
Increased Bit-Parallelism

for Approximate and Multiple String Matching

HEIKKI HYYRÖ
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2 · H. Hyyrö et al.

Bit-parallelism permits executing several operations simultaneously over a set of bits or num-
bers stored in a single computer word. This technique permits searching for the approximate
occurrences of a pattern of length m in a text of length n in time O(⌈m/w⌉n), where w is the
number of bits in the computer word. Although this is asymptotically the optimal bit-parallel
speedup over the basic O(mn) time algorithm, it wastes bit-parallelism’s power in the common
case where m is much smaller than w, since w −m bits in the computer words get unused.

In this paper we explore different ways to increase the bit-parallelism when the search pattern
is short. First, we show how multiple patterns can be packed into a single computer word so
as to search for all them simultaneously. Instead of spending O(rn) time to search for r pat-
terns of length m ≤ w/2, we need O(⌈rm/w⌉n) time. Second, we show how the mechanism
permits boosting the search for a single pattern of length m ≤ w/2, which can be searched for in
O(⌈n/⌊w/m⌋⌉) bit-parallel steps instead of O(n). Third, we show how to extend these algorithms
so that the time bounds essentially depend on k instead of m, where k is the maximum number
of differences permitted. Finally, we show how the ideas can be applied to other problems such
as multiple exact string matching and one-against-all computation of edit distance and longest
common subsequences.

Our experimental results show that the new algorithms work well in practice, obtaining sig-
nificant speedups over the best existing alternatives especially on short patterns and moderate
number of differences allowed. This work fills an important gap in the field, where little work has
focused on very short patterns.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:

Nonnumerical Algorithms and Problems—Pattern matching, Computations on discrete struc-
tures; H.3.3 [Information storage and retrieval]: Information Search and Retrieval—Search
process

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Approximate string matching, multiple string matching,
bit-parallelism

1. INTRODUCTION

Approximate string matching is an old problem, with applications for example in
spelling correction, bioinformatics and signal processing [Navarro 2001]. It refers
in general to searching for substrings of a text that are within a predefined edit
distance threshold from a given pattern. Let T = T1...n be a text of length n and
P = P1...m a pattern of length m. Here Aa...b denotes the substring of A that begins
at its ath character and ends at its bth character, for a ≤ b. Let ed(A, B) denote
the edit distance between the strings A and B, and k be the maximum allowed
distance. Then the task of approximate string matching is to find all text indices j
for which ed(P, Th...j) ≤ k for some h ≤ j.

The most common form of edit distance is Levenshtein distance [Levenshtein
1966]. It is defined as the minimum number of single-character insertions, deletions
and substitutions needed in order to make A and B equal. In this paper ed(A, B)
will denote Levenshtein distance. Another distance of interest is the indel distance,
denoted by id(A, B), where only character insertions and deletions are permitted.
String B is a subsequence of string A if and only if we can transform A into B
by removing zero or more characters from A. The indel distance is the dual of the
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length of a longest common subsequence between two strings, which will be denoted
llcs(A, B) in this paper.

We also use w to denote the computer word size in bits, σ to denote the size of
the text and pattern alphabet Σ, and |A| to denote the length of the string A.

Bit-parallelism is the technique of packing several values in a single computer
word and updating them all in a single operation. This technique has yielded
the fastest approximate string matching algorithms if we exclude filtration algo-
rithms (which need anyway to be coupled with a non-filtration one). In par-
ticular, the O(⌈m/w⌉kn) algorithm of Wu and Manber [Wu and Manber 1992],
the O(⌈km/w⌉n) algorithm of Baeza-Yates and Navarro [Baeza-Yates and Navarro
1999], and the O(⌈m/w⌉n) algorithm of Myers [Myers 1999] dominate for almost
every value of m, k and σ.

In complexity terms, Myers’ algorithm is superior to the others. In practice, how-
ever, Wu & Manber’s algorithm is faster for k = 1 and Baeza-Yates and Navarro’s
is faster when (k + 2)(m − k) ≤ w or k/m is low. The reason is that, despite
that Myers’ algorithm packs better the state of the search (needing to update less
computer words), it needs slightly more operations than its competitors. Except
when m and k are small, the need to update less computer words makes Myers’
algorithm faster than the others. However, when m is much smaller than w, My-
ers’ advantage disappears because all the three algorithms need to update just one
(or very few) computer words. In this case, Myers’ representation wastes many
bits of the computer word and is unable to take advantage of its more compact
representation.

The case where m is much smaller than w is very common in several applications.
Typically w is 32 or 64 bits in a modern computer, and for example the Pentium
4 processor allows one to use even words of 128 bits. Myers’ representation uses m
bits out of those w. In spelling, for example, it is usual to search for words whose
average length is 6. In computational biology one can search for short DNA or
amino acid sequences, of length as small as 4. Measuring edit distance or longest
common subsequence against several short sequences is another common task. In
signal processing applications one can search for streams composed of a few audio,
MIDI, or video samples.

In this paper we concentrate on reducing the number of wasted bits in Myers’
algorithm, so as to take advantage of its better packing of the search state even when
m ≤ w. This has been attempted previously [Fredriksson 2003], where O(m⌈n/w⌉)
time was obtained by processing the distance matrix by chunks of w columns at a
time, each chunk in a row-wise manner. Our technique is different, as we focus on
representing several patterns in a single computer word.

The contributions of this paper follow:

—We show how to search for several patterns simultaneously by packing them all
in the same computer word. As a result, we can search for r patterns of length
m ≤ w/2 in O(⌈rm/w⌉n + occ) rather than O(rn) time, where occ ≤ rn is the
total number of occurrences of all the patterns. Our experiments show that our
algorithm is faster than all the others in many cases of interest, especially on
short patterns.

—We show how the above idea can be used to boost the search for a single pattern,
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so as to perform O(⌈n/⌊w/m⌋⌉) instead of O(n) bit-parallel steps, when m ≤ w/2.
Although we still perform O(n) accesses to the text, those are much cheaper than
the bit-parallel steps. Our experiments show that our algorithm is faster than
all the previous ones in most interesting cases and by far, especially on short
patterns.

—We show how to handle longer patterns, by considering only a sufficiently long
prefix thereof. The result is an algorithm whose average search complexity is
O(⌈r max(k, log m)/w⌉n). Our experiments show that this technique extends
the superiority of our multipattern search algorithm to the case of smaller k
values, which are interesting for many applications.

—We show how the ideas developed for approximate searching can be extended
to multiple exact string matching. Our algorithm can search for r patterns of
any length in average time O(⌈r logσ w/w⌉n). The same idea can be used to
boost other bit-parallel algorithms such as MultiBDM [Navarro and Raffinot
2000; 2002]. Our experimental results show that the result is competitive against
previous work, being the best by far when searching for a moderate number of
short patterns.

—We show how the ideas for approximate searching can be adapted to compute edit
distance or longest common subsequence for several short patterns against one.
Our experimental results show that the idea is practical and permits noticeably
boosting of the search time.

