Nordic Journal of Computing

SUCCINCT SUFFIX ARRAYS
BASED ON RUN-LENGTH ENCODING

VELI MAKINEN
Dept. of Computer Science, University of Helsinki
Gustaf Hallstromin katu 2b, 00014 University of Helsirfkinland
vmakinen@cs.helsinki.fi

GONZALO NAVARRO#
Dept. of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. A succinct full-text self-index is a data structure built @mextT = tit5.. . t,
which takes little space (ideally close to that of the corspedl text), permitsficient
search for the occurrences of a pattera p1p.... pmin T, and is able to reproduce any
text substring, so the self-index replaces the text.

Several remarkable self-indexes have been developed émtrgears. Many of those
take space proportional ttHy or nH bits, whereHy is thekth order empirical entropy of
T. The time to count how many times do@®ccur inT ranges fromO(m) to O(mlogn).

In this paper we present a new self-index, called RLFM indax“fun-length FM-
index”, that counts the occurrences Bfin T in O(m) time when the alphabet size is
o = O(polylog(n)). The RLFM index requiresiHklogo + O(n) bits of space, for any
k < alog, nand constant & « < 1. Previous indexes that achie@¢m) counting time
either require more thamHg bits of space or require that= O(1). We also show that the
RLFM index can be enhanced to locate occurrences in the nexdigplay text substrings
in time independent af-.

In addition, we prove a close relationship betweenktheorder entropy of the text and
some regularities that show up in theirflx arrays and in the Burrows-Wheeler trans-
form of T. This relationship is of independent interest and permitsniling the space
occupancy of the RLFM index, as well as that of other existiogppressed indexes.

Finally, we present some practical considerations in oradémplement the RLFM in-
dex. We empirically compare our index against the best iegistnplementations and
show that it is practical and competitive against those.asspg, we obtain a competitive
implementation of an existing theoretical proposal that loa seen as a simplified RLFM
index, and explore other practical ideas such afHan-shaped wavelet trees.

ACM CCSCategoriesand Subject Descriptors. E.1. Data structures; F.2.2. Nonnumer-
ical Algorithms and Problems — Computations on discretecstires, Pattern matching,
Sorting and searching; H.3. Information Storage and Rettie

*Parts of this work have appeared in [29, 31, 30, 32].

TPart of the work was conducted during a postdoctoral vidiedefeld University funded by the
Deutsche Forschungsgemeinschaft (BO 191(1-3) within the Computer Science Action Program.
Also partially funded by the Academy of Finland.

*Funded by Millennium Nucleus Center for Web Research, Ge@dt067-F, Mideplan, Chile.

Received ...; revised ...; accepted

2 VELI MAKINEN AND GONZALO NAVARRO

Key words: Compressed full-text self-indexes, empirikah order entropy, indexed string
matching, text retrieval, Burrows-Wheeler transformffiguarrays, run-length compres-
sion.

1. Introduction

The classical problem in string matching is to determinedbeoccurrences of
a short patterrP = pip2...pm in a large textT = tity...t,. Text and pattern
are sequences of characters over an alphaleétsizes. Actually one may want
to know the numbeocc of occurrences (this is calledaunting query, the text
positions of thos@ccoccurrences (bcating query, or also a text context around
them (acontext query. Usually the same text is queried several times wiffedgnt
patterns, and therefore it is worthwhile to preprocess iriter to speed up the
searches. The preprocessing buildsralexstructure on the text.

To allow fast searches for patterns of any size, the index @li®v access to
all syfixesof the text (theith sufix of T is titi;1...t,). These kind of indexes are
calledfull-text indexes The syfix tree[49, 36, 48, 2] is the best-known full-text
index, requiringO(m) time for counting and(ocq for locating queries.

The sufix tree takes much more memory than the text. In general, @stak
O(nlogn) bits, while the text takeslogo bitst. In practice the sftix tree re-
quires about 20 times the text size. A smaller constant faclimse to 4 in practice,
is achieved by theyfix array [34]. Still, the space complexity dd(nlogn) bits
does not change. Moreover, counting queries tagalogn) time with the sifix
array. This can be improved @(m + log n) by using twice the original amount of
space [34].

Since the last decade, several attempts to reduce the spmesnffix trees or
arrays have been made [23, 25, 26, 27, 1, 28], and othersteschave been pro-
posed as well [4, 47, 24]. In some cases these attempts htaieetbremarkable
results in space (for example, 1.6 times the text size intjgeggcat a small price
in query time. Some of those structures [25, 28] have theastmg property of
requiring less space when the text is compressible.

In parallel, intensive work osuccinct data structurefbcused on the represen-
tation of basic structures such as sequences and trees7[228.342, 43]. Those
representations were able to approach the informatiometieaninimum space re-
quired to store the structures. Based on those results, uesinst representations
of sufix trees and arrays were proposed [6, 7, 39, 18, 44]. Yet, dtherh still
required the text separately available to answer queries.

This trend evolved into the concept sélf-indexing A self-index is a succinct
index that contains enough information to reproduce anydekstring. Hence a
self-index that implements such functionality ceplacethe text. The exciting
possibility of an index that requires space proportionahecompressetext, and
yet replaces it, has been explored in recent years [8, 9,3,0161 41, 16, 17, 33,
14, 11, 12].

1 By log we mean login this paper.

SUCCINCT SUFFIX ARRAYS 3

Table | compares the space requirements, counting timerestdctions on the
alphabet size for those self-indexes. In the tablgstands for the zero-order en-
tropy of T, while Hy stands for thekth order entropy off, for anyk < a/log, n,
where 0 < a < 1 is any constart. The number of bits of space required by
the indexes ranges from proportional ibly to proportional tonHy. A few of
those require exactipHy + o(n) bits, which is currently the lowest asymptotic
space requirement that has been achieved. Counting tingegdromO(m) to
O(mlogn). Finally, some indexes achieve their results only on coristize alpha-
bets, while some others require that O(polylog(n)), and the rest works well for
anyo = o(n/ logn).3

We also point out tha©(m/ log, n + polylog(n)) time has been achieved on a
succinct (non-self) index [18]. This time is optimal on th&M model if the
pattern is long enough compared to the text (that is, thelgmy) term has to be
O(m/ log,. n)), yet notO(m) in general.

Taste I: Comparison of space, counting time, and restrictionshenaiphabet size for the existing
self-indexes. We show the contributions ordered by the tirhen they first appeared.

Reference Space in bits Counting time Works foro =
[8, 9] 5nHk + o(n) O(m) O(1)
[45] nHy + O(nloglogo) O(mlogn) o(n/logn)
[46] nHy + O(N) O(m) O(polylog(n))
[41] 4nHy + o(n) O(m?log o + mlogn) o(n/logn)
[16, 17] nHy + o(nlogo) O(mlogo + polylog(n)) o(n/ logn)
This paper nHy logo + O(n) O(m) O(polylog(n))
[33] nH(logo + loglogn) + O(n) O(mlogn) o(n/logn)
[14, 15] 2n(Ho + 1)(1+ o(1)) O(mlogo) o(n/ logn)
[11] nHy + o(nlogo) O(mlogo) o(n/ logn)
[12] nHy + o(n) O(m) O(polylog(n))

Table | shows the indexes in chronological order of theirt fingblication, in-
cluding the RLFM index presented in this paper. This permigsinguishing the
indexes that existed when the RLFM index first appeared [2933], from those
that appeared later, most of them deriving in some aspegt fne RLFM index
ideas. The RLFM index was the first in obtaini@jm) counting time and space
proportional tanHy for anyo- = O(polylog(n)). Inspired by the results of this paper
[31], we started a joint work with the authors of the FM-ind8x9] that ended up
in new indexes [11] that very recently superseded our azlgi@sults [12]. Simi-
larly, we applied our ideas in joint work with the author oét8SA index [45, 46]
and obtained new CSA variants [33]. Yet, our index is stilbwe in its run-length-

2 |t also holds for any constaktas long asr = O(polylog(n)).

3 This restriction is usually not explicit in those publigats, but they store at least an array of
integers in the range [h] indexed by characters &. Unlesso = o(n/logn), that array alone
requireso-logn = Q(n) bits.

VELI MAKINEN AND GONZALO NAVARRO

based approach to obtain space proportionalHg, and still represents a relevant
space-time tradébamong existing implementations.
Precisely, this paper presents the following contribigion

(1)

()

®)

We show that there is a close relationship betweerktth@rder entropy of

T and {) the zones in the dfix array that appear replicated in another area
with the values incremented by 1, arid) the runs of equal letters that ap-
pear oncel undergoes the Burrows-Wheeler transform [5]. This proaf ha
independent interest and not only permits analyzing sorisi@x succinct
indexes [28, 29, 33], but also gives the baseline to devetp indexes of
size proportional taHy.

We use the previous idea to develop a new self-index basethe runs
of equal letters that result from the Burrows-Wheeler tfams of T. The
index, calledrun-length FM-index (RLFM)requiresnHg logo + O(n) bits
of space, and it is able to answer counting querie®©({m) time, for any
o = O(polylog(n)). We show diferent ways to answer locating queries and
displaying text.

We focus on a practical RLFM implementation, and devsiappler versions
that perform better in practice. In passing we obtain an é@mgntation of
an existing proposal [46], that we call SSA for “succincffisuarray”. We
compare our implementations against the best existing foresternative
indexes and show that the RLFM and SSA are competitive intipeaand
achieve space-time trad&®that are not reached by others.

