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Abstract. Straight-line programs (SLPs) offer powerful text compres-
sion by representing a text T [1, u] in terms of a restricted context-free
grammar of n rules, so that T can be recovered in O(u) time. However,
the problem of operating the grammar in compressed form has not been
studied much. We present a grammar representation whose size is of the
same order of that of a plain SLP representation, and can answer other
queries apart from expanding nonterminals. This can be of independent
interest. We then extend it to achieve the first grammar representation
able of extracting text substrings, and of searching the text for patterns,
in time o(n). We also give byproducts on representing binary relations.

1 Introduction and Related Work

Grammar-based compression is a well-known technique since at least the seven-
ties, and still a very active area of research. From the different variants of the
idea, we focus on the case where a given text T [1, u] is replaced by a context-free
grammar (CFG) G that generates just the string T . Then one can store G instead
of T , and this has shown to provide a universal compression method [18]. Some
examples are LZ78 [31], Re-Pair [19] and Sequitur [25], among many others [5].

When a CFG deriving a single string is converted into Chomsky Normal
Form, the result is essentially a Straight-Line Program (SLP), that is, a grammar
where each nonterminal appears once at the left-hand side of a rule, and can
either be converted into a terminal or into the concatenation of two previous
nonterminals. SLPs are thus as powerful as CFGs for our purpose, and the
grammar-based compression methods above can be straightforwardly translated,
with no significant penalty, into SLPs. SLPs are in practice competitive with the
best compression methods [11].

There are textual substitution compression methods which are more powerful
than those CFG-based [17]. A well-known one is LZ77 [30], which cannot be
directly expressed using CFGs. Yet, an LZ77 parsing can be converted into an
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SLP with an O(log u) penalty factor in the size of the grammar, which might be
preferable as SLPs are much simpler to manipulate [28].

SLPs have received attention because, despite their simplicity, they are able
to capture the redundancy of highly repetitive strings. Indeed, an SLP of n rules
can represent a text exponentially longer than n. They are also attractive because
decompression is easily carried out in linear time. Compression, instead, is more
troublesome. Finding the smallest SLP that represents a given text T [1, u] is
NP-complete [28, 5]. Moreover, some popular grammar-based compressors such
as LZ78, Re-Pair and Sequitur, can generate a compressed file much larger than
the smallest SLP [5]. Yet, a simple method to achieve an O(log u)-approximation
is to parse T using LZ77 and then converting it into an SLP [28], which in
addition is balanced: the height of the derivation tree for T is O(log u). (Also,
any SLP can be balanced by paying an O(log u) space penalty factor.)

Compression is regarded nowadays not just as an aid for cheap archival or
transmission. Since the last decade, the concept of compressed text databases has
gained momentum. The idea is to handle a large text collection in compressed
form all the time, and decompress just for displaying. Compressed text databases
require at least two basic operations over a text T [1, u]: extract and find. Oper-
ation extract returns any desired portion T [l, l + m] of the text. Operation find
returns the positions of T where a given search pattern P [1,m] occurs in T . We
refer as occ to the number of occurrences returned by a find operation. Extract
and find should be carried out in o(u) time to be practical for large databases.

There has been some work on random access to grammar-based compressed
text, without decompressing all of it [10]. As for finding patterns, there has been
much work on sequential compressed pattern matching [1], that is, scanning the
whole grammar. The most attractive result is that of Kida et al. [17], which
can search general SLPs/CFGs in time O(n+m2 + occ). This may be o(u), but
still linear in the size of the compressed text. Large compressed text databases
require indexed searching, where data structures are built on the compressed
text to permit searching in o(n) time (at least for small enough m and occ).

Indeed, there has been much work on implementing compressed text databases
supporting the operations extract and find efficiently (usually in O(mpolylog(n))
time) [24], but generally based on the Burrows-Wheeler Transform or Com-
pressed Suffix Arrays, not on grammar compression. The only exceptions are
based on LZ78-like compression [23, 8, 27]. These are self-indexes, meaning that
the compressed text representation itself can support indexed searches. The fact
that no (or weak) grammar compression is used makes these self-indexes not
sufficiently powerful to cope with highly repetitive text collections, which arise
in applications such as computational biology, software repositories, transaction
logs, versioned documents, temporal databases, etc. This type of applications re-
quire self-indexes based on stronger compression methods, such as general SLPs.