2. DYNAMIC PROGRAMMING

In the following ǫ denotes the empty string. To compute Levenshtein distance
ed(A, B), the dynamic programming algorithm fills an (|A| + 1) × (|B| + 1) table
D, in which each cell D[i, j] will eventually hold the value ed(A1..i, B1..j). Ini-
tially the trivially known boundary values D[i, 0] = ed(A1..i, ǫ) = i and D[0, j] =
ed(ǫ, B1..j) = j are filled. Then the cells D[i, j] are computed for i = 1 . . . |A| and
j = 1 . . . |B| until the desired solution D[|A|, |B|] = ed(A1...|A|, B1...|B|) = ed(A, B)
is known. When the values D[i− 1, j− 1], D[i, j− 1] and D[i− 1, j] are known, the
value D[i, j] can be computed by using the following well-known recurrence.

D[i, 0] = i, D[0, j] = j.

D[i, j] =

{

D[i− 1, j − 1], if Ai = Bj .
1 + min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]), otherwise.

This distance computation algorithm is easily modified to find approximate oc-
currences of A somewhere inside B [Sellers 1980]. This is done simply by chang-
ing the boundary condition D[0, j] = j into D[0, j] = 0. In this case D[i, j] =
min(ed(A1...i, Bh...j), h ≤ j), which corresponds to the earlier definition of approx-
imate string matching if we replace A with P and B with T .

The values of D are usually computed by filling it in a column-wise manner
for increasing j. This corresponds to scanning the string B (or the text T ) one
character at a time from left to right. At each character the corresponding column
is completely filled in order of increasing i. This order makes it possible to save
space by storing only one column at a time, since then the values in column j
depend only on already computed values in it or values in column j − 1.
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Some properties of matrix D are relevant to our paper [Ukkonen 1985b]:

-The diagonal property: D[i, j]−D[i− 1, j − 1] = 0 or 1.
-The adjacency property: D[i, j]−D[i, j − 1] = −1, 0, or 1, and

D[i, j]−D[i− 1, j] = −1, 0, or 1.

3. MYERS’ BIT-PARALLEL ALGORITHM

In what follows we will use the following notation in describing bit-operations:
’&’ denotes bitwise “and”, ’|’ denotes bitwise “or”, ’∧’ denotes bitwise “xor”, ’∼’
denotes bit complementation, and ’<<’ and ’>>’ denote shifting the bit vector left
and right, respectively, using zero filling in both directions. The ith bit of the bit
vector V is referred to as V [i] and bit positions are assumed to grow from right
to left. In addition we use superscripts to denote repetition. As an example let
V = 1011010 be a bit vector. Then V [1] = V [3] = V [6] = 0, V [2] = V [4] = V [5] =
V [7] = 1, and we could also write V = 1012010 or V = 101(10)2.

We describe here a version of the algorithm [Hyyrö 2001; Navarro and Raffinot
2002] that is slightly simpler than the original by Myers [Myers 1999]. The al-
gorithm is based on representing the dynamic programming table D with vertical,
horizontal and diagonal differences and precomputing the matching positions of the
pattern into an array of size σ. This is done by using the following length-m bit
vectors:

. Vertical positive delta: VP[i] = 1 at text position j iff D[i, j]−D[i− 1, j] = 1.

. Vertical negative delta: VN[i] = 1 at text position j iff D[i, j]−D[i−1, j] = −1.

. Horizontal positive delta: HP[i] = 1 at text position j iff D[i, j]−D[i, j−1] = 1.

. Horizontal negative delta: HN[i]=1 at text position j iff D[i, j]−D[i, j−1]=−1.

. Diagonal zero delta: D0[i] = 1 at text position j iff D[i, j] = D[i− 1, j − 1].

. Pattern match vector PMλ for each λ ∈ Σ: PMλ[i] = 1 iff Pi = λ.

Fig. 1 shows a small example of a dynamic programming matrix and its represen-
tation with these bit vectors.

D b e a r d

0 0 0 0 0 0

b 1 0 1 1 1 1

a 2 1 1 1 2 2

n 3 2 2 2 2 3

d 4 3 3 3 3 2

VP b e a r d

b 1 0 1 1 1 1

a 1 1 0 0 1 1

n 1 1 1 1 0 1

d 1 1 1 1 1 0

VN b e a r d

b 0 0 0 0 0 0

a 0 0 0 0 0 0

n 0 0 0 0 0 0

d 0 0 0 0 0 1

HP b e a r d

b 0 1 0 0 0

a 0 0 0 1 0

n 0 0 0 0 1

d 0 0 0 0 0

HN b e a r d

b 1 0 0 0 0

a 1 0 0 0 0

n 1 0 0 0 0

d 1 0 0 0 1

D0 b e a r d

b 1 0 0 0 0

a 1 0 1 0 0

n 1 0 0 0 0

d 1 0 0 0 1

Fig. 1. The dynamic programming matrix to search "beard" for "band", and and its representation
with bit vectors. Each matrix column is represented by the corresponding bit vector columns.

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · H. Hyyrö et al.

Initially VP = 1m and VN = 0m to enforce the boundary condition D[i, 0] = i.
At text position j the algorithm first computes vector D0 by using the old values
VP and VN and the pattern match vector PMTj

. Then the new HP and HN are
computed by using D0 and the old VP and VN. Finally, vectors VP and VN are
updated by using the new D0, HN and HP. Fig. 2 shows the complete formula
for updating the vectors, and Fig. 3 shows the preprocessing of table PM and the
higher-level search scheme. We refer the reader to [Hyyrö 2001; Myers 1999] for a
more detailed explanation of the formula in Fig. 2.

Step(j)
1. D0← (((PMTj

& VP) + VP) ∧ VP) | PMTj
| VN

2. HP← VN | ∼ (D0 | VP)
3. HN← VP & D0
4. VP← (HN << 1) | ∼ (D0 | (HP << 1))
5. VN← (HP << 1) & D0

Fig. 2. Updating the delta vectors at column j.

ComputePM(P )
1. For λ ∈ Σ Do PMλ ← 0m

2. For i ∈ 1 . . . m Do PMPi
← PMPi

| 0m−i10i−1

Search(P, T, k)
1. ComputePM(P )
2. VN← 0m

3. VP← 1m

4. currDist← m
5. For j ∈ 1 . . . n Do
6. Step(j)
7. If HP & 10m−1 = 10m−1 Then
8. currDist← currDist + 1
9. Else If HN & 10m−1 = 10m−1 Then
10. currDist← currDist− 1
11. If currDist ≤ k Then
12. Report occurrence at j

Fig. 3. Preprocessing the PM-table and conducting the search.

The algorithm in Fig. 3 computes the value D[m, j] explicitly in the currDist
variable by using the horizontal delta vectors (the initial value of currDist is
D[m, 0] = m). A pattern occurrence with at most k errors is found at text po-
sition j whenever D[m, j] ≤ k.

We point out that the boundary condition D[0, j] = 0 is enforced on lines 4 and
5 in Fig. 2. After the horizontal delta vectors HP and HN are shifted left, their
first bits correspond to the difference D[0, j] −D[0, j − 1]. This is the only phase

ACM Journal Name, Vol. V, No. N, Month 20YY.



