
Fast Two-DimensionalApproximate Pattern Matching?Ricardo Baeza-Yates and Gonzalo NavarroDept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago, Chile.frbaeza,gnavarrog@dcc.uchile.cl.Abstract. We address the problem of approximate string matching intwo dimensions, that is, to �nd a pattern of size m�m in a text of sizen� n with at most k errors (substitutions, insertions and deletions). Al-though the problem can be solved using dynamic programming in timeO(m2n2), this is in general too expensive for small k. So we design a�ltering algorithm which avoids verifying most of the text with dynamicprogramming. This �lter is based on a one-dimensional multi-patternapproximate search algorithm. The average complexity of our resultingalgorithm is O(n2k log�m =m2) for k < m(m+ 1)=(5 log�m), which isoptimal and matches the best previous result which allows only substitu-tions. For higher error levels, we present an algorithm with time complex-ity O(n2k=(wp�)) (where w is the size in bits of the computer word and� is the alphabet size). This algorithm works for k < m(m+1)(1�e=p�),where e = 2:718:::, a limit which is not possible to improve. These arethe �rst good expected-case algorithms for the problem. Our algorithmswork also for rectangular patterns and rectangular text and can even beextended to the case where each row in the pattern and the text has adi�erent length.1 IntroductionA number of important problems related to string processing lead to algorithmsfor approximate string matching: text searching, pattern recognition, computa-tional biology, audio processing, etc. Two dimensional pattern matching witherrors has applications, for instance, in computer vision.The edit distance between two strings a and b, ed(a; b), is de�ned as theminimum number of edit operations that must be carried out to make them equal.The allowed operations are insertion, deletion and substitution of characters ina or b. The problem of approximate string matching is de�ned as follows: givena text of length n, and a pattern of length m, both being sequences over analphabet � of size �, �nd all segments (or \occurrences") in text whose editdistance to pattern is at most k, where 0 < k < m. The classical solution isO(mn) time and involves dynamic programming [19].? Support from Fondecyt grants 1-95-0622 and 1-96-0881 are gratefully acknowledged.

2 Ricardo Baeza-Yates and Gonzalo NavarroKrithivasan and Sitalakshmi (KS) [14] proposed the following extension ofedit distance for two dimensions. Given two images of the same size, the editdistance is the sum of the edit distance of the corresponding row images. Thisde�nition is justi�ed when the images are transmitted row by row and there arenot too many communication errors. On the other hand, it is not clear how to liftthe row restriction (i.e. letting insertions and deletions along rows and columns)as then an approximate match is harder to de�ne. Figure 1 gives an example.
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

General KSFig. 1. Alternative error models.Using this model they de�ne an approximate search problem where a subim-age of size m�m is searched into a large image of size n�n, which they solve inO(m2n2) time using a generalization of the classical one-dimensional algorithm.We use the same model and improve the expected case using a �lter algorithmbased in multiple one-dimensional approximate string matching, in the samevein of [9, 8, 7]. Our algorithm has O(n2k log�m =m2) average-case behavior fork < m(m+1)=(5 log�m), using O(m2) space. This time matches the best knownresult for the same problem allowing only substitutions and is optimal [12], beingthe restriction on k only a bit more strict. For higher error levels, we present analgorithm with time complexity O(n2k=(wp�)) (where w is the size in bits ofthe computer word), which works for k < m(m + 1)(1 � e=p�). We also showthat this limit on k cannot be improved.Given a two-dimensional string S, we denote as S[i] its i-th row (i � 1), andS[i][j] the j-th column of row i (j � 1). The two-dimensional strings we use arethe pattern P and the text T .2 Previous WorkThe classical O(mn) dynamic programming solution to the one-dimensionalproblem [19] keeps an array C[0::m], which for each new text position T [j] is