As an example, a recent study modeling a genomics application [29] con-
cluded that none of the existing self-indexes was able to capture the redundancies
present in the collection. Even the LZ78-based ones failed, which is not surpris-
ing given that LZ78 can output a text exponentially larger than the smallest



SLP. The scenario [29] considers a set of r genomes of length n, of individuals of
the same species, and can be modeled as r copies of a base sequence, where s edit
operations (substitutions, to simplify) are randomly placed. The most compact
self-indexes [24, 13, 9] occupy essentially nrHk bits, where Hk is the k-th order
entropy of the base sequence, but this is multiplied r times because they are
unable of exploiting long-range repetitions. The powerful LZ77, instead, is able
to achieve nHk+O((r+s) log n) bits, that is, the compressed base sequence plus
O(log n) bits per edit and per sequence. A properly designed SLP can achieve
nHk +O(r log n) +O(s log2 n) bits, which is much better than the current tech-
niques. It is not as good as LZ77, self-indexes based on LZ77 are extremely
challenging and do not exist yet.

In this paper we introduce the first SLP representation that can support
operations extract and find in o(n) time. More precisely, a plain SLP represen-
tation takes 2n log n bits3, as each new rule expands into two other rules. Our
representation takes O(n log n) + n log u bits. It can carry out extract in time
O((m + h) log n), where h is the height of the derivation tree, and find in time
O((m(m + h) + h occ) log n) (see the detailed results in Thm. 3). A part of our
index is a representation for SLPs which takes 2n log n(1 + o(1)) bits and is able
of retrieving any rule in time O(log n), but also of answering other queries on
the grammar within the same time, such as finding the rules mentioning a given
non-terminal. We also show how to represent a labeled binary relation, which in
addition permits a kind of range query.

Our result constitutes a self-index building on much stronger compression
methods than the existing ones, and as such, it has the potential of being ex-
tremely useful to implement compressed text databases, in particular the very
repetitive ones, by combining good compression and efficient indexed searching.
Our method is independent on the way the SLP is generated, and as such it can
be coupled with different SLP construction algorithms, which might fit different
applications.

2 Basic Concepts

2.1 Succinct Data Structures

We make heavy use of succinct data structures for representing sequences with
support for rank/ select and for range queries. Given a sequence S of length n,
drawn from an alphabet Σ of size σ, rankS(a, i) counts the occurrences of symbol
a ∈ Σ in S[1, i], rankS(a, 0) = 0; and selectS(a, i) finds the i-th occurrence of
symbol a ∈ Σ in S, selectS(a, 0) = 0. We also require that data structures
representing S provide operation accessS(i) = S[i].

For the special case Σ = {0, 1}, the problem has been solved using n+ o(n)
bits of space while answering the three queries in constant time [6]. This was
later improved to use O(m log n

m ) + o(n) bits, where m is the number of bits set
in the bitmap [26].

3 In this paper log stands for log2 unless stated otherwise.



The general case has been proved to be a little harder. Wavelet trees [13]
achieve n log σ+o(n) log σ bits of space while answering all the queries in O(log σ)
time. Another interesting proposal [12], focused on large alphabets, achieves
n log σ + no(log σ) bits of space and answers rank and access in O(log log σ)
time, while select takes O(1) time. Another tradeoff within the same space [12]
is O(1) time for access, O(log log σ) time for select, and O(log log σ log log log σ)
time for rank.

Mäkinen and Navarro [20] showed how to use a wavelet tree to represent a
permutation π of [1, n] so as to answer range queries. We use a trivial variant
in this paper. Given a general sequence S[1, n] over alphabet [1, σ], we use the
wavelet tree of S to find all the symbols of S[i1, i2] (1 ≤ i1 ≤ i2 ≤ n) which are
in the range [j1, j2] (1 ≤ j1 ≤ j2 ≤ σ). The operation takes O(log σ) to count
the number of results, and can report each such occurrence in O(log σ) time by
tracking each result upwards in the wavelet tree to find its position in S, and
downwards to find its symbol in [1, σ]. The algorithms are almost identical to
those for permutations [20].

2.2 Straight-Line Programs

We now define a Straight-Line Program (SLP) and highlight some properties.

