
Space-e�cient conversions from SLPs ?

Travis Gagie1,5, Adrián Goga2, Artur Je»3, Gonzalo Navarro4,5

1 Faculty of Computer Science, Dalhousie University, Canada
2 Department of Computer Science, Comenius University in Bratislava, Slovakia

3 Institute of Computer Science, University of Wrocªaw, Poland
4 Department of Computer Science, University of Chile, Chile

5 CeBiB � Center for Biotechnology and Bioengineering, Chile

Abstract. We give algorithms that, given a straight-line program (SLP)
with g rules that generates (only) a text T [1..n], build within O(g) space
the Lempel-Ziv (LZ) parse of T (of z phrases) in time O(n log2 n) or
in time O(gz log2(n/z)). We also show how to build a locally consistent
grammar (LCG) of optimal size glc = O(δ log n

δ
) from the SLP within

O(g + glc) space and in O(n log g) time, where δ is the substring com-
plexity measure of T . Finally, we show how to build the LZ parse of T
from such an LCG within O(glc) space and in time O(z log2 n log2(n/z)).
All our results hold with high probability.

1 Introduction

With the rise of enormous and highly repetitive text collections [32], it is be-
coming practical, and even necessary, to maintain the collections compressed
all the time. This requires being able to perform all the needed computations,
like text searching and mining, directly on the compressed data, without ever
decompressing it.

As an example, consider the modest (for today's standards) genomic repos-
itory 1000 Genomes [12] containing the genomes of 2,500 individuals. At the
typical rate of about 3 billion bases each, the collection would occupy about 7
terabytes. Recent projects like theMillion Genome Initiative6 would then require
petabytes. The 1000 Genomes project stores and distributes its data already in a
compressed form7 to exploit the fact that, compared to a reference genome, each
individual genome has only one di�erence every roughly 500 bases, on average.

? Research supported by the European Union's Horizon 2020 research and innovation
program under Marie Skªodowska-Curie grant agreement No 956229 (ALPACA)
and by grants 1/0463/20 and 1/0538/22 from the Scienti�c Grant Agency of the
Ministry of Education, Science, Research, and Sport of the Slovak Republic and
Slovak Academy of Sciences (VEGA) and grant APVV-22-0143 from the Slovak
Research and Development Agency. T.G. and G.N. funded in part by Basal Funds
FB0001, ANID, Chile. T.G. funded in part by NSERC RGPIN-07185-2020. G.N.
funded in part by Fondecyt Grant 1-230755, ANID, Chile.

6 https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
7 In VCF, https://github.com/samtools/hts-specs/blob/master/VCFv4.3.pdf

Certainly one would like to manipulate even such a modest collection always in
a compressed form, using gigabytes instead of terabytes of memory!

Some compression formats are more useful for some tasks than others, how-
ever. For example, Lempel-Ziv compression [29] tends to achieve the best com-
pression ratios, which makes it more useful for storage and transmission. Gram-
mar compression [26] yields slightly larger �les, but in exchange it can produce
T in streaming form, and provide direct access to any text snippet [7], as well
as indexed searches [11]. Locally consistent grammars provide faster searches,
and support more complex queries, while still being bounded by well-known
repetitiveness measures [10, 28, 27, 23, 16, 33]. The run-length-encoded Burrows-
Wheeler Transform of T requires even more space [22], but in exchange it enables
full su�x tree functionality [13].

It is of interest, then, to convert from one format to another. Doing this
conversion by decompressing the current format and then compressing to the
new one is impractical, as it is bound to use Ω(n) space, which in practice
implies running Θ(n)-time algorithms on secondary storage. Thus the interest
in algorithms whose running time and space usage can be bounded in terms of
input and output size. We say that a conversion between di�erent compression
formats is a fully compressed conversion when it uses space and time polynomial
in the size of the (compressed) input, the size of the (compressed) output, and
log n; it is a compressed conversion when the bound applies only to space (and so
the running time may polynomially depend on n). There is a long line of research
on compressed conversions, we recall it below. For brevity we omit a large body of
work on producing compressed representations from the original string S, aiming
to use little space on top of S itself, and the work on compression formats that
are too weak for repetitive data, like LZ78 or run-length compression of the text.

Let z, g, glc and r be the asymptotic (i.e., up to constant factors) sizes of
the Lempel-Ziv (LZ) parse of a string T [1..n], a straight-line program (SLP) or
context-free grammar that expands to T , a locally consistent grammar (LCG)
that expands to T , and the run-length encoded Burrows-Wheeler Transform
(RLBWT) for T , respectively. On highly repetitive texts, all the given measures
can be exponentially smaller than n, hence the relevance of such conversions. We
refer to some SLP because �nding the smallest SLP generating a given string is
NP-complete [8]. It holds that z ≤ g ≤ glc ≤ r in practice. The �rst such con-
version was implicitly given by Mehlhorn, Sundar and Uhrig [30], who proposed
a data structure for a dynamic collection of strings allowing adding concatena-
tions and substrings of strings in the collection in polylogarithmic time. The
data structure implicitly used (a variant of) a LCG and so it allowed com-
pressed conversions from SLP and LZ to LCG, in time O(g log n(log g log∗ n +
log n)) and space O(g log n log∗ n) and time O(z log n(log g log∗ n + log n)) and
space O(z log n log∗ n), respectively. They also proposed a randomised variant
of the data structure, with which the conversion had expected time and space
O(g log2 n), O(g log n) and O(z log2 n), O(z log n), respectively. Their data struc-
ture was improved by Alstrup, Brodal and Rauhe [1], who mainly added new
functionalities and improved the conversion times to O(g log n log∗ n) and