Increased Bit Parallelism · 7

m

n
T

P

w

m

n
T

P

w

1

P

P

2

3

(a) (b)

Fig. 4. For short patterns (m < w) Myers’ algorithm (a) wastes w −m bits. Our proposal (b)
packs several patterns into the same computer word.

in the algorithm where the values from row 0 are relevant. And as we assume
zero filling, the left shifts correctly set HP[1] = HN[1] = 0 to encode the difference
D[0, j]−D[0, j − 1] = 0.

The running time of the algorithm is O(n) when m ≤ w, as there are only a
constant number of operations per text character. The general running time is
O(⌈m/w⌉n) as a vector of length m may be simulated in O(⌈m/w⌉) time using
O(⌈m/w⌉) bit vectors of length w.

4. SEARCHING FOR SEVERAL PATTERNS SIMULTANEOUSLY

We show how Myers’ algorithm can be used to search for r patterns of length m
simultaneously, all with the same error threshold k. For simplicity we will assume
rm ≤ w; otherwise the search patterns must be split into groups of at most ⌊w/m⌋
patterns each, and each group searched for separately. Our search time will be
O(⌈r/⌊w/m⌋⌉n + occ), as opposed to the O(rn) time that would be achieved by
searching for each pattern separately. Here occ ≤ rn stands for the total number
of occurrences of all the patterns. When w/m ≥ 2 (our case of interest), our
complexity can be written as O(⌈rm/w⌉n + occ).

Consider the situation where w/m ≥ 2 and Myers’ algorithm is used. Fig. 4a
shows how the algorithm fails to take full advantage of bit-parallelism in that situ-
ation as at least one half of the bits in the bit vectors is not used. Fig. 4b depicts
our proposal: encode several patterns into the bit vectors and search for them in
parallel. There are several obstacles in implementing this simple idea correctly,
which will be discussed next.

4.1 Updating the Delta Vectors

A natural starting point is the problem of encoding and updating several pat-
terns in the delta vectors. Let us denote a parallel version of a delta vector with
the superscript p. We encode the patterns consecutively into the vectors with-
out leaving any space between them. For example D0p[i] corresponds to the bit
D0[((i−1) mod m)+1] in the D0-vector of the ⌈i/m⌉th pattern. The pattern match
vectors PM are computed in normal fashion for the concatenation of the patterns.
This correctly aligns the patterns with their positions in the bit vectors.

When the parallel vectors are updated, we need to ensure that the values for
different patterns do not interfere with each other and that the boundary values
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D[0, j] = 0 are used correctly. From the update formula in Fig. 2 it is obvious that
only the addition (“+”) on line 1 and the left shifts on lines 4 and 5 can cause
incorrect interference.

The addition operation may be handled by temporarily setting off the bits in
VPp that correspond to the last characters of the patterns. When this is done
before the addition, there cannot be an incorrect overflow, and the algorithm also
stays correct in every other aspect: The value VPp[i] can affect only the values
D0p[i + h] for some h > 0. It turns out that a similar modification works also with
the left shifts. If the bits that correspond to the last characters of the patterns
are temporarily set off in HPp and HNp then, after shifting left, the positions in
HPp and HNp that correspond to the first characters of the patterns will correctly
have a zero bit. The first pattern gets the zero bits from zero filling of the shift.
Therefore, this second modification both removes possible interference and enforces
the boundary condition D[0, j]−D[0, j − 1] = 0.

Both modifications are implemented by anding the corresponding vectors with
the bit mask ZM = (01m−1)r . Fig. 5 gives the code for a step.

MStep(j)
1. XP← VP & ZM
2. D0← (((PMTj

& XP) + XP) ∧ XP) | PMTj
| VN

3. HP← VN | ∼ (D0 | VP)
4. HN← VP & D0
5. XP← (HP & ZM) << 1
6. XN← (HN & ZM) << 1
7. VP← (XN | ∼ (D0 | XP))
8. VN← XP & D0

Fig. 5. Updating the delta vectors at column j, when searching for multiple patterns.

4.2 Keeping the Scores

A second problem is computing the value D[m, j] explicitly for each of the r pat-
terns. We handle this by using bit-parallel counters in a somewhat similar fashion
to [Hyyrö and Navarro 2002; Hyyrö and Navarro 2005]. Let MC be a length-w bit-
parallel counter vector. We set up into MC an m-bit counter for each pattern. Let
MC(i) be the value of the ith counter. The counters are aligned with the patterns
so that MC(1) occupies the first m bits, MC(2) the next m bits, and so on. We
will represent value zero in each counter as b = 2m−1 + k, and the value MC(i)
will be translated to actually mean b−MC(i). This gives each counter MC(i) the
following properties: (1) b < 2m. (2) b−m ≥ 0. (3) The mth bit of MC(i) is set iff
b−MC(i) ≤ k. (4) In terms of updating the translated value of MC(i), the roles of
adding and subtracting from it are reversed.

The significance of properties (1) and (2) is that they ensure that the values of
the counters will not overflow outside their regions. Their correctness depends on
the assumption k < m. This is not a true restriction as it excludes only the case of
trivial matching (k = m).
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We use a length-w bit-mask EM = (10m−1)r to update MC. The bits set in
HPp & EM and HNp & EM correspond to the last bits of the counters that need
to be incremented and decremented, respectively. Thus, remembering to reverse
addition and subtraction, MC may be updated by setting

MC← MC + ((HNp & EM) >> (m− 1))− ((HPp & EM) >> (m− 1)).

Property (3) means that the last bit of MC(i) signals whether the ith pattern
matches at the current position. Hence, whenever MC & EM 6= 0rm we have an
occurrence of some of the patterns in T . At this point we can examine the bit
positions of EM one by one to determine which patterns have matched and report
their occurrences. This, however, adds O(r min(n, occ)) time in the worst case to
report the occ occurrences of all the patterns. We show next how to reduce this to
O(occ).

Fig. 6 gives the code to search for the patterns P 1 . . . P r.

MComputePM(P 1 . . . P r)
1. For λ ∈ Σ Do PMλ ← 0mr

2. For s ∈ 1 . . . r Do

3. For i ∈ 1 . . . m Do PMP s
i
← PMP s

i
| 0m(r−s+1)−i10m(s−1)+i−1

MSearch(P 1 . . . P r, T, k)
1. MComputePM(P 1 . . . P r)
2. ZM← (01m−1)r

3. EM← (10m−1)r

4. VN← 0mr

5. VP← 1mr

6. MC← (2m−1 + k)× (0m−11)r

7. For j ∈ 1 . . . n Do
8. MStep(j)
9. MC← MC + ((HN & EM) >> (m − 1)) − ((HP & EM) >> (m − 1))
10. If MC & EM 6= 0rm Then MReport(j,MC & EM)

Fig. 6. Preprocessing the PM-table and conducting the search for multiple patterns.