2. Basic concepts

Let us first recall some definitions. #ring S= $1%... & is a sequence afhar-
acters(also calledsymbolsor letterg from an alphabek. The size of the alphabet
is o, and for clarity of exposition, we sometimes assume hat{l,...,o}. The
lengthof S is |S| = n, and its individual characters a8fi] = 5. A substringof
S is denoted by5[i, j] = SS+1...Sj. An empty strings denoteck. If i > |, then
S[i, j] = e. A syfix of S is any substringS[i,n]. A prefixof S is any substring
S[1,i]. A cyclic shiftof S is any stringss;1... st .. S-1. Thelexicographic
order of two strings is the natural order induced by the alphabderor If two
strings have the same firstetters, then their order depends on the order of their
(k+1)th letter. We denote bl = tit5. . . t, ourtextstring. We assume that a special
endmarker t = $ has been appendedTo such that the endmarker is smaller than
any other text character. We denote®y p1p... pn our patternstring, and seek
to find theoccurrenceof P in T, that is, the positions i whereP appears as a
substring ofT.

We now survey some existing results used in our paper.

2.1 Empirical kth order entropy

We recall some basic facts and definitions related to the rizapentropy of texts

[35].

Let n. denote the number of occurrencesTirof symbolc € . The zero-

SUCCINCT SUFFIX ARRAYS 5

order empirical entropy of string is

Ho(T) = -), ¥ log ¥,

cex n

where Olog 0= 0. If we use a fixed codeword for each symbol in the alphabet,
thennHp(T) bits is the smallest encoding we can achievelfor

If the codeword is not fixed, but it depends on theymbols that follow the
character inT, then the smallest encoding one can achievelfas nHy(T) bits,
whereH(T) is thekth order empirical entropy oF. This is defined as

Hk(T) = % Z W [Ho(Wr), 1)
Wezk

whereWr is the concatenation of all symbadis(in arbitrary order) such thatW
is a substring off . StringW is thek-contextof each suchj.4 Note that the order
in which the symbols; are permuted i/ does not &ect Ho(Wr).

We useHp andHy as shorthands fdto(T) andH(T) in this paper. We note that
empirical entropies can ba(n) for compressible texts. As an extreme example,
consider the family{(ab)", n > 0}, whereHp = 1 andH; = O(logn/n). This is
in contrast with the classical notion of entropy, which iplégx to infinite streams
and is always constant [3]. By expressing the space reqaitef indexes in
terms of empirical entropies, we relate their size with coespibility bounds of
each particular text.

2.2 The Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT5] of a text T produces a permutation of
T, denoted byr®. Recall thatT is assumed to be terminated by the endmarker
“$”. String T is the result of the following transformation: (1) Formcan-
ceptualmatrix M whose rows are the cyclic shifts of the strifig call F its first
column andL its last column; (2) sort the rows g¥1 in lexicographic order; (3)
the transformed text W = L.

The BWT is reversible, that is, giveR°" we can obtairl. Note the following
properties [5]:

a. Given thath row of M, its last charactel[i] precedes its first charactefi]

in the original texfT, that is,T = ... L[i]F[i]....

b. LetL[i] = c and letr; be the number of occurrences ofn L[1,i]. Take
the rowM([j] as ther;th row of M starting withc. Then the character cor-
responding td_[i] in the first columnF is located at-[] (this is called the
LF mapping LF(i) = j). This is because the occurrences of charactme
sorted both inF andL using the same criterion: by the text following the
occurrences.

4 Note that our contexts are the characfettowing each text position;. This has been chosen for
technical convenience. Alternatively one can chdddg that is, the charactepseceding {. Should
this be problematic for the generality of our results, we icatex the reversed text and search it for
the reversed patterns to obtain the other definition.

6 VELI MAKINEN AND GONZALO NAVARRO

The BWT can then be reversed as follows:

(1) Compute the arra@[1, o] storing inC[c] the number of occurrences of char-
acters{$,1,...,c— 1} in the textT. Notice thatC[c] + 1 is the position of the
first occurrence of in F (if any).

(2) Define theLF mappingas follows: LF(i) = C[L][i]] + OcdL, L[i], i), where
OcdL, c, i) is the number of occurrences of charaatén the prefixL[1,i].

(3) Reconstrucl backwards as follows: set= 1 (sinceM[1] = $t1tr...th 1)
and, foreacm—1,...,1 doT[i] « L[s] ands « LF[s]. Finally put the
endmarkefT[n] = $.

The BWT transform by itself does not comprdsst just permutes its characters.
However, this permutation is more compressible than thgir@i T. Actually, itis
not hard to comprestE” to O(nHy + o) bits, for anyk > 0 [35].

2.3 Syfix arrays

The syfix array A[1, n] of text T is an array of pointers to all the Sixes of T in
lexicographic order. Sinc€ is terminated by the endmarker “$”, all lexicographic
comparisons are well defined. Thh entry of A points to text sffix T[A[i],n] =
tagijtagi+1 - - - th, and it holdsT [A[i], n] < T[A[i + 1], n] in lexicographic order.

Given the sHix array, the occurrences of the pattd?n= pip.... pm can be
counted inO(mlogn) time. The occurrences form an intervd@[sp e such that
sufixestaitag+1 . - - th, for all sp<i < ep contain the patterR as a prefix. This
interval can be searched for using two binary searches iea @mlogn). Once
the interval is obtained, a locating query is solved simplyigting all its pointers
in O(ocg time.

We note that the gfix array A is essentially the matrixd1 of the BWT (Sec-
tion 2.2), as sorting the cyclic shifts df is the same as sorting itsfixes given
the endmarker “$".A[i] = j if and only if theith row of M contains the string
titje1.. Ano1 Bt tj-1.

A feature of siffix arrays that is essential for their compression is that (hey)
contain self-repetitions A self-repetition inA is an intervalA[j... | + £] that
appears elsewhere, sayAi...i1 +], so that all values are displaced by 1. This
is, forany O<r < ¢, it holdsA[] + r] = A[i + r] + 1. Self-repetitions were one of
the first tools used to compactfEy arrays [28].

2.4 The FM-index

The FM-index [8, 9] is a self-index based on the Burrows-Wéregansform. It
solves counting queries by finding the interval#fthat contains the occurrences
of patternP. The FM-index uses the arrd&y and functionOcdL, c,i) defined in
Section 2.2. Fig. 1 shows the counting algorithm. Using treperties of the
BWT, it is easy to see that the algorithm maintains the foltmuinvariant [8]: At
theith phase, variablespandeppoint, respectively, to the first and last row f
prefixed byP[i, m]. The correctness of the algorithm follows from this obsgion.
Note thatP is processed backwards, frgog, to p;.

SUCCINCT SUFFIX ARRAYS 7

Algorithm FMcount@[1, m], T°"{[1, n])
Q) i—m

(2) sp<1l;ep«n;

(3) while(sp<ep and (i > 1)do

(4) ¢ « PIiJ;

(5) sp« C[c] + OcqT™, ¢, sp—1)+1;
(6) ep« C[c] + OcdT™ c,ep);

@) i1

(8) if (ep< sp) thenreturn “not found” elsereturn “found (ep— sp+ 1) occurrences”.

Fig. 1: FM-index algorithm for counting the number of occurrenoé®[1, m] in T[1, n].

Note that while arrayC can be explicitly stored in little space, implementing
OcqT™ ¢, i) is problematic. The first solution [8] implement&to TP, ¢, i) by
storing a compressed representatioff Bt plus some additional tables. With this
representatiorQcd T, ¢, i) could be computed in constant time and therefore the
counting algorithm require®(m) time.

The representation oF®™ requiredO(nHy) bits of space, while the additional
tables required space exponentialoin Assuming thair is constant, the space
requirement of the FM-index isnfx + o(n). In a practical implementation [9]
this exponential dependence @was avoided, but the constant time guarantee for
answeringOcq T ¢, i) was no longer valid.

Let us now consider how to locate the positionsAfsp epd. The idea is that
T is sampled at regular intervals, so that we explicitly stitre positions inA
pointing to the sampled positions Th(note that the sampling is not regular).
Hence, using theF mapping, we move backward inuntil finding a position that
is known inA. Then it is easy to infer our original text position. Fig. 2als the
pseudocode.

Algorithm FMIocate{, T°"{[1, n])

Q) V" —i,t<0;

(2) while A[i'] is not knowndo

3) i” « LF(i") = C[T®{[i']] + OcqT°", T?"[i’],i");
4) te—t+1;

(5) return “text position isA[I"] + t".

Fig. 2. FM-index algorithm for locating the occurrenggi] in T.

We note that, in addition t& andOcc we need access to charact€R¥[i’] as
well. In the original paper [8] this is computed@{(o) time by linearly looking for
the charactec such thatOcq TP, ¢,i’) £ OcqTP™, ¢, i’ — 1). Finally, if we sam-
ple one out of lo§*® n positions inT, for any constant > 0, and use log bits to

8 VELI MAKINEN AND GONZALO NAVARRO

represent each corresponding knafinvalue, we requir@(n/ log® n) = o(n) ad-
ditior;al bits of space and can locate thee occurrences oP in O(occo logt*e n)
time.

Finally, let us consider displaying text contexts. To eteT[l4, 5], we first find
the position inA that points td,, and then issué = |, — |; backward steps i,
using theLF mapping. Starting at the lowest marked text position thédvie |,
we performO(log'* n) steps until reachinéy. Then we perfornt additional LF
steps to collect the text characters. The resulting conitglexO(o- (¢ + log**® n)).