Definition 1. [16] A Straight-Line Program (SLP) G = (X = {X1, . . . , Xn}, Σ)
is a grammar that defines a single finite sequence T [1, u], drawn from an alphabet
Σ = [1, σ] of terminals. It has n rules, which must be of the following types:

– Xi → α, where α ∈ Σ. It represents string F(Xi) = α.
– Xi → XlXr, where l, r < i. It represents string F(Xi) = F(Xl)F(Xr).

We call F(Xi) the phrase generated by nonterminal Xi, and T = F(Xn).

Definition 2. [28] The height of a symbol Xi in the SLP G = (X,Σ) is defined
as height(Xi) = 1 if Xi → α ∈ Σ, and height(Xi) = 1+max(height(Xl), height(Xr))
if Xi → XlXr. The height of the SLP is height(G) = height(Xn). We will refer
to height(G) as h when the referred grammar is clear from the context.

As some of our results will depend on the height of the SLP, it is interesting
to recall that an SLP G of n rules generating T [1, u] can be converted into a
G′ of O(n log u) rules and height(G′) = O(log u), in O(n log u) time [28]. Also,
as several grammar-compression methods are far from optimal [5], it is interest-
ing that one can find in linear time an O(log u) approximation to the smallest
grammar, which in addition is balanced (height O(log u)) [28].

3 Labeled Binary Relations with Range Queries

In this section we introduce a data structure for labeled binary relations sup-
porting range queries. Consider a binary relation R ⊆ A × B, where A =
{1, 2, . . . , n1}, B = {1, 2, . . . , n2}, a function L : A × B → L ∪ {⊥}, mapping
pairs in R to labels in L = {1, 2, . . . , `}, ` ≥ 1, and the others to ⊥. We support
the following queries:



– L(a, b).
– A(b) = {a, (a, b) ∈ R}.
– B(a) = {b, (a, b) ∈ R}.
– R(a1, a2, b1, b2) = {(a, b) ∈ R, a1 ≤ a ≤ a2, b1 ≤ b ≤ b2}.
– L(l) = {(a, b) ∈ R, L(a, b) = l}.
– The sizes of the sets: |A(b)|, |B(a)|, |R(a1, a2, b1, b2)|, and |L(l)|.

We build on an idea by Barbay et al. [2]. We define, for a ∈ A, s(a) =
b1b2 . . . bk, where bi < bi+1 for 1 ≤ i < k and B(a) = {b1, b2, . . . , bk}. We build
a string SB = s(1)s(2) . . . s(n1) and write down the cardinality of each B(a) in
unary on a bitmap XB = 0|B(1)|10|B(2)|1 . . . 0|B(n1)|1. Another sequence SL lists
the labels L(a, b) in the same order they appear in SB : SL = l(1)l(2) . . . l(n1),
l(a) = L(a, b1)L(a, b2) . . .
L(a, bk). We also store a bitmap XA = 0|A(1)|10|A(2)|1 . . . 0|A(n2)|1.

We represent SB using wavelet trees [13], L with the structure for large
alphabets [12], and XA and XB in compressed form [26]. Calling r = |R|, SB
requires r log n2 + o(r) log n2 bits, L requires r log `+ r o(log `) bits (i.e., zero if
` = 1), and XA and XB use O(n1 log r+n1

n1
+ n2 log r+n2

n2
) + o(r + n1 + n2) =

O(r) + o(n1 + n2) bits. We answer queries as follows:

– |A(b)|: This is just selectXA
(1, b)− selectXA

(1, b− 1)− 1.
– |B(a)|: It is computed in the same way using XB .
– L(a, b): Compute y ← selectXB

(1, a − 1) − a + 1. Now, if rankSB
(b, y) =

rankSB
(b, y+|B(a)|) then a and b are not related and we return ⊥, otherwise

we return SL[selectSB
(b, rankSB

(b, y + |B(a)|))].
– A(b): We first compute |A(b)| and then retrieve the i-th element by doing
yi ← selectSB

(b, i) and returning 1 + selectXB
(0, yi)− yi.

– B(a): This is SB [selectXB
(1, a− 1)− a+ 2 . . . selectXB

(1, a)− a].
– R(a1, a2, b1, b2): We first determine which elements in SB correspond to

the range [a1, a2]. We set a′1 ← selectXB
(1, a1 − 1) − a1 + 2 and a′2 ←

selectXB
(1, a2) − a2. Then, using range queries in a wavelet tree [20], we

retrieve the elements from SB [a′1, a
′
2] which are in the range [b1, b2].