4.3 Reporting the Occurrences

Let us assume that we want to identify which bits in mask OM = MC & EM are
set, in time proportional to the number of bits set. If we achieve this, the total
time to report all the occ occurrences of all the patterns will be O(occ). One choice
is to precompute a table F that, for any value of OM, gives the position of the
first bit set in OM. That is, if F [OM] = s, then we report an occurrence of the
(s/m)th pattern at the current text position j, clear the sth bit in OM by doing
OM← OM & ∼ (1 << (s− 1)), and repeat until OM becomes zero.

The only problem of this approach is that table F has 2rm entries, which is too
much. Fortunately, we can compute the s values efficiently without resorting to
look-up tables. The key observation is that the position of the highest bit set in
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OM is effectively the function ⌊log2(OM)⌋ + 1 (we number the bits from 1 to w),
that is, it holds that

2⌊log2
(x)⌋ ≤ x < 2⌊log2

(x)⌋+1, or which is the same,

1 << ⌊log2(x)⌋ ≤ x < 1 << (⌊log2(x)⌋ + 1).

The function ⌊log2(x)⌋ for an integer x can be computed in O(1) time in modern
computer architectures by converting x into a floating point number and extracting
the exponent, which requires only two additions and a shift. This assumes that the
floating point number is represented in a certain way, in particular that the radix
is 2, and that the number is normalized. The “industry standard” IEEE floating
point representation meets these requirements. For the details and other solutions
for the integer logarithm of base 2, refer for example to [Warren Jr 2003]. ISO C99
standard conforming C compilers also provide a function to extract the exponent
directly, and many CPUs even have a dedicated machine instruction for ⌊log2(x)⌋
function. Fig. 7 gives the code.

MReport(j,OM)
1. While OM 6= 0rm Do
2. s← ⌊log2(OM)⌋

3. Report occurrence of P (s+1)/m at text position j
4. OM← OM & ∼ (1 << s)

Fig. 7. Reporting occurrences at current text position.

For architectures where ⌊log2(x)⌋ is hard to compute, we can still manage to
obtain O(min(n, occ) log r) time as follows. To detect the bits set in OM, we check
its two halves. If some half is zero, we can finish there. Otherwise, we recursively
check its two halves. We continue the process until we have isolated each individual
bit set in OM. In the worst case, each such bit has cost us O(log r) halving steps.

4.4 Handling Different Lengths and Thresholds

For simplicity we have assumed that all the patterns are of the same length and
are all searched with the same k. The method, however, can be adapted with little
problems to different m and k for each pattern.

If the lengths are m1 . . .mr and the thresholds are k1 . . . kr, we have to and the
vertical and horizontal vectors with ZM = 01mr−1 01mr−1−1 . . . 01m1−1, and this
fixes the problem of updating the delta vectors. With respect to the counters, the
ith counter must be represented as bi −MC(i), where bi = 2mi−1 + ki.

One delicacy is the update of MC, since the formula we gave to align all the HPp

bits at the beginning of the counters involved “>> (m − 1)”, and this works only
when all the patterns are of the same length. If they are not, we could align the
counters so that they start at the end of their areas, hence removing the need for
the shift at all. To avoid overflows, we should sort the patterns in increasing length
order prior to packing them in the computer word. The price is that we will need
mr extra bits at the end of the bit mask to hold the largest counter. An alternative
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solution would be to handle the last counter separately. This would avoid the shifts,
and effectively adds only a constant number of operations per text character.

Finally, reporting the occurrences works just as before, except that the pattern
number we report is no longer (s + 1)/m (Fig. 7). The correct pattern number can
be computed efficiently for example using a look-up table indexed with s. The size
of the table is only O(w), as s ≤ w − 1.

5. BOOSTING THE SEARCH FOR ONE PATTERN

Up to now we have shown how to take advantage of wasted bits by searching for
several patterns simultaneously. Yet, if we only want to search for a single pattern,
we still waste the bits. In this section we show how the technique developed for
multiple patterns can be adapted to boost the search for a single pattern.

The main idea is to search for multiple copies of the same pattern P and par-
allelize the access to the text. Say that r = ⌊w/m⌋. Then we search for r copies
of P using a single computer word, with the same technique developed for multi-
ple patterns. Each such copy will be used to search a different text segment. We
divide the text T into r equal-sized subtexts T = T 1T 2 . . . T r. Text T s, of length
n′ = ⌈n/r⌉, will be searched for the sth copy of P , and therefore all the occurrences
of P in T will be found.

Our search will perform ⌈n/r⌉ steps, where step j will access r text characters
Tj, Tj+n′ , Tj+2n′ , . . . , Tj+(r−1)n′ . With those r characters c1 . . . cr we should build
the corresponding PM mask to execute a single step. This is easily done by using

PM ← PMc1
| (PMc2

<< m) | (PMc3
<< 2m) | . . . | (PMcr

<< (r − 1)m)

We must exercise some care at the boundaries between consecutive text segments.
On the one hand, processing of text segment T s (1 ≤ s < r) should continue up
to m + k − 1 characters in T s+1 in order to provide the adequate context for the
possible occurrences in the beginning of T s+1. On the other hand, the processing
of T s+1 must avoid reporting occurrences at the first m + k − 1 positions to avoid
reporting them twice. Finally, occurrences may be reported out of order if printed
immediately, so it is necessary to store them in r buffer arrays in order to report
them ordered at the end.

Thus the algorithm requires ⌈n/r⌉ = O(⌈n/⌊w/m⌋⌉) bit-parallel steps, for m ≤
w/2. In addition we perform n text accesses to compute PM. Albeit the formal
complexity is still O(n), the idea is interesting in practice because the bit-parallel
steps are much more expensive than the text accesses.

6. LONG PATTERNS AND K-DIFFERENCES PROBLEM

We have shown how to utilize the bits in computer words economically, but our
methods assume m ≤ w/2. We now sketch a method that can handle longer
patterns, and can pack more patterns in the same computer word. The basic
assumption here is that we are only interested in pattern occurrences that have at
most k differences. This is the situation that is most interesting in practice, and
usually we can assume that k is much smaller than m. Our goal is to obtain similar
time bounds as above, yet replacing m with k in the complexities. The difference
will be that these become average case complexities now.
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The method is similar to our basic algorithms, but now we use an adaptation of
Ukkonen’s well-known “cut-off” algorithm [Ukkonen 1985a]. That algorithm fills
the table D in column-wise order, and computes the values D[i, j] in column j for
only i ≤ ℓj , where

ℓj = 1 + max{i | D[i, j − 1] ≤ k}.
The cut-off heuristic is based on the fact that the search result does not depend
on cells whose value is larger than k. And from the definition of ℓj it holds that
D[i, j] > k for i > ℓj .

After evaluating the current column of the matrix up to row ℓj , the value ℓj+1 is
computed, and the algorithm continues with the next column j +1. The evaluation
of ℓj takes O(1) amortized time, and its expected value L(k) is O(k). Hence the
whole algorithm takes only O(nk) time.

