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they cannot be extended to handle the general case. Extremely important ap-plications such as DNA, proteins, music or oriental languages fall outside thiscase.The indexes that solve the general problem can be divided into three classes.Backtracking [17,34, 11, 15] uses the su�x tree [2], su�x array [20] or DAWG[12] of the text in order to factor out its repetitions. A sequential algorithm onthe text is simulated by backtracking on the data structure. These algorithmstake time exponential on m or r but in many cases independent of n, the textsize. This makes them attractive when searching for very short patterns.Partitioning [31,30, 5] partitions the pattern into pieces to ensure that someof the pieces must appear without alterations inside every occurrence. An indexable of exact searching is used to detect the pieces and the text areas thathave enough evidence of containing an occurrence are checked with a sequentialalgorithm. These algorithms work well only when r=m is small.The third class [24,6] is a hybrid between the other two. The pattern isdivided into large pieces that can still contain (less) errors, they are searchedfor using backtracking, and the potential text occurrences are checked as in thepartitioning methods. The hybrid algorithms are more e�ective because theycan �nd the right point between length of the pieces to search for and errorlevel permitted. Using the appropriate partition of the pattern, these methodsachieve on average O(n�) search time, for some 0 < � < 1 that depends on r.They tolerate moderate error ratios r=m.We propose in this paper a brand new approach to the problem. We take intoaccount that the edit distance satis�es the triangle inequality and hence it de�nesa metric space on the set of text substrings. We can re-express the approximatesearch problem as a range search problem on this metric space. This approachhas been attempted before [8, 4], but in those cases the particularities of theproblem made it possible to index O(n) elements. In the general case we haveO(n2) text substrings.The main contribution of this paper is to devise a method (based on the suf-�x tree of the text) to meaningfully collapse the O(n2) text substring into O(n)sets, and to �nd a way to build a metric space out of those sets. The result is anindexing method that, at the cost of requiring on average O(n logn) space andO(n log2 n) construction time, permits �nding the R approximate occurrences ofthe pattern in O(m log2 n +m2 + R) average time. This is a complexity break-through over previous work, and it is easier than in other approaches to extendthe idea to other distance functions such as reversals. Moreover, it representsan original approach to the problem that opens a vast number of possibilitiesfor improvements. We consider also a simpler version of the index needing O(n)space and that, despite not involving a complexity breakthrough, promises to bebetter in practice.We use the following notation in the paper. Given a string s 2 �� we denoteits length as jsj. We also denote si the i-th character of s, for an integer i 2f1::jsjg. We denote si:::j = sisi+1 : : : sj (which is the empty string if i > j) and



si::: = si:::jsj. The empty string is denoted as ". A string x is said to be a pre�xof xy, a su�x of yx and a substring of yxz.2 Metric SpacesWe describe in this section some concepts related to searching metric spaces. Wehave concentrated only in the part that is relevant for this paper. There existrecent surveys if more complete information is desired [10].A metric space is, informally, a set of black-box objects and a distance func-tion de�ned among them, which satis�es the triangle inequality. The problemof proximity searching in metric spaces consists of indexing the set such thatlater, given a query, all the elements of the set that are close enough to thequery can be quickly found. This has applications in a vast number of �elds,such as non-traditional databases (where the concept of exact search is of nouse and we search for similar objects, e.g. databases storing images, �ngerprintsor audio clips); machine learning and classi�cation (where a new element mustbe classi�ed according to its closest existing element); image quantization andcompression (where only some vectors can be represented and those that cannotmust be coded as their closest representable point); text retrieval (where we lookfor documents that are similar to a given query or document); computationalbiology (where we want to �nd a DNA or protein sequence in a database allow-ing some errors due to typical variations); function prediction (where we wantto search for the most similar behavior of a function in the past so as to predictits probable future behavior); etc.Formally, a metric space is a pair (X; d), where Xis a \universe" of objectsand d :X � X �! R+ is a distance function de�ned on it that returns non-negative values. This distance satis�es the properties of re