Fast Two-Dimensional Approximate Pattern Matching 3updated to C 0[0::m] with the formulaC0[0] C[0]; C 0[i] if P [i] = T [j] then C[i�1] else 1+min(C[i�1]; C 0[i�1]; C[i])and a match is reported whenever C[m] � k.This solution was later improved by a number of algorithms. The di�erentapproaches can be divided in three main areas:{ Those that use cleverly the geometric properties of the dynamic program-ming matrix, e.g. [15,21, 10]. These algorithms normally achieve O(kn) timecomplexity in the worst or the average case.{ Those that �lter the text, quickly leaving out most of the text and verify-ing only the areas that seem interesting, e.g. [20,6]. They achieve sublinearexpected time in many cases (e.g. O(kn log�m=m)) for small k=m ratios.{ Those that parallelize the computation of a classical algorithm in the bitsof computer words [22, 23, 4]. We call w the number of bits in the computerword, which is assumed to be �(logn). These algorithms obtain in the bestcase a factor of O(1= logn) over their classical counterparts.On the other hand, multi-pattern approximate search has only recently beenconsidered. In [16], hashing is used to search thousands of patterns in parallel,although with only one error. In [5], extensions of [4] and [6] are presented basedon superimposing automata. In [17], a counting �lter is bit-parallelized to keepthe state of many searches in parallel. Most multipattern algorithms consist ofa �lter which discards most of the text at low cost, and verify using dynamicprogramming the text areas that cannot be discarded. If the error level is lowenough, the average number of veri�cations is so low that their total cost is oflower order and can be neglected. Otherwise the cost of veri�cations dominatesand the algorithm is not useful, as it is as costly as plain dynamic programming.Finally, the case of two dimensional approximate string matching usuallyconsiders only substitutions for rectangular patterns, which is much simpler thanthe general case with insertions and deletions. For substitutions, the patternshape matches the same shape in the text (e.g. if the pattern is a rectangle, itmatches a rectangle of the same size in the text). For insertions and deletions,instead, rows and/or columns of the pattern can match pieces of the text ofdi�erent length.If we consider matching the pattern with at most k substitutions, one of thebest results on the worst case is due to Amir and Landau [2], which achievesO((k+ log�)n2) time but uses O(n2) space. A similar algorithm is presented inCrochemore and Rytter [11]. Ranka and Heywood, on the other hand, solve theproblem in O((k+m)n2) time and O(kn) space. Amir and Landau also presenta di�erent algorithm running in O(n2 log n log log n logm) time. On average, thebest algorithm is due to Karkk�ainen and Ukkonen [12], with its analysis andspace usage improved by Park [18]. The expected time is O(n2k=m2 log�m) fork � � mdlog�(m2)e� m2 � 1 � m24 log�m

4 Ricardo Baeza-Yates and Gonzalo Navarrousing O(m2) space (O(k) space on average). This time result is optimal for theexpected case.Under the KS de�nition (i.e. allowing insertions and deletions along rows),Krithivasan [13] presents anO(m(k+logm)n2) algorithm that uses O(mn) space.This was improved (for k < m) by Amir and Landau [2] to O(k2n2) worst casetime using O(n2) space. Amir and Farach [1] also considered non-rectangularpatterns achieving O(k(k +pm logmpk log k)n2) time. This algorithm is verycomplicated, as it uses numerical convolutions.3 Error Model for Two DimensionsWe assume that pattern and text are rectangular, of sizes m1 �m2 and n1� n2respectively (rows � columns). We use sometimes M = m1m2 and N = n1n2 asthe size of the pattern and the text respectively. However, our algorithms can beeasily extended to the more general case where each row in the pattern and thetext has di�erent length. For simplicity we only explain the rectangular case inthis paper. Sometimes we even simplify more, considering the case m1 = m2 = mand n1 = n2 = n.In the KS error model we allow errors along rows, but errors cannot occuralong columns. This means that, for instance, a single insertion cannot moveall the characters of its column one position down. Or we cannot perform m2deletions along a row and eliminate the row. All insertions and deletions displacethe characters of the row they occur in.In this simple model every row is exactly where it is expected to be in anexact search. That is, we can see the pattern as an m1-tuple of strings of lengthm2, and each error is a one-dimensional error occurring in exactly one of thestrings. Formally,De�nition: Given a pattern P of size m1�m2 and a text T of size n1�n2, wesay that the pattern P occurs in the text at position (i; j) with at most k errorsif m1Xr=1 led(T [i+ r � 1][1::j]; P [r]) � kwhere led(t[1::j]; pat) = mini21::j ed(t[i::j]; pat).Observe that in this case the problem still makes sense for k > m2, althoughit must hold k < m1m2 (since otherwise every text position matches the patternby performing m1m2 substitutions).The natural generalization of the classical dynamic programming algorithmfor one dimension to the case of two dimensions was presented in [14]. Its com-plexity is O(MN), which is also a natural extension of the O(mn) complexityfor one-dimensional text. The algorithm is presented in Figure 2 as it is the ba-sic procedure for the veri�cation phase of our �ltering algorithm. Instead of thesingle column vector C[j] of length m+1 used in [19], we have an m1� (m2+1)matrix indexed by pattern rows and columns, C[r][j], for r 2 1::m1; j 2 0::m2.

