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Abstract. Kernel based methods (such as k-nearest neighbors classi-
fiers) for AI tasks translate the classification problem into a proximity
search problem, in a space that is usually very high dimensional. Un-
fortunately, no proximity search algorithm does well in high dimensions.
An alternative to overcome this problem is the use of approximate and
probabilistic algorithms, which trade time for accuracy.

In this paper we present a new probabilistic proximity search algorithm.
Its main idea is to order a set of samples based on their distance to each
element. It turns out that the closeness between the order produced by
an element and that produced by the query is an excellent predictor of
the relevance of the element to answer the query.

The performance of our method is unparalleled. For example, for a full
128-dimensional dataset, it is enough to review 10% of the database to
obtain 90% of the answers, and to review less than 1% to get 80% of the
correct answers. The result is more impressive if we realize that a full 128-
dimensional dataset may span thousands of dimensions of clustered data.
Furthermore, the concept of proximity preserving order opens a totally
new approach for both exact and approximated proximity searching.

1 Introduction

Kernel methods (for example k-nearest neighbors classifiers) are widely used
in many AI tasks, such as recommendation systems, distance based clustering,
query by content in multimedia repositories, pattern recognition, and so on. The
classifying process can be abstracted as a search problem in a general metric
space. A newly arrived (unknown) object is classified according to its distances
to known object samples.

Kernel based methods are appealing because they are simple to design and
understand. The designer only needs to define a long list of features for each
object, representing the object as a high dimensional vector. The problem then
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translates into satisfying proximity queries in high dimensional spaces. Unfortu-
nately, current methods for proximity searching suffer from the so-called curse

of dimensionality. In short, an efficient method for proximity searching in low
dimensions becomes painfully slow in high dimensions.

The concept of high dimensionality exists on general metric spaces (where
there might be no coordinates) as well. When the histogram of distances among
objects has a large mean and a small variance, the performance of any proximity
search algorithm deteriorates just as when searching in high-dimensional vector
spaces. In sufficiently high dimensions, no proximity search algorithm can avoid
comparing the query against all the database.

Such a linear complexity solution for proximity searching does not scale be-
cause the distance function is computationally expensive. To cope with the curse
of dimensionality, different relaxations on the query precision have been proposed
in order to obtain a computationally feasible solution. This is called approximate

similarity searching, as opposed to the classic exact similarity searching. Approx-
imate similarity searching is reasonable in many applications because the metric
space modelization already involves an approximation to reality and therefore a
second approximation at search time is usually acceptable.

These relaxations use, in addition to the query, a precision parameter ε to
control how far away (in some sense) we want the outcome of the query from the
correct result. A reasonable behavior for this type of algorithms is to asymptot-
ically approach to the correct answer as ε goes to zero, and complementarily to
speed up the algorithm, losing precision, as ε moves in the opposite direction.

There are basically two alternatives for approximate similarity searching. A
first one uses ε as a distance relaxation parameter, for example they ensure that
the distance to the nearest neighbor answer they find is at most 1 + ε times
the distance to the true nearest neighbor. This corresponds to “approximation”
algorithms in the usual algorithmic sense, and is considered in depth in [16, 8]. A
second alternative takes ε in a probabilistic sense, for example ensuring that the
answer of the algorithm is correct with probability at least 1−ε. This corresponds
to “probabilistic” algorithms in the usual algorithmic sense. A generic method
to convert an exact algorithm into probabilistic is studied in [6, 3].

In this paper we present a new probabilistic proximity search algorithm. Its
main idea is to order a set of samples based on their distance to each element. It
turns out that the closeness between the order produced by an element and that
produced by the query is an excellent predictor of the relevance of the element
to answer the query. This is a completely new concept not previously explored in
proximity searching. Interestingly enough, although such orders do permit exact
proximity searching as well, they work much better for approximate proximity
searching.

The performance of our method is unparalleled, even considering the great
success of previous probabilistic methods. For example, for a full 128-dimensional
dataset (that is, elements are uniformly distributed in 128 dimensions), it is
enough to review 10% of the database to obtain 90% of the answers, and to review
less than 1% to get 80% of the correct answers. The result is more impressive if



we realize that a full 128-dimensional dataset usually corresponds to thousands
of dimensions in clustered data.

2 Basic Concepts and Related Work

2.1 Basic Terminology

Formally, the proximity searching problem may be stated as follows: There is
a universe X of objects, and a nonnegative distance function d : X × X −→ R

+

defined among them. This distance satisfies the three axioms that make the set
a metric space: strict positiveness (d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) =
d(y, x)) and triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). This distance is
considered expensive to compute (think, for instance, in comparing two finger-
prints). We have a finite database U ⊆ X, of size n, which is a subset of the
universe of objects. The goal is to preprocess the database U to quickly answer
(i.e. with as few distance computations as possible) range queries and nearest

neighbor queries. We are interested in this work in range queries, expressed as
(q, r) (a point in X and a tolerance radius), which should retrieve all the database
points at distance r or less from q, i.e. {u ∈ U / d(u, q) ≤ r}. On the other hand,
nearest neighbor queries retrieve the K elements of U that are closest to q.