exivity (d(x; x) = 0),strict positiveness (x 6= y ) d(x; y) > 0), symmetry (d(x; y) = d(y; x)) andtriangle inequality (d(x; y) � d(x; z) + d(z; y)).A �nite subset UofX, of size n = jUj, is the set of objects we search. Amongthe many queries of interest on a metric space, we are interested in the so-calledrange queries: Given a query q 2 Xand a tolerance radius r, �nd the set of allelements in Uthat are at distance at most r to q. Formally, the outcome of thequery is (q; r)d = fu 2U; d(q; u) � rg. The goal is to preprocess the set so asto minimize the computational cost of producing the answer (q; r)d.From the plethora of existing algorithms to index metric spaces, we focus onthe so-called pivot-based ones, which are built on a single general idea: Selectk elements fp1; : : : ; pkg from U (called pivots), and identify each element u 2Uwith a k-dimensional point (d(u; p1); : : : ; d(u; pk)) (i.e. its distances to thepivots). The index is basically the set of kn coordinates. At query time, mapq to the k-dimensional point (d(q; p1); : : : ; d(q; pk)). With this information athand, we can �lter out using the triangle inequality any element u such thatjd(q; pi)�d(u; pi)j > r for some pivot pi, since in that case we know that d(q; u) >r without need to evaluate d(u; q). Those elements that cannot be �ltered outusing this rule are directly compared against q.



An interesting feature of pivot-based algorithms is that they can reduce thenumber of �nal distance evaluations by increasing the number of pivots. De�neDk(x; y) = max1�j�k jd(x; pj) � d(y; pj)j. Using the pivots p1; :::; pk is equivalentto discarding elements u such that Dk(q; u) > r. As more pivots are addedwe need to perform more distance evaluations (exactly k) to compute Dk(q; �)(these are called internal evaluations), but on the other hand Dk(q; �) increasesits value and hence it has a higher chance of �ltering out more elements (thosecomparisons against elements that cannot be �ltered out are called external). Itfollows that there exists an optimum k.If one is not only interested in the number of distance evaluations performedbut also in the total cpu time required, then scanning all the n elements to �lterout some of them may be unacceptable. In that case, one needs multidimensionalrange search methods, which include data structures such as the kd-tree, R-tree,X-tree, etc. [36, 14]. Those structures permit indexing a set of objects in k-dimensional space in order to process range queries.In this paper we are interested in a metric space where the universe is theset of strings over some alphabet, i.e.X = ��, and the distance function is theso-called edit distance or Levenshtein distance. This is de�ned as the minimumnumber of character insertions, deletions and substitutions necessary to maketwo strings equal [19, 25]. The edit distance, and in fact any other distancede�ned as the best way to convert one element into the other, is re
exive, strictlypositive (as long as there are no zero-cost operations), symmetric (as long as theoperations allowed are symmetric), and satis�es the triangle inequality.The algorithm to compute the edit distance ed() is based on dynamic pro-gramming. Imagine that we need to compute ed(x; y). A matrix C0::jxj;0::jyj is�lled, where Ci;j = ed(x1::i; y1::j), so Cjxj;jyj = ed(x; y). This is computed asCi;0 = i; C0;j = j;Ci;j = if (xi = yj) then Ci�1;j�1 else 1 +min(Ci�1;j; Ci;j�1; Ci�1;j�1)The algorithm takes O(jxjjyj) time. The matrix can be �lled column-wise orrow-wise (there are more sophisticated ways as well). For reasons that will bemade clear later, we prefer the row-wise �lling. The space required is only O(jyj),since only the previous row must be stored in order to compute the new one,and therefore we just keep one row and update it.3 Text IndexingSu�x trees are widely used data structures for text processing [2, 1]. Any positioni in a text T de�nes a su�x of T , namely Ti:::. A su�x trie is a trie data structurebuilt over all the su�xes of T . At the leaf nodes the pointers to the su�xes arestored. Every substring of T can be found by traversing a path from the root.Roughly speaking, each su�x trie leaf represents a su�x and each internal noderepresents a di�erent substring of T .To improve space utilization, this trie is compacted into a Patricia tree [23]by compressing unary paths. The edges that replace a compressed path store



the whole string that they represent (via two pointers to their initial and �naltext position). Once unary paths are not present the trie, now called su�x tree,has O(n) nodes instead of the worst-case O(n2) of the trie. The su�x tree canbe directly built in O(n) time [22,35]. Any algorithm on a su�x trie can besimulated at the same cost in the su�x tree.We call explicit those su�x trie nodes that survive in the su�x tree, andimplicit those that are collapsed. Figure 1 shows the su�x trie and tree of thetext "abracadabra". Note that a special endmarker "$", smaller than any othercharacter, is appended to the text so that all the su�xes are external nodes.
