
1

Practical Compact Indexes for Top-k Document Retrieval

SIMON GOG, Karlsruhe Institute of Technology

ROBERTO KONOW, University of Chile and Universidad Diego Portales

GONZALO NAVARRO, University of Chile

We present a fast and compact index for top-k document retrieval on general string collections. That is,
given a string pattern, the index returns the k documents where it appears most often. We adapt a linear-
space and optimal-time theoretical solution, whose implementation poses various algorithm engineering
challenges. While a naive implementation of the optimal solution is estimated to require around 80n bytes
for a text collection of n symbols, our implementation requires 2.5n–3.0n bytes, text included, and answers
queries within microseconds. This outperforms all the previous practical indexes by orders of magnitude; the
only index using less space is hundreds of times slower. Our index can be built on collections of hundreds of
gigabytes and on tokenized text collections.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Compact Data Structure , Top-k document retrieval

1. INTRODUCTION

The task of finding relevant information in large text collections poses many challenges
to developers and users of Information Retrieval (IR) systems [Büttcher et al. 2010;
Croft et al. 2009; Baeza-Yates and Ribeiro-Neto 2011]. The core task of IR systems,
and its most common application in search engines, is to return the k documents from
the collection that best relate to user queries.

The most prominent challenges to build a useful IR system are (1) quality, (2) time,
and (3) space. The quality problem boils down to defining a suitable scoring scheme.
Score functions range from very simple (such as “term frequency”, the number of times
the query appears in the document) to very sophisticated ones. In many cases a sim-
ple score function is used to filter a few candidate documents and more sophisticated
ranking is then computed on those [Büttcher et al. 2010; Liu 2009]. This is because of
the second concern, time. Text collections are usually too large to admit a sequential
query processing. Indexes are data structures built on the text to speed up queries, and
this is connected with the third challenge: space. Designing and implementing an in-
dex that provides a good trade-off in terms of space and time is a challenging problem
from both a theoretical and a practical point of view.

In most search engines, top-k queries are solved using a well-known data structure
called an Inverted Index. This is an old and simple, yet efficient, data structure that
plays a central role in IR. Inverted Indexes have been designed for scenarios where
queryable terms are predefined and are not too many compared to the size of the col-
lection. For example, they work very well on collections where the documents can be

Funded with basal funds FB0001, Conicyt, Chile; with Fondecyt Grant 1-140796, Chile; and with a Conicyt
PhD Scholarship.
Preliminary partial versions of this work appeared in Konow and Navarro [2013] and Gog and Navarro
[2015].
Author’s addresses: Simon Gog, Karlsruhe Institute of Technology (KIT), Germany, simon.gog@googlemail.
com; Roberto Konow and Gonzalo Navarro, Center for Biotechnology and Bioengineering, Department of
Computer Science, University of Chile, Chile, rkonow@dcc.uchile.cl, gnavarro@dcc.uchile.cl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 1084-6654/2015/01-ART1 $15.00
DOI: 0000001.0000001

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:2 S.Gog et al.

easily tokenized into “words”, and queries are also formed by words. This is a common
scenario for documents written in most Western languages. On the other hand, there
are several applications where top-k queries are of interest but inverted indexes are
not useful. One are the text collections written in East Asian languages such as Chi-
nese or Korean, where words are difficult to segment, or in agglutinating languages
such as Finnish and German, where one needs to search for particles inside words.
There are also sequence collections with no concept of words, such as software source
repositories, MIDI streams, DNA and protein sequences. In these cases, virtually any
text substring is a potential query.

In this paper we focus on indexing a collection of generic strings to support top-k
queries on it. The top-k document retrieval problem can then be defined as follows: a
collection D of D documents, consisting of sequences of total length n over an alpha-
bet of size σ, is preprocessed so that given a query string P of length m, the system
retrieves k documents with the highest “score” to P , for some definition of score.

The basic solutions to this general problem build a suffix tree [Weiner 1973] or a
suffix array [Manber and Myers 1993], which are indexes that can count and list all the
individual occurrences of P in the collection, in optimal or near-optimal time. Still this
functionality is not sufficient to solve top-k document retrieval efficiently. The problem
of finding top-k documents containing the pattern as a substring, even with a simple
relevance measure like term frequency, is challenging. Hon et al. [2010] presented
the first efficient solution, achieving O(m + log n log log n + k) time, yet with super-
linear space usage, O(n log2 n) bits. Then Hon et al. [2009] improved the solution to
O(m+ k log k) time and linear space, O(n log n) bits. The problem was then essentially
closed by Navarro and Nekrich [2012], who achieved optimal O(m + k) time using
O(n(log σ + logD)) bits.

In practice, however, those solutions are far from satisfactory. Implemented directly
from the theory, the constants involved in the optimal (and previous) solutions are not
small, especially in space: The index can be as large as 80 times the size of the collec-
tion, making it unfeasible in practice. Just a component of the solution, the suffix tree,
can be 20 times larger than the text, and the suffix array, 4 times. There has also been
a line of research aiming at optimal space, see Navarro [2014]. While they achieved
important theoretical results, a verbatim implementation is likely to be equally insat-
isfactory.

The most practical implementations [Culpepper et al. 2010; Navarro et al. 2014b;
Gog et al. 2014] have followed an intermediate path in terms of space, using 2–5 times
the text size and answering queries within milliseconds. Still, they are toy implemen-
tations, limited to relatively small collections of a few hundred megabytes. They are
also restricted to sequences over small alphabets (usually σ = 255 distinct symbols),
which prevents using them on sequences of words, for example.

In this work, we show that a carefully engineered implementation of the optimal-
time proposal [Navarro and Nekrich 2012] is competitive in space with current imple-
mentations and performs orders of magnitude faster. Our new top-k index implemen-
tation uses 2.5–3.0 times the text size and answers queries within microseconds, in
collections of hundreds of gigabytes and over alphabets of up to millions of symbols.
Our experimental comparison shows that our index is orders of magnitude faster than
previous heuristics [Culpepper et al. 2010], naive solutions [Gog et al. 2014], and com-
pressed solutions [Navarro et al. 2014b], whereas only the latter uses less space than
ours. We also present results on collections of 500 GB, where existing implementations
of the previous structures cannot be built.

Our ability to handle large alphabets allows us to apply our index on collections of
natural language text, which are regarded as sequences of words (not characters), so

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:3

d
1

d
2

d
3

C = A T A # T A A A # T T A # $

1 2 3 4 5 6 7 8 9 10 11 12 13 14i =

A

15

Fig. 1. Concatenation C of our 3-document example collection D.

that our index offers a functionality similar to an inverted index. In this case our index
takes about the same space of the tokenized collection (i.e., one integer per word, and
this includes the storage of the collection itself).

This paper is structured as follows. Section 2 presents basic concepts. Section 3 pro-
vides a discussion on the state of the art and Section 4 describes the optimal-time top-k
structures we implement. Section 5 describes a basic compact index that implements
the theoretical proposal within reasonable space. Section 6 discusses various algorith-
mic improvements over the basic solution, obtaining improved time and space. Section
7 describes the experimental framework, collections and implementation details of the
introduced indexes. Section 8 shows the space and time results for the new and previ-
ous indexes. Finally, Section 9 summarizes our results and discusses future paths to
improve compact top-k indexes.

2. BASIC CONCEPTS

This section describes the basic concepts and data structures that are employed in the
design and implementation of indexes for solving top-k document retrieval queries.
Each one is described at the depth that is needed to follow the article.

2.1. Document collections

We define a collection of D documents D = {d1, d2, . . . , dD} containing symbols from
an alphabet Σ of size σ, where each di ends with a special symbol # ∈ Σ. We call C =
d1d2 . . . dD$ their concatenation, ended by another symbol $ ∈ Σ; for the lexicographic
comparisons we assume it holds $ < # < c for any other c ∈ Σ. We call n = |C| =

1 +
∑D

i=1 |di|. Fig. 1 shows an example of a collection containing 3 documents, of total
length n = 14.

2.2. Suffix arrays

A suffix array [Manber and Myers 1993] is a common full-text index that allows us to
efficiently retrieve, for an arbitrary pattern, the amount of its occurrences and their
positions in a given text. Let T = t1t2 . . . tn be a text, with ti ∈ Σ for all 1 ≤ i < n and
tn = $. The suffix array SA[1, n] contains pointers to every suffix of T, lexicographically
sorted. For a position i ∈ [1, n], SA[i] points to the suffix T[SA[i], n] = tSA[i]tSA[i]+1 . . . tn,
and it holds that T[SA[i], n] is lexicographically smaller than T[SA[i+1], n]. To find the
occurrences of an arbitrary pattern P of length m, two binary searches are performed
to find the maximal interval [sp, ep] such that for every position in SA[sp ≤ i ≤ ep] the
pattern P is a prefix of T[SA[i], n], that is, P occurs at the positions SA[i] in T. It takes
O(m log n) time to find the interval. Fig. 2 shows an example of a suffix array.

2.3. Generalized suffix trees

Each substring C[i, n], with i ∈ [1, n], is called a suffix of C. The generalized suffix tree
(GST) of C is a path-compressed trie (i.e., unary paths are collapsed) in which all the
suffixes of C are inserted. Internal nodes correspond to repeated strings of C and the

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:4 S.Gog et al.

C = A T A # T A A A # T T A # $

SA = 15 14 4 9 13 3 8 7 6 11 1 12 2

A

5 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14i = 15

Fig. 2. Suffix array (SA) example for the example sequence C = ATA#TAAA#TATA#$. The positions
SA(12, 15) = 〈12, 2, 5, 10〉 are those where the string “TA” appears.

15

14

4 9 13

3 8

7 6

12 2

5

10

3

1 2 3

1 2

2 2

3 1

2

3

111

3 1

TA

T
A
#
$

A
A
#
T
A
T
A
#
$

T
A
A
A
#
T
A
T
A
#
$

$

#

T
A
A
A
#
T
A
T
A
#
$

$

A
#
T
A
T
A
#
$T

A
T
A
#
$

T
A
#
$

A
A
T
A
T
A
#
$

T
A

#

$

A

T
A
#
$

A
A
T
A
T
A
#
$

T
A$

#

$

TA#A

Fig. 3. Generalized suffix tree for the example sequence C = ATA#TAAA#TATA#$. The leaves point to the
positions in C where the suffixes appear. The corresponding document numbers are written below.

leaves correspond to suffixes. For internal nodes v, path(v) is the concatenation of the
edge labels from the root to v. The suffix tree can list the occ occurrences of a pattern
P of length m in optimal O(m + occ) in time, by traversing from the root to the locus
of P , i.e., the highest node v such that P is a prefix of path(v). Then all the occurrences
of P correspond to the leaves of the subtree rooted at v. These leaves correspond to the
range SA[sp, ep]. Indeed, v is the lowest common ancestor of the sp-th and the ep-th
leaves. The suffix tree has O(n) nodes and it uses O(n) words of space. Fig. 3 shows an
example of a generalized suffix tree built over the collection of Fig. 1.

We call tf(v, d) the number of leaves associated with document d that descend from
the node v, that is, the number of times path(v) appears in document d. This is a basic
score measure (called “term frequency”, hence the name tf) of the relevance of d for the
pattern path(v).

2.4. Compressed suffix arrays and self-indexes

The Compressed Suffix Array (CSA) (see Navarro and Mäkinen [2007]) can represent
the text and its suffix array SA within the space of the compressed text, at most n log σ
bits. This representation allows us to perform the following operations:

— SEARCH(P): determine the interval SA[sp, ep] corresponding to a pattern P .
— COUNT(P): return the number of occurrences of P (just ep− sp+ 1).
— LOCATE(i): compute SA[i] for any i.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:5

— EXTRACT(l, r): rebuild any T[l, r] from the original text.

Since the CSA is able to extract the original text from the index, it is considered as a
replacement of T, and thus is called a self-index. A class of CSAs based on the so-called
Ψ-function can compute SA[i] in tl = O(log n) time and are able to search for the pattern
and count its occurrences in time ts(m) = O(m log n). Another class, called FM-Indexes

[Ferragina and Manzini 2005], compute SA[i] in time tl = O(log1+ǫ n) for any ǫ > 0
and provides search for P in time ts(m) = O(m log σ). Those are practical complexities
achieved in implemented CSAs; better complexities are possible in theory. We refer
the reader to surveys or books for more details [Navarro and Mäkinen 2007; Navarro
2016].