O(z log n log∗ n) w.h.p. (the space usage remained the same). Rytter [38] stud-
ied the problem of constructing the smallest SLP for a given string and showed
how to build an SLP of size g = O(z log(n/z)) within O(g) space and time
from the LZ parse of T in the non-overlapping case (i.e., when phrases can-
not overlap their sources), and Gawrychowski [15, Lemma 8] extended this
result to the general LZ parse. Nishimoto et al. [36] gave an algorithm con-
structing the LZ parse from the LCG of Mehlhorn et al. [30], with running
time O(z log glc log

3 n(log∗ n)2) and linear-space. It can also be used to con-
vert an SLP to the LZ parse in time O(n(log log n)2 + z log4 n(log∗ n)2) or
O(n
√
log z + log log n + z log4 n(log∗ n)2) and O(z log n log∗ n) space. Tomohiro

I [18] proposed a conversion algorithm from an SLP to (a variant of) a LCG
using O(g log(n/g)) time and O(g + z log(n/z)) space; one can also transform
an LZ77 to SLP using with log(n/z) blowup and then apply the reduction to
LCG, using O(z log2(n/z)) time and O(z log(n/z)) space. Kempa and Kociu-
maka [23] built on the produced LCG, showing how to convert a LCG or a SLP
to the LZ parse in time O(glc log

4 n) or O(g log4 n), respectively. They also gave
a fully compressed conversion from a SLP or the LZ parse to a LCG (of optimal
size O(δ log n/δ)) in time O(δ log7 n) (δ is another compression measure with
δ ≤ z ≤ δ log n [28]). Policriti and Prezza [37] showed how to convert from the
RLBWT to the LZ parse in O(r+ z) space and O(n log r) time, and back in the
same space and O(n log(rz)) time. The earlier mentioned paper of Kempa and
Kociumaka [22] also converts from the LZ parse to the RLBWT in O(z log8 n)
expected time. Arimira et al. [2] recently showed how to convert from the com-
pressed directed acyclic word graph (CDAWG) of size e to either RLBWT or
LZ, both in O(e) time and space, though e is the weakest among the commonly
accepted repetitiveness measures [32].

Note that our contribution deals only with LZ, SLP and LCG; we recalled
results for other compression formats (RLBWT, CDAWG) for comparison and
to present the state of the art in the area.

In this paper we contribute to the state of the art with compressed and fully-
compressed conversions between various formats, all of which then use space
linear in the input plus the output, and work correctly with high probability:

1. A compressed conversion from any SLP to the LZ parse in O(n log2 n) time.
2. A fully-compressed conversion from any SLP to the LZ parse inO(gz log2(n/z))

time.
3. A compressed conversion from any SLP to a certain (particularly small) LCG

[10] in O(n log glc) time.
4. A fully-compressed conversion from LCGs of some particular kind [10, 27] to

the LZ parse in O(z log2(n/z) log2 n) time.

The third conversion builds a particular LCG whose size is the optimal O(δ log n
δ)

[27], other similar LCGs [10] can be produced analogously; note that there is a
fully-compressed conversion from SLP to LCG [18]; it is for a di�erent LCG,
though, and it is not clear, whether it generalizes to other LCGs within given
bounds. Also, while the running time of our fourth conversion is larger than
Nishimoto et al. [36], we work with a particular LCG, which can be up to log n

Fully compressed conversions

From \ To LZ SLP LCG

O(z log(n/z)) [38, 15] O(z log2 n) expected [30]
LZ O(z logn log∗n) w.h.p. [1]

O(z log2(n/z)) [18]

O(g log4 n) [23] O(g log(n/g)) [18]
SLP O(gz log2(n/z)) w.h.p.

O(glc log
4 n) [23]

O(z log glc log
3 n(log∗ n)2) [36]

LCG O(z log2(n/z) log2n) w.h.p.

Compressed conversions

From \ To LZ LCG

O(n(log logn)2 + z log4 n(log∗ n)2) [36] O(n log glc) w.h.p.
SLP O(n

√
log z + log logn+z log4 n(log∗n)2) [36]

O(n log2n) w.h.p.

LCG O(n log2n) w.h.p.

Table 1. The running times of compressed and fully compressed conversions between
LZ, SLP, and LCG, with our contributions in bold. The bounds of Nishimoto et al. [36]
are slightly simpli�ed.

times smaller than the LCG of Mehlhorn et al. [30] (we use LCG with a bound
of O(δ log n

δ), while the latter is only known to be O(z log n log∗n) and the only
bound on z in terms of δ is O(δ log n

δ) [28]). Our contributions together with
previously known conversions are depicted in Table 1.

2 Preliminaries

A string T [1..n] is a sequence of symbols T [1]T [2] . . . T [n] over an ordered alpha-
bet Σ. For every 1 ≤ i, j ≤ n, T [1..i] = T [..i] is a pre�x of T , T [j..n] = T [j..] is
a su�x of T , and T [i..j] is a substring of T , which is the empty string ε if i > j.
The length of T [1..n] is |T | = n; the length of ε is |ε| = 0. The concatenation of
two strings S ·S′ is de�ned as S[1]S[2] . . . S[|S|]S′[1]S′[2] . . . S′[|S′]]. The lexico-
graphic order between strings S 6= S′ is de�ned as that between S[1] and S′[1] if
these are di�erent, or as the lexicographic order between S[2..] and S′[2..] other-
wise; the empty string ε is smaller than every other string. The co-lexicographic
order is de�ned as the lexicographic order between the reversed strings.