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Finally, the su�x array [20] is a more compact version of the su�x tree,which requires much less space and poses a small penalty over the search time.If the leaves of the su�x tree are traversed in left-to-right order, all the su�xes ofthe text are retrieved in lexicographical order. A su�x array is simply an arraycontaining all the pointers to the text su�xes listed in lexicographical order, asshown in Figure 1. The su�x array stores one pointer per text position.The su�x array can be directly built (without building the su�x tree) inO(n logn) worst case time and O(n log logn) average time [20]. While su�xtrees are searched as tries, su�x arrays are binary searched. However, almostevery algorithm on su�x trees can be adapted to work on su�x arrays at anO(logn) penalty factor in the time cost. This is because each subtree of the su�xtree corresponds to an interval in the su�x array, namely the one containing allthe leaves of the subtree. To follow an edge of the su�x trie, we use binary searchto �nd the new limits in the su�x array. For example, the internal node (7) inthe su�x tree corresponds to the interval h6; 7i in the su�x array. Note thatimplicit nodes have the same interval than their representing explicit node.4 Our Algorithm4.1 IndexingA straightforward approach to text indexing for approximate string matchingusing metric spaces techniques has the problem that, in principle, there are O(n2)di�erent substrings in a text, and therefore we should index O(n2) objects, whichis unacceptable.The su�x tree provides a concise representation of all the substrings of atext in O(n) space. So instead of indexing all the text substrings, we index onlythe (explicit) su�x tree nodes. Therefore, we have O(n) objects to be indexedas a metric space under the edit distance.Now, each explicit internal node represents itself and the nodes that descendto it by a unary path. Hence, each explicit node that corresponds to a string xyand its parent corresponds to the string x represents the following set of stringsx[y] = fxy1; xy1y2; : : : ; xygwhere x[y] is a notation we have just introduced. For example, the internal node(4) in Figure 1 represents the strings "a[bra]" = f"ab"; "abr"; "abra"g.The leaves of the su�x tree represent a unique text substring and all itsextensions until the full text su�x is obtained. Hence, if T = zxy and x is aunique text substring (whose pre�xes are not unique), then the correspondingsu�x tree node is an explicit leaf, which for us represents the set fxg [ x[y].Table 1 shows the substrings represented by each node in our running example.Note that the external nodes that descend by the terminator character "$", i.e.e(8{11), represent a substring that is also represented at its parent and hence itcan be disregarded.