2.5 The compressedgy array (CSA)

The compressed gfix array (CSA)[45] is a self-index based on an earlier suc-
cinct data structure [18]. In the CSA, thefw array A[1, n] is represented by
a sequence of numbe¥(i), such thatA[¥(i)] = A[i] + 1.5 The sequenc¥ is
differentially encoded¥(i + 1) — ¥(i).

Note that if there is a self-repetitiofi[j... | + {] = Ali...i +] + 1 (recall
Section 2.3), the®(i...i+¢) = j... j+ ¢, and thusP(i + 1) — (i) = 1 in all that
area. This property was used to represinising run-length compression in space
proportional tonH [30, 29, 33], using ideas from this paper.

Yet, the original CSA achieved space proportionahtdy by different means.
Note that the¥ values are increasing in the areas#fwhere the sfiixes start
with the same character because&X < cY if and only if X < Y in lexicographic
order. It is enough to store those increasing valuemrintially with a method like
Elias coding to achiev®(nHp) overall space [45]. Some additional information is
stored to permit constant time acces¥torhis includes the sanm@ array used by
the FM-index. Considering all the structures, the CSA takek + O(log logo))
bits of space.

A binary search on dfix array A is simulated by extracting strings of the form
tagitag+1tag+2 - .- from the CSA, for any index required by the binary search.
The first charactetyj) is easy to obtain because all the first characters fhixes
appear in order when pointed fraft, sot ;) is the character such thaClc] <i <
Cl[c+ 1]. This is found in constant time by using small additiortalistures. Once
the first character is obtained, we move’te- ‘F'(i) and go on witht #ji'} = taij+1.
We continue until the result of the lexicographical comganmi against the pattern
P is clear. The overall search complexity is the same as wihotiiginal suifix
array,O(mlogn).

The method to locate occurrences could have been the sameths FM-index
(Section 2.4), using’ to move forward in the text instead of using thEe mapping
to move backward. Note that the times are not multipliedrbgo they can locate
theoccoccurrences iD(occ logt*® n) time and display a text substring of length
in O(¢+log**® n) time, for any constant > 0. The reason behind the independence

5 Actually, if one insists in that- = O(1), and thus the locate time @&(occ log*** n), then it is
possible to achiev®(occ log® n) time by enlarging the alphabet. This is not a choice & w(1).

6 SinceA[1] = n becausel[n,n] = $ is the smallest dfix, it should holdA[¥(1)] = n+ 1. For
technical convenience we S#&(1) so thatA[¥(1)] = 1, which make&V a permutation of [1n].

SUCCINCT SUFFIX ARRAYS 9

of o is that the CSA encodeE explicitly (albeit compressed), whereas the FM-
index does not encode the LF mapping but it needs to compugénigg T?"i], so
it needs to know the current character in order to move.

Yet, the CSA locates even faster @(log®n) steps) with a more complicated
structure: the inverse afl. This inverse permits moving by more than one text
position at a time, and is implemented in succinct spacegusieas in previous
work [18]. The price is that the main term of the space coniples actually
nHo(1 + 1/¢).

A more recent variant of the CSA [46] achievegm) counting time ifo =
O(polylog(n)), by means of simulating an FM-index-like backward sedi®bc-
tion 2.4). This is interesting because it shows a deep caiomebetween the
FM-index and the CSA structures. Even more important fos ffaper is that
they solve the problem of computif@co TP, ¢, i) of the FM-index in constant
time using|T|Ho(T) + O(|T|) bits of space, provided the alphabet sizeTofs
o = O(polylog(T|)). This is done by storing- bit arraysB, such thatB[i] = 1
if and only if T°i] = ¢, and thusOcd T, c,i) = rank; (B, i) (Section 2.6).
They manage to use a succinct representation foBtlaarays [43] so as to get the
desired space bounds.

2.6 Succinct data structures for binary sequences

Binary sequences are among the most basic data structndshiey are intensively
used by succinct full-text indexes. Hence their succingtesentation is of interest
for these applications. In particulagnk andselectqueries over the compressed
sequence representations are the most interesting ones.

Given a binary sequend® = bib,...b,, we denote byank,(B,i) the number
of times bitb appears in the prefiB[1,i], and by select(B, i) the position inB
of theith occurrence of bib. By default we assumeank(B, i) = rank(B, i) and
selec{B, i) = seleci(B,).

There are several already classical results [22, 37, 6]dhev howB can be
represented using+ o(n) bits so as to answeank andselectqueries in constant
time. The best current results [42, 43] are able to answeetiqoeries in constant
time, yet using onlynHy(B) + o(n) bits of space. More precisely, the former [42]
usesnHy(B) + O(nlog logn/logn) bits, and it answers in constant time edhk
queries, also retrieving any lif. The latter [43], on one hand, adds support for all
selectqueries within the sameHp(B) + O(nlog logn/ logn) bits of space used by
the former [42]. On the other hand, it presents a more limsteaicture answering
ranky(B, i) andrank, (B, i) only if bj = 1, only selec{(B, i) but notselecg(B, i), and
retrieving any bit;. In exchange, this last structure needs less space on dparse
vectors:nHp(B) + o(¢) + O(log logn) bits, wheref is the number of bits set iB.

We remark that these space bounds include that for repnegeitself, so the
binary sequence is being compressed, yet it allows thos@éegue be answered in
optimal time.

10 VELI M AKINEN AND GONZALO NAVARRO

2.7 Wavelet trees

Sequences = $1%...$, on general alphabets of sizecan also be represented
usingnHp(S) + o(nlog o) bits by using avavelet tred16]. Queriegank andselect
can be defined equivalently on general sequences. The waeddake(log o)
time to answer those queries, as well as to retrieve chargcte

The wavelet tree is a perfectly balanced binary tree whegle Bade corresponds
to a subset of the alphabet. The children of each node partitie node subset
into two. A bitmap at the node indicates to which children sleach sequence
position belong. Each child then handles the subsequerite parent’'s sequence
corresponding to its alphabet subset. The leaves of thé&meele a single letter of
the alphabet and require no space.

More formally, the root partition puts characters in|j&/2]] on the left child,
and characters ing/2] + 1, o] on the right child. A bitmamB,se1, n] is stored
at the root node, so thdfi] = O if and only if 1 < S[i] < [o/2] (that is, if the
ith character o5 belongs to the left child) and 1 otherwise. The two childrem a
processed recursively. However, each of them considergeitigositions whose
character belongs to their subset. That is, the bitmap ofefitiehild of the root
will have onlyn; +. ..+ ny,/2) bits and that of the right child only /241 +. ..+ N,
wheren. is the number of occurrences ©in S.

To answer queryank.(S, i), we first determine to which branch of the root does
¢ belong. If it belongs to the left, then we recursively congrat the left subtree
with i « ranky(Broot, i). Otherwise we recursively continue at the right subtree
with i « rank(Broot,1). The value reached biywhen we arrive at the leaf that
corresponds ta is rank(S,i). To answerselect(S, i) the process is bottom-up,
starting at the leaf that correspondsd@nd updating « selec§(Bnoge i) and
i « select(Bnogde i) depending on whether the current node is a left or righdchil
Finally, to find outs we go left or right in the tree depending on whetBejy[i] =
0 or 1, and we end up at the leaf that corresponds.toAll those queries take
O(log o) time.

If every bitmap in the wavelet tree is represented using a skaticture that takes
space proportional to its zero-order entropy (Section, 2:&h it can be shown that
the whole wavelet tree requiresiy(S) + o(nlog o) bits of space [16].

Wheno = O(polylog(n)), a generalization of wavelet trees taked(S) + o(n)
bits and answers all those queries in constant time [12].

3. Relating the kth order entropy with self-repetitions

In this section we prove a relation between ktle order entropy of a text and
both the number of self-repetitions in itsfBx array (Section 2.3) and the number
of runs of equal letters in the Burrows-Wheeler transforiesdiT ®* (Section 2.2).
In this proof we use some techniques already presented inch more complete
analysis [35]. Our analysis can be regarded as a simplifiesiorethat turns out to
be enough for our purposes.

The concept of self-repetition has been used [28] to conq#tx arrays, essen-
tially by replacing the aread[i . ..i + {] that appear elsewhere &j...j+{] =

SUCCINCT SUFFIX ARRAYS 11

Ali...i+{]+1, by pointers of the formj(¢). Let us define the minimum number
of self-repetitions necessary to cover #isuarray.

DeriniTion 1. Given a sifix array A, ngr is the minimum number of self-repetitions
necessary to cover the what@. This is the minimum number of nonoverlapping
intervals|is, is + ¢s] that cover the intervall, n] such that, for any s, there exists
[is Js + €] such thatA[js + r] = Alis+r]+1forall 0 <r < ¢s. (Note that
Y(is+r)=js+rfor0O<sr<{s)

We show now that, in a cover of minimum size of self-repetitiothese have to
be maximal, and that if self-repetitions are maximal, tHendover is of minimum
size.

Lemma 1. Let[is, is+ €s] be a cover ofl, n] using nonoverlapping self-repetitions.
Assume them to be sorted, thys i= is+ {5+ 1. If some self-repetitiofi, is + €]
is not maximal, then the cover is not of minimum size.

Proor. Let jsbe such thatA[js] = Alis] + 1. Assume that the interval[is + ¢5]

can be extended to the right, that i@[js + s + 1] = Alis + {s + 1] + 1. Then,
sincejs is unique for eaclis (actually js = ¥(is)), and sincéds + s+ 1 = igy1, We
havejs;1 = WP(isi1) = js+ s+ 1. MoreoverAljs+ s+ 1+r] = Aljsi1 + 1] =

Aligr1 +r]+1=Alis+ls+1+r]+1Lfor0<r < 1. Thus, intervalsi, is +]

and fis;1,is:1 + €sr1] can be merged into one. The argument is similarsifif + 4]

can be extended to the left]

Lemma 2. Let[is, is + £s] be a cover of1, n] using nonoverlapping maximal self-
repetitions. Then the cover is of minimum size.