The Karp-Rabin �ngerprint or the Karp-Rabin hash of a string S[1..n] is a
value φ(S) =

∑n
i=1

(
S[i]xi

)
mod p, for a prime p and x < p [21]. The crucial

property of this hash is that if X 6= Y , then φ(X) 6= φ(Y) with high probability.
Another well-known and useful property is that for strings S, S′, S′ for which
S = S′ · S′′ holds, we can compute the hash of any of the strings knowing the
hashes of the other two, in O(1) time (see, e.g., [35]).

A straight-line program (SLP) of a text T is a context-free grammar in Chom-
sky normal form (so, in particular, each rule is at most binary) generating only

T , which contains exactly one rule for each nonterminal and the rules can be
linearly ordered, such that for any rule X → Y Z it holds that the rules for both
Y and Z precede the rule for X in the ordering.

The height of the SLP is the height of the derivation tree, i.e. the height of
a letter is 0 and the height of a nonterminal X with a (unique) rule X → Y Z
is 1 plus maximum of height of Y and Z. The size of the SLP is the number of
its rules. We de�ne the expansion of a nonterminal X as the string it produces:
exp(a) = a if a is a terminal symbol, and exp(X) = exp(Y) · exp(Z) if X → Y Z.

We say that a grammar is a locally consistent grammar (LCG) if it is con-
structed by iteratively applying rounds of a particular locally consistent parsing,
which guarantees that matching fragments S[i..j] = S[i′..j′] are parsed the same
way, apart from the O(1) blocks from either end. This key property is lifted to
such grammars, for which matching fragments are spanned by almost identical
subtrees of the parse tree, di�ering in at most O(1) �anking nonterminals at
each level [16, 10]. Such a parsing is de�ned in Section 5.

The Lempel-Ziv (LZ) parse of a string T [29] is a sequence F1, F2, . . . , Fz
of phrases, such that F1 · F2 · · ·Fz = T [1..n] and Fi is either a single letter,
when this letter is not present in F1 ·F2 · · ·Fi−1, or else Fi is the maximal string
that occurs twice in F1 · F2 · · ·Fi, that is, it has an occurrence starting within
F1 · F2 · · ·Fi−1; in non-overlapping LZ we additionally require that Fi occurs
within F1 · F2 · · ·Fi−1. It is known that z ≤ g = O(z log(n/z)), where g is the
size of the smallest grammar generating T [38, 8, 15].

We assume the standard word-RAM model of computation with word length
Θ(log n), in which basic operations over a single word take constant time. Some
of our results hold with high probability (w.h.p.), meaning with probability over
1 − n−c for any desired constant c. We can make the constant arbitrarily large
at the cost of increasing the constant multiplying the running time.

3 Building the LZ parse from an SLP in Õ(n) time

Our �rst result computes the LZ parse of a text T [1..n] given an arbitrary SLP of
size g that represents T , in time O(n log2 n) and space O(g); note that the classic
LZ constructions use su�x trees or arrays and use Ω(n) space. We �rst describe
a couple of tools we need to build on the SLP before doing the conversion.

Lemma 1. Given an SLP of size g for T [1..n] we can construct in O(g) time
and space a new SLP G, and augment it with a data structure such that:

� G has height O(log n).
� Any T [i] can be accessed in O(log n) time.
� The Karp-Rabin �ngerprint of any T [i..j] can be computed in O(log n) time.
� The longest common pre�x of any T [i..j] and T [i′..j′] can be computed (w.h.p.)

in O(log2 n) time.
� Any T [i..j] and T [i′..j′] can be compared lexicographically and co-lexicograph-

ically (w.h.p.) in O(log2 n) time.

Proof. Assume that we are given an SLP with g rules for a text T [1..n]. Ganardi
et al. [14] showed that in O(g) time and space we can turn it into an SLP G of
size O(g) and height O(log n) and augment G with O(g)-space structures that, in
O(log n) time, �nds any character T [i] and returns the Karp-Rabin hash of any
substring T [i..j] (see Ganardi et al. [14], which refers to a simple data structure
from Bille et al. [6]). We work with such augmented G from now on. Given two
substrings of T , we can then compute their longest common pre�x in O(log2 n)
time�w.h.p. of obtaining the correct answer�by exponentially searching for its
length ` [6, Thm. 3]; by checking their characters at o�set ` + 1 we can also
compare the substrings of T lexicographically within the same time complexity.
We can similarly compute the longest common su�x of two substrings and thus
compare them co-lexicographically (by comparing the preceding characters). ut

We will also use a variant of a z-fast trie.

Lemma 2. Let S be a lexicographically sorted multiset of m strings of total
length n. Then one can build, in O(n) time w.h.p., a data structure of size
O(m) that, given a string P , �nds in O(fh log |P |) time the lexicographic range
of the strings in S pre�xed by P , where fh is the time to compute a Karp-
Rabin �ngerprint of a substring of P . If this range is nonempty, the answer is
correct w.h.p.; if this range is empty, there are no guarantees on correctness of
the answer, i.e. the answer could be incorrect.

Proof. The structure is the z-fast trie of Belazzougui et al. [3, Thm. 5], and the
query is the fat binary search. A simpler construction was given by Kempa and
Kosolobov [24], and it was then �xed, and its construction analyzed, by Navarro
and Prezza [35, Sec. 4.3]. ut

We will resort to a classic grammar-based indexing method [11], for which
we need a few de�nitions and properties.