Fast Two-Dimensional Approximate Pattern Matching 5for i 1 to n1-m1--- initialize C ---for r 1 to m1for j 0 to m2C[r][j] j--- compute values for each text column j ---for j 1 to n2err 0for r 1 to m1for s 1 to m2if P[r][s] = T[i+r-1][j]then C'[r][s] C[r][s-1]else C'[r][s] 1 + min(C[r][s-1],C[r][s],C'[r][s-1])err err + C'[r][m2]exchange C and C' --- just exchange pointers ---if err <= k then report match at (i,j)Fig. 2. Two dimensional approximate matching by dynamic programming. The vari-able err sums up the errors along the rows of the pattern.This algorithm uses O(M) extra space, which is the only state informationit needs to be started at any text position. Although Amir and Landau have anO(k2n2) algorithm, notice that dynamic programming is always better if k > m,so depending on k we have to choose the best algorithm.4 A Fast Algorithm on AverageWe begin by proving a lemma which allows us to quickly discard large areas ofthe text.Lemma: If the pattern occurs with k errors at position (i; j) in the text, andr1; r2; :::rs are s di�erent rows in the range 1 to m1, thenmint=1::sfled(T [i+ rt � 1][1::j]; P [rt])g � bk=sc :Proof: Otherwise, led(T [i + rt � 1][1::j]; P [rt]) � 1 + bk=sc > k=s for all t.Just summing up the errors in the s selected rows we have strictly more thans� k=s = k errors and therefore a match is not possible.The Lemma can be used in many ways. The simplest case is to set s = 1.This tells us that if we cannot �nd a row r of the pattern with at most k errorsat text row i, then the pattern cannot occur at row i� r+ 1. Therefore, we cansearch for all rows of the pattern at text row m1. If we cannot �nd a match ofany of the pattern rows with at most k errors, then no possible match begins attext rows 1::m1. There cannot be a match at text row 1 because pattern row m1was not found at text row m1. There cannot be a match at text row 2 because

6 Ricardo Baeza-Yates and Gonzalo Navarropattern row m1 � 1 was not found at text row m1. Finally, there cannot be amatch at text row m1 because pattern row 1 was not found at text row m1.This shows that we can search only text rows i �m1, for i = 1::bn1=m1c. Onlyin the case that we �nd a match of pattern row r at text position (i � m1; j),we must verify a possible match beginning at text row i �m1 � r + 1. We mustperform the veri�cation from text column j�m2�k+1 to j, using the dynamicprogramming algorithm. However, if k > m2 we can start at j � 2m2 + 1, sinceotherwise we would pay more than m2 insertions, in which case it is cheaper tojust perform m2 substitutions. This veri�cation costs O(m1m22) = O(m3).To avoid re-verifying the same areas due to overlapping veri�cation require-ments, we can force all veri�cations to be made in ascending row order andascending column order inside rows. By remembering the state of the last veri-�ed positions we avoid re-verifying the same columns, this way keeping the worstcase of this algorithm at O(m2n2) cost instead of O(m3n2).Figure 3 shows how the algorithm works.
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������

��
��
��

��
��
��

������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������

������
������
������
������

3

2 5

n = 24, m = 6, k = 3

pattern row i found

possible position of an
approximate occurrence

text area to verify with
dynamic programming

text rows searched with
1-dimensional multipattern

 i Fig. 3. Example of how the algorithm works.We have still not explained how to perform a multi-pattern search for allthe rows of the pattern at text rows numbered i �m1. We can use any availableone-dimensional multi-pattern �ltering algorithm. Each such algorithm has adi�erent complexity and a maximum error level (i.e. k=m ratio) up to whereit works well. For higher error levels, the �lter triggers too many veri�cations,which dominate the search time.A problem with this approach is that, if k � m2 holds in our original prob-lem, this �ltration phase will be completely ine�ective (since all text positionswill match all the patterns, and all the text will be veri�ed with dynamic pro-

Fast Two-Dimensional Approximate Pattern Matching 7gramming). Even for k < m2 the error level k=m2 can be very high for themultipattern �lter we choose.This is where the s of the Lemma comes to play. We can search, insteadof all text rows of the form i �m1, all text rows of the form i � bm1=2c, for allpatterns, with bk=2c errors. This corresponds to s = 2. If we �nd nothing atrows i � bm1=2c and (i + 1) � bm1=2c, then no occurrence can be found at textrows (i � 1) � bm1=2c + 1 to i � bm1=2c, because that occurrence has alreadytwo rows with more than k=2 errors. In general, we can search only the textrows numbered i � bm1=sc, for all the patterns, with bk=sc errors. In the extremecase, we can search all text rows with bk=m1c errors (which is always < m2 andtherefore �ltering is in principle possible).There is another alternative way to use s, which is to search only the �rstdm1=se rows of the pattern with k errors and consider the text rows of the formi � bm1=sc. That is, reduce the number of patterns instead of reducing the errorlevel (this is because the tolerance to errors of some �lters is reduced as thenumber of patterns grows). This alternative, however, is not promising sincewe pay s more times searches of (1=s)-th of the patterns. If the search cost forr patterns is C(r), we pay sC(r=s). The aim of any multi-pattern matchingalgorithm is precisely that C(r) < sC(r=s) (since the worst thing that canhappen is that searching for r patterns costs the same as r searches for onepattern, i.e. C(r) = sC(r=s)).5 Average Case AnalysisOnce we have selected a given one-dimensional multipattern search algorithm tosupport our two-dimensional �lter, two values of the one-dimensional algorithminuence the analysis of the two-dimensional �lter:{ C(m; k; r), which is the cost per text character to search r patterns of lengthm with k errors. Notice that in our case, m = m2 and r = m1. Hence, thecost to search a text row with this algorithm is n2C(m2; k;m1).{ L(m; r), which is the maximum acceptable value for k=m up to where theone-dimensional algorithm works. That is, the cost of the search is C(m; k; r)per text character, plus the veri�cations. If the error level is low enough(i.e. k=m < L(m; r)), the number of those veri�cations is so low that theircost can be neglected. Otherwise the cost of veri�cations dominates and thealgorithm is not useful, as it is as costly as plain dynamic programming andour whole scheme does not work. Again, in our case, m = m2 and r = m1.Given a multi-pattern search algorithm, our search strategy for the two-dimensional �lter is as follows. If we search with bk=sc errors, it must holdbk=scm2 < L(m2;m1) =) s = � km2L(m2;m1)� : (1)