2.5. Bitmaps

Given a binary sequence B[1, n] one can build a data structure [Clark 1996; Munro
1996] that requires n+ o(n) bits and supports in O(1) time the following operations:

— RANKb(B, i) : number of occurrences of bit b in B[1, i].
— SELECTb(B, j) : position in B of the jth occurrence of bit b.
— ACCESS(B, k) : the kth bit from bitmap B, i.e., B[k].

In practice these operations require a space overhead, on top of the n bits, of around
0.05n–0.25n bits, and the operations run in less than a microsecond [Vigna 2008; Gog
and Petri 2014].

Raman et al. [2007] introduced another constant-time solution that compresses the
bitmaps that have few 0s or few 1s. Okanohara and Sadakane [2007] presented a
data structure called SDArray that performs better on very sparse bitmaps (very few
1s, m ≪ n). It can support SELECTb in constant time, and RANKb and ACCESS in time
O(log(n/m)). Recently, Karkkainen et al. [2014] introduced the hybrid bit vector, which
divides the bitmap into blocks and then chooses the encoding of each block separately
from the techniques previously described.

2.6. Compact ordinal trees

There are Θ(4n/n3/2) general trees containing n nodes, therefore one needs
log2(4

n/n3/2) = 2n − Θ(log n) bits to represent any tree. Many compact representa-
tions that implement the operations in O(1) time while requiring 2n + o(n) bits have
been proposed [Munro and Raman 2002; Benoit et al. 2005; Navarro and Sadakane
2014]. A practical comparison [Arroyuelo et al. 2010] showed that, in practice, the
best structures use 2.1–2.3 bits per node and solve the operations within microseconds.
The representation of Navarro and Sadakane [2014] was shown to be the fastest in
practice among those supporting full functionality. In this paper we use it to solve
queries PREORDER(v) (the preorder of node v), PREORDER SELECT(i) (the ith node in
preorder), DEPTH(v) (depth of node v), SUBTREE SIZE(v) (number of nodes in subtree
rooted at v), LEAF RANK(v) (number of leaves to the left of v), LEAF SELECT(i) (the
ith leaf left to right), and LCA(u, v) (lowest common ancestor of nodes u and v). This
representation uses about 2.3n bits in practice.

2.7. Range maximum queries

The Range Maximum Query (RMQ) over an array A is defined as RMQA(i, j) =
argmaxi≤k≤jA[k]. It is possible to solve this query in constant time after preprocess-
ing A and storing a structure using 2n + o(n) bits that does not access A at query
time [Fischer and Heun 2011]. This data structure can be configured to answer range
minimum queries as well. In practice its time is close to that of ordinal tree operations.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:6 S.Gog et al.

2.8. Direct access codes

A recurrent problem of variable-length representations of integer sequences is how
to directly access the ith number in the sequence. Brisaboa et al. [2013] presented
a simple and practical solution called Direct Access Codes. The idea is to pack each
variable-length integer into chunks of length b. Then the chunks are rearranged to
allow the access of any ℓ-bit number in the sequence in time O(ℓ/b). The maximum
space overhead for a number of ℓ bits is ℓ/b+ b bits.

2.9. Wavelet trees

The wavelet tree [Grossi et al. 2003] of an integer sequence S[1, n] containing σ different
symbols, is a binary balanced tree that stores a bitmap in every node except the leaves.
Every position of the root bitmap is a ‘0’ or ‘1’ depending whether the symbol at the
corresponding position of S belongs to the first or the second half of the alphabet. The
symbols that are marked with a ‘0’ are recursively represented in the left subtree of the
root, while those marked with a ‘1’ are representing on the right subtree. The halving
of the alphabet continues recursively until the leaves, which represent single symbols.
The wavelet tree has σ leaves, each level of the tree requires n bits, and the height
of the tree is log σ. Therefore, the wavelet tree needs n⌈log σ⌉ bits, just like a plain
representation of S.

The wavelet tree can retrieve any symbol S[i] in time O(log σ) if ACCESS and RANKb

operations are enabled on its bitmaps, and therefore it can act as a replacement of S
(this increases the space in o(n log σ) bits). To recover S[i], it checks if the root bitmap
has a 0 at position i. In this case, the symbol belongs to the left part of the alphabet,
so it continues on the left with the new position i = RANK0(i). Otherwise, it continues
on the right with the position i = RANK1(i). When it reaches a leaf, its symbol is S[i].
With a similar procedure we can support query RANKc(S, i), which counts the number
of occurrences of symbol c in S[1, i].

Wavelet trees can also be used to represent an n × r grid that contains n points,
one per column [Mäkinen and Navarro 2006]. The root represents the sequence of
coordinates yi of the points in x-coordinate order. It only stores a bitmap B[1, n] telling
at B[i] whether yi < r/2. Then the points with yi < r/2 are represented, recursively,
on the left child of the root, and the others on the right. Adding RANKb capabilities
to the bitmaps, the wavelet tree requires overall n log r(1 + o(1)) bits and can track
any point towards its leaf (where the yi value is revealed) in time O(log r), just as we
have shown to retrieve S[i]. It can also count, in O(log r) time, the number of points
lying inside a rectangle [x1, x2]× [y1, y2]: Start at the root with the interval [x1, x2] and
project those values towards the left and right children (on the left child the interval
is [RANK0(B, x1 − 1) + 1,RANK0(B, x2)], and similarly with RANK1 on the right). This
is continued until reaching the O(log r) wavelet tree nodes that cover [y1, y2]. Then
the answer is the sum of the lengths of the mapped intervals. One can also track
those points toward the leaves and report them, each in time O(log r). Fig. 4 shows
the wavelet tree of an example sequence S and a grid interpreting S as a sequence of
values yi.

2.10. Wavelet trees and RMQs

Navarro et al. [2013] introduced compact data structures for various queries on two-
dimensional weighted points, including range top-k queries. They enhance the bitmap
of each node as follows: Let x1, . . . , xs be the points represented at a node, and w(x)
be the weight of point x. Then a range maximum query (RMQ) data structure built
on w(x1), . . . , w(xs) is stored together with the bitmap. Such a structure uses 2s+ o(s)
bits and finds the maximum weight in any range [w(xi), . . . , w(xj)] in constant time,

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:7

S = 1 5 4 2 8 3 3 8 7 5 4 6 2 1 1

1 4 2 3 3 4 2 1 1 5 8 8 7

5

6

1 2 2 1 1 4 3 3 4

1 1 1 2 2 4 43 3

5 6

5

78 8

655 8 87

0 1 0 0 1 0 0 1 1 1 0 1 0 0 0

0 1 0 1 1 1 0 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 0 1 0 0 1 1 1 0

1 2 3 4 5 6 7 8 9 11 12 13 14 15

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14i = 15
x

y

Broot = 10

Fig. 4. On the left, the wavelet tree of the sequence S = 154283387546211. The bitmaps are represented
below the sequences in grey. For example, Broot represents the bitmap corresponding to the root of the
wavelet tree. On the right, the grid interpretation of the same sequence.

as we have seen, without accessing the weights themselves. Therefore, the total space
becomes 3n lg r + o(n log r) bits. To solve top-k queries on a grid range Q = [x1, x2] ×
[y1, y2], we first traverse the wavelet tree to identify the O(log r) bitmap intervals where
the points in Q lie (a counting query would, at this point, just add up all the bitmap
interval lengths). The heaviest point in Q in each bitmap interval is obtained with an
RMQ, but we need to obtain the actual priorities in order to find the heaviest among
the O(log r) candidates. The weights are stored sorted by y-coordinate, so we obtain
each one in O(log r) time by tracking the point with maximum weight in each interval.
Thus a top-1 query is solved in O(log2 r) time. For a top-k query we must maintain
a priority queue of the candidate intervals, and each time the next heaviest element
is found, we remove it from its interval and reinsert in the queue the two resulting
subintervals. The total query time is O((k + log r) log(kr)).

It is possible to reduce the time to O((k+logm) logǫ m) time and O(1ǫn logm) bits, for
any constant ǫ > 0 [Navarro and Nekrich 2012], but the space usage grows fast.

2.11. K2-trees

The K2-tree [Brisaboa et al. 2014] is a data structure to compactly represent sparse
binary matrices (which can also be regarded as point grids). The K2-tree subdivides the
matrix into K2 submatrices of equal size. The submatrices are considered in row-major
order, top-to-bottom and left-to-right, and each is represented with a bit, set to 1 if the
submatrix contains at least one non-zero cell. Each node whose bit is 1 is recursively
decomposed, subdividing its submatrix into K2 children, and so on. The subdivision
ends when a fully-zero submatrix is found or when we reach the individual cells. All
these bits are concatenated levelwise into a bitvector T , which is enhanced with RANKb

functionality to allow efficient traversals.
The K2-tree can answer range queries efficiently in practice, although it has no good

worst-case time guarantees. The worst-case space, if t points are in an n× n matrix, is

K2 t logK2

n2

t (1+ o(1)) bits. This can be reduced to t log Kn2

t (1+ o(1)) bits if the bitmaps

are compressed. This is similar to the wavelet tree space, but in practice K2-trees use
much less space when the points are clustered. Fig. 5 shows an example.

2.12. K2-treaps

Brisaboa et al. [2016] introduced a modified version of the K2-tree that is able to effi-
ciently report the top-k points that lie inside a rectangle Q = [x1, x2]× [y1, y2] of an n×n
grid. Consider the case where the cells of a matrix M [n × n] contain either an empty
value or a weight in the range [1, w]. The K2-treap is then constructed by perform-
ing a quadtree-like recursive partition of M into K2 submatrices just as the K2-tree.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:8 S.Gog et al.

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0

1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 1

1 0 1 0

1 0 1 0

1 0 0 0

0 0 0 1 0 1 0 0

1 1 0

0 0 1 0 1 1 1 0

1

0 0 1 1

Fig. 5. On the left, a sparse binary matrix. On the right, its corresponding K2-tree with K = 2. The actual
representation is the bitvector T = 1011101011101000101000010010111000110100 obtained by reading the
tree bits levelwise.

Now, at each step of the partitioning, the K2-treap stores the coordinate of the cell
with the maximum weight of the partition and the corresponding weight. That value
is deleted from the matrix and the subdivision continues until a fully-zero submatrix
is found or when an individual cell is reached. To solve top-k queries on a grid range
Q = [x1, x2] × [y1, y2], the process initializes a max-priority queue containing the root
node of the K2-treap. Now, we iteratively pop the priority queue. If the maximum-
weight point stored with the extracted node lies inside Q, we report it as the next
answer. In either case we push all the children from the extracted node whose sub-
matrix intersects with Q and iterate. The process finishes when k results have been
reported or when the priority queue is empty.

2.13. Muthukrishnan’s algorithm

Muthukrishnan [2002] introduced the first solution for retrieving the documents from
a collection that contain a pattern P , in optimal time and linear space. The idea is
based on suffix arrays and introduces a new data structure called document array
DA[1, n]. The algorithm starts by constructing the suffix array SA[1, n] from the con-
catenation C of the collection of documents D, and for every position pointed from SA[i]
it stores in DA[i] the document number where the suffix belongs. The document array
requires n logD bits. In order to list all the distinct documents from the range SA[sp, ep]
of the occurrences of P , Muthukrishnan lists all the distinct values in DA[sp, ep]. The
idea is to use another array CA[1, n] where CA[i] = max{j < i, DA[j] = DA[i]} ∪ {−1},
which is preprocessed for range minimum queries. Each value CA[m] < sp for sp ≤
m ≤ ep corresponds to a distinct value DA[m] in DA[sp, ep]. A range minimum query
in CA[sp, ep] gives one such value m, and we continue recursively on the intervals
[sp,m− 1] and [m+ 1, ep] until the minimum is ≥ sp. This way, it is possible to retrieve
any amount k of unique elements from DA in time O(k). Fig. 6 shows the document
array (DA) and array CA for the example collection C.

Algorithm 1 shows the procedure to list all the distinct elements of DA[sp, ep], ex-
tended to the case where we already have a set of documents d and want to complete
it up to size k (this is the variant we will use in this article). In the initial call we set
gsp = sp.