– L(l): We retrieve consecutive occurrences of l in SL. For the i-th occurrence
we find yi ← selectSL(l, i), then we compute b ← SB [yi] and a ← 1 +
selectXB

(0, yi)− yi. Determining |L(l)| is done via rankSL(l, r).

We note that, if we do not support queries R(a1, a2, b1, b2), we can use also
the faster data structure [12] for SB .

Theorem 1. Let R ⊆ A × B be a binary relation, where A = {1, 2, . . . , n1},
B = {1, 2, . . . , n2}, and a function L : A × B → L ∪ {⊥}, which maps every
pair in R to a label in L = {1, 2, . . . , `}, ` ≥ 1, and pairs not in R to ⊥. Then
R can be indexed using (r + o(r))(log n2 + log `+ o(log `) + O(1)) + o(n1 + n2)
bits of space, where r = |R|. Queries can be answered in the times shown below,
where k is the size of the output. One can choose (i) rnk(x) = acc(x) = log log x
and sel(x) = 1, or (ii) rnk(x) = log log x log log log x, acc(x) = 1 and sel(x) =
log log x, independently for x = ` and for x = n2.



Operation Time (with range) Time (without range)
L(a, b) O(log n2 + acc(`)) O(rnk(n2) + sel(n2) + acc(`))
A(b) O(1 + k log n2) O(1 + k sel(n2))
B(a) O(1 + k log n2) O(1 + k acc(n2))
|A(b)|, |B(a)| O(1) O(1)
R(a1, a2, b1, b2) O((k + 1) log n2) —
|R(a1, a2, b1, b2)| O(log n2) —
L(l) O((k + 1)sel(`) + k log n2) O((k + 1)sel(`) + k acc(n2))
|L(l)| O(rnk(`)) O(rnk(`))

We note the asymmetry of the space and time with respect to n1 and n2,
whereas the functionality is symmetric. This makes it always convenient to ar-
range that n1 ≥ n2.

4 A Powerful SLP Representation

We provide in this section an SLP representation that permits various queries
on the SLP within essentially the same space of a plain representation.

Let us assume for simplicity that all the symbols in Σ are used in the SLP,
and thus σ ≤ n is the effective alphabet size. If this is not the case and max(Σ) =
σ′ > n, we can always use a mapping S[1, σ′] from Σ to the effective alphabet
range [1, σ], using rank and select in S. By using Raman et al.’s representation
[26], S requires O(σ log σ′

σ ) = O(n log σ′

n ) bits. Any representation of such an
SLP would need to pay for this space.

A plain representation of an SLP with n rules requires at least 2(n−σ)dlog ne+
σdlog σe ≤ 2ndlog ne bits. Based on our labeled binary relation data structure of
Thm. 1, we give now an alternative SLP representation which requires asymptot-
ically the same space, 2n log n+ o(n log n) bits, and is able to answer a number
of interesting queries on the grammar in O(log n) time. This will be a key part
of our indexed SLP representation.

Definition 3. A Lexicographic Straight-Line Program (LSLP) G = (X,Σ, s)
is a grammar with nonterminals X = {X1, X2, . . . , Xn}, terminals Σ, and two
types of rules: (i) Xi → α, where α ∈ Σ, (ii) Xi → XlXr, such that:

1. The Xis can be renumbered X ′i in order to obtain an SLP.
2. F(Xi) � F(Xi+1), 1 ≤ i < n, being � the lexicographical order.
3. There are no duplicate right hands in the rules.
4. Xs is mapped to X ′n, so that G represents the text T = F(Xs).

It is clear that every SLP can be transformed into an LSLP, by removing du-
plicates and lexicographically sorting the expanded phrases. We will use LSLPs
in place of SLPs from now on.

Let us regard a binary relation as a table where the rows represent the el-
ements of set A and the columns the elements of B. In our representation,
every row corresponds to a symbol Xl (set A) and every column a symbol



Xr (set B). Pairs (l, r) are related, with label i, whenever there exists a rule
Xi → XlXr. Since A = B = L = {1, 2, . . . n} and |R| = n, the structure uses
2n log n+ o(n log n) bits. Note that function L is invertible, thus |L(l)| = 1.