8 Ricardo Baeza-Yates and Gonzalo NavarroSince we traverse only the text rows of the form i � bm1=sc, we work onO(n1s=m1) rows, and therefore our total complexity to �lter the text isO(n1s=m1 n2C(m2; k=s;m1)) = O�NkM C(m2;m2L(m2;m1);m1)L(m2;m1) � ; (2)where we recall that L has been selected so that the cost of veri�cations has, onaverage, lower order and therefore we neglect veri�cation costs. The algorithmis applicable when it holds s � m1, i.e. fork < m2(m1 + 1)L(m2;m1) ; (3)since if it requires s > m1, this means that the error level is too high even if wesearch all rows of the text (s = m1).We consider speci�c multi-pattern algorithms now, each one with a given Cand L functions. As we only reference the algorithms, we do not include heretheir analysis leading to C and L, which is done in the original papers.- Exact Partitioning [5] can be implemented such that C(m; k; r) = O(1)(i.e. linear search time). For our O(m1m22) = O(rm2) veri�cation costs, wehave L(m; r) = 1= log�(m3r2). Therefore, using this algorithm we wouldselect (Eq. (1)) s = �k log�(m21m32)m2 � = �5k log�mm � ;our average search cost would be (Eq. (2))O�Nk log� max(m1;m2)M � = O�n2k log�mm2 �and the algorithm would be applicable for k < m2(m1 + 1)= log�(m21m32) =m(m + 1)=(5 log�m) (Eq. (3)).- Superimposed Automata [5] has L(m; r) = 1�e=p� (where e = 2:718:::),and C(m; k; r) = O(mr=(�w(1� k=m))) in its best version (automaton par-titioning). Therefore, we have (Eq. (1))s = � km2(1 � e=p�)� = � km(1 � e=p�)�the average complexity is (Eq. (2))O� NkM (1� e=p�) m2m1p�we� = O� Nkp�w� = O� n2kp�w�and the algorithm is applicable for k < m2(m1 + 1)(1 � e=p�) = m(m +1)(1� e=p�) (Eq. (3)).

Fast Two-Dimensional Approximate Pattern Matching 9- Counting [17] has L(m; r) = e�m=� and C(m; k; r) = O(r=w logm). There-fore, using this algorithm we would select (Eq. (1))s = �kem2=�m2 � = �kem=�m � ;the average search cost would be (Eq. (2))O�Nkem2=�M m1 logm2w � = O�Nkem2=� logm2m2w � = O�n2kem=� logmmw �and the algorithm would be applicable for k < m2(m1+1)e�m2=� = m(m+1)e�m=� (Eq. (3)).Notice that this algorithm is asymmetric with respect to the shape of thepattern, i.e. it works better on tall patterns than on wide ones. This isbecause its cost formula and error level are not symmetric in terms of m andr as the previous ones.- One Error [16] can only search with k = 1 errors (i.e. L(m; r) = 2=m), withtime cost C(m; k; r) = m. Therefore we must have s = bk=2c + 1, whichmeans that we can only apply the algorithm for k < 2m1. In this case, thecomplexity would beO�NkM m2m22 � = O�Nkm2m1 � = O(n2k) :This algorithm is asymmetric with respect to the error level it tolerates, alsopreferring taller rather than wider patterns.The best algorithm on average turns out to be a hybrid. Counting is the bestoption for small patterns (i.e. me�m=�= log2m > p�), superimposed automatais the best option for intermediate patterns (i.e. m2= log2m < wp�= log2 �), andexact partitioning is the best option for larger patterns. The combined complex-ity is therefore O� n2k logmmwmax(m=w log �;p� logm=m; e�m=�)� :As m grows, the best (and optimal) complexity is given by the exact parti-tioning, O(n2k log� m =m2). However, this is true for k < m(m + 1)=(5 log�m),because otherwise the veri�cation phase dominates. Once s = 1 and we cannotreduce the error level by reducing s (i.e. by searching on more rows), the ap-proach most resistant to the error level is superimposed automata, which worksup to k < m(m + 1)(1 � e=p�) (at that point its cost is O(m2n2=(wp�)),very close to simple dynamic programming, and the veri�cation time becomesdominant).Moreover, we prove in [4] that if k=m2 � 1 � e=p� the number of textpositions matching the pattern is high. Therefore, the limit for automaton par-titioning is not just the limit of another �ltering algorithm, but the true limit