De�nition 1. The grammar tree of an SLP G is formed by pruning the parse
tree, converting to leaves, for every nonterminal X, all the nodes labeled X but
the leftmost one. An occurrence of a string P in T is primary if it spans more
than one leaf in the grammar tree; otherwise it is contained in the expansion of a
leaf and is secondary. If a primary occurrence of P occurs in exp(X), with rule
X → Y Z, starting within exp(Y) and ending within exp(Z), then the position
P [j] aligning to the last position of exp(Y) is the splitting point of the occurrence.

A small exception to this de�nition is that, if |P | = 1, we say that its primary
occurrences are those where it appears at the end of exp(X) in any leaf X of
the grammar tree. We now give a couple of results on primary occurrences.

Lemma 3 ([11]). A pattern occurring in T has at least one primary occurrence.

Observation 4 If X is the lowest nonterminal containing a primary occurrence
of P with splitting point j, then, by the way we form the grammar tree, this is
the leftmost occurrence of P under X with splitting position j.

The index sorts all rules X → Y Z twice: once by the lexicographical order
of exp(Z), while collecting those expansions in a multiset Z, and once by the
co-lexicographical order of exp(Y), while collecting the reversed expansions in a
multiset Y. It builds separate z-fast tries (Lemma 2) on Y and Z, and creates
a discrete g × g grid G, where the cell (x, y) stores the position p i� the xth
rule X → Y Z in the �rst order is the yth rule in the second order, and T [p] is
aligned to the last symbol of exp(Y) within the occurrence of X as an internal
node in the grammar tree. The grid supports orthogonal range queries. The key
idea of the index is that, given a search pattern P , for every 1 ≤ j ≤ |P |,
the lexicographic range [y1, y2] of P [j + 1..] in Z and the lexicographic range
[x1, x2] of the reverse of P [..j] in Y, satisfy that there is a point in the range
[x1, x2]× [y1, y2] of G per primary occurrence of P in T with splitting point P [j].
The structure G can determine if the area is empty, or else return a point in it,
in time O(log g). We now build our �rst tool towards our goal.

Lemma 5. Given an SLP of size g generating string T [1..n] we can, in space
O(g) and time O(n + g log g) construct w.h.p. a data structure that, given 1 ≤
i ≤ j ≤ k ≤ n, in O(log n log(k − i) + log1+ε g) time �nds w.h.p. the leftmost
occurrence of T [i..k] in T that is a primary occurrence with splitting point T [j].

Proof. We build the components Y, Z, and G of the described index, following
the approach in (see [35, Sec. 4.3�4.4]), all time and space complexities are given
there. The data structure is correct w.h.p.. We sort w.h.p. the sets Y and Z
in O(g) space and O(n) time ([17]), we build the z-fast tries in O(g) space and
time O(n) (Lemma 2), and we build the grid data structure in O(g) space and
O(g
√
log g) time ([35, Sec. 4.4], [4]). We note that, by using Lemma 1, we can

also do the sorting correctly w.h.p. in O(g) space and O(g log g · log2 n) time.
We use those structures to search for P = T [i..k] with splitting point T [j],

that is, we search the z-fast trie of Z for T [j + 1..k] and the z-fast trie of Y for
T [i..j] reversed, in time O(fh log |P |); recall Lemma 2. Since the substrings of
T [i..j] are also substrings of T , we can compute the Karp-Rabin hash of any
substring of T [i..j] in time fh = O(log n) by Lemma 1, so this �rst part of the
search takes time O(log n log(k−i)). Recall from Lemma 2 that this search yields
correct results w.h.p., unless the ranges sought are empty, in which case there
are no guarantees on correctness.

We now use G to determine if there are points in the corresponding area.
If there are none, then w.h.p. T [i..k] does not occur in T with splitting point
T [j]. If there are some, then we obtain the value p associated with any point
in the range, and compare the Karp-Rabin hash of T [p − (j − i)..p + (k − j)]
with that of T [i..k]. If they di�er, then T [i..k] has no occurrences with splitting
point T [j]; otherwise w.h.p. the z-fast tries gave the correct range and there are
occurrences. This check takes O(log n) time.

Once we know that (w.h.p.) there are occurrences with splitting point T [j],
we want the leftmost one. Each point within the grid range may correspond to a
di�erent rule X → Y Z that splits T [i..k] at T [j]; therefore, by Observation 4, we
want the minimum of the p values stored for the points within the range. This

kind of two-dimensional range minimum query can be solved in time O(log1+ε g)
and O(g) space, for any constant ε > 0, with an enhancement of G that uses O(g)
space and can be built in time O(g log g) [31, 9]. This completes the query. ut

Finally, we will need the following observation on the monotonicity of occur-
rences in T , even when we stick to some splitting point.

Observation 6 If P has a primary occurrence in T with splitting point P [j],
then any pre�x P ′ = P [..k], for any j < k < |P |, also has a primary occurrence
with splitting point P ′[j].

Proof. Let the primary occurrence of P appear in exp(X) and the occurrence
start in exp(Y) and end in exp(Z), with P [j] aligned to the last position of
exp(Y). Then P ′ = P [..k] satis�es the same conditions: a primary occurrence of
P ′ with splitting point P ′[j] starts at the same text position. ut

We are now ready to give the �nal result.

Theorem 1. Given an SLP with g rules for a text T [1..n], w.h.p. we can build
the LZ parse of T in O(n log2 n) time and within O(g) space.

Proof. We �rst build the data structures of Lemma 5 in O(n+ g log g) time and
O(g) space, correctly w.h.p.. We then carry out the LZ parse by sliding three
pointers left-to-right across T , i ≤ j ≤ k, as follows: suppose that the parse for
T [1..i−1] is already constructed, so a new phrase must start at i. We �rst check
whether T [i] appeared already in T [1..i− 1],8 if not then we create a one-letter
phrase and proceed to i+ 1.