To handle the rules of the form Xi → α, we set up a bitmap Y [1, n] so that
Y [i] = 1 if and only if Xi → α for some α ∈ Σ. Thus we know Xi → α in constant
time because Y [i] = 1 and α = rankY (1, i). The total space is n+ o(n) = O(n)
bits [6]. This works because the rules are lexicographically sorted and all the
symbols in Σ are used.

This representation lets us answer the following queries.

– Access to rules: Given i, find l and r such that Xi → XlXr, or α such that
Xi → α. If Y [i] = 1 we obtain α in constant time as explained. Otherwise,
we obtain L(i) = {(l, r)} from the labeled binary relation, in O(log n) time.

– Reverse access to rules: Given l and r, find i such that Xi → XlXr, if
any. This is done in O(log n) time via L(l, r) (if it returns ⊥, there is no
such Xi). We can also find, given α, the Xi → α, if any, in O(1) time via
i = selectY (1, α).

– Rules using a left/right symbol: Given i, find those j such that Xj → XiXr

(left) or Xj → XlXi (right) for some Xl, Xr. The first is answered using
{L(i, r), r ∈ B(j)} and the second using {L(l, i), l ∈ A(j)}, in O(log n) time
per each Xi found.

– Rules using a range of symbols: Given l1 ≤ l2, r1 ≤ r2, find those i such
that Xi → XlXr for any l1 ≤ l ≤ l2 and r1 ≤ r ≤ r2. This is answered, in
O(log n) time per symbol retrieved, using {L(a, b), (a, b) ∈ R(l1, l2, r1, r2)}.

Again, if the last operation is not provided, we can choose the faster repre-
sentation [12] (alternative (i) in Thm. 1), to achieve O(log log n) time for all the
other queries.

Theorem 2. An SLP G = (X = {X1, . . . , Xn}, Σ), Σ = [1, σ], σ ≤ n, can be
represented using 2n log n + o(n log n) bits, such that all the queries described
above (access to rules, reverse access to rules, rules using a symbol, and rules
using a range of symbols) can be answered in O(log n) time per delivered datum.
If we do not support the rules using a range of symbols, times drop to O(log log n).
For arbitrary integer Σ one needs additional O(n log max(Σ)

n ) bits.

5 Indexable Grammar Representations

We now provide an LSLP-based text representation that permits indexed search
and random access. We assume our text T [1, u], over alphabet Σ = [1, σ], is
represented with an SLP of n rules.

We will represent an LSLP G using a variant of Thm. 2. The rows will rep-
resent Xl as before, but these will be sorted by reverse lexicographic order, as if
they represented F(Xl)rev. The columns will represent Xr, ordered lexicograph-
ically by F(Xr). We will also store a permutation πR, which maps reverse to
direct lexicographic ordering. This must be used to translate row positions to



nonterminal identifiers. We use Munro et al.’s representation [22] for πR, with
parameter ε = 1

logn , so that πR can be computed in constant time and π−1
R in

O(log n) time, and the structure needs n log n+O(n) bits of space.
With the LSLP representation and πR, the space required is 3n log n +

o(n log n) bits. We add other n log u bits for storing the lengths |F(Xi)| for
all the nonterminals Xi.

5.1 Extraction of Text from an LSLP

To expand a substring F(Xi)[j, j′], we first find position j: We recursively de-
scend in the parse tree rooted atXi until finding its jth position. LetXi → XlXr,
then if |F(Xl)| ≥ j we descend to Xl, otherwise to Xr, in this case looking for
position j − |F(Xl)|. This takes O(height(Xi) log n) time. In our way back from
the recursion, if we return from the left child, we fully traverse the right child
left to right, until outputting j′ − j + 1 terminals.

This takes in total O((height(Xi) + j′ − j) log n) time, which is at most
O((h+ j′ − j) log n). This is because, on one hand, we will follow both children
of a rule at most j′− j times. On the other, we will follow only one child at most
twice per tree level, as otherwise two of them would share the same parent.

5.2 Searching for a Pattern in an LSLP

Our problem is to find all the occurrences of a pattern P = p1p2 . . . pm in the
text T [1, u] defined by an LSLP of n rules. As in previous work [15], except for
the special case m = 1, occurrences can be divided into primary and secondary.
A primary occurrence in F(Xi), Xi → XlXr, is such that it spans a suffix of
F(Xl) and a prefix of F(Xr), whereas each time Xi is used elsewhere (directly
or transitively in other nonterminals that include it) it produces secondary oc-
currences. In the case P = α, we say that the primary occurrence is at Xi → α
and the other occurrences are secondary.