10 Ricardo Baeza-Yates and Gonzalo Navarroup to where it is possible at all to �lter the text. In this sense, this �lter hasoptimal tolerance to errors.We summarize our results in Figure 4, where the best algorithm for each caseis presented. 1�e=p�k=m2
mCountingme�m=�log2m = p� m2log2m = wp�log2 � Exact PartitioningO �n2k log�mm2 �O�n2ke�m=� logmmw �e�m=� 1=(5 log�m)Automaton PartitioningO� n2kwp��Dynamic ProgrammingO(n2m2)errorlevel

pattern sizeFig. 4. The best algorithm with respect to the pattern length and error level.The complexity of each algorithm is also included.6 Concluding RemarksWe present the �rst �ltering algorithm for two dimensional approximate stringmatching allowing also insertions and deletions. This �lter avoids verifying mostof the text with the expensive dynamic programming algorithm, and is basedon a one-dimensional multi-pattern approximate search algorithm. Our analysisgives the complexity of the �ltering algorithm, obtaining expected case timeO(n2k log� m=m2) for k < m2=(5 log�m). This time is optimal on average [12].The edit distance that we use is simpli�ed (row-wise) and does not modelwell simple cases of approximate matching in other settings. For example, wecould have a match that only has the middle row of the pattern missing. In theKS de�nition (which we use), the edit distance would be O(m2) if all patternrows are di�erent. Intuitively, the right answer should be m, because only mcharacters were deleted in the pattern. We are currently working on more generalerror models [3], but as they are more general, the search complexity should behigher.

Fast Two-Dimensional Approximate Pattern Matching 11References1. A. Amir and M. Farach. E�cient 2-dimensional approximate matching of non-rectangular �gures. In Proc. SODA'91, pages 212{223, 1991.2. A. Amir and G. Landau. Fast parallel and serial multidimensional approximatearray matching. Theoretical Computer Science, 81:97{115, 1991.3. R. Baeza-Yates. Similarity in two dimensional strings. Dept. of Computer Science,University of Chile, 1996.4. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In Proc. CPM'96, LNCS 1075, pages 1{23, 1996. ftp://ftp.dcc.uchile.cl/-pub/users/gnavarro/cpm96.ps.gz.5. R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc.WADS'97, LNCS 1272, pages 174{184, 1997. ftp://ftp.dcc.uchile.cl/pub/-users/gnavarro/wads97.ps.gz.6. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-ing. In Proc. CPM'92, LNCS 644, pages 185{192, 1992.7. R. Baeza-Yates and M. R�egnier. Fast two dimensional pattern matching. Infor-mation Processing Letters, 45:51{57, 1993.8. T. Baker. A technique for extending rapid exact string matching to arrays of morethan one dimension. SIAM Journal on Computing, 7:533{541, 1978.9. R. Bird. Two dimensional pattern matching. Inf. Proc. Letters, 6:168{170, 1977.10. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. CPM'92, LNCS 644, pages 172{181, 1992.11. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.12. J. Karkk�ainen and E. Ukkonen. Two and higher dimensional pattern matching inoptimal expected time. In Proc. SODA'94, pages 715{723. SIAM, 1994.13. K. Krithivasan. E�cient two-dimensional parallel and serial approximate patternmatching. Technical Report CAR-TR-259, University of Maryland, 1987.14. K. Krithivasan and R. Sitalakshmi. E�cient two-dimensional pattern matching inthe presence of errors. Information Sciences, 43:169{184, 1987.15. G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of ComputerSystems Science, 37:63{78, 1988.16. R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM'96,LNCS 1075, pages 75{86, 1996.17. G. Navarro. Multiple approximate string matching by counting. In Proc.WSP'97, pages 125{139, 1997. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-wsp97.1.ps.gz.18. K. Park. Analysis of two dimensional approximate pattern matching algorithms.In Proc. CPM'96, LNCS 1075, pages 335{347, 1996.19. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. J. of Algorithms, 1:359{373, 1980.20. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-ing. In Proc. ESA'95, LNCS 979, 1995.21. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.22. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,October 1992.23. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.