Node Su�x trie Su�x tree Node Su�x trie/treei(0) " " e(1) abra[cadabra]i(1) a [a] e(2) bra[cadabra]i(2) ab e(3) ra[cadabra]i(3) abr e(4) a[cadabra]i(4) abra a[bra] e(5) [cadabra]i(5) b e(6) a[dabra]i(6) br e(7) [dabra]i(7) bra [bra] e(8) abrai(8) r e(9) brai(9) ra [ra] e(10) rae(11) aTable 1. The text substrings represented by each node of the su�x trie and tree ofFigure 1. Internal nodes are represented as i(x) and externals as e(x).Hence, instead of indexing all the O(n2) text substrings, we index O(n) setsof strings, which are the sets represented by the explicit internal and the externalnodes of the su�x tree. In our example, this set isU = f"; [a]; a[bra]; [bra]; [ra];abra[cadabra]; bra[cadabra]; ra[cadabra]; a[cadabra]; [cadabra]; a[dabra];[dabra]g.We have now to decide how to index this metric space formed by O(n) setsof strings. Many options are possible, but we have concentrated on a pivot basedapproach. We select at random k di�erent text substrings that will be our pivots.For reasons that are made clear later, we choose to select pivots of lengths 0,1, 2, � � � , k � 1. For each explicit su�x tree node x[y] and each pivot pi, wecompute the distance between pi and all the strings represented by x[y]. Fromthe set of distances from a node x[y] to pi, we store the minimum and maximumones. Since all these strings are of the form fxy1:::yj; 1 � j � jyjg, all the editdistances can be computed in O(jpijjxyj) time.Following our example, let us assume that we have selected k = 5 pivotsp0 = "", p1 = "a", p2 = "br", p3 = "cad" and p4 = "raca". Figure 2 (left)shows the computation of the edit distances between i(4) = "a[bra]" and p3 ="cad". The result shows that the minimum and maximum values of this nodewith respect to this pivot are 2 and 4, respectively.In the case of external su�x tree nodes, the string y tends to be quite long(O(n) length on average), which yields a very high computation time for all theedit distances and anyway a very large value for the maximum edit distance (notethat ed(pi; xy) � jxyj � jpij). We solve this by pessimistically assuming that themaximum distance is n when the su�x tree node is external. The minimum editdistance can be found in O(jpijmax(jpij; jxj)) time, because it is not necessaryto consider arbitrarily long strings xy1:::yj: If we compute the matrix row byrow, then after having processed x we have a minimum value seen up to now, v.Then there is no point in considering rows j such that jxj+ j � jpij > v. Hencewe work until row j = v + jpij � jxj � jpij.



c a d0 1 2 3a 1 1 1 2b 2 2 2 2r 3 3 3 3a 4 4 3 4 c a dabra 4 4 3 4c 5 4 4 4a 6 5 4 5d 7 6 5 4a 8 7 6 5b 9 8 7 6r 10 9 8 7a 11 10 9 8Fig. 2. The dynamic programming matrix to compute the edit distance between "cad"and "a[bra]" (left) or "abra[cadabra]" (right). The emphasized area is where theminima and maxima are taken from.Figure 2 (right) illustrates this case with e(1) = "abra[cadabra]" and thesame p4 = "cad". Note that to compute the new set of edit distances we havestarted from i(4), which is the parent node of e(1) in the su�x tree. This canalways be done in a depth �rst traversal of the su�x tree and saves constructiontime. Note also that it is not necessary to compute the last 4 rows, since theymeasure the edit distance between strings of length 8 or more against one oflength 3. The distance cannot be smaller than 5 and we have found at thatpoint a minimum equal to 4. In fact we just assume that the maximum is 11,so the minimum and maximum value for this external node and this pivot are4 and 11. In particular, since when indexing external nodes x[y] we always haveed(pi; x) already computed, they can be indexed in O(jpij2) time.Once this is done for all the su�x tree nodes and all the pivots we have a setof k minimum and maximum values for each explicit su�x tree node. This canbe regarded as a hyperrectangle in k dimensions:x[y] ! h (min(ed(x[y]; p0)); : : : ;min(ed(x[y]; pk�1)));(max(ed(x[y]; p0)); : : : ;max(ed(x[y]; pk�1))) iwhere we are sure that all the strings in x[y] lie inside the rectangle. In ourexample, the minima and maxima for i(4) with respect to p0 to p4 are h2; 4i,h1; 3i, h1; 2i, h2; 4i and h3; 3i. Therefore i(4) is represented by the hyperrec-tangle h(2; 1; 1; 2; 3); (4; 3;2;4;3)i. On the other hand, the ranges for e(1) areh5; 11i, h4; 11i, h3; 11i, h4; 11i and h2; 11i and its hyperrectangle is thereforeh(5; 4; 3; 4; 2); (11;11;11;11;11)i.4.2 SearchingLet us now consider a given query P searched for with at most r errors. Thisis a range query with radius r in the metric space of the su�x tree nodes. Asfor pivot based algorithms, we compare the pattern P against the k pivots andobtain a k-dimensional coordinate (ed(P; p1); : : : ; ed(P; pk)).