If T [i] has occurred earlier, we start the main process of building the next
phrase. The invariant is that we have found T [i..k] starting before i in T with
splitting point T [j], and there is no primary occurrence of T [i..k] (nor of T [i..k′]
for any k′ > k, by Observation 6) with a splitting point in T [i..j−1]. To establish
the invariant, we initialize j to i and try k from i onwards, using Lemma 5 and
advancing k as long as the leftmost occurrence of T [i..k] with splitting point T [i]
starts to the left of i.

Note that we will succeed the �rst time, for k = i. We continue until we
reach k = n (and output T [i..n] as the last phrase of the LZ parse) or we cannot
�nd T [i..k+1] starting before i with splitting point T [i]. We then try successive
values of j, from i+1 onwards, using Lemma 5 to �nd T [i..k+1] starting before
i with splitting point T [j]. If we �nally succeed for some j ≤ k, we reestablish
the invariant by increasing k and return to the �rst loop, which again increases
k with �xed j, and so on.

When j reaches k + 1, it follows that T [i..k] occurs before i and T [i..k + 1]
does not, with any possible splitting point. The next phrase is then T [i..k], which
we output, reset i = k + 1, and resume the parsing.

8 This is easily done in O(1) time and |Σ| ∈ O(g) space by just storing an array with
the leftmost occurrence of every distinct symbol in T . This array is built in O(g)
time from the leaves of the grammar tree.

Since j and k never decrease in the process, we use queries from Lemma 5
O(n) times for a total time of O(n+ g log g+n(log2 n+ log1+ε g)) = O(n log2 n)
to build the LZ parse. ut

4 Building the LZ parse from an SLP in Õ(gz) time

If T is highly compressible, the running time O(n log2 n) in Theorem 1 could be
exponential in the sizeO(g) of the input. We can build the parse inO(gz log2 nz) ⊂
poly(g) time by using, instead of the machinery of the preceding section, Je»'s [19]
algorithm for fully-compressed pattern matching. We will only balance the SLP
if needed [14] so that its height is O(log n). We start by reminding some tools.

Lemma 7 ([38]). Given an SLP of height h for T , we can in O(h) time and
space produce an SLP of size O(h) for any desired substring T [i..j] (without
modifying the SLP of T).

Note that the SLP constructed in the Lemma above may use some of the
nonterminals of the original SLP for T , i.e. its size is in principal g +O(h).

Lemma 8 ([19]). If T and P have SLPs of size g and g′, then we can �nd the
leftmost occurrence of P in T in time O((g+ g′) log |P |), within O(g+ g′) space.

Note that [19] does not state the space complexity, however, the analysis [19,
Sec. 6] bounds intermediate SLPs to be of size O(g+ g′) ([19, Lem. 6.5] and the
running time of the subprocedures (and so their space usage) to be linear; hence
the linear space consumption follows.

Assume again we have already parsed T [1..i − 1], and aim to �nd the next
phrase, T [i..k]. We will exponentially search for k using O(log(k−i)) steps. Each
step implies determining whether some T [i..j] occurs in T starting to the left
of i (so that k is the maximum such j). To do this we exploit the fact that
our SLP is of height h = O(log n) and use Lemma 7 to extract an SLP for
T [i..j], of size g′ ≤ g + O(h) = g + O(log n), in O(h) = O(log n) time9. We
then search for the SLP of T [i..j] in the SLP of size g of T using Lemma 8, in
time O((g + g′) log(j − i)) ⊆ O(g log(k − i)) (because g′ ⊆ O(g), as g is always
Ω(log n)). By comparing the leftmost occurrence position with i we drive the
exponential search, �nding k in time O(g log2(k − i)) and space O(g).

Repeating this for each LZ phrase we get
∑z
i=1 g log

2 ni, where n1, n2, . . . , nz
denote the consecutive phrase lengths. By Jensen's inequality (since log2(·) is
concave), the sum is maximized when all ni = n/z.

Theorem 2. Given an SLP with g rules for a text T [1..n] whose LZ parse has
z phrases, we can build that parse in O(gz log2(n/z)) time and O(g) space.

9 Rytter [38] rebalances the grammar he extracts, but we do not need to do this.

5 Building an LCG from an SLP in Õ(n) time

Locally consistent grammars (LCGs) are actually run-length context-free gram-
mars, that is, they allow rules X → Y1 · · ·Yt (of size t) and run-length rules of
the form X → Y t, equivalent to X → Y · · ·Y (t copies of Y), of size 2. A par-
ticular kind of LCG can be obtained from T with the following procedure [27].
First, de�ne `k = (4/3)dk/2e−1 and call S0 = T . Then, for increasing levels k > 0,
create Sk from Sk−1 as follows:

1. If k is odd, �nd the maximal runs of (say, t > 1 copies of) equal symbols Y
in Sk−1 such that | exp(Y)| ≤ `k, create a new grammar rule X → Y t, and
replace the run by X. The other symbols are copied onto Sk as is.

2. If k is even, generate a function πk that randomly reorders the symbols
of Sk−1 and de�ne local minima as the positions 1 < i < |Sk−1| such that
πk(Sk−1[i−1]) > πk(Sk−1[i]) < πk(Sk−1[i+1]). Place a block boundary after
each local minimum, and before and after the symbols Y with | exp(Y)| > `k.
Create new rules for the resulting blocks of length more than 1 and replace
them in Sk by their corresponding nonterminals. Leave other symbols as is.