3. RELATED WORK

In this section we cover the state-of-the-art of solutions for top-k document retrieval.
As there exists a recent and thorough survey [Navarro 2014] and our focus is practical,
we will only describe the practical implementations. We also leave aside some propos-
als [Belazzougui et al. 2013; Ferrada and Navarro 2014; Navarro et al. 2014a] that are
useful on particular cases, but not competitive for the mainstream problem.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:9

DA = 0 3 1 2 3 1 2 2 2 3 1 3

d
1

d
2

d
3

CA = 0 0 0 0 2 3 4 7 8 5 6 10

1

11

2

9

C = A T A # T A A A # T T A # $

1 2 3 4 5 6 7 8 9 10 11 12 13 14i =

A

15

SA = 15 14 4 9 13 3 8 7 6 11 1 12 2 5 10

3

12

Fig. 6. Document array (DA) and array CA for the sequence shown in Fig. 1. The positions SA(12, 15) =
〈12, 2, 5, 10〉 are those where the string “TA” appears. The dotted arrows represent a list of pointers to the
next smaller position in CA where d3 occurs.

ALGORITHM 1: Algorithm for completing set d with up to k distinct documents from DA[sp, ep].

Input: start position sp, end position ep, current document set d, document array DA[1, n],
RMQ data structure over array CA, the size s to which d should grow, and a copy of the
original starting position gsp.

Output: set of distinct documents d in DA[sp, ep] enlarged to size s.

00 DOCUMENT LISTING(sp, ep, d, k, gsp)
01 if sp > ep or |d| ≥ k then return d
02 p← RMQ(sp, ep)
03 if CA[p] < gsp then
04 doc← DA[p]
05 if doc /∈ d then d← d ∪ {doc}
06 d← d ∪ DOCUMENT LISTING(sp, p− 1, d, k, gsp)
07 d← d ∪ DOCUMENT LISTING(p+ 1, ep, d, k, gsp)
08 return d

The practical solutions build on the CSA of C and its document array DA. Once we
establish that the interval of P is SA[sp, ep], the query is solved by finding the k values
that appear most often in DA[sp, ep].

GREEDY. Culpepper et al. [2010] studied various heuristics to solve top-k queries
on top of a CSA and a wavelet tree of the document array DA, based on the ability of the
wavelet tree of retrieving all the distinct documents of DA[sp, ep] and their frequencies
[Gagie et al. 2012]. We describe here their best variant, called greedy traversal. Their
technique relies on the fact if P appears many times in a document, then the [sp, ep]
interval on the path to that document leaf in the wavelet tree should also be long. The
wavelet tree is traversed in a greedy fashion, selecting the longest [sp, ep] interval first.
Then the algorithm will first reach the leaf with the highest tf value. The next docu-
ment reported will be the second-highest score, and so on. This procedure continues
until k documents are reported.

Culpepper et al. [2012] adapted the scheme to large natural language text collec-
tions (where each word is taken as an atomic symbol), showing that it was compet-
itive with inverted indexes for some queries (see previous work on this line by Patil

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:10 S.Gog et al.

et al. [2011]). The solution, however, resorts to approximations when handling ranked
Boolean queries.

NPV. Apart from their linear-space index, Hon et al. [2009] proposed a succinct in-
dex based on sampling suffix tree nodes and storing top-k answers on those. When the
locus of P reaches a non-sampled node, they choose the highest sampled node below
the locus and correct its precomputed answer by considering the additional leaves of
the locus. The sampling ensures that this work is bounded.

Navarro et al. [2014b] implemented a practical version of this proposal, and also
combined it with the greedy algorithm of Culpepper et al. [2010] to speed up the cor-
rection process. They also studied compressed representations of the wavelet tree of
DA, by using grammar compression (specifically, RePair [Larsson and Moffat 2000])
on its bitmaps. They carried out a thorough experimental study of these approaches
and previous ones, establishing one of the first baselines for future comparisons of
top-k indexes.

SORT. The first successful attempt to engineer an index handling hundred-gigabyte
collections, having millions of documents and containing large alphabets, was pre-
sented by Gog et al. [2014]. They build a framework for experimentation with suc-
cinct data structures, where they reimplement the greedy approach of Culpepper et al.
[2010] in this scenario.

Gog et al. [2014] also implement a basic folklore solution to the top-k problem, called
SORT. This is based on simply collecting all the values in DA[sp, ep], sorting them by
document identifier, computing term frequencies, and choosing the k largest ones. This
is a good baseline to evaluate if more sophisticated ideas are worthy.

Patil et al. One of the first implementations of practical top-k document retrieval
was introduced by Patil et al. [2011]. In their work, they store for some nodes the
complete inverted lists containing the document identifiers and the frequency of the
string represented by the node. These inverted lists are then sorted by pre-order rank
of the strings in the GST and stored contiguously in an array. For a given pattern P
they find the locus in the GST and then map the preorder rank of the locus and its
rightmost leaf. This creates a range in the array of inverted lists, which is found by
performing a binary search, and then they are able to find the top-k documents using
RMQ queries over the frequencies of the inverted lists that lie within that range. In
practice, this solution requires 5 to 19 times the size of the collection, which makes
it unpractical for most scenarios. For this reason, we do not compare our work to this
solution.

State of the art. Current implementations need about 2–5 times the size of the col-
lection and answer queries in tens of milliseconds. The simple implementation of the
solution of Hon et al. [2009] requires 2–5 times the size of the collection and answers
queries in about 10–100 milliseconds. The greedy approach introduced by Culpepper
et al. [2010] improves the space to 2–4 times the size of the collection and reduces
the time to 1–20 milliseconds. The best results obtained by Navarro et al. [2014b] use
2–3 times the size of the collection and answer queries in about 1–10 milliseconds.
These implementations are limited to relatively small collections of a few hundred
megabytes, because of construction issues or for using 32-bit offsets. Moreover, imple-
mentations are tailored to sequences over small alphabets (σ ≤ 255). Table I shows a
summary of these results, compared to our achievements in this article.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:11

Table I. Comparison of practical results.

Index Max. Max. |C| Size Time
σ in MB (times |C|) in µs

Hon et al. implementation [Navarro et al. 2014b] 28 − 1 137 2− 5 104 − 105

GREEDY [Culpepper et al. 2010] 28 − 1 100 2− 4 103 − 104

NPV [Navarro et al. 2014b] 28 − 1 137 2− 3 103 − 104

[Patil et al. 2011] 28 − 1 100 5− 19 102 − 103

SORT [Gog et al. 2014] 264 − 1 72,000 2− 3 104 − 106

Ours 264 − 1 72,000 2− 3 101 − 103

4. THE OPTIMAL-TIME SOLUTION

This section describes in detail the top-k framework of Hon et al. [2009] and the sub-
sequent optimal-time solution of Navarro and Nekrich [2012], which is the one we
implement in this article.

4.1. Hon et al. solution

Let T be the suffix tree of the concatenation C of a collection of documents d1, d1, . . . , dD.
This tree contains the nodes corresponding to all the suffix trees Ti of the documents di:
for each node u ∈ Ti, there is a node v ∈ T such that path(v) = path(u). We will say that
v = map(u, i). Also, let parent(u) be the parent of u and depth(u) be its depth. The idea
of Hon et al. [2009] is to store T with additional information about the trees Ti. For
each v = map(u, i), they store a pointer ptr(v, i) = v′ = map(parent(u), i), noting where
the parent of u maps in T . These pointers are stored at the target nodes v′ in a so-
called F-list. Together with the pointers ptr(v, i) they also store a weight w(v, i), which
is the relevance of path(u) in di. This relevance can be any function that depends on
the set of starting positions of path(u) in di. In this paper we focus on a simple one: the
number of leaves of u in Ti, that is, tf(P, d). Let v be the locus in T of a pattern P . They
proved that, for each distinct document di where P appears, there is exactly one pointer
ptr(v′′, i) = v′ going from a descendant v′′ of v (v itself included) to a (strict) ancestor v′

of v, and w(v′′, i) is the relevance of P in di. Obtaining the top-k documents using this
structure boils down to identifying all the pointers in the F-lists of the ancestors of v
that come from the subtree of v, and then selecting k corresponding documents with
the highest scores. This task can be carried out in O(m + k log k) time and the index
requires linear space.

Figure 7 shows this structure on our example collection C. The top left part of the
figure shows the the suffix tree T3 corresponding to document d3. The bottom part
shows the generalized suffix tree T of the collection C. The numbers inside the nodes
correspond to the preorder number and the dark nodes are those mapped from T3 to T .
The dotted lines correspond to the pointers ptr(v, i) = map(parent(u), i).

We store the documents and weights as pairs (di, w(v, i)) and append them to the
F-lists, which are associated with the node where the pointer arrives. These lists are
shown on the top right part of the figure.

4.2. Optimal solution

Navarro and Nekrich [2012] presented an optimal O(m+k) time solution that requires
linear space, O(n log n) bits, for solving the top-k document retrieval problem. They
represent the structure of Hon et al. [2009] as a grid of size O(n) × O(n) with labeled
weighted points. Each pointer v′ = ptr(v, i) is represented as a point in the grid, whose
x-coordinate is the preorder number of the source v, and whose y-coordinate is the
depth of the target v′. Then, the pointers going from the subtree of v to an ancestor of
v correspond to the points whose x-coordinate is the preorder range of the subtree of v,

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:12 S.Gog et al.

5

3 14 2

d3 T T AA #=

1 2 3 4i = 5

Suffix tree T3

Generalized Suffix Tree T

F-Lists (d,w)

v1 (3,1)(1,1)(2,1)(3,2)(1,2)(2,3)(3,2)(1,1)(2,1)

(3,1)(1,1)(2,1)(2,2)(3,1)(1,1)

(2,1)(2,1)

 Node

(3,1)(1,1)(2,1)(3,1)

$

6

6

v1
15

v2

14 v3

4 9 13

v6

3 8

v5

7 6

v7

v4

12 2

v10 5

10

v9

3

1 2 3

1 2

2 2

3 1

2

3

v8

111

3 1

TA

TA
#
$

A
A

#
T
A

T
A

#
$

T
A

A
A

#
T
A
T
A

#
$

$

#

T
A

A
A

#
T
A
T
A

#
$

$

A
#

T
A
T
A

#
$T

A
T
A

#
$

T
A

#
$

A
A
T
A
T
A

#
$

TA

#

$

A

T
A

#
$

A
A
T
A
T
A

#
$

T
A$

#

$

TA#A

TA

T
A

#
$#

$

A
T
A

#
$#

$

$

#
$

v4

v7

v9

Fig. 7. Top left: The suffix tree T3 of document d3. Bottom: The generalized suffix tree of T with pre-
order naming of the inner nodes and the corresponding document numbers below the leaves. The dark
nodes represent the nodes mapped from T3 to T . The dotted lines corresponds to the pointers ptr(v, i) =
map(parent(u), i). Top right: the nonempty F-lists generated containing elements as pairs (di, w(v, i)).

and whose y-coordinates are smaller than the depth of v. By giving weights w(v, i) to
the points, the problem boils down to retrieving the k heaviest points in that 3-sided
query range.

The construction procedure is the following: they traverse T in preorder, where they
add for each node v ∈ T and pointer ptr(v, i) = v′, a new rightmost x-coordinate with
only one point, with a y-coordinate value set to depth(v′), weight equal to w(v, i) and
label equal to i. To solve a query, they find the locus v of P , determine the range [x1, x2]
of all the x-coordinates filled by v or its descendants, find the k heaviest points in
[x1, x2]× [0, depth(v)− 1], and report their labels. A linear-space representation allows
them to carry out this task in optimal time. Figure 8 shows an example of this pro-
cedure: the top part shows the generalized suffix tree T . The grey area corresponds
to the locus of the pattern “TA” and the corresponding subtree. The bottom part of the
figure shows a two-dimensional grid that maps the content of the F-lists. The grey area
shows the mapping from the query pattern to a range [x1, x2] in this grid corresponding
to the subtree of the locus. The dark grey area is the final range [x1, x2]×[0, depth(v)−1]
from where the procedure finally selects the top-k highest-weighted points.