Proor. We simply note that there is only one possible cover whdfeegetitions
are maximal. Consider again that the intervals are sortéulisif = 1 and¢; is
maximal. Thus, is fixed ati, = i1 + £1 + 1 and{s is maximal, and so o]

The size of theompact sffix array[28] is actuallyO(ng; log n). No useful bound
onng, was obtained before. Our results in this section will peboiinding the size
of the compact dtix array in terms of thé&th order entropy off .

Let us first define more conveniently the number of self-iéipas ng in a sufix
array A. As explained in Section 2.5, a self-repetitigtj... |+ €] = Afi...i +
{]+1 translates into the conditio¥(i . ..i+¢) = j... j+¢£. The following definition
is convenient.

Derinition 2. Arun in¥ is any maximal intervali, i + €] in sequencé& such that
Y(r+1)-Y(r)=1foralli <r < i+ ¢ Note that the number of runs i is n
minus the number of positions r such thH&r + 1) — ¥(r) = 1.

The following lemma gives us an alternative definition of-sepetitions, which
will be more convenient for us and is interesting in its owghtito analyze the
CSA.

12 VELI M AKINEN AND GONZALO NAVARRO

Lemma 3. The number of self-repetitiong,to coverA is equal to the number of
runs in'p.

Proor. As explained in Section 2.5, there exists a self-repetit#)j... | + {] =
Ali...i+Ll]+1lifandonly ifP(i...i+¢) = ... j+¢, thatis, ifP(r+1)-¥(r) =1
foralli <r < i+ ¢. Therefore, each maximal self-repetition is also a (makima
run in¥ and vice versal]

Let us now consider the number of equal-letter run$ 4 = L. The following
definition and theorem permit us bounding in terms of those runs.

Dernition 3. Given a Burrows-Wheeler transformed teMl, Nn], Npy is the num-
ber of equal-letter runs in ™, that is, n minus the number of positions j such that
TOM[j + 1] = TP[j].

Tueorem 1. The following relation betweernynand ryy, holds: ry < npy < Ngr+ 0o,
whereo is the alphabet size of T.

Proor. LetL = TP" pe the last column in matridA of the BWT. If L[] =
L[j+ 1] = ¢, thenT[A[]] — 1] = cX, T[A[] + 1] - 1] = cY, T[A[]|]] = X, and
T[A[j + 1]] = Y. Leti be such thaf = ¥(i) andi’ such thatj + 1 = ¥(i’), then
Alj] = Alil+1andA[j+1] = A[i"] + 1. HenceT[(A[i]] = cXandT[A[i’]] = cY.
SinceX < Y, it follows thatcX < cY and therefore < i’. Moreover, there cannot
be any stiix cZ such thatX < ¢cZ < cY because in this casé < Z < Y, and thus
the pointer to sfiix Z should be betweepandj + 1. Since there is no suchffiy,

it follows thati’ =i + 1, that is, (") - ¥() = P(i+1)-¥(@) =(j+1) - j =1,
and therefore andi + 1 belong to the same maximal self-repetition.

Recall thatnyy, is n minus the number of cases whetgj] = L[j + 1], and
similarly ng; is n minus the number of cases whélté + 1) — ¥(i) = 1. Since there
is a bijection¥ between and j, and thus every such that[j] = L[] + 1] induces
a differenti such that¥(i + 1) — ¥(i) = 1, it follows immediately thahg, < npy,.
Actually, the inverse of the above argument is also true gXoe the possibility of
a self-repetition spanning an area where the first charattée sufixes changes.
As this happens at mosttimes, we havés, < Ny < Ngr + 0. [

We have established the relation between the rulis the self-repetitions A,
and the runs iT®, We now prove that the number of equal-letter run ¥t is
Npw < NHy + oK, for anyk > 0.

Dernition 4. Let rle(S) be therun-length encodin@f string S, that is, sequence
of pairs (s, £j) such that s# s.1 and S= s's?..., where § denotes character
s repeated; times. The lengtlrle(S)| of rle(S) is the number of pairs in it.

Hence, we want to bount,, = |rle(T°")|. An important observation for our
development follows:

Osservation 1. For any partition o into consecutive substrings= S1S;... Sy,
it holds [rle(S)| < Irle(S1)l + Irle(S2)l + ... + [rle(Sp)l, as the runs are the same
except in the frontiers betwee andS;, 1, where a run ir can be split into two.

SUCCINCT SUFFIX ARRAYS 13

Recall stringWy as defined in Section 2.1 forlkacontextW of string T. Note
that we can apply any permutationé- so that Eq. (1) still holds. Now, characters
in TP" = | are sorted by the text fix that follows them (that is, by their row in
M), and thus they are ordered by thkicontext, for anyk. This means that all
the characters iV, for anyW e =X, appear consecutively ifi°™. Thus, TP"t
is precisely the concatenation of all the strings for W e =K, if we take the
order of characters inside ea® according to how they appear " [35]. As
a consequence, we have that

Mow = IMe(T™) <) Irle(W), ey

Wezk

where the permutation of eadhfr is now fixed by T, In fact, Eq. (2) holds
also if we fix the permutation of eadWy so that|rle(Wr)| is maximized. This
observation gives us a tool to upper bourd(T?"Y| by the sum of code lengths
when zero-order entropy encoding is applied to eAglseparately. We next show
that|rle(Wr)| < 1 + Wy |Ho(Wr).

Let us callos the alphabet size @. First notice that itry, = 1 then|rle(Wy)| =
1 and|Wr|Ho(Wr) = 0, so our claim holds. Let us then assume that = 2. Let
x andy (x < y) be the number of occurrences of the two letters,ssagdb, in Wr,
respectively. It is easy to see analytically that

Ho(Wr) = —(x/(x+Y)) log(x/(x+Y))—(y/(x+y)) log(y/(x+Y)) = 2x/(x+Y). (3)

The permutation ofAf that maximizegrle(Wr)| is such that there is no run of
symbolalonger than 1. This makes the number of runsl@f\Wr) to be + 1 in
that case. By using Eqg. (3) and singé| = x + y we have that

Ile(Wr)l < 2x+1 = 1+2Wrx/(X+Y) < 1+ [Wr|Ho(Wr). (4)

We are left with the casew, > 2. This case splits into two sub-cases: the
most frequent symbol occurs at le@dtr|/2 times inWy; (ii) all symbols occur
less thalW|/2 times inWr. Case i) becomes analogous to casg, = 2 oncex
is redefined as the sum of occurrences of symbols other tieamadist frequent. In
case {{) [rle(Wr)| can bgWr|. On the other handyWy |Ho(Wr) must also be at least
[Wr|, since it holds that log(x/|Wx|) > 1 for x < |Wy|/2, wherex is the number
of occurrences of any symbol Wy . Therefore we can conclude that Eq. (4) holds
for anyWr.

Combining Egs. (1), (2) and (4) we get the following result:

Tueorem 2. The length p, of the run-length encoded Burrows-Wheeler trans-
formed text P¥[1,n] is at most nK(T) + oK, for any k> 0. In particular, this
is NHk(T) + o(n) for any k< a'log,,. n, for any constan® < « < 1.

7 Note that, since the endmarker “§’%, we are including irE contexts that include the endmarker.
Those let us account for the Idstharacters of : Instead of considering that those characters have
a context shorter thaky we assumé,_; belongs to context, i, ... t,$".

14 VELI M AKINEN AND GONZALO NAVARRO

This theorem has two immediate applications to existingmessed indexes, all
valid for anyk < a’log, n, for any constant & « < 1. Note that of coursay, < n,
soHy actually stands for min(Hy).

(1) The size of the compact$ix array [28] isO(nHk logn) bits. This is because
the compact dftix array stores a constant number of pointers for each max-
imal self-repetition of the text, and there arg < npy self-repetitions. No
previous useful analysis existed for this structure.

(2) A run-length compression of arrdly permits storing the compressedtsu
array (CSA) [45] innHg(log o + loglogn) + O(n) bits. It is still possible to
search that CSA i®©(mlogn) time. This was already shown [33] using the
ideas from this paper [29]. Yet, an extra constant 2 appedarétit case [33]
due to our unnecessarily pessimistic previous analysis [29

(3) A combination of the compact §ix array and the CSA, called CCSA for
“compressed compact iix array” [29] is a self index using@(nHg logn)
bits. Actually, this analysis was first presented in thatguap analyze the
CCSA.

In the next section we use the result to design a new compul @sgdex.

4. RLFM: A run-length-based FM-index

In Section 3, we have shown that the number of runs in the B\&fTsformed text
is nHy + o(n) for k < @log, n, 0 < @ < 1. We aim in this section at indexing only
the runs of TP, so as to obtain an index, calledn-length FM-index (RLFM)
whose space is proportional mdHy.

We exploit run-length compression to repres@ftt as follows. An arrayS
contains one character per runTifi™, while an arrayB containsn bits and marks
the beginnings of the runs.

Dermmion 5. Let string TP = clic2 .. > consist of By runs, so that the ith
run consists of; repetitions of character;c Our representation of Bt consists of
string S= ¢1C; Gy, Of length my, and of bit array B= 107110271, . 10/ 1,

Itis clear thatS andB contain enough information to reconstrdé: TPW{i] =
S[rank(B, 1)]. Since there is no useful entropy boundBnwve assume thatnkis
implemented in constant time using some succinct stru¢chaterequires + o(n)
bits [22, 6, 37]. HenceS and B give us a representation " that permit us
accessing any character in constant time.