Our plan is to extract T left to right from its SLP, in O(n) time, and carry
out the described process in streaming form. The only obstacle to perform the
process at level k in a single left-to-right pass is the creation of the functions
πk without knowing in advance the alphabet of Sk−1. We can handle this by
maintaining two balanced trees. The �rst, Tid, is sorted by the actual symbol
identi�ers, and stores for each symbol a pointer to its node in the second tree,
Tpos. The tree Tpos is sorted by the current πk values (which evolve as new
symbols arise), that is, the πk value of a symbol is its inorder position in Tpos.
We can know the current value of a symbol in πk by going up from its node
in Tpos to the root, adding up one plus the number of nodes in the left subtree
of the nodes we reach from their right child (so Tpos stores subtree sizes to
enable this computation). Two symbols are then compared in logarithmic time
by computing their πk values using Tpos.

When the next symbol is not found in Tid, it is inserted in both trees. Its rank
r in Tpos is chosen at random in [1, |Tid|+1]. We use the subtree sizes to �nd the
insertion point in Tpos, starting from the root: let tl be the size of the left child
of a node. If r ≤ tl+1 we continue by the left child, otherwise we subtract tl+1
from r and continue by the right child. The balanced tree rotations maintain the
ranks of the nodes, so the tree can be rebalanced after the insertion adds a leaf.

Our space budget does not allow us maintaining the successive strings Sk.
Rather, we generate S0 = T left to right in linear time using the given SLP
and have one iterator per level k (the number of levels until having a single
nonterminal is logarithmic [27, Remark 3.16]). Each time the process at some
level k − 1 produces a new symbol, it passes that new symbol on to the next
level, k. When the last symbol of T is consumed, all the levels in turn close their
processes, bottom-up; the LCG comprises the rules produced along all levels.

The total space used is proportional to the number of distinct symbols across
all the levels of the grammar. This can be larger than the grammar size because

symbols X with | exp(X)| > `k are not replaced in level k, so they exist in the
next levels as well. To avoid this, we perform a twist that ensures that every
distinct grammar symbol is stored only in O(1) levels. The twist is not to store
in the trees the symbols that cannot form groups in this level, that is, those
X for which | exp(X)| > `k. Since then the symbols stored in the tree for even
levels k are forced to form blocks (no two consecutive minima can exist), they
will no longer exist in level k + 1. Note that the sizes of the trees used for the
symbols at level k are then proportional to the number of nonterminals of that
level in the produced grammar.

There is a deterministic bound O(δ log n
δ) on the total number of nontermi-

nals in the generated grammar [27, Corollary 3.12], and thus on the total sizes
of the balanced trees. Here, δ is the compressibility measure based on substring
complexity, and size O(δ log n

δ) is optimal for every n and δ [27, 28]. The size
glc of the produced LCG could be higher, as for some choices of letter permuta-
tions on various levels some right-hand of the productions can be of not-constant
length, however, but it is still O(δ log n

δ) in expectation and with high proba-
bility [27, Theorem 3.13]. Because the sum of the lengths of the strings Sk is
O(n) [27, Corollary 3.15], we produce the LCG in time O(n log glc); the log glc
comes from the cost of balanced tree operations.

Theorem 3. Given an SLP with g rules for a text T [1..n], we can build w.h.p.
an LCG of size glc = O(δ log n

δ) for T in O(n log glc) time and O(g+ glc) space.

If we know δ, we can abort the construction as soon as its total size exceeds
c · δ log n

δ for some suitable constant c, and restart the process afresh. After
O(1) attempts in expectation, we will obtain a locally consistent grammar of
size O(δ log n

δ) [27, Corollary 3.15]. The grammar we produce, in O(n log glc)
expected time, is then of guaranteed size glc = O(δ log n

δ). Note that we need a
structure mapping blocks and runs to new symbols: using a simple trie for the
rules uses O(glc) space and can be constructed in O(glc log glc) time.

6 Building the LZ parse from an LCG in Õ(z) time

One of the many advantages of LCGs compared to general SLPs is that, related
to De�nition 1, they may allow trying out only O(log |P |) splitting positions
of P in order to discover all their primary occurrences, as opposed to m − 1 if
using a generic SLP. This is the case of the LCG of size O(δ log n

δ) of the previous
section [27], which specializes [10], in the sense that any grammar produced with
the �rst method [27] can be produced by the second [10], and therefore every
property we prove for the second method holds for the �rst as well. The �rst
method introduces a restriction to produce grammars of size O(δ log n

δ), whereas
the second kind has a weaker space bound of O(γ log n

γ), where γ ≥ δ is the size
of the smallest string attractor of T [25] (concretely, the parsing is as in Section 5
but does not enforce the condition exp(X) ≤ `k). We now show how the bound
on the splitting positions number enables us to �nd the LZ parse of those LCGs

in time O(z log4 n). We will then stick to the more general LCG [10]; the results
hold for the other too [27], as explained.

Our technique combines results used for Theorems 1 and 2: we will use ex-
ponential search, as in Section 4, to �nd the next phrase T [i..k], and will use
the data structures of Section 3 to search for its leftmost occurrence in T ; the
fact that we will need to check just a logarithmic number of splitting points will
yield the bound. We start with an analogue of Lemma 1 for our LCG; we get
better bounds in this case.

Lemma 9. Given the LCG [10] of size glc of T [1..n], we can build in O(glc log glc)
time and O(glc) space a data structure supporting the same operations listed in
Lemma 1, all in O(log n) time.