Myers adapted his O(n⌈m/w⌉) algorithm to use the cut-off heuristic as well. In
principle the idea is very simple; since on average the search ends at row L(k), it
is enough to use only L(k) bits of the computer word on average (actually he used
w⌈L(k)/w⌉ bits), and only in some text positions (for example when the pattern
matches) one has to use more bits. Only two modifications to the basic method
are needed. We must be able to decide which is the last active row in order to
compute the number of bits required for each text position, and we must be able
to handle the communication between the boundaries of the consecutive computer
words. Both problems are easy to solve, for details refer to [Myers 1999]. With these
modifications Myers was able to obtain his O(n⌈L(k)/w⌉) average time algorithm.

We can do exactly the same here. We use only β = max{L(k), ⌈log(m + k)⌉+ 1}
bits for each pattern and pack them into the same computer word just like in our
basic method. We need L(k) bits as L(k) is the row number where the search is
expected to end, and at least ⌈log(m+k)⌉+1 bits to avoid overflowing the counters.
Therefore we are going to search for ⌊w/β⌋ patterns in parallel.

If for some text positions β bits are not enough, we use as many computer
words as needed, each having β bits allocated for each pattern. Therefore, the
β-bit blocks in the first computer word correspond to the first β characters of the
corresponding patterns, and the β-bit blocks in the second word correspond to the
next β characters of the patterns, and so on. In total we need ⌈m/β⌉ computer
words, but on average use only one for each text position.

The counters for each pattern have only β bits now, which means that the max-
imum pattern length is limited to 2β−1 − k. The previous counters limited the
pattern length to 2m−1− k, but at the same time assumed that the pattern length
was ≤ w/2. Using the cut-off method, we have less bits for the counters, but in
effect we can use longer patterns, the upper bound being m = 2w/2−1 − k.

The tools we have developed for the basic method can be applied to modify Myers’
cut-off algorithm to search for ⌊w/β⌋ patterns simultaneously. The only additional
modification we need is that we must add a new computer word whenever the
value of any of the pattern counters becomes less or equal to k, and this is trivial
to detect with our counters model. On the other hand, this modification means
that L(k) must grow as the function of r. It has been shown in [Navarro 2001] that
L(k) = k/(1 − e/

√
σ) + O(1) for r = 1. For reasonably small r this bound should

not be affected much, as the probability of a match is exponentially decreasing for
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m > L(k).
The result is that we can search for r patterns with at most k differences in

O(⌈rβ/w⌉n) expected time for β ≤ w/2. Finally, it is possible to apply the same
scheme for single pattern search as well, resulting in O(⌈n/⌊w/β⌋⌉) expected time.
The method is useful even for short patterns (where we could apply our basic
method also), because we can use tighter packing when β < m.

7. APPLICATIONS TO OTHER PROBLEMS

The ideas developed in previous sections for approximate string matching can be
easily extended to other related problems. To illustrate this fact, we consider in this
section three examples: multiple exact string matching, one-against-all edit distance
computation, and one-against-all longest common subsequence computation.

7.1 Multiple Exact String Matching

A simple bit-parallel algorithm for exact searching of a single pattern is Shift-
And [Wu and Manber 1992; Baeza-Yates and Gonnet 1992]. This algorithm is
O(⌈m/w⌉n) worst-case time and it works as follows. Consider the table PM of
Section 3. The state of the search is maintained in a bit mask D of m bits. The
invariant is that, after reading Tj , D[i] = 1 iff P1...i = Tj−i+1...j . Thus, every
text position where D[m] = 1 is the endpoint of an exact occurrence of P in T .
To maintain the invariant, D is initialized at D ← 0m, and then character Tj is
processed as follows

D ← ((D << 1) | 0m−11) & PMTj
,

and we report a match whenever D & 10m−1 6= 0m.
It was already noted in [Wu and Manber 1992] that several patterns whose overall

length does not exceed w could be searched for simultaneously using a slight ex-
tension of the above scheme: It is a matter of concatenating P 1 . . . P r and building
the PM table for the concatenation, just as MComputePM in Fig. 6. It does not
even matter that the shift moves the last bit representing P s onto the first bit rep-
resenting P s+1 because this first bit should anyway be set before anding with PM.
Let mi be the length of P i. Then we precompute masks SM← 0mr−11 . . . 0m1−11
and EM← 10mr−1 . . . 10m1−1. The update formula is

D ← ((D << 1) | SM) & PMTj
,

and we report an occurrence of some pattern whenever D & EM 6= 0m.
In the spirit of Section 6, we propose a variant that can handle longer patterns.

The idea is that it is sufficient to consider a short prefix of each pattern, provided
the prefix is long enough so that the probability of matching the text is low enough.

Assuming a uniform distribution, the probability of matching a pattern prefix
of length β is 1/σβ. In this case we can pack up to r′ = ⌊w/β⌋ patterns in a
single search. Every time the search finds any of the prefixes, the techniques of
Section 4.3 permit us pointing out each of the matching prefixes in constant time.
In turn, each matching prefix is checked for a complete occurrence in constant time
as on average σ/(σ − 1) probes are necessary to find the first differing character.
Thus, processing each text character needs O(1+r′/σβ) average time. It is sufficient
that β = ⌈logσ r′⌉ to ensure that the average time per character is O(1) and thus
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the whole scanning is O(n). Therefore, the number of patterns we can pack in
a single search must satisfy r′ ≤ ⌊w/⌈logσ r′⌉⌋. The solution has the form r′ =
w log(σ)/(log(w)− log log(σ)) (1 + o(1)).

In order to search for r patterns, we split them into groups of size r′ and perform
⌈r/r′⌉ searches, for a total average cost of O(⌈r/r′⌉n) = O(⌈r logσ w/w⌉n). This
is in practice as good as O(rn/w) multiplied by a small constant. Note that the
length of the patterns is actually irrelevant for the solution.

The idea of choosing a short prefix from each pattern could be applied to other
bit-parallel approaches such as MultiBNDM [Navarro and Raffinot 2000; 2002].
In that case, using prefixes of length β, the search for each group takes average
time O(n logσ(r′β)/β). Interestingly, essentially the same condition on β as for our
algorithm holds, and the final search complexity for r patterns turns out to be the
same O(rn logσ(w)/w). We compare both alternatives experimentally in Section 8.

Finally, just as in Section 5, we can adapt the idea to search for a single pattern
by replicating it r′ times and search r′ text chunks simultaneously, for O(n/r′) =
O(n logσ w/w) bit-parallel operations in addition to the n accesses to the text. This
time, however, the Shift-And operations are so simple that the reduction in number
of bit-parallel operations is not that significant compared to the accesses to text
characters.

7.2 One-Against-All Edit Distance

Several biological applications require comparing whole sequences rather than match-
ing one sequence inside another. That is, they require measuring edit distance
rather than performing approximate string matching. Moreover, in many cases it
is required to compare a sequence against many other short sequences. We show
how our technique can be adapted to carry out several of those comparisons simul-
taneously.