Let pi be a given pivot and x[y] a given node. If it holds thated(P; pi) + r < min(ed(x[y]; pi)) _ ed(P; pi)� r > max(ed(x[y]; pi))then, by the triangle inequality, we know that ed(P; xy0) > r for any xy0 2 x[y].The elimination can be done using any pivot pi. In fact, the nodes that arenot eliminated are those whose rectangle has nonempty intersection with therectangle h(ed(P; p1) � r; : : : ; ed(P; pk)� r); (ed(P; p1) + r; : : : ; ed(P; pk) + r)i.Figure 3 illustrates. The node contains a set of points and we store its min-imum and maximum distance to two pivots. These de�ne a (2-dimensional)rectangle where all the distances from any substring of the node to the pivotslie. The query is a pattern P and a tolerance r, which de�nes a circle around P .After taking the distances from P to the pivots we create a hypercube (a squarein this case) of width 2r+ 1. If the square does not intersect the rectangle, thenno substring in the node can be close enough to P .
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Fig. 3. The elimination rule using two pivots.We have to solve the problem of �nding all the k-dimensional rectanglesthat intersect a given query rectangle. This is a classical multidimensional rangesearch problem [36,14]. We could for example use some variant of R-trees [16,7], which would also yield a good data structure to work on secondary memory.Those nodes x[y] that cannot be eliminated using any pivot must be directlycompared against P . For those whose minimum distance to P is at most r, wereport all their occurrences, whose starting points are written in the leaves ofthe subtree rooted by the node that has matched. In our running example, ifwe are searching for "abr" with tolerance r = 1, then node i(4) quali�es, so wereport the text positions in the corresponding tree leaves: 1 and 8.Observe that in order to compare P against a given su�x tree node x[y],the edit distance algorithm forces us to compare it against every pre�x of x aswell. Those pre�xes correspond to su�x tree nodes in the path from the root tox[y]. In order not to repeat work, we mark in the su�x tree the nodes that wehave to compare explicitly against P , and also mark every node in their path



to the root. Then, we backtrack on the su�x tree entering every marked nodeand keeping track of the edit distance between P and the node. The new row iscomputed using the row of the parent, just as done with the pivots. This avoidsrecomputing the same pre�xes for di�erent su�x tree nodes, and incidentally issimilar to the simplest backtracking approach [15], except that in this case weonly follow marked paths. In this respect, our algorithm can be thought of as apreprocessing to a backtracking algorithm, which �lters out some paths.As a practical matter, note that this is the only step where the su�x tree isrequired. We can even print the text substrings that match the pattern withoutthe help of the su�x tree, but we need it in order to report all their text positions.For this sake, a su�x array is much cheaper and does a better job (because allthe text positions are listed in a contiguous interval). In fact, the su�x arraycan also replace the su�x tree at indexing time.5 AnalysisLet us �rst consider the construction cost. The maximum length of a repeatedtext substring, or which is the same, the average height of the su�x trie, isO(logn) [32, 29]. Recall also that our pivots are of length O(k). Hence comput-ing all the kn minima and maxima takes time O(kn � k logn) = O(k2n logn),where O(k log n) is the time to compute each distance. However, we start thecomputation of the edit distances of a node from the last row of its parent. Thisreduces the average construction cost to O(k2n), since for each pivot we computeone dynamic programming row per su�x trie node, and on average the numberof nodes in the su�x trie is O(n) [32,29]. The n leaves are also computed inO(jpij2n) = O(k2n) time.The total space required by the data structure is O(kn), since we need tostore for each explicit node a pointer to the su�x tree and its k coordinates.The su�x tree itself takes O(n) space.It remains to determine the average search time. A key element of the analy-sis is a constant �, which is the probability that, for a random hyperrectangleof the set, along some �xed coordinate, the corresponding segment of the queryhypercube intersects with the corresponding segment of the hyperrectangle. An-other way to put it is that, along that coordinate, the query point falls insidethe hyperrectangle projection onto that coordinate after it is enlarged in r unitsalong each dimension. In operational terms, � is the probability that some givenpivot (that corresponding to the selected coordinate) does not permit discardinga given element. Note that � does not depend on k, only on r.The �rst part of the search is the computation of the edit distances betweenthe k pivots and the pattern P of length m. This takes O(k2m) time.The second part is the search for the rectangles that intersect the queryrectangle. Many analyses of the performance of R-trees exist in the literature[33,18, 26, 27, 13]. Despite that most of them deal with the exact number of diskaccesses, their abstract result is that the expected amount of work on the R-tree(and variants such as the KDB-tree [28]) is O(n�k log n).