Most of the existing approaches to solve the search problem on metric spaces
are exact algorithms which retrieve exactly the elements of U at distance r or
less from q. In [8] most of those approaches are surveyed and explained in de-
tail. Additionally in [13] the techniques to optimally search for nearest neighbor
queries using progressively enhanced range queries are surveyed.

2.2 Approximate Proximity Searching

In this work we are more interested in approximate and probabilistic algorithms,
which relax the condition of delivering the exact solution. This relaxation uses,
in addition to the query, a precision parameter ε to control how far away (in
some sense) we want the outcome of the query from the correct result.

Approximation algorithms are surveyed in depth in [16]. An example is
[1], which proposes a data structure for real-valued vector spaces under any
Minkowski metric Ls. The structure, called the BBD-tree, is inspired in kd-
trees and can be used to find “(1 + ε) nearest neighbors”: instead of finding
u such that d(u, q) ≤ d(v, q) ∀v ∈ U, they find u∗ such that d(u∗, q) ≤
(1 + ε)d(v, q) ∀v ∈ U.

The essential idea behind this algorithm is to locate the query q in a cell
(each leaf in the tree is associated with a cell in the decomposition). Every point
inside the cell is processed so as to obtain its nearest neighbor u. The search stops
when no promising cells are found, i.e. when the radius of any ball centered at
q and intersecting a nonempty cell exceeds the radius d(q, p)/(1 + ε). The query

time is O(⌈1 + 6k/ε⌉
k
k log n), where k is the dimensionality of the vector space.

Probabilistic algorithms have been proposed both for vector spaces [1, 18, 16]
and for general metric spaces [11, 6, 3].



In [3] they use a technique to obtain probabilistic algorithms that is relevant
to this work. They use different techniques to sort the database according to some
promise value. As they traverse the database in such order, they obtain more and
more relevant answers to the query. A good database ordering is one that obtains
most of the relevant answers by traversing a small fraction of the database. In
other words, given a limited amount of work allowed, the algorithm finds each
correct answer with some probability, and it can refine the answer incrementally
if more work is allowed. Thus, the problem of finding good probabilistic search
algorithms translates into finding a good ordering of the database.

Finally, there are approaches that combine approximation and probabilistic
techniques, such as the PAC (probably approximately correct) method [9]. This
also occurs with [6], where a general method based on stretching the triangle
inequality offers both approximation and probabilistic guarantees.

2.3 Data Organization

All metric space search algorithms rely on an index, that is, a data structure
that maintains some information on the database in order to save some distance
evaluations at search time. There exist two main types of data organizations [8].

Pivoting Schemes A pivot is a distinguished database element, whose distance
to some other elements has been precomputed and stored in an index. Imagine
that we have precomputed d(p, u) for some pivot p and every u ∈ U. At search
time, we compute d(p, q). Then, by the triangle inequality, d(q, u) ≥ |d(p, q) −
d(p, u)|, so if |d(p, q) − d(p, u)| > r we know that d(q, u) > r, hence u will be
filtered out without need of computing that distance.

The most basic scheme chooses k pivots p1 . . . pk and computes all the dis-
tances d(pi, u), u ∈ U, into a table of kn entries. Then, at query time, all the
k distances d(pi, q) are computed and every element u such that D(q, u) =
maxi=1...k |d(pi, q)−d(pi, u)| > r is discarded. Finally, q is compared against the
elements not discarded.

As k grows, we have to pay more comparisons against pivots, but D(q, u)
becomes closer to d(q, u) and more elements may be discarded. It can be shown
that there is an optimum number of pivots k∗, which grows fast with the dimen-
sion and becomes quickly unreachable because of memory limitations. In all but
the easiest metric spaces, one simply uses as many pivots as memory permits.
There exist many variations over the basic idea, including different ways to sort
the table of kn entries to reduce extra CPU time, e.g. [5, 4].

Although they look completely different, several tree data structures are built
on the same pivoting concept, e.g. [17]. In most of them, a pivot p is chosen as
the root of a tree, and its subtrees correspond to ranges of d(p, u) values, being
recursively built on the elements they have. In some cases the exact distances
d(p, u) are not stored, just the range can be inferred from the subtree the element
u is in. Albeit this reduces the accuracy of the index, the tree usually takes O(n)
space instead of the O(kn) needed with k pivots. Moreover, every internal node



is a partial pivot (which knows distances to its subtree elements only), so we
actually have much more pivots (albeit local and with coarse data). Finally, the
trees can be traversed with sublinear extra CPU time.