Myers’ bit-parallel algorithm is very simply adapted to compute edit distance
[Hyyrö and Navarro 2002; Hyyrö and Navarro 2005]. The fact that D[0, j] = j is
translated into HP[0] = 1 instead of HP[0] = 0. Actually, HP[0] is not represented
in bit vector HP, but the fact that HP[0] = 0 is taken into account in Step (Fig. 2)
whenever we let HP << 1 receive a zero fill from the right. Thus, HP[0] = 1 is
enforced by replacing (HP << 1) by ((HP << 1) | 0m−11) in lines 4 and 5 of Fig. 2.
No other change is necessary to Myers’ algorithm.

Let us assume that we want to compute the edit distance of a string B against
several short strings A1 . . . Ar, so that the length of Ai is mi and m1+ . . .+mr ≤ w.
Then we can pack all the strings Ai into a single computer word just as we did to
search for P 1 . . . P r. The only difference to Section 4.1 is that now we must set
rather than clear the bits in HPp that will align to the first bits of the patterns.
That is, we define ZM = 01mr−1 . . . 01m1−1 in same fashion as in Fig. 5, as well as
SM = 0mr−11 . . . 0m1−11. Then, the code of MStep in Fig. 5 has to be modified
only in line 5, where XP is computed as XP← (HP << 1) | SM.

This is the only change necessary to compute all r distances ed(Ai, B) in O(n)
time, where n is the length of B, if m1 + . . . + mr ≤ w. In general, r distances to
strings Ai of length m can be computed in O(⌈rm/w⌉n). After processing all the
characters of B, the scores MC described in Section 4.2 contain the information on
all the distances.
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Note that ed(Ai, B) ≤ max(n, mi), and thus the ith score in MC will require
in principle max(⌈log n⌉, ⌈log mi⌉) bits, yet we have allocated only mi bits to it.
This creates a potential problem if mi < ⌈log n⌉. But we also note that |n−mi| ≤
ed(Ai, B) and that max(n, mi) − |n −mi| = min(n, mi) ≤ mi. This means that if
we subtract |n−mi| from the ith score MC(i) after all characters of B have been
processed, the resulting value will fall within the range 0 . . .mi and mi bits will
suffice. Hence the possible overflow within the counters in MC can be corrected by
subtracting |n−mi| from each MC(i) at the end. After doing this, each true value
ed(Ai, B) may be recovered as ed(Ai, B) = MC(i) + |n−mi|.

In a variant of this subproblem, that of computing thresholded edit distances, we
have a distance threshold k in similar fashion to approximate string matching. The
task is to report the actual value ed(Ai, B) only if ed(Ai, B) ≤ k, and otherwise it
is enough to declare that ed(Ai, B) > k. In this case we could replace Myers’ algo-
rithm by a modification of a technique [Hyyrö 2003] that represents only O(k) cells
per column within a central diagonal band of the dynamic programming matrix,
resulting in the complexity O(⌈rk/w⌉n).

7.3 One-Against-All Longest Common Subsequence

Another classic similarity measure between strings A and B is llcs(A, B), the length
of their longest common subsequence. The measure llcs(A, B) and the indel edit
distance id(A, B) are related by the equation 2×llcs(A, B) = m+n−id(A, B), where
m = |A| and n = |B|. There exist several bit-parallel algorithms [Allison and Dix
1986; Crochemore et al. 2001; Hyyrö 2004] that compute llcs(A, B) in O(⌈m/w⌉n)
time and work in similar fashion as Myers’ algorithm. These algorithms can also
be modified to encode several patterns into a single bit vector. In the following we
concentrate on the variant of Hyyrö [Hyyrö 2004], which is a more efficient version
of the algorithm of Crochemore et al. [Crochemore et al. 2001].

Let L be a (m + 1) × (n + 1) dynamic programming matrix that corresponds
to computing llcs(A, B). The equality L[i, j] = llcs(A1..i, B1..j) holds after L has
been filled using the following well-known recurrence.

L[i, 0] = 0, L[0, j] = 0.

L[i, j] =

{

L[i− 1, j − 1] + 1, if Ai = Bj .
max(L[i− 1, j], L[i, j − 1]), otherwise.

Adjacent cell values in L fulfill the condition1 L[i, j]− L[i− 1, j] = 0 or 1. This
means that a single length-m vertical delta vector is enough to encode the values
of a column of L. Hyyrö’s algorithm does this with the following length-m comple-
mented vertical delta vector V ′: V ′[i] = 1 at position j of B iff L[i, j]−L[i−1, j] = 0.

The algorithm uses the same pattern match vectors PMλ as Myers’ algorithm. It
computes the vertical delta vector V ′ for j ∈ 1 . . . n, after which the value llcs(A, B)
can be computed as llcs(A, B) =

∑m
i=1(1 − V ′[i]) (ie. the number of zero bits in

V ′). Fig. 8 shows the complete algorithm.
Since the algorithm uses the same PMλ vectors as Myers’ algorithm, we can

directly reuse the procedure MComputePM (Fig. 6) to encode r patterns Ai, . . . , Ar

of length m into a single length-rm bit vector. Given a string B of length n, the

1Also the symmetric condition L[i, j]− L[i, j − 1] = 0 or 1 holds, but it is not needed here.
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LLCS(A, B)
1. ComputePM(A)
2. V ′ ← 1m

3. For j ∈ 1 . . . n Do
4. U ← V ′ & PMBj

5. V ′ ← (V ′ + U) | (V ′ − U)
6. llcs(A, B) is equal to the number of zero bits in V ′

Fig. 8. Hyyrö’s algorithm for computing llcs(A,B).

goal is to compute the r llcs(Ai, B) values in O(⌈rm/w⌉n) time. The case of non-
uniform lengths mi . . . mr can be handled as in Section 4.4.

We will again use masking with ZM = (01m−1)r to prevent the bit regions of
different patterns from interfering with each other (see Section 4.1 ). Consider the
lines 4-5 in Fig. 8. We first note that subtracting the vector U = V ′ & PMBj

from V ′

does not create any carry effects. So the only possible source of interference between
different bit regions is the addition V ′ + U , and this can be fixed by changing the
addition into the form (V ′ & ZM) + (U & ZM). To confirm that this modification
does not affect the correct behaviour of the algorithm, we note the following: If
V ′[m] = 0 before the addition, then also U [m] = 0 and the modification has no
effect. If V ′[m] = 1 and U [m] = 1 before the addition, then the first m bits of the
result are the same: the modification just removes the (m+1)th carry bit. Finally,
if V ′[m] = 1 and U [m] = 0 before the addition, then the mth bit of the result of
the addition is not important: the result is anyway ored with (V ′ − U), which has
its mth bit set in this case.

After all characters of B have been processed, each value llcs(Ai, B) can be read
from V ′ by counting the number of 0 bits in the length-mi bit region of the string
Ai. Fig. 9 shows the modified algorithm for computing multiple llcs(Ai, B) values
in parallel.

MLLCS(A1 . . . Ar , B)
1. MComputePM(A1 . . . Ar)
2. V ′ ← 1rm

3. ZM← (01m−1)r

4. For j ∈ 1 . . . n Do
5. U ← V ′ & PMBj

6. V ′ ← ((V ′ & ZM) + (U & ZM)) | (V ′ − U)
7. llcs(Ai, B) is equal to the number of zero bits in the bit region V ′[m(i− 1) + 1 . . . mi]

Fig. 9. Our algorithm for computing multiple llcs(Ai, B) values in parallel.