5. A BASIC COMPACT IMPLEMENTATION

In this section we describe a basic compact implementation of the optimal-time solu-
tion [Navarro and Nekrich 2012], which will be labeled WTRMQ.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:13

Grid Representation

3,1 1,1 2,1 1,2 2,3 3,2

3,1

N
o
d
e D

ep
th

1,1 2,1 2,2

2,1 2,1

3,1 1,1

3,2 1,1 2,1

3,1 1,1 2,1 3,1

v1

15

v2

14 v3

4 9 13

v6

3 8

v5

7 6

v7

v4

12 2

v10 5

10

v9

3

1 2 3

1 2

2 2

3 1

2

3

v8

111

3 1

TA

T
A
#
$

A
A

#
T
A

T
A

#
$

T
A

A
A

#
T
A
T
A

#
$

$

#

T
A

A
A

#
T
A
T
A

#
$

$

A
#

T
A
T
A

#
$T

A
T
A

#
$

T
A

#
$

A
A
T
A
T
A

#
$

T
A

#

$

A

T
A

#
$

A
A
T
A
T
A

#
$

T
A$

#

$

TA#A

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22

0

1

2

Fig. 8. Top: Suffix tree of C with preorder naming of the inner nodes. The subtree of v9, the locus of pattern
“TA”, is highlighted in grey. Bottom: Navarro and Nekrich [2012] geometric representation of the F-lists of
Hon et al. [2009]. Each cell contains a pair (di, w(v, i)). The grey area in the grid represents all the pairs
that are generated from pointers that belong to the tree rooted at v9. The darkest grey area represents the
final range [x1, x2]× [0, depth(v)− 1].

5.1. Searching for patterns

In order to search for patterns in the collection, we use a CSA, which computes the
interval [sp, ep] corresponding to P in time O(ts(m)) for some function ts(m), where
m = |P |. We also add a compact representation of the topology of the suffix tree, seeing
it as an ordinal tree. Note that this is just the topology, not a full suffix tree, so we need
to search using the CSA. We will use the suffix tree topology to obtain the locus v of P
from sp and ep, and then to map it to the grid.

5.2. Mapping to the grid

The grid G is of width
∑

i |Ti| ≤ 2n, as we add one coordinate per node in the suffix tree
of each document. To save space, we will consider a virtual grid just as defined, but
will store a narrower physical grid. In the physical grid, the entries corresponding to
leaves of T (which contain exactly one pointer ptr(v, i)) will not be represented. Thus
the physical grid is of width at most n. This frequency thresholding is a key idea, as it
halves the space of most structures in our index.

A bitmap B[1, 2n] will be used to map between the suffix tree and the grid. Bitmap
B will mark starting positions of nodes of T in the physical grid: along the grid con-
struction process, each time we arrive at an internal node v we add a 1 to B, and each

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:14 S.Gog et al.

time we add a new x-coordinate to the grid (due to a pointer ptr(v, i)) we add a 0 to B.
This structure will be called MAP.

5.3. Finding isolated documents

Due to frequency thresholding, the information on the grid may be insufficient to an-
swer top-k queries when the result includes documents where P appears only once. For
this purpose, we store the RMQ structure on top of the array CA of Muthukrishnan
[2002] (the array itself is not stored). This structure, RMQC, allows us list k distinct
documents in any interval SA[sp, ep].

To determine the identity of a document found at position i of CA, we will use the
CSA to compute p = SA[i] and then determine to which document position C[p] be-
longs. For this sake we store a sparse bitmap DOCBITMAP, that marks beginnings of
documents in C. The document is then RANK1(DOCBITMAP, p).

5.4. Representing the grid

In the grid there is exactly one point per x-coordinate. We represent with a wavelet
tree [Grossi et al. 2003] the sequence of corresponding y-coordinates. Each node v of
the wavelet tree represents a subsequence of the original sequence of y-coordinates.
We consider the (virtual) sequence of the weights associated to the points represented
by v, W (v), and build an RMQ data structure for each node W (v), as explained, to
support top-k queries on the grid.

5.5. Representing labels and weights

The labels of the points, that is, the document identifiers, are represented directly as
a sequence of at most n logD bits, aligned to the bottom of the wavelet tree. Given any
point to report, we descend to the leaf and retrieve the aligned document identifier.

The weights are stored similarly, but using direct access codes, to take advantage of
the fact that most weights (term frequencies) are small.

5.6. Summing up

The WTRMQ index consists of eight components: the compressed suffix array (CSA),
the suffix tree topology (TREE), the suffix tree to grid mapping (MAP), the wavelet tree
over the grid G (WT) including the RMQ structures at each node, the document ids as-
sociated with the grid elements (DOC), in the same order of leaves of the wavelet tree,
the weights associated to the documents (FREQ), the RMQ structure to retrieve docu-
ments occurring once over the CA array (RMQC), and the bitmap marking document
borders (DOCBITMAP).

If the height of the suffix tree is O(log n), as is the case in many reasonable distri-
butions [Szpankowski 1993], then WT requires 3n log log n+O(n) bits. The other main
components are |CSA| ≤ n log σ bits, the array DOC, which uses n logD bits, and the
array FREQ, which in the worst case needs n log n bits but uses much less in practice.
The other elements add up to O(n) bits, with a constant factor of about 8–10.

5.7. Answering queries

The first step to answer a query is to use the CSA to determine the range [sp, ep]. To find
the locus v of P in the topology of the suffix tree, we compute l and r, the spth and epth
leaves of the tree, respectively, using l = LEAF SELECT(sp) and r = LEAF SELECT(ep);
then we have v = LCA(l, r).

To determine the horizontal extent [x1, x2] of the grid that corresponds to the lo-
cus node v, we first compute p1 = PREORDER(v) and p2 = p1+SUBTREE SIZE(v). This
gives the preorder range [p1, p2) including leaves. Now l1 = LEAF RANK(p1) and l2 =
LEAF RANK(p2−1) give the number of leaves up to those preorders. Then, since we have

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:15

omitted the leaves in the physical grid, we have x1 = SELECT1(B, p1− l1)− (p1− l1)+1
and x2 = SELECT1(B, p2−l2)−(p2−l2). The limits in the y axis are just [0,DEPTH(v)−1].
Thus the grid area to query is determined with a constant amount of operations on
bitmaps and trees.

Once the range [x1, x2] × [y1, y2] to query is determined, we proceed to the grid. We
determine the wavelet tree nodes that cover the interval [y1, y2], and map the interval
[x1, x2] to all of them.

We now use the top-k algorithm for wavelet trees we described. Let v1, v2, . . . , vs be
the wavelet tree nodes that cover [y1, y2] and let [xi

1, x
i
2] be the interval [x1, x2] mapped

to vi. For each of them we compute RMQW (vi)(x
i
1, x

i
2) to find the position xi with the

largest weight among the points in vi, and find out that weight and the corresponding
document, wi and di. We set up a max-priority queue that will hold at most k elements
(elements smaller than the kth are discarded by the queue). We initially insert the
tuples (vi, x

i
1, x

i
2, xi, wi, di), being wi the sort key. Now we iteratively extract the tu-

ple with the largest weight, say (vj , x
j
1, x

j
2, xj , wj , dj). We report the document dj with

weight wj , and create two new ranges in vj : [x
j
1, xj−1] and [xj+1, xj

2]. We compute their
RMQ, find the corresponding documents and weights, and reinsert them in the queue.
After k steps, we have reported the top-k documents. We will refer to this procedure as
TOPK GRID QUERY.

If we implement the bitmap, tree, and RMQ operations in constant time, and as-
suming again that the suffix tree is of height O(log n), the total time of this process is
O(ts(m)+ (k+ log log n)(log log n+ log k)). This is because there are O(log log n) wavelet
tree nodes covering [y1, y2], and for each of them we descend to the leaf to find the
weight and the document identifier (again in O(log log n) time) and insert them in the
priority queue (O(log k) time). Then we repeat k times the process of extracting a result
from the queue, and generating two new weights to insert in it.

We remind the reader that we have not stored the leaves in the grid. Therefore, if the
procedure above yields less than k results, we must complete it with documents where
the pattern appears only once. Here we use Algorithm 1 to complete our current result
d to make it of size k by adding new documents of DA[sp, ep]. Here we use RMQC and
DOCBITMAP. We might have to extract up to k distinct documents with this technique
to complete the answer (since we may obtain again those we already have from the
grid). Each step requires O(tl) time to obtain the document identifier, where tl is the
time needed by the CSA to return the content of a suffix array cell, so this may add up
to time O(k tl) to the complexity.

Algorithm 2 shows the complete procedure.

6. AN IMPROVED INDEX

In this section we present the two main ideas that lead to a conceptually simpler and,
as we will see later, faster and smaller representation than the basic one (WTRMQ).

6.1. Mapping the suffix tree to the grid

We reorganize the grid so that a more space-efficient mapping from pattern P to a
3-sided range query in the grid is possible. The basic solution uses 2t bits to represent
the topology of the suffix tree (of t nodes, where n ≤ t ≤ 2n), plus up to 2n bits for B,
for a total of up to 6n bits (plus the sublinear part). The improved representation will
consist of a single bitvector H, of length 2(n−D), and the mapping from the suffix tree
to the grid will be simpler.

We first explain how we list the parent pointers ptr(v, i) leaving the suffix tree nodes
v in the grid, and then show how we can efficiently map to the grid. We identify each
internal node with the position in SA of the rightmost leaf of its leftmost subtree.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:16 S.Gog et al.

ALGORITHM 2: Top-k algorithm using WTRMQ index

Input: Query pattern P , amount k of documents to retrieve
Output: top-k documents

00 TOPK(P, k)
01 result← ∅
02 [sp, ep]←LOCATE(P)
03 l← LEAF SELECT(sp)
04 r ← LEAF SELECT(ep)
05 v ← LCA(l, r)
06 p1 ← PREORDER RANK(v)
07 p2 ← p+SUBTREE SIZE(v)
08 l1 ←LEAF RANK(p1)
09 l2 ←LEAF RANK(p2 − 1)
10 x1 ← SELECT1(B, p1 − l1) + 1
11 x2 ← SELECT1(B, p2 − l2)− (p2 − l2)
12 depth← DEPTH(v)− 1
13 result← TOPK GRID QUERY(x1, x2, 0, depth, k)
14 if |result| < k then
15 result← DOCUMENT LISTING(sp, ep, result, k, sp)
16 return result

Fig. 9 shows this naming for the internal nodes: The root node is named v1 because the
position of its first child (which is also a leaf) is at position 1, the rightmost leaf of the
leftmost child of node v7 is at position 7, and so on. Note that the names are between 1
and n and they are unique (although not all names must exist, e.g., there is no node v4
in our suffix tree). The bitvector H is generated by first writing n 1s and then inserting
a 0 right before the j-th 1 per pointer ptr(vj , i) leaving node vj .

The 0s in H then correspond to the x-domain in the grid, thus we do not need to
represent it explicitly. On the other hand the y-coordinate (string depth of target node),
weight and document id of the pointers, are stored associated to the corresponding 0 in
H (in arrays y, FREQ, and DOC, respectively, see the right of Fig. 9). Now assume the
CSA search yields the leaf interval [sp, ep] for P . These are the positions of the leftmost
and rightmost leaves that descend from the locus node v of P (although we will not
compute v). Then, we note that a node vj lies in the subtree of v (including v) if and
only if j ∈ [sp, ep− 1].

LEMMA 6.1. A node vj , if it exists, lies in the subtree of v (including v) if and only if
j ∈ [sp, ep− 1].

PROOF. If vj is in the subtree of v, then its range of descendant leaves is included
in that of v, [sp, ep]. Since there are no unary nodes, the rightmost child vr of vj has at
least one descendant leaf, and thus the leaves descending from the leftmost child vl of
vj are within [sp, ep − 1]. In particular, the rightmost leaf descending from vl, j, also
belongs to [sp, ep− 1]. Conversely, if j ∈ [sp, ep− 1] and vj exists, then vj is an ancestor
of leaf j and so is v, thus they are the same or one descends from the other. However,
if v descended from vj , then j could only be ep (if p was the leftmost child vl of vj or
belonged to the rightmost path descending from vl), or it would be outside [sp, ep].

Therefore, all the pointers leaving from nodes in the subtree of v are stored contigu-
ously in the grid, and can be obtained by finding the 0s that are between the (sp− 1)th
and the (ep−1)th 1 in H (as the 0s are placed before their corresponding 1). Note that no
LCA operation on any suffix tree topology is necessary, only operation SELECT1(H, p).