Different tree variants arise according to the tree arities, the way the ranges
of distances are chosen (trying to balance the tree or not), how local are the
pivots (different nodes can share pivots, which do not belong anymore to the
subtree), the number of pivots per node, and so on. Very little is known about
which is best. For example, the golden rule of preferring balanced trees, which
works well for exact searching, becomes a poorer choice against unbalancing as
the dimension increases. For very high dimensional data the best data structure
is just a linked list (a degenerate tree) [7]. Also, little is known about how to
choose the pivots.

Local Partitioning Schemes Another scheme builds on the idea of dividing
the database into spatially compact groups, meaning that the elements in each
group are close to each other. A representative is chosen from each group, so that
comparing q against the representative has good chances of discarding the whole
group without further comparisons. Usually these schemes are hierarchical, so
that groups are recursively divided into subgroups.

Two main ways exist to define the groups. One can define “centers” with a
covering radius, so that all elements in its group are within the covering radius
distance to the center, e.g. [10]. If a group has center c and covering radius rc

then, if d(q, c) > r + rc, it can be wholly discarded. The geometric shape of the
above scheme corresponds to a ball around c. In high dimensions, all the balls
tend to overlap and even a query with radius zero has to enter many balls.

This overlap problem can be largely alleviated with the second approach, e.g.
[2, 14]. The set of centers is chosen and every database element is assigned to
its closest center. At query time, if q is closest to center ci, and d(q, cj) − r >
d(q, ci) + r, then we can discard the group of cj .

3 A New Probabilistic Search Algorithm

In this section we describe our contribution in the form of a new probabilistic
algorithm based on a new indexing technique, which cannot be classified as pivot
based nor compact partitioning.

We select a subset P = {p1, . . . , pk} ⊆ U, in principle at random. Our index
consists of a permutation of P for each element u ∈ U. That is, each database el-
ement u reorders P according to the distances of the elements pi to u. Intuitively,
if two elements u and v are close to each other, their two permutations should
be similar. In particular, if d(u, v) = 0, the two permutations must coincide.

At query time we compute the same permutation of P with respect to the
query q. Then we order the database according to how similar are the permuta-
tions of the elements u ∈ U to the permutation of q. We expect that elements
with orders more similar to that of q will also be spatially closer to q.

We now precise and formalize the ideas.



3.1 Index Process

Each element u ∈ X defines a preorder ≤u in P. For every pair y, z ∈ P we define:

y ≤u z ⇔ d(u, y) ≤ d(u, z).

The relation ≤u is a preorder and not an order because two elements can be
at the same distance to u, and thus ∃y 6= z such that y ≤u z ∧ z ≤u y.

This preorder is not sufficient to derive a permutation in P. Fortunately, pre-
order ≤u induces a total order in the quotient set. Let us call =u the equivalence
related to preorder ≤u, that is, y =u z iff d(u, y) = d(z, u), and let us also define
y <u z as y ≤u z ∧ y 6=uz.

We associate each preorder ≤u a permutation Πu of P as follows:

Πu = (pi1 , pi2 , . . . , pik
)

such that ∀1 ≤ j < k, (pij
<u pij+1

) ∨ (pij
=u pij+1

∧ ij < ij+1).

That is, elements in Πu are essentially sorted by ≤u, and we break ties using
the identifiers in P (any consistent way to break ties would do).

Note that our index needs nk log k bits, while pivot-based index using k pivots
require typically nk log n bits.

3.2 Search Process

Let (q, r) be a query with positive search radius r > 0. At query time we compute
the permutation Πq. Once we have the permutation induced by the query, we
will sort U according to how much does each Πu differ from Πq. Then we will
traverse the database in this order, hoping to find the closest elements to u soon.

To this end we use Spearman’s Footrule [12] as our similarity measure be-
tween permutations, denoted F (Πq, Πu). We sum the differences in the relative
position of each element of the permutations. That is, for each pi ∈ P we com-
pute its position in Πu and Πq. We interpert Πu(pi) as the position of element pi

in Πu. Then we sum up the absolute values of the differences Πu(pi) − Πq(pi)|.
Formally,

F (Πq, Πu) =
∑

1≤i≤k

|Πu(pi) − Πq(pi)|

Thus, we traverse elements u ∈ U from smallest to largest F (Πq, Πu).
Let us give an example of F (Πq, Πu). Let Πq = p1, p2, p3, p4, p5, p6 be the

permutation of the query, and Πu = p3, p6, p2, p1, p5, p4 be the permutation of an
element u ∈ U. A particular element p3 in permutation Πu is found two positions
off with respect to its position in Πq. The differences between permutations are:
3 − 1, 6 − 2, 3 − 2, 4 − 1, 5 − 5, 6 − 4, and the sum of all these differences is
F (Πq, Πu) = 12.