8. EXPERIMENTAL RESULTS

We have conducted experiments in order to evaluate the performance of our algo-
rithms. The results are presented and discussed in the following subsections. The
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experiments were run on an AMD Athlon64 3200+ with 1.5 gb ram and running a
64-bit Linux operating system. The word size was w = 64. All included algorithms
were implemented in C and compiled with GCC 3.3.1 using optimization.

8.1 Approximate String Matching: A Single Pattern

In the first experiment we tested our single-pattern approximate string matching
techniques from Sections 5 and 6 against most relevant existing alternatives.

The texts we used were composed of DNA from baker’s yeast and natural lan-
guage English text from the TREC collection. Each text was copied repeatedly to be
40 million characters long. We tested with pattern lengths m ∈ {8, 16, 32, 64}, and
the patterns were selected randomly from the texts. For each combination (m, k),
we measured the average time over searching for 100 patterns. The set of patterns
was the same for each algorithm. We omitted using the values k ∈ {0, m − 1, m}
because the first reduces to exact string matching, the second to finding occur-
rences of any character of the pattern, and the last to declaring matches at all text
positions.

The algorithms included in the experiments were those known to be the most
promising from previous experiments [Navarro 2001; Navarro and Raffinot 2002]:

BPR. Non-deterministic finite state automaton bit-parallelized by rows [Wu and
Manber 1992]. The complexity is O(⌈m/w⌉kn). We used our implementation with
hand optimized special code for each different tested k value.

BPD. Non-deterministic finite state automaton bit-parallelized by diagonals [Baeza-
Yates and Navarro 1999]. The complexity is O(⌈km/w⌉n). Implemented by its
original authors.

BPM. Myers’ original algorithm [Myers 1999], whose complexity is O(⌈m/w⌉n).
We used our implementation, which was roughly 20 % faster than the original code
of Myers on the test computer.

BPP. A combined heuristic [Navarro and Baeza-Yates 2001] using pattern par-
titioning, superimposition and hierarchical verification. Built upon BPD and im-
plemented by its original authors.

PEX. Partitioning the pattern into k+1 pieces and using hierarchical verification
with BPD in verifying full matches [Navarro and Baeza-Yates 1999], implemented
by its original authors. The average case complexity is O(nk logσ(m)/m).

OPT. Average-optimal filtering method [Fredriksson and Navarro 2004], using
hierarchical verification with BPM in verifying full matches. Implemented by its
original authors. Its average case complexity is O(n(k+logσ m)/m). We found that
the best options for this test were to use ordered ℓ-grams and backward matching.
For DNA we used ℓ-grams in the range 6...8, and for English texts in the range
3...4. For the latter case we used also alphabet mapping, mapping the original
alphabet to 16 character groups, each having (approximately) the same probability
of appearing in the text.

PAR. Our basic parallelized single-pattern search algorithm (Section 5), which
is applicable when m ≤ w/2 = 32.

PAR-CO. Our parallelized single-pattern search algorithm (Section 5) using cut-
off (Section 6). For each case we report the best time over all choices of β < m.
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We used a minimum value β = 8, so PAR-CO was used when m > 8.

The results are shown in Fig. 10. Our algorithms perform very well especially
with short patterns. On English text, the cases where either PAR or PAR-CO is
the fastest are m = 8 for all k, m = 16 for all k, m = 32 for all k > 1, and m = 64
for k ∈ {7 . . .17}. On DNA, PAR or PAR-CO was the best in the cases m = 8
for all k, m = 16 for all k, m = 32 for k > 2, and m = 64 for k ∈ {8, 9}. Note
that we could interpret our PAR/PAR-CO techniques to subsume the basic Myers’
algorithm as the case r = 1/β = m. The result would be that PAR or PAR-CO
would be the fastest also in the cases m = 64 and k ∈ {21 . . .62} on English text,
and m = 64 and k ∈ {10 . . . 61} on DNA.

The comparison between PAR and PAR-CO is as follows. On English text, PAR-
CO is faster than PAR when m = 16 and k ≤ 3, and when m = 32 and k ≤ 8. On
DNA, PAR-CO is faster than PAR when m = 32 and k ≤ 5.

Overall, the result is that our new single-pattern algorithm is clearly superior to
any other in the vast majority of cases. A possible drawback of PAR-CO is that we
need to know the best β to obtain the times shown. Fig. 12 shows, however, that
this optimum value is a rather predictable linear function of k, at least for moderate
k values (the most interesting ones). Values of β to the optimum ones do not yield
significantly worse performance, as long as one is conservative. That is, while using
a value slightly smaller than the optimum may quickly degrade the performance,
using slightly larger values does not have an important impact in performance.

Finally, one may wonder how our algorithm behaves when m is not a power of 2.
The times essentially depend on the numbers packed in the computer word, ⌊w/m⌋,
so the lengths we have chosen correspond to some relevant transition points in the
search times. Note, on the other hand, that if we use the cutoff technique the search
times do not depend on m.

8.2 Approximate String Matching: Several Patterns

In the second experiment we tested our techniques for conducting approximate
string matching for several patterns (Sections 4 and 6). The texts and patterns
were exactly the same as in the experiments of Section 8.1. We measured the
average time per pattern when searching for a set of 100 patterns of equal length.

The algorithms included in these experiments were the most promising ones ac-
cording to the most recent work [Fredriksson and Navarro 2004]:

Single. Handling each pattern separately with a single pattern approximate string
matching algorithm. For each case, we took the best time over all single pattern
algorithms in the experiments of Section 8.1.

MM. A hashing-based algorithm handling only the case k = 1 but known to be
resistant to high number of patterns [Muth and Manber 1996].

MOPT. Average-optimal filtering method to search for several patterns [Fredriks-
son and Navarro 2004], with average complexity O(n(k + logσ(rm))/m). Imple-
mented by its original authors. The optimum choices for this test were to use
ordered ℓ-grams and backward matching with bit-parallel counters. For DNA we
used ℓ-grams in the range 6...8, and for English texts in the range 3...4. For the
latter case we used also alphabet mapping, mapping the original alphabet to 16
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Fig. 10. Approximate string matching: a single pattern. The plots show the average time over
searching for 100 patterns.
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character groups, each having (approximately) the same probability of appearing
in the text. Hierarchical verification was used in both cases.

MPAR. Our basic parallelized algorithm to search for several patterns (Section
4), which is applicable when m ≤ w/2 = 32.

MPAR-CO. Our basic parallelized algorithm to search for several patterns (Sec-
tion 4) using cut-off (Section 6). For each case we report the best time over all
choices of β < m. We used a minimum value β = 8, so PAR-CO was used when
m > 8.