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:17

G

v1

15

v2

14 v3

4 9 13

v6

3 8

v5

7 6

v8

v7

12 2

v12 5

10

v13

3

1 2 3

1 2

2 2

3 1

2

3

v10

111

3 1

TA

TA
#
$

A
A
#
T
A
T
A
#
$

T
A
A
A
#
T
A
T
A
#
$

$

#

T
A
A
A
#
T
A
T
A
#
$

$

A
#
T
A
T
A
#
$T

A
T
A
#
$

T
A
#
$

A
A
T
A
T
A
#
$

TA

#

$

A

T
A
#
$

A
A
T
A
T
A
#
$

T
A

$

#

$

TA#

A

1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1

{2}

{1,2,3}
{3}

{1,2,3}

H =
__2__1 __3__4__5__6____________7_____8 __9 _10_11_12___13_14 _15

DOC =

y =

FREQ =

1 1 1 1 1 1 1 2 3 1 2 1 1 1 1 1 3 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 2 3 2 1 2 1 1 1 1 1 2 1 1 1

1 2 3 4 5

2

1

0 2 3 2

2

2

D
ep

th

Fig. 9. Top: Suffix tree of Hon et al.’s solution with a canonical naming of the inner nodes. Each node v has
attached its F-list, which excludes pointers from leaves. Bottom left: Bitvector H is built by concatenating
the unary encoding of the number of pointers in the F-list of each node. Bottom right: Resulting grid.

Because we do not represent the suffix tree topology, we cannot compute the depth
of the locus node v, depth(v). Instead of node depths, we will store the string depths of
the nodes, |path(v)|, as the y-coordinates. Thus the query can use simply |P | − 1 as the
y-coordinate limit of the 3-sided query. That is, after applying the mapping using H,
we find the k heaviest points in the range [sp′, ep′]× [0, |P |−1] of G. The top-k algorithm
using this mapping is considerably simplified, as can be seen in Algorithm 3.

6.2. Smaller grid representations

In the basic implementation (WTRMQ), the grid G is represented with a combination
of a wavelet tree and range maximum query (RMQ) data structures, that ensure query
time O((k + log log n)(log log n+ log k)) if the suffix tree is of height O(log n). The price
of this guaranteed worst-case time is a heavy representation of the grid, which triples
the space of the basic wavelet tree of the y-coordinates vector. In addition, it has to
store the vector FREQ in absolute form. We consider two ways of reducing this space.

K2TreapH . We can use for G a K2-treap, which as explained is a representation that
compresses the coordinates and FREQ. Even if the grid is not square as we described
it, we complete it to a square grid (the added areas having no points). The price of this
compression is that there are no good worst-case search time guarantees. However, the
experiments will show that this grid representation uses less space and yields a query
time comparable with that of the WTRMQ implementation.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:18 S.Gog et al.

ALGORITHM 3: Top-k algorithm using H-mapping index

Input: Query pattern P , amount k of documents to be retrieved
Output: top-k documents

00 TOPK HMAP(P, k)
01 result← ∅
02 [sp, ep]←LOCATE(P)
03 [sp′, ep′]← [1, 0]
04 if sp > 1 then
05 sp′ ←SELECT1(H, sp− 1)− (sp− 1)
06 if ep > 1
05 ep′ ←SELECT1(H, ep− 1)− ep
06 result← TOPK GRID QUERY(sp′, ep′, 0, |P | − 1, k)
07 if |result| < k then
08 result← DOCUMENT LISTING(sp, ep, result, k, sp)
09 return result

WT1RMQH . We can use the wavelet tree but store only one RMQ structure in it,
aligned to the level of the leaves (that is, it is the RMQ of FREQ). Therefore, instead of
tripling the wavelet tree space, we only add 2n bits. The price is that, instead of solving
the top-k query on the O(log r) maximal nodes that cover [y1, y2], we must project them
to the leaves before starting the process of filling the priority queue. Therefore, the
log r factor in the cost may rise to r. In exchange, since the nodes are already leaves,
finding the document identifiers and weights costs O(1). The overall impact is not that
high if the strings path(v) are of length O(log n) as before, since then r = O(log n) and
the cost of this part becomes O((k + log n) log k).

6.3. Efficient construction for large collections

A bottleneck not addressed by the WTRMQ implementation is the efficient construc-
tion of the index1. Both time-and space- efficiency have to be considered. We will con-
centrate here on the construction of H, the grid G, and its K2-treap representation,
suffix tree (CST) of C and a wavelet tree over the document array, WTD, of n logD bits.
We perform a depth-first-search traversal on the CST and calculate, for each node vj ,
the list of its document id marks, by intersecting the document array ranges of v’s
children. This can be done using the intersection on wavelet trees [Gagie et al. 2012].
Since we can calculate the nodes in the order of their names, we can write H and the
document ids (DOC) directly to disk. In a second traversal we calculate the pointers.
For each document i we use a stack to maintain the string depth of the last occurrence
of i in the tree. For a node v marked with i we push the string depth of v at the first
visit and pop it after all the subtree of v is traversed. Note that this time we can read
H and DOC from disk (in streamed mode) and avoid the intersection. In the same
traversal we can calculate the weight array FREQ by performing counting queries on
WTD. Again, arrays y and FREQ can be streamed to disk.

Finally, the K2-treap is constructed in-place by a top-down level-by-level process.
Let the input be stored as a sequence of triples (x, y, w) and let 1 be the root level and b
be the bottom level. First, we determine the heaviest element by a linear scan, stream
its weight out to disk and mark the element as deleted. We then partition the elements
of the root level into K2 ranges, such that all elements in range r (0 ≤ r ≤ K2) have

1For example, the liner-time LCA-based index construction method takes 1.5 hours for an 80MB Wikipedia
collection, where their peak main memory usage is 12.25 GB.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:19

the property that x/Kb−ℓ mod K = r mod K and y/Kb−ℓ mod K = r/K. For each non-
empty (resp. empty) range r we add a 1 (resp. 0) to the bitvector T , which is streamed
to disk. On the next level ℓ − 1 we can detect nodes by checking the partitioning con-
dition of the last level, find and mark the maximum weighted entry and apply the
partitioning in the node. The time complexity of the process is O(K2 logK n) and does
not use extra space.

6.4. Summing up

We introduce new indexes, K2TreapHand WT1RMQH , that simplify WTRMQ by con-
verting its MAP and TREE components into a single bitmap H. In addition, they re-
duce the space of the grid representation, by trading it for weaker time guarantees.
The experiments will show that this does not translate into markedly reduced perfor-
mance.

7. EXPERIMENTAL SETUP AND IMPLEMENTATIONS

In this section we describe the experimental setup in terms of the collections in which
the indexes were evaluated, query generation and environment employed. We also
explain the engineering details required to implement the indexes.

7.1. Datasets and test environment

We will split the collections into two categories depending on the alphabet type: char-
acter alphabet and word alphabet. For the character alphabet, we have four “small”
collections, that have been used as baselines in previous work [Navarro et al. 2014b],
and a “big” collection containing natural language text. We describe and label the col-
lections as follows:

— KGSc. Consists of a collection of 18,839 sgf-formmated Go game records from year
2009, containing 52,721,176 characters.

— PROTEINSc. A collection of 143,244 sequences of Human and Mouse proteins, con-
taining 59,103,058 symbols.

— ENWIKI-SMLc. A sample of a Wikipedia dump, consisting of 4,390 English articles,
containing 68,210,334 symbols.

— DNAc. A sequence of 10,000 highly repetitive (0.05% difference between documents)
synthetic DNA sequences with 100,030,016 bases in total.

— ENWIKI-BIGc. A bigger sample of English Wikipedia articles, consisting of 8.5GB of
natural text and 3.8 million documents.

In the case of word alphabets we use three collections of documents containing natural
language. We preprocessed these collections using the Indri search engine (http://www.
lemurproject.org/indri/) for generating a sequence of stemmed words and excluding all
html tags. The set of σ distinct stemmed words is then mapped to integers in [1, σ].

— ENWIKI-SMLw. A word parsing of ENWIKI-SMLc, containing 281,577 distinct words.
— ENWIKI-BIGw. A collection containing 8,289,354 words obtained from regarding the

text as a sequence of words from ENWIKI-BIGc.
— GOV2w. Probably the most frequently used natural text collection for comparing ef-

ficiency of IR systems. The parsed collection consists of more than 72GB of data,
around 40 million terms and more than 25 million documents.

Table II summarizes properties of the collections that are used. For queries, we
selected 40,000 random substrings of length m obtained from the top-k documents for
m = 5. We increase k exponentially from 1 to 256.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:20 S.Gog et al.

Table II. Collection statistics: n is the number of characters or words, D the number of
documents, n/D the average document length, σ the alphabet size, C and total size in
MB assuming that the character based collections use one byte per symbol and the word
based ones use ⌈log σ⌉ bits per symbol.

Collection n D n/D σ |C| in MB

character alphabet
KGSc 52,721,176 18,839 2798 75 51
PROTEINSc 57,144,040 143,244 412 40 56
ENWIKI-SMLc 68,210,334 4,390 15,538 206 65
DNAc 100,020,016 10,000 1002 4 97
ENWIKI-BIGc 8,945,231,276 3,903,703 2,291 211 8,535

word alphabet
ENWIKI-SMLw 12,741,343 4,390 2,902 281,577 29
ENWIKI-BIGw 1,690,724,944 3,903,703 433 8,289,354 4,646
GOV2w 23,468,782,575 25,205,179 931 39,177,922 72,740

For all experimental comparisons, the relevance measure used is the term frequency
and the query is a single pattern string. Our implementation and benchmarks are
publicly available at https://github.com/rkonow/surf/tree/wt topk.
All experiments were run on a server equipped with an Intel(R) Xeon(R)
E5-4640 CPU clocking at 2.40GHz. All experiments use a single core and
at most 150GB of the installed 512GB of RAM. All programs were com-
piled with optimizations using g++ version 4.9.0. The test collections are
all available at http://algo2.iti.kit.edu/gog/projects/ALENEX15/collections.
The only exception is GOV2, which is not free and can be obtained from
http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.

7.2. Baselines

As baselines we use the GREEDY solution [Culpepper et al. 2010] and the SORT ap-
proach [Gog et al. 2014], which is included in the Succinct Data Structure Library
(SDSL, https://github.com/simongog/sdsl-lite). Baseline SORT uses the CSA and docu-
ment array DA. It first gets the range [sp, ep] of all occurrences of P from the CSA. Then
it copies all documents from DA[sp, ep] and extracts the top-k most relevant documents
by sorting and accumulating the occurrences. Baseline GREEDY also gets the range
[sp, ep] from the CSA, but then does a greedy traversal of the wavelet tree over DA to
get the top-k documents. As an additional baseline we also ran the experiments using
the original source code of Navarro et al. [2014b] (NPV). This implementation consists
of more than 24 alternative configurations, including grammar compressed wavelet
trees using different bitmap representations and improvements to the GREEDY algo-
rithm. For the experimental time-related results, we will always show the points that
correspond to the pareto-optimal border in terms of space and time considering all pos-
sible configurations. We refer to this index as as NPVopt. We will not compare to the
work of Patil et al. [2011] since the space requirements of their solution is considerably
bigger (see Table I) than the ones that are being evaluated in this work.

7.3. Implementation of WTRMQ

The implementation of WTRMQ requires the assembly of a complex set of com-
pact data structures: CSA, wavelet tree (WT), RMQ, rank/select-capable bitmaps,
direct access codes, compact tree topologies and an efficient integer array repre-
sentation. In practice, for the CSA, we use an off-the-shelf SSA from PizzaChili
site, (http://pizzachili.dcc.uchile.cl), and add a rank/select capable bitmap,
BitSequenceRG, implemented in the LIBCDS library (https://github.com/fclaude/

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:21

libcds), that requires 5% of extra space. Bitmap DOCBITMAP is used to mark where
each distinct document starts in C. This way, the document corresponding to SA[i] is ob-
tained by performing RANK1(DOCBITMAP, SA[i]). We also use the 5% space overhead
bitmaps for the MAP bimap B[1, 2n]. We use the fully-functional compact tree rep-
resentation [Arroyuelo et al. 2010] requiring 2.3 bits per element to perform LCA and
PREORDER SELECT over the suffix tree topology. For LEAF RANK and LEAF SELECT we
use another bitmap L[1, 2n] where the leaves are marked, and we use 5% space over-
head to implement RANK1 and SELECT1 (this could be slightly improved but makes
little difference). We employ the original optimal implementation of direct access codes
for representing the weights. For the wavelet tree, we use the no-pointers version from
LIBCDS (WaveletTreeNoPtrs) using BitSequenceRG to represent the bitmaps. Recall
that the wavelet tree has to be enhanced to support range maximum queries (RMQ)
at each of the weight sequences W (vi). We implemented the RMQ structure that re-
quires 2.3 bits per element [Fischer and Heun 2011]. For the document identifiers we
use an integer array that requires ⌈log(D + 1)⌉ bits per element and access any posi-
tion directly. All of these implementations and data structures were limited to handle
232 − 1 memory addresses, thus this index is not capable of handling big datasets such
as ENWIKI-BIGc.