There are other similarity measures between permutations [12], like: Spear-
man’s Rho and Kendall’s Tau. On section 4 we will show that both have the
same performance as Spearman’s Footrule for our algorithm.



4 Experimental Validation

We made some experiments using uniformly distributed sets in the unitary cube.
We used full dimensional dataset of 128, 256, 512 and 1024 dimensions. A full
128-dimensional dataset may span thousands of dimensions in clustered data.

The database size was 10,000 objects and the query retrieved 0.05% of
database. Another parameter of our algorithm is the size of permutation. In
this set of experiment we use 128 and 256 elements for P. We compare our tech-
nique versus a classical technique of pivots using the same amount of pivots, even
though this represent four more times the memory that we use in our algorithm.
In other words, if we restricted the two algorithms to use the same memory, the
results would be even better.

For the pivots algorithm, we calculated for each element u in the database
its distance L∞ = maxp∈P |d(q, p) − d(p, u)|. The elements in the database were
sorted by this value and compared against the query taking them in this order,
as in previous work [3].

In Figure 1 we show the performance of our technique. We used permutations
of 128 elements and 256 for the left and right plots respectively. The x axis
represents the size of the database examined, the y axis is the percentage of the
answer retrieved (or the probability of returning a given answer element). Lines
with the word piv refer to the classical pivot algorithm.

Retrieving 90% of the answer is good enough for most proximity searching
applications. We observe that, as the dimension grows, a larger fraction of the
database must be examined to obtain the same precision. This observation is
true for the pivot based algorithm as well as for our new algorithm.

With pivots, in dimension 128, to retrieve 90% of the query we must examine
90% of the database. This is as bad as a random traversal. For the new algorithm,
however we just fetch 5% of database to retrieve the same 90% of the results.

It can also be seen how the performance improves when we use larger k.

We compared other similarity measures between permutations, like Spear-
man’s Rho and Kendall’s Tau [12]. In Figure 2 we compare their relative per-
formance. It can be seen that our algorithm has the same performance for all of
them.

The AESA algorithm [15] uses the L1 Minkowski metric as an oracle to select
next-best candidates for pruning the database. We tested the L1 distance to sort
the database for a probabilistic algorithm based on pivots. That is, we repeated
the same experiment above, changing the L∞ distance by L1 for the pivot-based
algorithm. The results were similar to those using L∞. In Figure 3 we can observe
a mixed result in the filtration power. In the first part (scanning less than 20% of
the database) the L1 distance retrieves a larger percent of the database compared
to L∞, for dimension 128. Yet, once the above point is reached, the result is
reversed. The same behavior is observed in all the dimensions considered. We
emphasize that, anyway, the results are very far from what we obtain with our
new technique.
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Fig. 1. Performance of the probabilistic algorithms in high dimensions. In the left side
we use 128 pivots, and 256 in the right side. With our algorithm, it is possible to
retrieve at least 90% of the relevant elements for the query, comparing less than 10%
of the database.
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algorithm.
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Fig. 3. Comparison between L1 and L∞ Minkowski metrics to sort the database on
pivot-based algorithm, using 256 pivots and retrieving 0.05% of the database.

5 Conclusion and Future Work

In this paper we introduced a new probabilistic algorithm based on a proximity
preserving order for metric range queries. We demonstrated experimentally that
the proximity preserving order is an excellent oracle for selecting the best candi-
dates. This has applications in both approximate and exact proximity searching
algorithms.

We show experimentally that, even in very high dimensions, it is possible to
retrieve 90% of the correct answer for the query, comparing less than 3% of the
database, using just 256 bytes per database element.

AESA [15] is the best exact algorithm for proximity searching. It is seldom
used because of its O(n2) memory requirements (as it requires saving the O(n2)
distances between database elements), which do not scale for large databases.
A rationale for the success of AESA is the use of the L1 distance as an oracle.
Since in our experiments the L1 ordering is beaten by Spearman’s Footrule, it
would be very interesting to implement AESA using our proximity preserving
order as the oracle for selecting the best next candidate for database pruning.
We are currently pursuing this line with promising results.

Although our algorithm saves many distance computations, it still uses a lin-
ear number of side CPU computations. While this is fairly good in many applica-
tions because the distance computations are the leading complexity operations,
we are working on a data structure that permits sublinear side computations as
well.
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4. E. Chávez and K. Figueroa. Faster proximity searching in metric data. In Proc. of
the Mexican International Conference in Artificial Intelligence (MICAI), Lecture
Notes in Computer Science, pages 222–231. Springer, 2004.
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