The third part, �nally, is the direct check of the pattern against the su�xtree nodes whose rectangles intersect the query rectangle. Since we discard usingany of k random pivots, the probability of not discarding a node is �k. As thereare O(n) su�x tree nodes, we check on average �kn nodes, with a total cost ofO(�kn�m2). The m2 is the cost to compute the edit distance between a patternof length m and a candidate whose length must be between m � r and m + r.This is because the pivot " removes all shorter or longer candidates.At the end, we report the R results in O(R) time using a su�x tree traversal.Hence our total average cost is bounded by k2m + n�k log n+ n�km2 +R for0 � � � 1. This is optimized for k� = log1=� n + O(log log n) � log1=� n =�(logn).If we use log1=� n pivots the search cost becomes O(m log2 n + m2 + R) onaverage. Note that the in
uence of the search radius r is embedded in �. Thisis much better complexity than all previous work, which obtains O(mn�) timefor some 0 < � < 1. Moreover, much of previous work requires m = 
(log n) toobtain sublinearity, while our approach does not.The price is in the construction time and space, which become O(n log2 n)and O(n logn), respectively. Especially the latter can be prohibitive and we mayhave to content ourselves with a smaller k. There seems to be no good tradeo�between space and time, e.g., to obtain O(n�) time we also need �(log n) pivots.Most other indexes require O(n) space and construction time.Finally, it is worth mentioning that, since we automatically discard any in-ternal node not in the length [m� r;m+ r] thanks to the pivot p0 = ", there isa worst-case limit �m+r on the number of su�x tree nodes to consider for thelast phase. Although this limit is exponential on m and r, it is independent ofn. Other indexing schemes based on the su�x tree share the same property.6 Towards a Practical ImplementationDespite that we have obtained an important reduction in time complexity withrespect to n and m, our result is hiding a multiplying factor that depends on thesearch radius. It is possible that this constant is too large (that is, � too closeto 1) and makes the whole approach useless. Also, the extra space requirement(which also increases as � tends to 1) can be unmanageable. In this sectionwe consider an alternative approach that is simpler and likely to obtain betterresults in practice, despite not involving a complexity breakthrough.6.1 Indexing only Su�xesA simpler index that derives from the same ideas of the paper considers only then text su�xes and no internal nodes. Each su�x [Tj:::] represents all the textsubstrings starting at i, and it is indexed according to the minimum distancebetween those substrings and each pivot.The good point of the approach is reduced space. Not only the set Ucan haveup to half the elements of the original approach, but also only k values (not 2k)



are stored for each element, since all the maximum values are the same. Thispermits using up to four times the number of pivots of the previous approach atthe same memory requirement. Note that we do not even need to build or storethe su�x array: We just read the su�xes from the text and index them. Ouronly storage need is that of the metric index.The bad point is that the selectivity of the pivots is reduced and some redun-dant work is done. The �rst is a consequence of storing only minimum values,while the second is a consequence of not factoring out repeated text substrings.That is, if some substring P 0 of T is close enough to P and it appears manytimes in T , we will have to check all its occurrences one by one.Without using a su�x tree structure, the construction of the index can bedone in time O(kjpijn) as follows. The algorithm depicted in Section 2 to computeedit distance can be modi�ed so as to make C0;j = 0, in which case Ci;j becomesthe minimum edit distance between x1:::i and a su�x of y1:::j . If x is the reverseof jpij and y the reverse of T , then Cjpij;j will be the minimum edit