The problem, however, is not only how to acc@8¥", but also how to compute
C[c] + Ocd TP ¢, i) for anyc andi (recall Fig. 1). This is not immediate, because
we want to add up all the run lengths corresponding to charactp to positioni.

In the following we show that the above can be computed by meba bit array
B’, obtained by reordering the runs Bfin lexicographic order of the characters of
each run. Runs of the same character are left in their ofigimker. The use oB’
will add othern + o(n) bits to our scheme. We also uSe, which plays the same
role of C, but it refers to strings.

SUCCINCT SUFFIX ARRAYS 15

DerNITION 6. Let S= ¢1C;. . . Gy, Of length my, and B= 107110271 .. 10/ L,
Let didy...dy,, be the permutation ofl, nyy] such that, for alll < i < npy,
either ¢ < cq,,, Or Cg = Cq,, and d < di;1. Then, bit array Bis defined as
B’ = 100110/ 1 10/, Letalso G[c] = I{i, ¢ < C, 1 <i < Npw)l.

We now prove our main results. We start with two general lesmima
Lemma 4. Let S and Bbe defined for a string ™. Then, for any & X it holds
C[c] +1 = selectB’,Cs[c] + 1).

Proor. Cg[c] is the number of runs if ™ that represent characters smaller than
c. Since inB’ the runs ofT"™ are sorted in lexicographic ordeselectB’, Cs[c] +

1) indicates the position i’ of the first run belonging to character if any.
Therefore,selec{B’, Cs[c] + 1) — 1 is the sum of the run lengths for all characters
smaller tharc. This is, in turn, the number of occurrences of charactersllsm
thancin TP, C[c]. Henceselec{B’, Cs[c] + 1) — 1 = C[c]. [J

Lemma 5. Let S, B, and Bbe defined for a string ™. Then, for any ¢ £ and
1 <i < n,suchthatiis the final position of a run in B, it holds

C[c] + OcdT?™ c,i) = selectB’,Cs[c] + 1+ OcqS, ¢, rank(B, i))) — 1.

Proor. Note thatrank(B, i) gives the position irS of the run that finishes at
i. Therefore,OcdS, c, rank(B, i)) is the number of runs iT?"[1,i] that rep-
resent repetitions of character Hence it is clear thaCs[c] < Cg[c] + 1 +
OcdsS, ¢, rank(B, i)) < Cs[c+1]+1, from which follows thaselec{B’, Cs[c] + 1+
OcdS, ¢, rank(B, 1)) points to an area iB’ belonging to character; or to the char-
acter just following that area. Inside this area, the ruesoadered as B because
the reordering irB’ is stable. Henceelec{B’,Cs[c] + 1 + OcqS, ¢, rank(B, i)))

is selectB’, Cs[c] + 1) plus the sum of the run lengths representing character
in TP[1,i]. That sum of run lengths i©cdT c,i). The argument holds
also if TP[i] = c, because is the last position of its run and therefore count-
ing the whole runT®™{i] belongs to is correct. Hencselec{B’,Cs[c] + 1 +
OcdS, ¢, rank(B, i))) = selec{B’, Cs[c]+1)+Ocq TP, ¢, i), and then, by Lemma 4,
selec{B’, Cs[c] + 1+ OcdS, ¢, rank(B, i))) — 1 = C[c] + OcoT c,i). O

We now prove our two fundamental lemmas that covéiedent cases in the
computation ofC[c] + OcaTPM, ¢, i).

Lemma 6. Let S, B, and Bbe defined for a string ™. Then, for any ¢ £ and
1 <i < n, such that PM[i] # c, it holds

C[c] + OcdT?™, c,i) = selec(B’,Cs[c] + 1+ OcqS, c, rank(B, i))) — 1.

Proor. Let i’ be the last position of the run that precedes that.ofSince

T[] # cin the runi belongs to, we hav®cq TP ¢, i) = OcqTP™, ¢,i’) and

alsoOcdS, ¢, rank(B, 1)) = OcdS, ¢, rank(B, i")). Then the lemma follows trivially
by applying Lemma 5 t&'. O

16 VELI M AKINEN AND GONZALO NAVARRO

Lemma 7. Let S, B, and Bbe defined for a string . Then, for any & T and
1 <i < n, such that Pi] = c, it holds

C[c] + OcdTP™ c,i) = selectB’,Cs[c] + OcqS, ¢, rank(B, i)))
+1i — selec{B, rank(B,)).

Proor. Leti’ be the last position of the run that precedes that By Lemma 5 we
haveC[c]+Oca TP ¢,i’) = selec({B’, Cs[c]+1+0cdS, ¢, rank(B, i’)))— 1. Now,
rank(B, i’) = rank(B, i) — 1, and sinc&®{i] = c, it follows thatS[rank(B,i)] = c.
ThereforeOcdS, ¢, rank(B,i’)) = OcdS, ¢, rank(B, i)-1) = OcdS, ¢, rank(B, i))—

1. On the other hand, sin@®"[i”"] = cfori’ <i” < i, we haveOcq T c,i) =
OcqTP™ ¢,i’) + (i — i’). Thus, the outcome of Lemma 5 can now be rewritten as
C[c] + Ocd TP ¢, i) — (i —i’) = selectB’, Cs[c] + OcdS, ¢, rank(B, i))) — 1. The
only remaining piece to prove the lemmais thai’ — 1 = i — selec{B, rank(B, 1)),
that is, selec{B, rank(B,i)) = i’ + 1. But this is clear, since the left term is the
position of the first run belongs to andt is the last position of the run preceding
that ofi. O

Since functiongank and selectcan be computed in constant time, the only ob-
stacle to complete the RLFM using Lemmas 6 and 7 is the cortipataf Occ
over stringS. We use the idea explained at the end of Section 2.5 [46]ediist
of representingS explicitly, we store one bitmaf; per text charactec, so that
Sc[i] = 1if and only if S[i] = c¢. HenceOcdsS, ¢, i) = rank(Sc, i). It is still possi-
ble to determine in constant time whetf@"{[i] = c or not (so as to know whether
to apply Lemma 6 or 7)T?™[i] = c if and only if S¢[rank(B,i)] = 1. Thus the
RLFM can answer counting queries@{m) time.

From the space analysis of the original article [46], we Haatthe bit array$,
can be represented [B|Ho(S)+O(|S|) bits. The length of sequen&is|S| = npy <
nHyx + o, which isnHy + o(n) for k < a log,, n, for any constant & « < 1. So the
space for th&, arrays is iHg+0(n))(Ho(S)+0O(1)). Since run-length compression
removes some redundancy, it is expected HgB) > Ho(T) (although this might
not be the case). Yet, the only simple bound we know ¢14€S) < logo. Thus
the space can be upper bounded i + o(n))(log o + O(1)). Note that the(n)
term comes from Theorem 2, and it is in fa@{n®) for somea < 1, so it is still
o(n) after multiplying it by logo- = O(logn). Thus, the space requirement can be
written asnH(log o + O(1)) + o(n).

In addition to arraysSc, the representation of our index needs the bit arrays
B and B’, plus the sublinear structures to perforank angor selectover them,
and finally the small arras. These add 2 + o(n) bits, for a grand total of
N(Hk(logo + O(1)) + 2) + o(n) bits. AsHy actually stands for min(Hy) (see the
end of Section 3), we can simplify the space complexitglt log o + O(n) bits.

We recall that the solution we build on [46] works only tor= O(polylog(S))).
This is equivalent to the conditiom = O(polylog(n)) if, for example,ny,, >
for some O0< B8 < 1. In the unlikely case that the text is so compressible that
Npw = o(n) for any 0< B < 1, we can still introduce? artificial cuts in the runs so

SUCCINCT SUFFIX ARRAYS 17

as to ensure that polylog{and polylog (i) are of the same ord&rThis increases
the space by a smat(n) factor that does notféect the main term. In exchange,
the RLFM index works for any- = O(polylog(n)).

We have chosen to build over Sadakane’s work [46] for histbrieasons. How-
ever, we would like to remark that very recent developmeh®y [ise multi-ary
wavelet trees to obtain the same result with a somewhat smaplproach. That
is, they can represent a sequelscever alphabet of size- = O(polylog(S|)) and
answerrank and selectqueries ovefs in constant time.

Let us now consider the task of locating occurrences andayisyy text. For
this sake we can use the same marking strategy of the FM-irdl@xhermore, to
accessTP™[i] we can use the equivalend®"{i] = S[rank(B, i)], so the problem
of accessingl®i] becomes the problem of accessiBfj]. Just as in the FM-
index, we can use the san@cc function to find outS[j] in O(co) time, which
yields the same FM-index complexities in all cases.

Note, however, that in this case we cdfoed the explicit representation &fin
addition to the bit array$., at the cost ohHglogo + o(n) more bits of space.
This gives us constant time acces3 " and thus completely removesfrom all
RLFM index time complexities.

Tueorem 3. The RLFM index, of size min(Hg, 1) logo + O(n) = nHglogo +
O(n) bits for any k< alog, n, for any constan® < « < 1, can be built on a
text T[1, n] whose alphabet is of size = O(polylog(n)), so that the number of
occurrences of any pattern[Bm] in T can be counted in time (@) and then
each such occurrence can be located in tin{e-@og'*® n), for any constant > 0
determined at index construction time. Also, any text suigsbf lengths can be
displayed in time Q@ (¢ + log**® n)). By letting it use2nmin(Hy, 1) logo + O(n)
bits of space, the RLFM index can count ifn@ time, locate occurrences in time
O(log'*? n), and display text substrings of lengtfin O(¢ + log*** n) time.