Our strategy is to first locate the primary occurrences, and then track all
their secondary occurrences in a recursive fashion. To find primary occurrences
of P , we test each of the m − 1 possible partitions P = PlPr, Pl = p1p2 . . . pk
and Pr = pk+1 . . . pm, 1 ≤ k < m. For each partition PlPr, we first find all
those Xls such that Pl is a suffix of F(Xl), and all those Xrs such that Pr is a
prefix of F(Xr). The latter forms a lexicographic range [r1, r2] in the F(Xr)s,
and the former a lexicographic range [l1, l2] in the F(Xl)revs. Thus, using our
LSLP representation, the Xis containing the primary occurrences correspond
those labels i found within rows l1 and l2, and between columns r1 and r2, of
the binary relation. Hence a query for rules using a range of symbols will retrieve
each such Xi in O(log n) time. If P = α, our only primary occurrence is obtained
in O(1) time using reverse access to rules.

Now, given each primary occurrence atXi, we must track all the nonterminals
that use Xi in their right hand sides. As we track the occurrences, we also
maintain the offset of the occurrence within the nonterminal. The offset for the



primary occurrence at Xi → XlXr is |F(Xl)|−k+1 (l is obtained with an access
to rule query for i). Each time we arrive at the initial symbol Xs, the offset gives
the position of a new occurrence.

To track the uses of Xi, we first find all those Xj → XiXr for some Xr,
using query rules using a left symbol for π−1

R (i). The offset is unaltered within
those new nonterminals. Second, we find all those Xj → XlXi for some Xl, using
query rules using a right symbol for i. The offset in these new nonterminals is
that within Xi plus |F(Xl)|, where again πR(l) is obtained from the result using
an access to rule query. We proceed recursively with all the nonterminals Xj

found, reporting the offsets (and finishing) each time we arrive at Xs.
Note that we are tracking each occurrence individually, so that we can process

several times the same nonterminalXi, yet with different offsets. Each occurrence
may require to traverse all the syntax tree up to the root, and we spend O(log n)
time at each step. Moreover, we carry out m− 1 range queries for the different
pattern partitions. Thus the overall time to find the occ occurrences is O((m+
h occ) log n).

We remark that we do not need to output all the occurrences of P . If we just
want occ occurrences, our cost is proportional to this occ. Moreover, the existence
problem, that is, determining whether or not P occurs in T , can be answered
just by counting the primary occurrences, and it corresponds to occ = 0. The
remaining problem is how to find the range of phrases starting/ending with a
suffix/prefix of P . This is considered next.

5.3 Prefix and Suffix Searching

We present different time/space tradeoffs, to search for Pl and Pr in the respec-
tive sets.

Binary search based approach. We can perform a binary search over the
F(Xi)s and over the F(Xi)revs to determine the ranges where Pr and P revl ,
respectively, belong. We do the first binary search in the nonterminals as they
are ordered in the LSLP. In order to do the string comparisons, we extract the
first m terminals of F(Xi), in time O((m + h) log n) (Sec. 5.1). As the binary
search requires O(log n) comparisons, the total cost is O((m+ h) log2 n) for the
partition PlPr. The search within the reverse phrases is similar, except that we
extract the m rightmost terminals and must use πR to find the rule from the
position in the reverse ordering. This variant needs no extra space.

Compact Patricia Trees. Another option is to build Patricia Trees [21] for the
F(Xi)s and for the F(Xi)revs (adding them a terminator so that each phrase
corresponds to a leaf). By using the cardinal tree representation of Benoit et
al. [4] for the tree structure and the edge labels, each such tree can be represented
using 2n log σ +O(n) bits, and traversal (including to a child labeled α) can be
carried out in constant time. The ith leaf of the tree for the F(Xi)s corresponds
to nonterminal Xi (and the ith of the three for the F(Xi)revs, to XπR(i)). Hence,
upon reaching the tree node corresponding to the search string, we obtain the



lexicographic range by counting the number of leaves up to the node subtree and
past it, which can also be done in constant time [4].

