation.

Acknowledgement

We wish to thank Rodrigo González for letting us use his codes for rank/select
queries.

References

[1] A, M., O, E., K, S. 2002. Optimal exact string matching based
on suffix arrays. InProc. 9th International Symposium on String Processing andInforma-
tion Retrieval (SPIRE’02), LNCS 2476, 31–43.

[2] A, A. 1985. The myriad virtues of subword trees. InCombinatorial Algorithms
on Words, NATO ISI Series. Springer-Verlag, 85–96.

[3] B, T., C, J.,W, I. 1990.Text compression. Prentice Hall.
[4] B, A., B, J., H, D., MC, R.,  E, A. 1987. Com-

plete inverted files for efficient text retrieval and analysis.Journal of the ACM 34, 3,
578–595.

[5] B, M. W, D. 1994. A block sorting lossless data compression algorithm.
Tech. Report 124, Digital Equipment Corporation.

[6] C, D. 1996.Compact Pat Trees. PhD thesis, University of Waterloo.
[7] C, D.  M, I. 1996. Efficient suffix trees on secondary storage. InProc. 7th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), 383–391.
[8] F, P.  M, G. 2000. Opportunistic data structures with applications. In

Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS’00), 390–398.
[9] F, P. M, G. 2001. An experimental study of an opportunistic index. In

Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01), 269–278.
[10] F, P.  M, G. 2002. On Compressing and Indexing Data. Tech. Report

TR-02-01, Dipartamento di Informatica, Univ. of Pisa.
[11] F, P., M, G., M̈, V.,  N, G. 2004. An alphabet-friendly

FM-index. InProc. 11th International Symposium on String Processing and Information
Retrieval (SPIRE’04), LNCS 3246, 150–160.

[12] F, P., M, G., M̈, V.,  N, G. 2004. Succinct Representation
of Sequences. Tech. Report TR/DCC-2004-5, Dept. of Computer Science, University of
Chile.

[13] G́, R, G, S, M̈, V,  N, G. 2005.
Practical Implementation of Rank and Select Queries. InPoster Proceedings Volume of
4th Workshop on Efficient and Experimental Algorithms (WEA’05). CTI Press and Ellinika
Grammata, Greece, 27–38.

[14] G, S., M̈, V.,  N, G. 2004. First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. InProc. 11th International Symposium on
String Processing and Information Retrieval (SPIRE’04), LNCS 3246, 210–211.

[15] G, S., M̈, V., N, G.,  S, A. 2005. A Simple Alphabet-
Independent FM-Index. InProc. 10th Prague Stringology Conference (PSC’05).

26 VELI M ÄKINEN AND GONZALO NAVARRO

[16] G, R., G, A.,  V, J. 2003. High-order entropy-compressed text indexes.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03), 841–
850.

[17] G, R., G, A.,  V, J. 2004. When indexing equals compression: Experi-
ments with compressing suffix arrays and applications. InProc. 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’04), 636–645.

[18] G, R.  V, J.S. 2000. Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. InProc. 32nd ACM Symposium on Theory of
Computing (STOC’00), 397–406.

[19] H, D. 1995. Overview of the Third Text REtrieval Conference. In Proc. Third Text
REtrieval Conference (TREC-3), 1–19.

[20] H, M., M, I.,  R, S. S. 2005. A categorization theorem on suffix ar-
rays with applications to space efficient text indexes. InProc. 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’05), 23–32.

[21] H, R. N. 1980. Practical fast searching in strings.Softw. Pract. Exp. 10, 6, 501–
506.

[22] J, G. 1989. Space-efficient static trees and graphs. InProc. 30th IEEE Symposium
on Foundations of Computer Science (FOCS’89), 549–554.

[23] K̈̈, J. 1995. Suffix cactus: a cross between suffix tree and suffix array. InProc.
6th Annual Symposium on Combinatorial Pattern Matching (CPM’95) , LNCS 937, 191–
204.

[24] K̈̈, J. S, E. 1998. Lempel-Ziv index forq-grams.Algorithmica 21, 1,
137–154.

[25] K̈̈, J. U, E. 1996. Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. InProc. 3rd South American Workshop on String Processing
(WSP’96). Carleton University Press, 141–155.