Proof. Since the LCG is already balanced, accessing T [i] in O(log n) time is
immediate. The Karp-Rabin �ngerprints can be computed with the structure of
Christiansen et al. [10, Thm. A.3], which can be built in O(glc) space and time.

To compute longest common pre�xes (LCPs) we use a similar approach as
Kempa and Kociumaka [23, Thm. III.3] or earlier Alstrup, Brodal and Rauhe [1].
To deal with rules of non-constant size, we build a data structure for answering
the LCE queries on the (right-hand sides of) non-runs rules of the LCG. This
is a standard construction (using su�x arrays and LCA queries [5]) and can be
done in O(glc log glc) time and O(glc) space, or even in O(glc) time, when the
letters can be identi�ed with numbers that are polynomial in glc [20]. ut

Consider the cost to build the data structures of Section 3. Using Lemma 9,
we sort the multisets Y and Z in time O(glc log glc · log n). This time dominates
the construction time of the z-fast tries for Y and Z, the grid structure G, and the
two-dimensional range minimum query mentioned in Lemma 5. Further, because
glc ≤ γ log n

γ [10] and γ ≤ z [25], this time is in O(z log2 n log(n/z)).
After building those components, we start parsing the text using the expo-

nential search of Section 4. To test whether the candidate phrase T [i..j] occurs
starting to the left of i, we use the LCG search algorithm for T [i..j] provided by
the LCG. Christiansen et al. [10] observed that we need to check onlyO(log(j−i))
splitting points to �nd every primary occurrence of T [i..j]. They �nd the split-
ting points through a linear-time parse of T [i..j], but we can do better by reusing
the locally consistent parsing used to build the LCG. While we do not store the
strings Sk of Section 5, we can recover the pieces that cover T [i..j] by traversing
the (virtual) grammar tree from the root towards that substring of T .

Lemma 10 ([10]). LetM0(i, j) = {i, j−1}. For any k > 0, letMk(i, j) contain
the �rst and last positions ending a block of Sk that are within T [i..j − 1] but
do not belong to Mk′(i, j) for any k′ < k. Then, M(i, j) = ∪kMk(i, j) is of size
O(log(j − i)) and the splitting point of every primary occurrence of T [i..j] in T
belongs to M(i, j).

Proof. Our de�nition of M(i, j) includes the positions in De�nitions 4.7 and 4.8
of Christiansen et al. [10] (they use Br and B̂r instead of our even and odd levels
Sk). The property we state corresponds to their Lemma 6.4 [10]. ut

To compute M(i, j), then, we descend from the root of the (virtual) parse tree
of the LCG towards the lowest nonterminal X that fully contains T [i..j], and
continue from X towards the leaf L that contains T [i]. We then start adding to
M(i, j) the endpoint of L (which is i), and climb up to its parent P . If P ends
in the same position of L, we shift P to its next sibling. We now set L = P , add
the last position of L to M(i, j), climb up to its parent P , and so on until the
last position of L exceeds j − 1 (which may occur when reaching X or earlier).
We proceed analogously with the path from X to the leaf that contains T [j−1].

We visit O(log n) nodes in this process, but since the LCG may not be binary,
we may need O(log n) time to �nd the proper children of a node. The total time
is then O(log2 n).

Once the setM(i, j) of splitting points is found, we search for each of them as
in Lemma 5, each in time O(log(j−i) log n+log1+ε glc). Therefore, the total time
to check a candidate T [i..j] isO

(
log2 n+ log(j − i)

(
log(j − i) log n+ log1+ε glc

))
.

In turn, the exponential search that �nds the next phrase T [i..k] carries out
O(log(k − i)) such checks, with j − i ≤ 2(k − i), thus the total time to �nd
the next phrase is O(log(k− i) log2 n+ log3(k− i) log n+ log2(k− i) log1+ε glc).
Using Jensen's inequality again and simplifying, this yields the running time of
O(z log2(n/z) log2 n).

Theorem 4. Given the LCG of Christiansen et al. [10] of size glc of T [1..n],
we can build w.h.p. the LZ parse of T in O(z log2(n/z) log2 n) time and O(glc)
extra space. The result also holds verbatim for the LCG of Kociumaka et al. [27].

7 Conclusions

We have contributed to the problem of compressed conversions, that is, using
asymptotically optimal space, between various compression formats for repetitive
data. Such a space means linear in the input plus output size, which outrules
the possibility of decompressing the data. This is crucial to face the sharp rise
the size of data in sequence form has experienced in the last decades, which
requires manipulating the data always in compressed form. To the best of our
knowledge, we are the �rst to propose methods to build the Lempel-Ziv parse
of a text directly from its straight-line program representation. Our methods
work in time O(n log2 n) and O(gz log2 n). The second is polynomial on the size
of the compressed data and we thus call it a fully-compressed conversion; such
methods can be considerably faster when the data is highly compressible. We
also gave methods to convert from straight-line programs to locally consistent
grammars, which enable faster and more complex queries, in O(n log n) time.
As a showcase for their improved search capabilities, we show how to produce
the Lempel-Ziv parse from those grammars in time O(z log4 n), another fully-
compressed conversion. All of our conversions work with high probability.

Obvious open problems are obtaining better running times without using
more space. Furthermore, we think that approaches similar to those described
in this article can be applied to e�ectively compute other parses, such as the
lexicographic parse [34]. We plan to address these in the extended version.

Acknowledgements. We thank the anonymous reviewers, whose comments
helped to improve the presentation, correct several errors and give a much better
and more detailed exhibition of the state of the art in the introduction.