Binary alphabets.t is interesting to consider the case of a t&xbver a binary
alphabet, saf = {a,b}. In this case, since the runs alternate, we aj&] = a
andS[2i + 1] = b or vice versa depending on the first val8f]. One has also
to consider the onlyj for which S[j] = $, as the evebdd rule may change after
j. Thus, it should be clear that we do not need to repreSeat all, and that,
moreover, it is easy to answ@cqs, ¢, i) in constant time without any storage:
For example, ifS[1] = aandS[j + 1] = a, thenOcdS, a,i) = | (i + 1)/2] fori < |
andOcdS,a,i) = [j/2] + (i — j + 1)/2] fori > j. Similar rules can be derived
for the other three cases 8{1] andS[j + 1]. Therefore, on a binary alphabet the
RLFM index requires only array® andB’, which take 2 + o(n) bits of space, and
maintains the complexities of Theorem 3. This result almastches some recent
developments [20], albeit for this case the FM-index [d] etitains better results.

8 This can be done because we never used the fact that consetuits must correspond tafdirent
characters.

18 VELI M AKINEN AND GONZALO NAVARRO

5. Practical considerations

Up to now we have considered only theoretical issues. Indbdion we focus
on practical considerations on the implementation of thé&-RLindex. Several
theoretical developments in this area require consideralark in order to turn
them into practical results [9, 45, 41, 17].

The most problematic aspect of our proposal (and of sevénatg) is the heavy
use of techniques to represent sparse bitmaps in a spacertwopl to its zero-
order entropy [43, 46, 12]. Those techniques, albeit theaéy remarkable, are
not so simple to implement. Yet, previous structures supggprank in n + o(n)
bits [22, 37, 6] are considerably simpler.

The problem is that, if we used the simpler techniques foisparse bitmapS,,
we would needhpy(1 + 0(1)) bits for each of them, and would requinélio bits
at least for the RLFM index, far away from the theoretinbl logo. This can be
improved by using a wavelet tree (Section 2.7) built on$h&ring of the RLFM
index (that is, the run heads), instead of the individuahbpsS;. The wavelet tree
is simple to implement, and if it uses structures®b(n) bits to represent its binary
sequences, it requires ovemall,log o (1+0(1)) = nHx logo(1+0(1)) bits of space
to represens. This is essentially the same space used by the individuarizys
(in a worst-case sense, as the real space complexity ob8ettsnHcHg(S)).

With the wavelet tree, both th®(1) time to computeOcdsS, c,i) = rank.(S,i)
and theO(o) time to computeS[i], becomeO(log o). Therefore, a RLFM index
implementation based on wavelet trees count©f{mlogo) time, locates each
occurrence ir0(log o log'*® n) time, and displays any text substring of lengtin
O(log o (¢ + log**® n)), for any constant > 0.

The same idea can also be applied on the structure that usese dpt arrays
without run-length compression [46]. Let us call SSA (fou¢sinct stfix array”)
this implementation variant of the original structure [4@ince in the SSA the
bit arraysB. are built over the whold (not only over the heads of runs), the
SSA index requireslogo(1 + o(1)) space, which is at least as large as the plain
representation of.

We propose now another simple wavelet tree variant thatipeus representing
the SSA usingn(Ho + 1)(1 + o(1)) bits of space, and obtains on avera&ggo)
rather tharO(log o) time for the queries on the wavelet tree.

Imagine that instead of a balanced binary tree, we use tiféntda tree ofT
to define the shape of the wavelet tree. Then, every charaetex will have its
corresponding leaf at dept, so thaty s hcne < n(Ho + 1) is the number of bits
of the HUfman compression of (recall from Section 2.1 that. is the number of
times charactec occurs inT).

Let us now consider the size of the flman-shaped wavelet tree. Note that each
text occurrence of each character ¥ appears exactly ih; bit arrays (those found
from the root to the leaf that correspondscjpand therefore it takes; bits spread
over the diferent bit arrays. Summed over all the occurrences of all taeacters
we obtain the very same length of thefffuan-compressed texXf,..s hcnc.. Hence
the overall space is(Hp + 1)(1 + o(1)) bits.

Note that the time to retriev&°"{[i] is proportional to the length of the Hii

SUCCINCT SUFFIX ARRAYS 19

man code forT®{i], which is O(Ho) if i is chosen at random. In the case of
OcqT™ ¢.i) = rank(TP",i), the time corresponds again T"Ji] and is in-
dependent ot. Under reasonable assumptions, one can say that on avéiage t
version of the SSA counts iB(Hem) time, locates an occurrence@{Hg log'* n)
time, and displays a text substring of lengtim O(Ho(¢ + log'*® n)) time. It is pos-
sible (but not good in practice) to force the fftuan tree to hav®(log o) height
and still have average depth limited by + 2, so we can ensure the same worst
case factoO(log o) instead ofO(Hop) [14].

Finally, we note that the Himan-shaped wavelet tree can be used instead of the
balanced version for the RLFM index. This lowers its spacpirement again
to nHHo(S), just like the theoretical version. It also reduces theaye time to
computerank:(S, i) or S[i] to O(Ho(S)), which is no worse tha®(log o).

6. Experiments

In this section we compare our SSA, CC5dnd RLFM implementations against
other succinct index implementations we are aware of, akagaither more clas-
sical solutions. All these are listed below .

FM [8, 9]: The originalFM-index(Section 2.4) implementation by the authors.
The executables can be downloaded frhntp://www.mfn.unipmn.it/
"manzini/fmindex.

FM-Nav [40]: An implementation of th&M-indexby G. Navarro, downloadable
from http://www.dcc.uchile.cl/"gnavarro/software. This imple-
mentation is faster than the original but uses more spadéfegresent the
Burrows-Wheeler transformed text as such.

CSA [45]: The Compressed $ix Array (Section 2.5) implementation by the
author. The code can be downloaded frhmyp://www.dcc.uchile.cl/
“gnavarro/software.

LZ [41]: TheLempel-Ziv self-indexmplementation by the author. The code can
be downloaded frorhttp://www.dcc.uchile.cl/ gnavarro/software.
The implementation has been improved since the origindigaitton.

CompactSA [28]: TheCompact Sgiix Array implementation by the author. This
is not a self-index but a succinct index based offisarray self-repetitions,
useful to show which is the price of not having the text diseatailable. The
code can be downloaded frdmtp://www.cs.helsinki. fi/u/vmakinen
/software.

SA [34]: The classical dtix array structure, using exacthflog n] bits. We use
it to test how much the above succinct structures lose inygiilees to the
simpleO(mlogn) binary search algorithm.

9 The CCSA belongs to the development that finished with theNRLrfelex [29]. We have excluded
it from this paper because it is superseded by the RLFM indéet, it is interesting to show its
relative performance.

20 VELI M AKINEN AND GONZALO NAVARRO

BMH [21]: Our implementation of the classical sequential deaigorithm, re-
quiring only the plain text. This is interesting to ensurattthere is some
value in indexing versus sequentially scanning the text, e that just the
plain text requires more space than several self-indexes.

The codes for the SSA, CCSA and RLFM index used in these erpeis can
be downloaded fromhttp://www.cs.helsinki.fi/u/vmakinen/software.
We made use of the practical considerations of Section 5.atticplar, we use
Huffman-shaped wavelet trees in both cases. Another compliaatitime-critical
part were the rank and select structures, as our indexes heakéer use of them
compared to other implementations. Although the existhmeptetical solutions
[22, 37, 6] are reasonablyffiient in practice, we needed to engineer them fur-
ther to make them faster and less space consuming [13]. Tipdiseized variants
were also used to improve other existing structures that theam, namely LZ and
CCSA.

Our experiments were run over an 83 MB text collection olgdifrom the
“ZIFF-2" disk of TREC-3 [19]. The exact size is of thi is n = 87,415 922
and its alphabet size is = 96. The number of runs imPYis ny,, = 29,014 589,
sonpw/N ~ 0.33. The zero-order entropy afis 5.04 bitgsymbol, and that of the
run headss, is very close, 5.03 bitsymbol. With this we can predict that our
RLFM will take aboutg(nywHo(S) + 2n)/8 = 50.86 megabytes, that is, 61% of the
text size. The rationale is as followsy,, is the length of the texs we actually
represent, in space close lp(S) bits'symbol using the Hifiman-shaped wavelet
trees; array® and B’ taken bits each; and we use rgsklect structures over all
that data, which in our implementation [13] takeg8 &xtra space overhead. As one
can see in Table Il, the estimation is quite accurate (thiesiea is 63% of the text
size, without the structures for reporting).

Figure 3 displays some more statistical data on this textski@ev the evolution
of Hx and the number of éfierent contexts dsgrows. We also give a reality check
of the theoretical boundyy < nHy + o given in Theorem 2. For this sake, we
divide nHy + c(k), beingc the real number of contexts of orderby nyy, (note that
we use the empiricad(k), which is much smaller than its brute bount). This
ratio is minimized fork = 17, where the theoretical prediction is still 2.659 times
the realny,, value of this text. This explains why, as we see soon, ourtigedc
results on RLFM index size are far better than those we careprotheory.

The tests ran on a Pentium IV processor at 2.6 GHz, 2 GB of RAV=2 KB
cache, running Red Hat Linux 3.2.2-5. We compiled the codé wic 3.2.2
using optimization optior03. Times were averaged over 10,000 search patterns.
As we work only in main memory, we only consider CPU times. $harch pat-
terns were obtained by pruning random text lines to theirrirsharacters, but we
avoided lines containing tags and non-visible characters.