[26] K̈̈, J. U, E. 1996. Sparse suffix trees. InProc. 2nd Annual Interna-
tional Conference on Computing and Combinatorics (COCOON’96), LNCS 1090, 219–
230.

[27] K, S. 1998. Reducing the space requirements of suffix trees. Report 98-03, Technische
Kakultät, Universität Bielefeld.

[28] M̈, V. 2003. Compact suffix array — a space-efficient full-text index.Fundamenta
Informaticae 56, 1–2, 191–210.

[29] M̈, V.  N, G. 2004. Compressed compact suffix arrays. InProc. 15th
Annual Symposium on Combinatorial Pattern Matching (CPM’04), LNCS 3109, 420–433.

[30] M̈, V.  N, G. 2004. New Search Algorithms and Time/Space Tradeoffs for
Succinct Suffix Arrays. Tech. Report C-2004-20, University of Helsinki, Finland.

[31] M̈, V.  N, G. 2004. Run-Length FM-index. InProc. DIMACS Workshop:
“The Burrows-Wheeler Transform: Ten Years Later”, 17–19.

[32] M̈, V.  N, G. 2005. Succinct Suffix Arrays based on Run-Length En-
coding. InProc. 16th Annual Symposium on Combinatorial Pattern Matching (CPM’05),
LNCS 3537, 45–56.

[33] M̈, V., N, G.,  S, K. 2004. Advantages of Backward Search-
ing — Efficient Secondary Memory and Distributed Implementation of Compressed Suffix
Arrays. InProc. 15th Annual International Symposium on Algorithms and Computation
(ISAAC’04), LNCS 3341, 681–692.

[34] M, U.  M, G. 1993. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22, 5, 935–948.

[35] M, G. 2001. An analysis of the Burrows-Wheeler transform.Journal of the ACM
48, 3, 407–430.

[36] MC, E. M. 1976. A space-economical suffix tree construction algorithm.Journal
of the ACM 23, 2, 262–272.

[37] M, I. 1996. Tables. InProc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’96), LNCS 1180, 37–42.

[38] M, I.  R, V. 1997. Succinct representation of balanced parentheses, static
trees and planar graphs. InProc. 38th IEEE Symposium on Foundations of Computer

SUCCINCT SUFFIX ARRAYS 27

Science (FOCS’97), 118–126.
[39] M, I., R, V., R, S. 2001. Space efficient suffix trees.Journal of Algorithms

39, 2, 205–222.
[40] N, G. 2002. Indexing text using the Ziv-Lempel trie. Tech. Report TR/DCC-2002-2,

Dept. of Computer Science, Univ. of Chile.
[41] N, G. 2004. Indexing text using the Ziv-Lempel trie.Journal of Discrete Algorithms

2, 1, 87–114.
[42] P, R. 1999. Low redundancy in dictionaries withO(1) worst case lookup time. InProc.

26th International Colloquium on Automata, Languages and Programming (ICALP’99),
595–604.

[43] R, R., R, V.,  R, S. S. 2002. Succinct indexable dictionaries with
applications to encodingk-ary trees and multisets. InProc. 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’02), 233–242.

[44] R, S. S. 2002. Time-space trade-offs for compressed suffix arrays. Information
Processing Letters 82, 6, 307–311.

[45] S, K. 2000. Compressed text databases with efficient query algorithms based on
the compressed suffix array. InProc. 11th International Symposium on Algorithms and
Computation (ISAAC’00), LNCS 1969, 410–421.

[46] S, K. 2002. Succinct representations oflcp information and improvements in the
compressed suffix arrays. InProc. 13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’02), 225–232.

[47] S, E.  T, J. 1996. Filtration withq-Samples in Approximate String Match-
ing. In Proc. 7th Annual Symposium on Combinatorial Pattern Matching (CPM’96),
LNCS 1075, 50–63.

[48] U, E. 1995. On-line construction of suffix trees.Algorithmica 14, 3, 249–260.
[49] W, P. 1973. Linear pattern matching algorithm. InProc. 14th Annual IEEE Sympo-

sium on Switching and Automata Theory, 1–11.