7.4. Implementation of K2TreapH

The set of data structures required for implementing K2TreapH is smaller: We need
a CSA, RMQ, rank/select capable bitmaps, direct access codes, a K2-treap, and an ef-
ficient integer array representation. We based our implementation on structures from
SDSL and will use the SDSL class names in the following. For character based indexes,
we use a CSA based on a wavelet tree (csa wt) which is parametrized by a Huffman-
shaped wavelet tree (wt huff) which uses a compressed bitmap (rrr vector<63>). For
word based indexes, we opted for a CSA based on the Ψ function (csa sada) which
is compressed with Elias-δ codes (coder::elias delta). The latter provided a better
time-space trade-off for large alphabet pattern matching. For the mapping we store the
bitmap H using a compressed bitmap rrr vector<63>. The SELECT1 performance of
rrr vector<63> is slow compared to a plain bitmap representation but negligible in our
case, where only two SELECT1 queries are done per top-k query (recall Algorithm 3).
The RMQC structure is realized by a MinMax-tree implementation rmq succinct sct
which uses about 2.3 bits per element. The document ids, DOC, are stored in an integer
vector (int vector) using ⌈log(D + 1)⌉ bits per element. For this work we have imple-
mented the K2-treap structure and added it to SDSL (available now as k2 treap). The
K2-treap implementation is generic (the value K, the bitmap representation of the K2-
ary tree, and the representation of the vector of relative weights, can be parametrized)
and complements the description of Brisaboa et al. [2016] with an efficient in-place
construction described in Section 6.3. For the relative weights we use direct access
codes (dac vector<4>) with a fixed width of 4.

7.5. Implementation of WT1RMQH

The only difference between K2TreapH and WT1RMQH is the grid implementation.
The WT1RMQH solution uses a wavelet tree and an RMQ data structure to rep-
resent the grid. We opted for a wt int parametrized with rrr vector<63>. The com-
pressed bitvector decreased the size considerably since the grid contains many small
y-values. The absolute weights are stored in a dac vector<4> of fixed width 4, which
gave the most practical result when performing parameter tuning experiments. The
RMQ structure was again realized by rmq succinct sct using 2.3 bits per element.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:22 S.Gog et al.

ENWIKI-SMLc DNAc KGSc PROTEINScENWIKI-SMLc DNAc KGSc PROTEINSc

S
p

a
ce

[f
ra

ct
io

n
of

th
e

in
p

u
t]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

WT
TREE
MAP
CSA
FREQ
DOC
RMQC

Fig. 10. Space usage decomposition as fraction of the input, for each structure employed in WTRMQ.
DOCBITMAP is accounted for inside RMQC.

8. RESULTS

In this section we study the practical properties of the different index implementa-
tions. We first analyze the space consumption of the structures; both total space and
the space of substructures – like the grid – are considered. Then the query time is
analyzed. Again, we consider total query time and also study the time for the different
phases of the query process. To get a precise picture about the performance we vary
various parameters: the number of results k, the pattern length m, and collections.
The latter are from different application domains, cover different scales of magnitude
– from 50 MB to 72 GB –, and vary in alphabets size from 4 to almost 40 million. Note
that some non-SDSL based baselines did not support alphabets larger than 256 and
collection sizes above 2 GB and were therefore only evaluated in some setups.

8.1. Space

We start by decomposing the space required of our first index, WTRMQ. Fig. 10 shows
the space required for each of its components in terms of fraction of the input. For most
collections the space requirements are quite similar, except for the KGSc collection. In
general, WTRMQ requires 2–4 times the size of the input. If we analyze the space of
the components, the most resource-consuming piece is the wavelet tree with multiple
RMQ structures, which requires space up to the size of the collection. The CSA re-
quires 0.6–0.7 times the collection size. Recall that for this implementation we need to
store the topology of the suffix tree (TREE) plus two bitmaps to perform the mapping
of the suffix tree nodes to the grid (MAP). These data structures add up to 0.6 times
the size of the input. Storing the frequencies (FREQ) using direct access codes uses
0.2–0.3 times the size of the input, which is about the same size of the tree topology.
The space requirements to represent WTRMQ is probably impractical for real scenar-
ios. Furthermore, the implementation of this index is not able to handle collections
that are bigger than 200MB nor collections that are parsed as words.

Fig. 11 shows the decomposition of the index K2TreapH , which employs the H
bitmap to map the suffix tree nodes to the grid. In addition, this index uses the K2-
treap to represent the grid G. The efficient representation of G is about 30% smaller
than WTRMQ. We exemplify the space reduction of K2TreapH compared to WTRMQ
in the case of ENWIKI-SMLc. While the grid mapping takes 46.5 MB (8.6 + 12.8 + 25.1
for bitvector B, L, and the tree topology) in WTRMQ, K2TreapH just takes 6.8 MB
for bitvector H (13.0 MB in uncompressed form). The grid representation as a K2-
treap takes 57.7 MB (21.7 + 24.5 + 11.5 for weights, y-values, and topology) compared

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:23

ENWIKI-SMLc ENWIKI-BIGc DNAc KGSc PROTEINScENWIKI-SMLc ENWIKI-BIGc DNAc KGSc PROTEINSc

S
p

a
ce

[f
ra

ct
io

n
of

th
e

in
p

u
t]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ENWIKI-SMLw ENWIKI-BIGw GOV2wENWIKI-SMLw ENWIKI-BIGw GOV2w

S
p

a
ce

[f
ra

ct
io

n
of

th
e

in
p

u
t]

0.0

0.5

1.0

1.5

K2-treap H CSA RMQC DOC

Fig. 11. Space usage decomposition as fraction of the input, for each structure employed in K2TreapH . Top:
results for character alphabet collections. Bottom: results for word alphabet collections.

to 77.7 MB (23.3 MB for weights and 55.4 MB for the RMQ-enhanced wavelet tree) in
WTRMQ. These space savings result in index sizes between 1.5–3.0 times the origi-
nal collection size for character alphabet collections, see Fig. 11 top. For word-parsed
collections, IDX GN takes space close to the original input, for example, for the 71.0
GB word parsing of GOV2w, the index size is 64.6 GB. Recall that this space includes
the CSA component, which can recover any portion of the text collection, and thus the
collection does not need to be separately stored.

The difference between K2TreapH and WT1RMQH is the grid representation, so we
compare the space required by the bit-compressed wavelet tree with a single RMQ
structure to the space required of the K2-treap (see Fig. 12). In this case, the y-axis
represents the fraction of the space required for the wavelet tree-based grid to the
space required to represent the grid using the K2-treap. We observe that, in most of
the character based collections, except for the case of DNAc, the space savings of the
wavelet tree are 30% to 40%. A similar result can be seen in the case of word collections.

Fig. 13 shows the space comparison in terms of fraction of the input of all of the intro-
duced indexes and the baselines for the character alphabet collections. ENWIKI-BIGc is
not shown due to the implementation constraints of some of the indexes. As previously
mentioned, NPVopt chooses the best possible result obtained from all the alternative
configurations of the implementations presented by Navarro et al. [2014b]. In this case,
we show the variants that yield the best compression for each collection (NPVmin) and
the ones yielding the highest space usage (NPVmax). We also show the space require-
ments of the other baselines, GREEDY and SORT. For almost all cases WTRMQ is

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:24 S.Gog et al.

ENWIKI-SMLc ENWIKI-BIGc DNAc KGSc PROTEINScENWIKI-SMLc ENWIKI-BIGc DNAc KGSc PROTEINSc

S
p

a
ce

[f
ra

ct
io

n
of

K
2
-t

re
a

p
]

0.0

0.2

0.4

0.6

0.8

1.0

ENWIKI-SMLw ENWIKI-BIGw GOV2wENWIKI-SMLw ENWIKI-BIGw GOV2w

S
p

a
ce

[f
ra

ct
io

n
of

K
2
-t

re
a

p
]

0.0

0.2

0.4

0.6

0.8

Fig. 12. Comparison of the space required to represent the grid G using a wavelet tree plus a single level
of RMQ (WT1RMQH) in terms of the space required if the K2-treap is used.

the most space-demanding index, even when compared to the uncompressed version
NPVmax. Only for the KGSc collection is WTRMQ smaller than NPVmax. WT1RMQH

and K2TreapH require about 20% more space than other variants for ENWIKI-SMLc

and DNAc. However, the space of these indexes for KGSc is about half of GREEDY and
SORT, and they are smaller than the most compressed solution, NPVopt.

8.2. Retrieval speed when varying k

The time of a top-k query consists of the time to match the pattern in the CSA, the time
to map [sp, ep] to the grid, the time to report the top-k documents using the K2-treap or
wavelet tree and, if less than k documents are found, the time to report frequency-one
documents (which are not stored in the grid) using RMQC and, again, the CSA. The
top-k retrieval time for a pattern P depends on multiple factors: First, the length m
of P . For an FM-index based CSA (resp. Ψ-function based) it takes O(m log σ) (resp.
O(n log n)) steps. Second, the time for the mapping from the lexicographic range into
the grid’s x-range. This method, described in Algorithm 3, requires two SELECT1 op-
erations, whose time is negligible compared to the first step. The last steps depend on
the output size of the query, k, compared to the number of occurrences of the pattern.
Documents in which the pattern occurs more than once are calculated via the corre-
sponding top-k grid query (either K2-treap for K2TreapH or wavelet tree for WTRMQ
and WT1RMQH), while documents in which the pattern just occurs once are retrieved
via the document listing algorithm that uses the RMQC structure on CA, a locate oper-

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:25

ENWIKI-SMLcENWIKI-SMLc
S

p
a

ce
[f

ra
ct

io
n

of
th

e
in

p
u

t]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
DNAcDNAc

KGScKGSc

S
p

a
ce

[f
ra

ct
io

n
of

th
e

in
p

u
t]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
PROTEINScPROTEINSc

WT1RMQH K2TreapH WTRMQ GREEDY SORT NPVmin NPVmax

Fig. 13. Space as fraction of the input for small character alphabet collections. NPVmin is the smallest pos-
sible result obtained from Navarro et al. [2014b], while NPVmax corresponds to the uncompressed variant.

ation on the CSA, and a RANK1 on DOCBITMAP. We examine the cost of the different
phases in Fig.14 for K2TreapH .

As expected, the pattern matching with the CSA is independent of k and takes about
5–10µs. The time to retrieve the first document out of the K2-treap is relatively expen-
sive. For most of the collections it is about 40–70µs and is dominated by the cost of the
priority-queue based search down the K2-treap until a first (heaviest) element within
the query range is found.

The subsequent documents are cheaper to report. The time spent in the K2-treap
to report 16 documents is about twice the time to report a single document except for
the case of PROTEINSc. The average time per document retrieved via the K2-treap
is typically about 3–5µs for k ≥ 64. Essentially, for each such document, one must
perform a constant number of RMQ operations and extract a suffix array cell from
the CSA. The cost of an RMQ is typically below 2µs [Gog 2011, Sec. 6.2], while the
CSA access accounts for the remaining 100–300µs. The CSA access time is linearly
dependent on a space/time tradeoff parameter s, which is set to s = 32. Note that
top-k queries are meaningful when documents have different weights, and thus large
k values that retrieve many documents with frequency 1 are not really interesting.
An interesting case arises for the DNAc collection, where the amount of time spent to
retrieve documents with frequency 1 is negligible. Recall that DNAc contains synthetic
highly repetitive sequences, and a limited alphabet size σ = 4, therefore it is quite
improbable to generate a query-string of length m = 5 that has a single occurrence.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:26 S.Gog et al.