We prepared the following test setups to compafierint indexes.

Count settingsWe tuned the indexes so that they only support countingiegler
This usually means that they take the minimum possible stzagperate.

SUCCINCT SUFFIX ARRAYS 21

K Hy # contexts m*r']‘Ttv‘Tk
ZIFF compressed size estimation (bItS/Symb) (S O—k)
. 0| 5.036 115171
11 1 3.736 97 | 11.256
g 10 2 2.824 7,215| 8.510
8 o 3 2.128 105,441 6.416
g ol 4| 1725 579,007| 5.216
T 6l 5 1.493 1,841,918| 4.561
g st 6 1.324 4,059,661 4.130
£ 4 7 1.176 7,250,505 3.793
. e 8 1.034 | 11,492,049 3.511
5 10 15 20 25 30 35 40 45 50 9 0.896 16,703,680, 3.276
K (context length) 10 0.766 22,588,340, 3.088
ZIFF entropy ZIFF # of contexts
9e+07
8e+07
o 7e+07
3 3 ee+07 |
% é 5e+07
% g 4e+07
~ g 3e+07 r
S 2et+07 |
1e+07
é iO i5 éO 25 30 35 40 45 50 0 5 iO iS éO 25 3;0 55 4‘0 4‘5 50
k (context length) k (context length)

Fig. 3: Some statistics on our test text. In the theoretical ptemiave replacer by the real number
of different contexts.

Same sample rateFor reporting queries most of the compared indexes use the
same text tracking mechanism. It is thus interesting to Seat \lwappens
when exactly the same number ofisxes are sampled (one out of 28 in our
experiment).

Same sizeWe tuned all indexes to use about the same size (1.6 time®xhe
size) by adjusting the space-time traffdor locating queries.

Control against other solutionsdlt is interesting to see how our compressed in-
dexes behave against classical full-text indexes, plajjuestial search, or
non-self indexes.

Table 1l shows the index sizes under th&elient settings, as a fraction of the
text size. Recall that these are self-indexes that replaedeikt. For consistency
we have added the text size (that is, 1.00) to the options @ot8@, SA and BMH,
as they need the text separately available.

Only the CSA has a space-time traffemn counting queries. For this reason we
ran the counting experiment on several versions of it. Tlesgions are denoted

22 VELI M AKINEN AND GONZALO NAVARRO

by CSAX in the table, where& is the tradefi parameter (sample rate ¥ array).
For reporting queries (row labeled CSA), we used the defeallie X = 128.
Other cells are missing because we could not make FM takeniheth space in the
“same size” setting, or because alternative structuresataake that little space,
or because some structures have no concept of sampling rate.

TasLE |I: Sizes of the indexes tested undeffeient settings.

index count same sample rate same size
FM 0.36 0.41 —
FM-Nav 1.07 1.21 1.57
CSA 0.44 0.58 1.59
CSAl0 1.16 — —
CSA16 0.86 — —
CSA32 0.61 — —
CSA256 0.39 — —
LZ 1.49 — 1.49
SSA 0.87 1.33 1.58
CCSA 1.65 — 1.65
RLFM 0.63 1.09 1.60
CompactSA| 2.73 — —
SA 4.37 — —
BMH 1.00 — —

Fig. 4 (left) shows the times to count pattern occurrencdsr@thm=5tom =
60. To avoid cluttering the plot we omit CSA10 and CSA16, wehpsrformace is
very similar to CSA32. It can be seen that FM-Nav is the fasi#ernative, but it
is closely followed by our SSA, which needs 20% less spa@& (imes the text
size). The next group is formed by our RLFM and the CSA, botxieg around
0.6 times the text size. Actually RLFM is faster, and to reéshperformance
we need CSA10, which takes 1.16 times the text size. For latgms CCSA
becomes competitive in this group, yet it needs as much &giinés the text size.

On the right of Fig. 4 we chosem = 30 and plot the times as a function of
the space. This clearly shows which indexes represent aresting space-time
tradedt for counting. SSA and RLFM indexes are among the relevans.oNete
for example that the SSA is the fastest counting index ambaget that take less
space than the text. Also, the RLFM index counts faster th@$A of the same
size.

Fig. 5 shows the times to locate all the pattern occurrenOesthe left we con-
sider the same sampling rate for all applicable indexest iBhall indexes make
about the same number of steps to traverse the text untihfintiie occurrence
position. It can be seen that FM-Nav is the best choice, iathesely followed by
SSA.

On the right of Fig. 5 we show the fairer comparison that gaesut the same
space to all structures. The space was chosen to be aroutichésthe text size
because this is close to the space requirement of LZ, an thdéis relevant for this

10

User time (msec)

0.001

SUCCINCT SUFFIX ARRAYS

Time to count occurrences

0.1 ¢

0.01 ¢

FM ——
FM-Nav —<—
CSA32 —*—
#CSA256 —&—

LZ —=—

SSA —e—
CCSA —e—
RLFM —=—

10 20 30 40 50 60
Pattern length (m)

User time (msec)

10

0.1 ¢

0.01

23

Space vs counting time for m=30

FM +
FM-Nav ~ x
CSA —*—
+ Lz =
SSA o
CCSA o
a

RLFM
)\‘*\—x“x ¢
A

[}
X

02 04 06 08 1 12 14 16 18
Space (fraction of text)

Fig. 4: Query times for counting the number of occurrences. Ondfigtime versusn. On the right,
time versus space faon = 30.

task and whose size cannot be tuned. The other indexes wex@ Iy increasing

their sampling rate.

Time to locate occurrences, same sample rate Time to locate occurrences, same size

10000 100

— I
CSA —*—
1000 ¢ 1
~ — & 10t
8 100 | 1 2
£ 3
<] L
g v g !
2 1 2
]] 01k
0.1 r
001 e 001 e
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Pattern length (m) Pattern length (m)

Fig. 5: Times for locating the pattern occurrences. On the leftlenithe same sample rate setting.
On the right, all indexes using about the same space.

In this case LZ shows up as the fastest structure for locatoligwed by FM-
Nav, which takes over as soon as there are less occurrenltesmte and the high
counting times of LZ render it non-competitive. Our indepesform reasonably
well but are never the best for this task. Fig. 6 shows theesgiawe tradefi's for
locating times, illustrating our conclusions. Note thatRILgives more interesting
locating tradefis than SSA.

Our final experiment is to compare how our new structures evenggainst some
alternative structures such as the origindfigwarray and the (succinct but not self-
index) compact dix array. It is also interesting to see how much slower or faste
is sequential search compared to our indexes. The resalghawn in Fig. 7.

It can be seen that the self-indexes are considerably fasbtmting, especially
for short patterns. For longer ones, their small space e¢optan is paid in a 10X
slowdown for counting. Yet, this is orders of magnitude éaghan a sequential
search, which still needs more space as the text has to becomymessed form

24 VELI M AKINEN AND GONZALO NAVARRO

Space vs locating time
10

FM —+—
FM-Nav —<—
CSA —*—
x LZ L
SSA —e—
CCSA o

RLFM —&—
0.1 ¢ E

0.01 ¢

User time per occurrence (msec)

L L L L L L n L
02 04 06 08 1 12 14 16 18
Space (fraction of text)

0.001

Fig. 6: Comparison of locating performance versus space reqaingrform = 5. We show the time
per occurrence, not per pattern as in the rest of the expetéime

Time to count occurrences Time to locate occurrences
SSA —o— | SSA —o—
10 ¢ CCSA —e— E 10 ¢ CCSA —e—
o RLFM —=— < RLFM —a—
3 CompactSA —— 3 CompactSA ——
£ 1 SA —— £ 1 SA ——
@ BMH —v— @ BMH —v—
£ £ —a—o—
- 0.1+t S 01+
Q Q
1% 1%
o] o]
0.01 ¢ 0.01 ¢
0.001 - - - - - 0.001 - - - - -
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Pattern length (m) Pattern length (m)

Fig. 7. Our self-index implementations againstffsu array, compact dfix array and sequential
search. We show counting times on the left and locating tiomethe right (with self indexes taking
around 1.6 times the text size).

for reasonable performance. For locating, the slowdownaset to 1000X and
the times get closer to those of a sequential scan, albsitate still much bet-
ter in space and time. Some succinct indexes support osgnsitive locating
queries [18, 10, 41, 20]. The technique, as described in [20] be plugged into
our indexes as well (or into any other index supportifigcent backward search
mechanism). As a further experimental study, it would berggting to see how
this technique works in practice.

7. Conclusions

In this paper we have explored the interconnection betweeempiricakth order
entropy of a text and the regularities that appear in ifSxsarray, as well as in the
Burrows-Wheeler transform of the text. We have shown how tlonnection lies
at the heart of several existing compressed indexes fotdxilretrieval.

Inspired by the relationship between tkidn order empirical entropy of a text
and the runs of equal letters in its Burrows-Wheeler tramsfove have designed a

SUCCINCT SUFFIX ARRAYS 25

new index, the RLFM index, that answers the mentioned cogrgueries in time
linear in the pattern length for any alphabet whose size glgugarithmic on the
text length. The RLFM index was the first in achieving this.

We have also considered practical issues of implementiedRttFM index, ob-
taining an dicient implementation. We have in passing presented anottex,
the SSA, which is a practical implementation of an existingppsal [46]. The
SSA is larger and faster than the RLFM index. We have complaogid indexes
against the existing implementations, showing that olesampetitive and obtain
practical space-time tradffe that are not reached by any other implementation.