distancebetween jpij and a pre�x of Tn�j+1:::, which is precisely min(ed(pi; Tn�j+1:::)).So we need O(jpijn) time per pivot. The space to compute this is just O(jpij) bydoing the computation column-wise.6.2 Using an Index for High DimensionsThe space of strings has a distance distribution that is rather concentratedaround its mean �. The same happens to the distances between a pivot piand su�xes [Tj:::] or the pattern P . Since we can only discard su�xes [Tj:::]such that ed(pi; P ) + r < min(ed(pi; [Tj:::])), only the su�xes with a largemin(ed(pi; [Tj:::])) value are likely to be discarded using pi. Storing all the otherO(n) distances to pi is likely to be a waste of space. Moreover, we can use thatmemory to introduce more pivots. Figure 4 illustrates.The idea is to �x a number s and, for each pivot pi, store only the s largestmin(ed(pi; [Tj:::])) values. Only those su�xes can be discarded using pivot pi.The space of this index is O(ks) and its construction time is unchanged. Wecan still use an R-tree for the search, although the rectangles will cover all thespace except on s coordinates. The selectivity is likely to be similar since we havediscarded uninteresting coordinates, and we can tune number k versus selectivitys of the pivots for the same space usage O(ks).One can go further to obtain O(n) space as follows. Choose the �rst pivotand determine its s farthest su�xes. Store a list (in increasing distance order)of those su�xes and their distance to the �rst pivot and remove them fromfurther consideration. Then choose a second pivot and �nd its s farthest su�xesfrom the remaining set. Continue until every su�x has been included in thelist of some pivot. Note that every su�x appears exactly in one list. At searchtime, compare P against each pivot pi, and if ed(P; pi) + r is smaller than thesmallest (�rst) distance in the list of pi, skip the whole list. Otherwise traversethe list until its end or until ed(P; pi)+ r is smaller than the next element. Eachtraversed su�x must be directly compared against P . A variant of this idea hasproven extremely useful to deal with concentrated histograms [9]. It also permits



ed(p,P)

ed(p,[T(j...)])

+rFig. 4. The distance distribution to a pivot p, including that of pattern P . The grayedarea represents the su�xes that can be discarded using p.e�cient secondary storage implementation by packing the pivots in disk pagesand storing the lists consecutively in the same order of the pivots.Since we choose k = n=s pivots, the construction time is high, namelyO(n2jpij=s). However, the space is O(n), with a low constant (close to 5 inpractice) that makes it competitive against the most economical structures forthe problem. The search time is O(jpijmn=s) to compare P against the pivots,while the time to traverse the lists is di�cult to analyze.The pivots chosen must not be very short, because their minimum distanceto any [Tj:::] is at most jpij. In fact, any pivot not longer than m + r is useless.6.3 Using Speci�c Strings PropertiesWe can complement the information given by the metric index with knowledgeof the string properties we are indexing. For example, if su�x [Tj:::] is provento be at distance r + t from P , then we can also discard su�xes starting in therange j � t+ 1 : : : j + t� 1.Another idea is to compute the edit distance between the reverse pivot andthe reverse pattern. Although the result is the same, we learn also the distancesbetween the pivot and su�xes of the pattern. This can also be useful to discardsu�xes at veri�cation time: If d0 = ed(P1:::`; Ti:::i0) and we know from the indexthat ed(P`+1:::; Ti0+1:::) > r � d0, then a match is not possible.Other ideas, such as hybrid algorithms that partition the pattern and searchfor the pieces permitting less errors [6], can be implemented over our metricindex instead of over a su�x tree or array. Indeed, our data structure shouldcompete in the area of backtracking algorithms, as the others are orthogonal.
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