ENWIKI-SMLc

A
v
g
.

ti
m

e
p

er
q
u

er
y

[
]

1

5
10

50
100

500
1000

5000

1

5
10

50
100

500
1000

5000
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

DNAc

1

5
10

50
100

500
1000

5000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

KGSc

A
v
g
.

ti
m

e
p

er
q
u

er
y

[
]

1

5
10

50
100

500
1000

5000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

5
10

50
100

500
1000

5000

k

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

PROTEINSc

1

5
10

50
100

500
1000

5000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

5
10

50
100

500
1000

5000

k

RMQC + CSA access Top-k Grid Query CSA matching

Fig. 14. Detailed breakdown of average query time for index K2TreapH which uses a CSA pattern search,
a K2-treap for the top-k grid query, and the document listing algorithm that requires RMQ queries plus
CSA accesses (time fractions plotted from bottom to top in log-scale). We use m = 5.

Fig. 15 shows the results for our biggest character alphabet dataset, ENWIKI-BIGc.
On the left part of the figure we show the time required to perform each part of the
query process as in Fig. 14. On the right, we show average time per document retrieved
and perform a breakdown depending on the mechanism that was employed. For values
of k ≤ 8, the weighted average amount of time spent to retrieve each document is
always greater than 10µs. As the value of k increases, the average time to report a
document decreases. For k = 256 the average time required is less than 5µs. Note that
for all k values (for k ≥ 4, since for smaller k values, it was not necessary to execute
the single-occurrence procedure) the time for the RMQC+CSA accesses to report a
document is about 60–90µs.

We now examine the performance of the K2-treap grid representation compared
to the use of the wavelet tree alternative. We use the implementation of WT1RMQH

using compressed bitmap representations and only one RMQ level, since the results
obtained with WTRMQ were almost identical, except for PROTEINSc where WTRMQ is
3 times slower due to the many RMQs performed. Fig. 16 shows the comparison of the
average time required to complete a top-k query, for varying k, using the K2-treap or
the wavelet tree. For most cases, the wavelet tree-based approach is faster than the K2-
treap, except in the DNAc collection, where for k ≥ 8 the K2-treap is faster. The most
significant difference can be seen on ENWIKI-SMLc, where on average the wavelet tree
is two times faster. Fig. 17 shows the times on our biggest character alphabet collection
(ENWIKI-BIGc): the wavelet tree is about 50% slower for k ≤ 64. This difference gets

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:27

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

k

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

1

5
10

50
100

500
1000

5000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

k

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

1

5
10

50
100

500
1000

5000

RMQC + CSA access
K2-treap search
CSA matching

1

2

5

10

20

50

100

200

500

k

A
v
g
.

ti
m

e
p

er
d

oc
.

[µ
s]

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

K2-treap retrieved
RMQC + CSA retrieved
weighted average

Fig. 15. Query times for IDX GN on ENWIKI-BIGc, with m = 5. Left: Query time depending on k with a de-
tailed breakdown of the three query phases. Right: Average time per document, considering those retrieved
from the K2-treap, with RMQC+CSA, and their (weighted) average. The CSA matching time is included in
all cases.

ENWIKI-SMLc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

20

50

100

200

500

1 2 4 8 16 32 64 12
8

25
6

DNAc
1 2 4 8 16 32 64 12
8

25
6

KGSc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

k

10

20

50

100

200

500

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

PROTEINSc

k

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

K2-treap retrieved Wavelet Tree retrieved

Fig. 16. Comparison of the average time per query required to retrieve the top-k results using a K2-treap
or the wavelet tree for representing G.

smaller for larger k values, and for k = 256 the wavelet tree is already 10% faster than
the K2-treap. This is quite different from the results obtained on the small collection
of the same type (ENWIKI-SMLc), where the wavelet tree was up to 5 times faster for
k = 256 and dominated the average time per query for all the k values.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:28 S.Gog et al.

ENWIKI-BIGc
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

20

50

100

200

500

1000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

K2-treap retrieved Wavelet Tree retrieved

Fig. 17. Comparison of the average time per query required to retrieve the top-k results using a K2-treap
or the wavelet tree for representing G for ENWIKI-BIGc.

We compare the overall performance of our indexes against the baselines in Fig. 18.
Recall that index NPVopt represents the best achieved result from all alternatives in
terms of space/time. We show the results using the smaller character alphabet collec-
tion since there are implementation constraints for NPVopt and WTRMQ. Except for
the PROTEINSc collection, all of our indexes require less than 200µs for k ≤ 16. We start
by analyzing the performance for the English Wikipedia collection (ENWIKI-SMLc). Our
indexes are faster than all other approaches for k ≤ 32. For larger k values, the best
combination of NPVopt is faster than our approaches by up to a factor of 3 (k = 256).
In the case of the DNAc collection, all of our indexes are up to 12 times faster than
the fastest alternative (NPVopt). As mentioned before, the performance of WTRMQ is
similar to that of WT1RMQH and K2TreapH . The extra RMQ operations performed at
each wavelet tree level add a constant time factor to the query time, as can be clearly
observed from the results on DNAc and PROTEINSc. In the case of KGSc, the difference
between our indexes and the other approaches is considerably bigger: our approaches
are 21 times faster than the closest alternative (NPVopt) for k = 2, and even for larger k
values all of our approaches are up to 3 times faster than the fastest baseline. Finally,
in the case of PROTEINSc, our results show that there is no alternative that is faster
than the most basic approach, which is sorting (SORT). In this case, our indexes are
slower than SORT for all k values, and also than NPVopt for k ≥ 4. The constant factor
added to the query times for the extra RMQ operations of WTRMQ is more evident
for this collection, making this alternative up to 10 times slower than WT1RMQH and
K2TreapH . Note that in this collection most patterns occur once in each document,
thus top-k queries are equivalent to plain document listing queries.

Fig. 19 shows the results for the bigger character based collection (ENWIKI-BIGc).
Note that for this experiment we are not able to construct the index using NPVopt and
WTRMQ since their implementations are not able to handle more than 232−1 memory
addresses. For all distinct k values, we are up to 100 times faster than the fastest base-
line (GREEDY) and even 1,000 times faster than the simple SORT method. The reason
for this is that GREEDY, as well as SORT, have to handle larger [sp, ep]-intervals for
this bigger collection, while our index is less dependent on this factor. As mentioned be-
fore, it turns out that for the case of the collection ENWIKI-BIGc WT1RMQH is slower

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:29

ENWIKI-SMLc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

100

1000

10000

DNAc

KGSc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

k

10

100

1000

10000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

PROTEINSc

k

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

WT1RMQH K2TreapH WTRMQ SORT GREEDY NPVopt

Fig. 18. Average time per query, in microseconds, for different k values and fixed pattern length m = 5,
evaluated on small character alphabet collections.

ENWIKI-BIGc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

k

101

102

103

104

105

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

WT1RMQH K2TreapH SORT GREEDY

Fig. 19. Average time per query in microseconds for varying k values and fixed pattern length m = 5 using
big character alphabet collections.

than K2TreapH for values of k ≤ 128. Therefore, the difference between heuristics and
indexes with stronger guarantees shows up as the data sizes increase.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:30 S.Gog et al.

ENWIKI-SMLc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

100

1000

10000

DNAc

KGSc

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

|P |

10

100

1000

10000

3 4 5 6 7 8 9 10

PROTEINSc

|P |

3 4 5 6 7 8 9 10

WT1RMQH K2TreapH WTRMQ SORT GREEDY NPVopt

Fig. 20. Average time per query in microseconds for different pattern lengths and fixed k = 10 value.

8.3. Varying pattern length

We proceed to analyze the effect of changing the query pattern length m. As before, we
selected 40,000 random substrings of lengths m ranging from 3 to 10 and obtained the
top-k documents for fixed k = 10. Fig. 20 shows the results, in terms of average time per
query for different query pattern lengths. For the collection ENWIKI-SMLc, our index
query time ranges in 80–110µs. Note that for query patterns longer than 8 symbols,
SORT is the fastest index. Since the ranges in the wavelet tree for longer patterns
are smaller, GREEDY starts to be competitive for m ≥ 7. In general, the query times
are quite similar for all of our indexes on this collection. A similar scenario arises on
the DNAc collection: our indexes range in 80–180µs, and for longer patterns SORT is
the best alternative. Note that NPVopt is 10 times slower for most m values. In the
case of KGSc collection, our indexes are the best for the whole range of pattern lengths
and we still are one order of magnitude faster than GREEDY and NPVopt. A special
case arises for the PROTEINSc collection. Our indexes are generally slower than the
baselines, especially WTRMQ, which is up to 5 times slower than WT1RMQH and
K2TreapH . Still, they are faster than NPVopt. In this case, the best alternative is the
simplest solution: the index SORT, for patterns having more than 4 symbols.

We show the results of our biggest character alphabet dataset, ENWIKI-BIGc in
Fig. 21. Recall that for this case, we are not able to compare with WTRMQ and NPVopt

due to the implementation constraints already described before. Compared to SORT
and GREEDY our indexes are up to 100 times faster for small pattern lengths and up
to 8 times faster for the longest case (m = 10).

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:31

ENWIKI-BIGc
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

|P |

101

102

103

104

105

106

3 4 5 6 7 8 9 10

WT1RMQH K2TreapH SORT GREEDY

Fig. 21. Average time per query in microseconds for different pattern lengths and fixed k = 10 value for
ENWIKI-BIGc.

8.4. Word alphabet collections

One of the most important feature of our best implementations (K2TreapH and
WT1RMQH) is that they are able to index collections with large alphabets, thus al-
lowing the mapping of words to integer symbols. We measured the performance of
our indexes and other baseline implementations on the word alphabet collections
(ENWIKI-SMLw, ENWIKI-BIGw, and GOV2w). We used the same experimental setup,
generating 40,000 single-word (m = 1) queries chosen at random from each collection
C and increasing k exponentially from 1 to 256.

We start by analyzing the results with the same breakdown of the top-k procedure as
done before for the character alphabet case. We show the details of the average query
time required for the index K2TreapH on word alphabet collections in Fig.22. The
pattern matching using the CSA takes less than 5µs for all cases. These results are
considerably faster than those obtained on character alphabet collections. The main
reason for this difference is that the CSA searches for a shorter pattern (m = 1 words),
even if on a larger alphabet. In general the top-k grid query takes a great portion of
the total time, of about 20–30µs for retrieving a single document. Interestingly, for
ENWIKI-SMLw, the portion of total time spent performing the single-occurrence pro-
cedure (RMQC + CSA accesses) is much bigger than for the larger collections. This
is expected, since ENWIKI-SMLw contains a small amount of document (4,390) when
compared to ENWIKI-BIGw (3,903,703) and GOV2w (25,205,179), and thus in the lat-
ter it is more likely to find k documents where P appears more than once. In general,
K2TreapH is up to three times faster in these types of collections than in the smaller,
character alphabet ones.

We show the average time required to retrieve a document, depending on whether it
was retrieved using the K2-treap or the single-occurrence procedure. We show the
results obtained for the GOV2w collection in Fig. 23. As before, retrieving a single
document using either approach is costly: about 20µs with the K2-treap and 100µs
with RMQC + CSA accesses. The time per document decreases significantly as k in-
creases. For k = 256, the average time to retrieve a single document is below 2µs for
the K2-treap and 31µs for the single-occurrence procedure. As before, this is because
the K2-treap spends some time until extracting the first result, and the next ones come
faster. Instead, the document listing method has a more constant-time behaviour: Af-

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:32 S.Gog et al.

ENWIKI-SMLw

A
v
g
.
ti

m
e

p
er

q
u

er
y

[
]

1

5

10

50

100

500

1000

1

5

10

50

100

500

1000
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

ENWIKI-BIGw

A
v
g
.
ti

m
e

p
er

q
u

er
y

[
]

1

5

10

50

100

500

1000

1

5

10

50

100

500

1000

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

GOV2w

A
v
g
.
ti

m
e

p
er

q
u

er
y

[
]

1

5

10

50

100

500

1000

1

5

10

50

100

500

1000

k

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

5

10

50

100

500

1000

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

RMQC + CSA access Top-k Grid Query CSA matching

Fig. 22. Detailed breakdown of average query time for index K2TreapH on word alphabet collections.

ter k ≥ 4, the RMQC + CSA retrieval time does not decrease when more documents
are requested.