Acknowledgement

We wish to thank Rodrigo Gonzalez for letting us use his sdie rankselect
queries.

References

[1] AsoueLnopa, M., OnLeBuscH, E.,anp Kurrz, S. 2002. Optimal exact string matching based

on sufix arrays. InProc. 9th International Symposium on String Processingliafasima-
tion Retrieval (SPIRE’'02)LNCS 2476, 31-43.

[2] ArostoLico, A. 1985. The myriad virtues of subword trees. Qombinatorial Algorithms

(3]
[4]
(5]

[6]
[7]

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

on Words NATO ISI Series. Springer-Verlag, 85-96.

BELL, T., CLEARY, J.,AND WiTTEN, |. 1990. Text compressionPrentice Hall.

BLUMER, A., BLUMER, J., HaussLER, D., McConNELL, R., AND EHRENFEUCHT, A. 1987. Com-
plete inverted files for fcient text retrieval and analysisJournal of the ACM 343,
578-595.

Burrows, M. ano WHEELER, D. 1994. A block sorting lossless data compression algorit
Tech. Report 124, Digital Equipment Corporation.

CLark, D. 1996. Compact Pat Tree$hD thesis, University of Waterloo.

Crark, D. ano Munro, . 1996. Hficient sufix trees on secondary storage. Pnoc. 7th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODAQR383-391.

FerrAGINA, P. aND Manzing, G. 2000. Opportunistic data structures with applicatiohs
Proc. 41st IEEE Symposium on Foundations of Computer Sei@f©CS’00) 390-398.
FerrAGINA, P.anD Manzini, G. 2001. An experimental study of an opportunistic index. |
Proc. 12th Annual ACM-SIAM Symposium on Discrete AlgoritaifS ODA'01) 269-278.
FerraGiNa, P. anD Manzint, G. 2002. On Compressing and Indexing Data. Tech. Report
TR-02-01, Dipartamento di Informatica, Univ. of Pisa.

FerraGINa, P., Manzini, G., MAKINEN, V., anD Navarro, G. 2004. An alphabet-friendly
FM-index. InProc. 11th International Symposium on String Processimflaformation
Retrieval (SPIRE'04)LNCS 3246, 150-160.

FerraGINA, P., Manzint, G., MAKINEN, V., anDp Navarro, G. 2004. Succinct Representation
of Sequences. Tech. Report IRCC-2004-5, Dept. of Computer Science, University of
Chile.

GonzALEZ, RopriGo, GrRABOWsKI, SzyMoN, MAKINEN, VELI, AND Navarro, Gonzaro. 2005.
Practical Implementation of Rank and Select QueriesPdster Proceedings Volume of
4th Workshop on Hicient and Experimental Algorithms (WEA'OSLTI Press and Ellinika
Grammata, Greece, 27-38.

GraBowskI, Sz., MAKINEN, V., aND Navarro, G. 2004. First Hfman, then Burrows-
Wheeler: an alphabet-independent FM-index.Phoc. 11th International Symposium on
String Processing and Information Retrieval (SPIRE;@4CS 3246, 210-211.
GraBowskl, Sz., MAKINEN, V., Navarro, G., AND SaLINGER, A. 2005. A Simple Alphabet-
Independent FM-Index. IRroc. 10th Prague Stringology Conference (PSC’05)

26

(16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

(25]

(26]

(27]
(28]
[29]
(30]
(31]

(32]

(33]

(34]
(35]
(36]
(37]

(38]

VELI M AKINEN AND GONZALO NAVARRO

Grossi, R., Gupma, A., anp ViTTER, J. 2003. High-order entropy-compressed text indexes.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete AlgoritarfSODA'03), 841—
850.

Grossi, R., Gurta, A., anp VITTER, J. 2004. When indexing equals compression: Experi-
ments with compressing §ix arrays and applications. Wroc. 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'Q436—645.

Grossi, R. anp VITTER, J.S. 2000. Compressedfx arrays and sfix trees with applica-
tions to text indexing and string matching. froc. 32nd ACM Symposium on Theory of
Computing (STOC’00)397-406.

Harman, D. 1995. Overview of the Third Text REtrieval Conference.Proc. Third Text
REtrieval Conference (TREC-3)-19.

He, M., Munro, |., anp Rao, S. Sinivasa. 2005. A categorization theorem onflsx ar-
rays with applications to spacdfieient text indexes. IProc. 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'Q%)3-32.

HorspooL, R. N. 1980. Practical fast searching in stringgoftw. Pract. Exp. 106, 501—
506.

JacoBson, G. 1989. Spacefkcient static trees and graphs. fnoc. 30th IEEE Symposium
on Foundations of Computer Science (FOCS,	-554.

KArRkKAINEN, J. 1995. Sffix cactus: a cross betweenfBxu tree and sffix array. InProc.

6th Annual Symposium on Combinatorial Pattern MatchingNIZ#), LNCS 937, 191—
204.

KARKKAINEN, J.AND SuTinen, E. 1998. Lempel-Ziv index fog-grams. Algorithmica 21 1,
137-154.

KARKKAINEN, J.AND UkkoNEN, E. 1996. Lempel-Ziv parsing and sublinear-size indexcstru
tures for string matching. IProc. 3rd South American Workshop on String Processing
(WSP’96). Carleton University Press, 141-155.

KARKKAINEN, J. aND UkkoNEN, E. 1996. Sparse fiix trees. InProc. 2nd Annual Interna-
tional Conference on Computing and Combinatorics (COCCIBN'LNCS 1090, 219—
230.

Kurrz, S. 1998. Reducing the space requirements fibstniees. Report 98-03, Technische
Kakultat, Universitat Bielefeld.

MAkINEN, V. 2003. Compact dfix array — a spacefcient full-text index. Fundamenta
Informaticae 561-2, 191-210.

MAKINEN, V. aND Navarro, G. 2004. Compressed compactfsuarrays. InProc. 15th
Annual Symposium on Combinatorial Pattern Matching (CP&@NCS 3109, 420—-433.
MAKINEN, V. aND Navarro, G. 2004. New Search Algorithms and Tif8pace Trade®s for
Succinct Stix Arrays. Tech. Report C-2004-20, University of Helsinkinleind.

MAkINEN, V. aND Navarro, G. 2004. Run-Length FM-index. IRroc. DIMACS Workshop:
“The Burrows-Wheeler Transform: Ten Years Late¥7—-19.

MikmNeN, V. ano Navarro, G. 2005. Succinct Stix Arrays based on Run-Length En-
coding. InProc. 16th Annual Symposium on Combinatorial Pattern MatcfiCPM’05),
LNCS 3537, 45-56.

MakineN, V., Navarro, G., aNp Sapakang, K. 2004. Advantages of Backward Search-
ing — Efficient Secondary Memory and Distributed Implementation ain@ressed Stix
Arrays. InProc. 15th Annual International Symposium on Algorithms &omputation
(ISAAC’04), LNCS 3341, 681-692.

ManBeRr, U. anp Myers, G. 1993. Sfix arrays: a new method for on-line string searches.
SIAM Journal on Computing 225, 935-948.

Manzing, G. 2001. An analysis of the Burrows-Wheeler transforsournal of the ACM
48, 3, 407-430.

McCreicat, E. M. 1976. A space-economicalfy tree construction algorithmJournal

of the ACM 23 2, 262-272.

Munro, |. 1996. Tables. IfProc. 16th Conference on Foundations of Software Techgolog
and Theoretical Computer Science (FSTTCS,23CS 1180, 37-42.

Munro, |. anp Raman, V. 1997. Succinct representation of balanced parenthesatic
trees and planar graphs. Proc. 38th IEEE Symposium on Foundations of Computer

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

SUCCINCT SUFFIX ARRAYS 27

Science (FOCS’97)118-126.

Munro, I., Raman, V., anp Rao, S. 2001. Spacdiécient suffix trees.Journal of Algorithms
39, 2, 205-222.

Navarro, G. 2002. Indexing text using the Ziv-Lempel trie. Tech. BegR/DCC-2002-2,
Dept. of Computer Science, Univ. of Chile.

Navarro, G. 2004. Indexing text using the Ziv-Lempel tridournal of Discrete Algorithms
2,1,87-114.

PagH, R. 1999. Low redundancy in dictionaries wifl{1) worst case lookup time. IRroc.
26th International Colloquium on Automata, Languages arayiRmming (ICALP’99)
595-604.

RamaN, R., RamaN, V., aND Rao, S. Sunivasa. 2002. Succinct indexable dictionaries with
applications to encodinigrary trees and multisets. Froc. 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA'02233-242.

Rao, S. Sinivasa. 2002. Time-space tradefs for compressed §ix arrays. Information
Processing Letters 88, 307-311.

Sapakang, K. 2000. Compressed text databases wittcient query algorithms based on
the compressed fix array. InProc. 11th International Symposium on Algorithms and
Computation (ISAAC’00)LNCS 1969, 410-421.

Sapakang, K. 2002. Succinct representationslop information and improvements in the
compressed $fix arrays. InProc. 13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA'02) 225-232.

SuTiNeN, E. anp Taruio, J. 1996. Filtration withg-Samples in Approximate String Match-
ing. In Proc. 7th Annual Symposium on Combinatorial Pattern MaighiCPM’96)
LNCS 1075, 50-63.

UkKONEN, E. 1995. On-line construction of §ix trees.Algorithmica 14 3, 249-260.
WEINER, P. 1973. Linear pattern matching algorithm. Rroc. 14th Annual IEEE Sympo-
sium on Switching and Automata Theofyx11.