References

1. S. Alstrup, G. S. Brodal, and T. Rauhe. Pattern matching in dynamic texts. In
SODA, pages 819�828, 2000.

2. H. Arimura, S. Inenaga, Y. Kobayashi, Y. Nakashima, and M. Sue. Optimally com-
puting compressed indexing arrays based on the compact directed acyclic word
graph. In International Symposium on String Processing and Information Re-
trieval, pages 28�34, 2023.

3. D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast pre�x search in little space,
with applications. In 18th European Symposium on Algorithms (ESA), Part I,
pages 427�438, 2010.

4. D. Belazzougui and S. J. Puglisi. Range predecessor and Lempel-Ziv parsing. In
27th Symposium on Discrete Algorithms (SODA), pages 2053�2071, 2016.

5. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN,
pages 88�94, 2000.

6. P. Bille, I. L. Gørtz, P. H. Cording, B. Sach, H. W. Vildhøj, and S. Vind. Finger-
prints in compressed strings. J. Comput. Syst. Sci., 86:171�180, 2017.

7. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. S. Rao, and O. Weimann.
Random access to grammar-compressed strings and trees. SIAM Journal on Com-
puting, 44(3):513�539, 2015.

8. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554�2576, 2005.

9. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing, 17(3):427�462, 1988.

10. A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and N. Prezza.
Optimal-time dictionary-compressed indexes. ACM Transactions on Algorithms,
17(1):article 8, 2020.

11. F. Claude, G. Navarro, and A. Pacheco. Grammar-compressed indexes with loga-
rithmic search time. Journal of Computer and System Sciences, 118:53�74, 2021.

12. R. M. Durbin, A. Auton, and L. D. Brooks. A global reference for human genetic
variation. Nature, 526(7571):68�74, 2015.

13. T. Gagie, G. Navarro, and N. Prezza. Fully-functional su�x trees and optimal text
searching in BWT-runs bounded space. Journal of the ACM, 67(1):article 2, 2020.

14. M. Ganardi, A. Je», and M. Lohrey. Balancing straight-line programs. J. ACM,
68(4):27:1�27:40, 2021.

15. P. Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: fast, simple,
and deterministic. In European Symposium on Algorithms, pages 421�432, 2011.

16. P. Gawrychowski, A. Karczmarz, T. Kociumaka, J. �¡cki, and P. Sankowski. Op-
timal dynamic strings. In 29th ACM-SIAM Symposium on Discrete Algorithms,
pages 1509�1528, 2018.

17. P. Gawrychowski and T. Kociumaka. Sparse su�x tree construction in optimal
time and space. In 28th ACM-SIAM Symposium on Discrete Algorithms, pages
425�439. SIAM, 2017.

18. T. I. Longest common extensions with recompression. In 28th Symposium on
Combinatorial Pattern Matching (CPM), pages 18:1�18:15, 2017.

19. A. Je». Faster fully compressed pattern matching by recompression. ACM Trans-
actions on Algorithms (TALG), 11(3):1�43, 2015.

20. J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work su�x array construction.
J. ACM, 53(6):918�936, 2006.

21. R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching algorithms.
IBM journal of research and development, 31(2):249�260, 1987.

22. D. Kempa and T. Kociumaka. Resolution of the Burrows-Wheeler Transform con-
jecture. In 61st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 1002�1013, 2020.

23. D. Kempa and T. Kociumaka. Collapsing the hierarchy of compressed data struc-
tures: Su�x arrays in optimal compressed space. In 63rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1877�1886, 2023.

24. D. Kempa and D. Kosolobov. LZ-End parsing in compressed space. In 27th Data
Compression Conference (DCC), pages 350�359, 2017.

25. D. Kempa and N. Prezza. At the roots of dictionary compression: string attractors.
In 50th ACM SIGACT Symposium on Theory of Computing, pages 827�840, 2018.

26. J. C. Kie�er and E.-H. Yang. Grammar-based codes: A new class of universal
lossless source codes. IEEE Transactions on Information Theory, 46(3):737�754,
2000.

27. T. Kociumaka, G. Navarro, and F. Olivares. Near-optimal search time in δ-optimal
space. Algorithmica, 2023. accepted, available online.

28. T. Kociumaka, G. Navarro, and N. Prezza. Toward a de�nitive compressibility
measure for repetitive sequences. IEEE Transactions on Information Theory,
69(4):2074�2092, 2023.

29. A. Lempel and J. Ziv. On the complexity of �nite sequences. IEEE Transactions
on Information Theory, 22(1):75�81, 1976.

30. K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183�198, 1997.

31. G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2�20, 2014.
32. G. Navarro. Indexing highly repetitive string collections, part I: Repetitiveness

measures. ACM Computing Surveys, 54(2):article 29, 2021.
33. G. Navarro. Computing MEMs on repetitive text collections. In 34th Symposium

on Combinatorial Pattern Matching (CPM), page article 22, 2023.
34. G. Navarro, C. Ochoa, and N. Prezza. On the approximation ratio of ordered

parsings. IEEE Transactions on Information Theory, 67(2):1008�1026, 2020.
35. G. Navarro and N. Prezza. Universal compressed text indexing. Theoretical Com-

puter Science, 762:41�50, 2019.
36. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index and

LZ factorization in compressed space. Discret. Appl. Math., 274:116�129, 2020.
37. A. Policriti and N. Prezza. From LZ77 to the run-length encoded Burrows-Wheeler

Transform, and back. In 28th Symposium on Combinatorial Pattern Matching
(CPM), volume 78 of LIPIcs, pages 17:1�17:10, 2017.

38. W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302(1-3):211�222,
2003.