Fig. 24 compares the two grid representations: the K2-treap and the wavelet tree.
Interestingly, for the small collection (ENWIKI-SMLw) the K2-treap is slower than the
wavelet tree, but it is considerably faster for larger collections (ENWIKI-BIGw and
GOV2w). In detail, for the small collection, the wavelet tree is up to twice as fast as
the K2-treap, and for the larger ones, the wavelet tree is up to twice as slow. This re-
sult is also different when compared to the character alphabet collections, where in
most cases the wavelet tree is faster than the K2-treap. This is due to the x-range of
the query: since the pattern length is m = 1, the x-ranges in the queries bigger for
the large collections. This affects negatively the wavelet tree, because the two RANKb

operations used to map the interval [x1, x2] are far apart and require separate cache

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:33

1

2

5

10

20

50

100

k

A
v
g
.

ti
m

e
p

er
d

oc
.

[µ
s]

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

K2-treap retrieved RMQC + CSA retrieved weighted average

Fig. 23. Query times for IDX GN on GOV2w, with m = 1. Average time per document, considering those
retrieved from the K2-treap, with RMQC+CSA, and their (weighted) average. The CSA matching time is
included in all cases.

misses. Instead, the K2-treap has a higher chance of having the heaviest point of each
subgrid inside the bigger query area, and thus it might find results sooner.

Fig. 25 shows the comparison between our indexes and the baselines (GREEDY and
SORT). For the small Wikipedia collection our indexes are one order of magnitude
faster than GREEDY for all values up to k ≤ 64, taking less than 100µs on average.
On the other hand, the naive SORT is up to 1,000 times slower than our indexes for
small k ≤ 8 values, and 10 times slower for k = 256. For the bigger texts, SORT is not
considered since it required more than 5 seconds to execute. In these cases, our indexes
are undisputedly the fastest alternative, being about 1,000 times faster for k = 10 and
almost 100 times faster for the largest k value. Note that from the two alternatives,
K2TreapH is faster than WT1RMQH as the grid search is considerably faster when
performed on the K2-treap than on the wavelet tree.

9. CONCLUSIONS AND FUTURE WORK

Top-k document retrieval on general string collections is a challenging problem that
is not well solved with classical pattern matching indices. Since the theoretical time-
optimal solution [Navarro and Nekrich 2012] uses impractical amounts of space, there
has been a continued line of research aiming at engineering slower alternatives, which
use 2–5 times the text size [Culpepper et al. 2010; Navarro et al. 2014b; Gog et al.
2014]. In this article we have shown that, instead, the time-optimal solution can be
engineered so that it uses only 2.5–3.0 times the text size and answers queries within
microseconds. This is remarkable if we consider that a naive implementation of the
theoretical solution would use about 80 times the text size. Our index is typically 10
times faster than previous solutions, even than those using more space. The only in-
dices using less space than our implementation [Navarro et al. 2014b] may be about
30% smaller, but hundreds of times slower.

We have also developed efficient construction algorithms for our index, which allow
us to index hundred-gigabyte natural-language collections of word sequences, over vo-
cabularies of million symbols. In this case, our top-k indices offer a top-k functionality
analogous to that of inverted indices. In particular, they can easily answer top-k phrase
queries, which are hard to handle with inverted indices. Instead, extending our index
to handle weighted Boolean queries, or more complex relevance measures like BM25,
is an interesting future challenge.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:34 S.Gog et al.

ENWIKI-SMLw
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

20

50

100

200

500

1000

2000

ENWIKI-BIGw

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

20

50

100

200

500

1000

2000

GOV2w

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

10

20

50

100

200

500

1000

2000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

k

K2-treap retrieved Wavelet Tree retrieved

Fig. 24. Comparison of the average time per query to retrieve the top-k results using a K2-treap or the
wavelet tree for representing G in word alphabet collections.

REFERENCES

D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. 2010. Succinct trees in practice. In Proc. 11th
Workshop on Algorithm Engineering and Experiments (ALENEX). 84–97.

R. Baeza-Yates and B. Ribeiro-Neto. 2011. Modern Information Retrieval (2nd ed.). Addison-Wesley.

D. Belazzougui, G. Navarro, and D. Valenzuela. 2013. Improved compressed indexes for full-text document
retrieval. Journal of Discrete Algorithms 18 (2013), 3–13.

D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. 2005. Representing trees of
higher degree. Algorithmica 43, 4 (2005), 275–292.

N. Brisaboa, G. de Bernardo, R. Konow, G. Navarro, and D. Seco. 2016. Aggregated 2D Range Queries on
Clustered Points. Information Systems 60 (2016), 34–49.

N. Brisaboa, S. Ladra, and G. Navarro. 2013. DACs: Bringing direct access to variable-length codes. Infor-
mation Processing and Management 49, 1 (2013), 392–404.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:35

ENWIKI-BIGw
A

v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

101

102

103

104

105

106

ENWIKI-BIGw

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

101

102

103

104

105

106

GOV2w

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

k

101

102

103

104

105

106

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

WT1RMQH K2TreapH SORT GREEDY

Fig. 25. Average time per query in microseconds for different k values and fixed pattern length m = 1 on
word alphabet collections. SORT is not included since it required more than 5 seconds to execute.

N. Brisaboa, S. Ladra, and G. Navarro. 2014. Compact representation of Web graphs with extended func-
tionality. Information Systems 39, 1 (2014), 152–174.

S. Büttcher, C. Clarke, and G. Cormack. 2010. Information Retrieval: Implementing and Evaluating Search
Engines. MIT Press.

D. R. Clark. 1996. Compact Pat Trees. Ph.D. Dissertation. Waterloo, Ont., Canada.

B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval in Practice. Pearson
Education.

J. S. Culpepper, M. Petri, and F. Scholer. 2012. Efficient in-memory top-k document retrieval. In Proc. 35th
International ACM Conference on Research and Development in Information Retrieval (SIGIR). 225–
234.

S. Culpepper, G. Navarro, S. Puglisi, and A. Turpin. 2010. Top-k ranked document search in general text
databases. In Proc. 18th Annual European Symposium on Algorithms (ESA B) (LNCS 6347). 194–205
(part II).

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:36 S.Gog et al.

ENWIKI-SMLw

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

101

102

103

104

105

ENWIKI-BIGw

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

101

102

103

104

105

GOV2w

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

101

102

103

104

105

A
v
g
.

ti
m

e
p

er
q

u
er

y
[µ
s]

|P |

1 2 3 4 5 6 7 8 9 10

WT1RMQH K2TreapH SORT GREEDY

Fig. 26. Average time per query in microseconds for different pattern lengths. Results that required more
than 5 seconds for SORT are not shown.

H. Ferrada and G. Navarro. 2014. Efficient compressed indexing for approximate top-k string retrieval. In
Proc. 21st International Symposium on String Processing and Information Retrieval (SPIRE) (LNCS
8799). 18–30.

P. Ferragina and G. Manzini. 2005. Indexing compressed text. J. ACM 52, 4 (2005), 552–581.

J. Fischer and V. Heun. 2011. Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM J. Comput. 40, 2 (2011), 465–492.

T. Gagie, G. Navarro, and S. J. Puglisi. 2012. New algorithms on wavelet trees and applications to informa-
tion retrieval. Theoretical Computer Science 426-427 (2012), 25–41.

S. Gog. 2011. Compressed Suffix Trees: Design, Construction, and Applications. Ph.D. Dissertation. Univ. of
Ulm, Germany.

S. Gog, T. Beller, A. Moffat, and M. Petri. 2014. From theory to practice: Plug and play with succinct data
structures. In Proc 13th International Symposium on Experimental Algorithms (SEA). 326–337.

S. Gog and G. Navarro. 2015. Improved single-term top-k document retrieval. In Proc. 17th Workshop on
Algorithm Engineering and Experiments (ALENEX). 24–32.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Practical Compact Indexes for Top-k Document Retrieval 1:37

S. Gog and M. Petri. 2014. Optimized succinct data structures for massive data. Software Prac. Experience
44, 11 (2014), 1287–1314.

R. Grossi, A. Gupta, and J. Vitter. 2003. High-order entropy-compressed text indexes. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

W.-K. Hon, M. Patil, R. Shah, and S.-B. Wu. 2010. Efficient index for retrieving top-k most frequent docu-
ments. Journal of Discrete Algorithms 8, 4 (2010), 402–417.

W.-K. Hon, R. Shah, and J. S. Vitter. 2009. Space-efficient framework for top-k string retrieval problems. In
Proc. 50th Annual Symposium on Foundations of Computer Science (FOCS). 713–722.

J. Karkkainen, D. Kempa, and S.J. Puglisi. 2014. Hybrid Compression of Bitvectors for the FM-Index. In
Data Compression Conference (DCC), 2014. 302–311.

R. Konow and G. Navarro. 2013. Faster compact top-k document retrieval. In Proc. 23rd Data Compression
Conference (DCC). 351–360.

N. J. Larsson and A. Moffat. 2000. Off-line dictionary-based compression. Proc. IEEE 88, 11 (2000), 1722–
1732.

T.-Y. Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval
3, 3 (2009), 225–331.

V. Mäkinen and G. Navarro. 2006. Position-restricted substring searching. In Proc. 7th Latin American
Theoretical Informatics (LATIN) (LNCS 3887). 703–714.

U. Manber and E. W. Myers. 1993. Suffix arrays: A new method for on-line string searches. SIAM J. Comput.
22, 5 (1993), 935–948.

I. Munro. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS) (LNCS 1180). 37–42.

J. I. Munro and V. Raman. 2002. Succinct representation of balanced parentheses and static trees. SIAM J.
Comput. 31, 3 (2002), 762–776.

S. Muthukrishnan. 2002. Efficient algorithms for document retrieval problems. In Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 657–666.

G. Navarro. 2014. Spaces, trees and colors: The algorithmic landscape of document retrieval on sequences.
Comput. Surveys 46, 4 (2014), article 52.

Gonzalo Navarro. 2016. Compact Data Structures – A practical approach. Cambridge University Press.

G. Navarro and V. Mäkinen. 2007. Compressed full-text indexes. Comput. Surveys 39, 1 (2007).

G. Navarro and Y. Nekrich. 2012. Top-k document retrieval in optimal time and linear space. In Proc. 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

G. Navarro, Y. Nekrich, and L. Russo. 2013. Space-efficient data-analysis queries on grids. Theoretical Com-
puter Science 482 (2013), 60–72.

G. Navarro, S. J. Puglisi, and J. Sirén. 2014a. Document retrieval on repetitive collections. In Proc. 22nd
Annual European Symposium on Agorithms (ESA B) (LNCS 8737). 725–736.

G. Navarro, S. J. Puglisi, and D. Valenzuela. 2014b. General document retrieval in compact space. ACM
Journal of Experimental Algorithmics 19, 2 (2014), article 3.

G. Navarro and K. Sadakane. 2014. Fully-functional static and dynamic succinct trees. ACM Transactions
on Algorithms 10, 3 (2014), article 16.

D. Okanohara and K. Sadakane. 2007. Practical entropy-compressed rank/select dictionary. In Proc. 9th
Workshop on Algorithm Engineering and Experiments (ALENEX). 60–70.

M. Patil, S. V. Thankachan, R. Shah, W.-K. Hon, J. S. Vitter, and S. Chandrasekaran. 2011. Inverted indexes
for phrases and strings. In Proc. 34th International ACM Conference on Research and Development in
Information Retrieval (SIGIR). 555–564.

R. Raman, V. Raman, and S. S. Rao. 2007. Succinct indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3, 4 (2007), article 43.

W. Szpankowski. 1993. A generalized suffix tree and its (un)expected asymptotic behaviors. SIAM J. Comput.
22, 6 (1993), 1176–1198.

S. Vigna. 2008. Broadword implementation of rank/select queries. In Proc. 7th International Workshop on
Experimental Algorithms (WEA) (LNCS 5038). 154–168.

P. Weiner. 1973. Linear pattern matching algorithms. In Proc. Switching and Automata Theory. 1–11.

Received XXX; revised XXXXX; accepted XXXXX

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1, Publication date: January 2015.