The difficult point is how to store the Patricia tree skips, as in principle they
require other 4n log u bits of space. If we do not store the skips at all, we can still
compute them at each node by extracting the corresponding substrings for the
leftmost and rightmost descendant of the node, and checking for how many more
symbols they coincide [6]. This can be obtained in time O((`+h) log n), where `
is the skip value (Sec. 5.1). The total search time is thus O(m log n+mh log n) =
O(mh log n).

Instead, we can use k bits for the skips, so that skips in [1, 2k − 1] can be
represented, and a skip zero means ≥ 2k. Now we need to extract leftmost and
rightmost descendants only when the edge length is ` ≥ 2k, and we will work
O((`− 2k + h) log n) time. Although the `− 2k terms still can add up to O(m)
(e.g., if all the lengths are ` = 2k+1), the h terms can be paid only O(1 +m/2k)
times. Hence the total search cost is O((m + h + mh

2k ) log n), at the price of at
most 4nk extra bits of space. We must also do the final Patricia tree check due
to skipped characters, but this adds only O((m + h) log n) time. For example,
using k = log h we get O((m+ h) log n) time and 4n log h extra bits of space.

As we carry out m−1 searches for prefixes and suffixes of P , as well as m−1
range searches, plus occ extraction of occurrences, we have the final result.

Theorem 3. Let T [1, u] be a text over an effective alphabet [1, σ] represented
by an SLP of n rules and height h. Then there exists a representation of T
using n(log u+ 3 log n+O(log σ+ log h) + o(log n)) bits, such that any substring
T [l, r] can be extracted in time O((r − l + h) log n), and the positions of occ
occurrences of a pattern P [1,m] in T can be found in time O((m(m + h) +
h occ) log n). By removing the O(log h) term in the space, search time raises to
O((m2 +occ)h log n). By further removing the O(log σ) term in the space, search
time raises to O((m(m+ h) log n+ h occ) log n). The existence problem is solved
within the time corresponding to occ = 0.

Compared with the 2n log n bits of the plain SLP representation, ours requires
at least 4n log n+o(n log n) bits, that is, roughly twice the space. More generally,
as long as u = nO(1), our representation uses O(n log n) bits, of the same order
of the SLP size. Otherwise, our representation is superlinear in the size of the
SLP (almost quadratic in the extreme case n = O(log u)). Yet, if u = nω(1), our
representation takes uo(1) bits, which is still much smaller than the original text.

We have not discussed construction times for our index (given the SLP).
Those are O(n log n) for the binary relation part, and all the lengths |F(Xi)|
could be easily obtained in O(n) time. Sorting the strings lexicographically, as
well as constructing the tries, however, can take as much as

∑n
i=1 |F(Xi)|, which

can be even ω(u). Yet, as all the phrases are substrings of T [1, u], we can build
the suffix array of T in O(u) time [14], record one starting text position of each
F(Xi) (obtained by expanding T from the grammar), and then sorting them in
O(n log n) time using the inverse suffix array permutation (the ordering when



one phrase is a prefix of the other is not relevant for our algorithm). To build
the Patricia trees we can build the suffix tree in O(u) time [7], mark the n suffix
tree leaves corresponding to phrase beginnings, prune the tree to the ancestors
of those leaves (which are O(n) after removing unary paths again), and create
new leaves with the corresponding string depths |F(Xi)|. The point to insert the
new leaves are found by binary searching the string depths |F(Xi)| with level
ancestor queries [3] from the suffix tree leaves. The process takes O(u+ n log n)
time and O(u log u) bits of space. Reverse phrases are handled identically.

6 Conclusions and Future Work

We have presented the first indexed compressed text representation based on
Straight-Line Programs (SLP), which are as powerful as context-free grammars.
It achieves space close to that of the bare SLP representation (in many relevant
cases, of the same order) and, in addition to just uncompressing, it permits ex-
tracting arbitrary substrings of the text, as well as carrying out pattern searches,
in time usually sublinear on the grammar size. We also give interesting byprod-
ucts related to powerful SLP and binary relation representations.

We regard this as a foundational result on the extremely important problem
of achieving self-indexes built on compression methods potentially more powerful
than the current ones [24]. As such, there are several possible improvements we
plan to work on, such as (1) reducing the n log u space term; (2) reduce the
O(m2) term in search times; (3) alleviate the O(h) term in search times by
restricting the grammar height while retaining good compression; (4) report
occurrences faster than one-by-one. We also plan to implement the structure to
achieve strong indexes for very repetitive text collections.
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