The results are shown in Fig. 11. Our algorithms perform again very well es-
pecially with short patterns. On English text, the cases where either MPAR or
MPAR-CO is the fastest are m = 8 for all k > 1, m = 16 for k > 2, m = 32 for
k > 4, and m = 64 for k ∈ {10 . . . 27, 48 . . .62}. On DNA, MPAR or MPAR-CO
was the best in the cases m = 8 for all k, m = 16 for k > 1, m = 32 for k > 4, and
m = 64 for k ∈ {9 . . .17, 33 . . .62}.

The comparison between MPAR and MPAR-CO is as follows. On English text,
MPAR-CO is faster than MPAR when m = 16 and k ≤ 4, and when m = 32 and
k ≤ 11. On DNA, MPAR-CO is faster than MPAR when m = 16 and k = 1, and
when m = 32 and k ≤ 5.

Fig. 12 also shows what the best choices of β were for MPAR-CO.

8.3 Multiple Exact String Matching

In the third experiment we tested our technique for multiple exact string matching
(Section 7.1). The texts and patterns were again as in the experiments of Section
8.1. For each pattern length we tested set sizes r = {x | ⌊w/x⌋ 6= ⌊w/(x + 1)⌋} =
{2, . . . , 10, 12, 16, 21, 32}, and the overall number of patterns processed in each case
was the nearest integer to 100 that is divisible by r.

We have considered both multipattern algorithms and repeated applications of
single-pattern algorithms. The algorithms included in these experiments (chosen
as the most promising in previous experiments [Navarro and Raffinot 2002]) follow.
All the implementations are by the authors of [Navarro and Raffinot 2002] except
of course for our new algorithms, which were implemented by ourselves.

SO. Shift-Or single pattern exact string matching algorithm [Baeza-Yates and
Gonnet 1992], which is O(⌈m/w⌉n) worst-case and O(n) average-case time.

BNDM. The bit-parallel version [Navarro and Raffinot 2000; 2002] of the classical
average-optimal BDM single pattern exact string matching algorithm. Its average-
case complexity is O(n logσ(rm)/w).

AC. Aho-Corasick multiple exact string matching algorithm [Aho and Corasick
1975], which has O(n) worst-case search time.

BMH. Set-Horspool, a multipattern version of the Boyer-Moore-Horspool exact
string matching algorithm [Horspool 1980; Navarro and Raffinot 2002].

MBOM. Multipattern version of the Backward Oracle Matching algorithm [Al-
lauzen and Raffinot 1999; Navarro and Raffinot 2002], a simplification of Multiple
BDM.

MBNDM. A bit-parallel version [Navarro and Raffinot 2000; 2002] of Multiple
BDM.
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Fig. 11. Approximate string matching: several patterns. The plots show the average time per
pattern when searching for a set of 100 patterns.
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Fig. 12. The plots show the best choice of β, the number of bits allocated for each pattern, when
using the cut-off technique (Section 6) in approximate string matching.

PMBNDM. Our modification of MultiBNDM to allocate β bits per pattern (Sec-
tion 7.1).

MSA. Shift-Or modified to search for several patterns simultaneously by allocat-
ing β bits per pattern (Section 7.1).

Fig. 13 shows the results when PMBNDM and MSA allocate always β = ⌊w/r⌋
bits per pattern. This shows how the efficiency depends on β. Fig. 14 shows the
results when PMBNDM and MSA use optimal choices for β. For example if
r = 32, it may be faster to conduct four runs of 8 patterns with β = ⌊w/8⌋ = 8,
than to do a single run of 32 patterns with β = ⌊w/32⌋ = 2. On English text,
our methods are not beaten in the cases m = 8 and r ∈ {9, 10, 12, 16, 21, 32}, and
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m = 16 and r ∈ {5, . . . , 10, 12, 16}. On DNA, our methods win in the cases m = 8
and r ∈ {2, . . . , 10, 12, 16, 21}, m = 16 and r ∈ {5, . . . , 10, 12, 16, 21}, and m = 32
and r ∈ {6, . . . , 10}.

The comparison between PMBNDM and MSA is as follows. On English text,
PMBDNM is faster than MSA when m = 8 and r ≤ 6, and when m ∈ {16, 32, 64}
and r ≤ 7. On DNA, PMBDNM is faster than MSA when m ∈ {16, 32, 64} and
r ≤ 4.

Overall, our methods display considerable improvements over previous algorithms
especially on a moderate number of short patterns.

8.4 One-Against-All String Comparison

In the fourth, and last, experiment we evaluated our techniques for computing
several edit distances simultaneously (Sections 7.2 and 7.3). This was done in
the form of all-against-all string comparison: given a set of x patterns P 1 . . . P x,
the task was to compute the set of distances {ed(P i, P j) | 1 ≤ i < j ≤ x}, or
in similar fashion, the set of similarity values {llcs(P i, P j) | 1 ≤ i < j ≤ x}.
The tested pattern lengths were m ∈ {10, 12, 16, 21, 32}, and for each length we
used a pattern set of size x = 6000. Each case involved computing roughly 18
million distance/similarity values, and we measured the overall time. In this test
the patterns were randomly generated with alphabet size σ = 100 (this choice is
arbitrary and does not really affect processing times). For each pattern length m, we
tested handling r = 1 . . . ⌊w/m⌋ computations in parallel. In this test we evaluated
the effect of the number of different computations that are done simultaneously.

Fig. 15 shows the results. It can be seen that doing several computations in par-
allel pays off. The gain from increasing the number of simultaneous computations
is clearly noticeable for r = 2 . . . 4. Using r > 4 does not seem to offer noticeable
gain over using r = 4.

9. CONCLUSIONS

Bit-parallel algorithms are currently the fastest approximate string matching al-
gorithms for many relevant applications. In particular, the algorithm of Myers
[Myers 1999] dominates the field when the pattern is long enough, thanks to its
better packing of the search state in the bits of the computer word. In this paper
we showed how this algorithm can be modified to take advantage of the wasted
bits when the pattern is short. We have shown two ways to do this. The first one
permits searching for several patterns simultaneously. The second one boosts the
search for a single pattern by processing several text positions simultaneously. We
have also shown how the same ideas can be used for multiple exact string matching
and for one-against-all distance computation of different sorts.

We have shown, both analytically and experimentally, that our algorithms are
significantly faster than all the other bit-parallel algorithms when the pattern is
short or if the error threshold is moderate with respect to the alphabet size. This
fills an important gap in the field, as there has been no previous work focusing on
very short patterns, which is the case in many relevant applications.
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Fig. 13. Multiple exact string matching. The plots show the average time per pattern when
searching for roughly 100 patterns in groups of r patterns.
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Fig. 14. Multiple exact string matching. The plots are otherwise as in Fig. 13, but now PMBNDM
and MSA divide each group of r patterns into possibly smaller subgroups in an optimal manner.
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Allison, L. and Dix, T. L. 1986. A bit-string longest common subsequence algorithm. Infor-
mation Processing Letters 23, 305–310.

Baeza-Yates, R. and Gonnet, G. 1992. A new approach to text searching. Communications of
the ACM 35, 10, 74–82.

Baeza-Yates, R. and Navarro, G. 1999. Faster approximate string matching. Algorith-
mica 23, 2, 127–158.

Crochemore, M., Iliopoulos, C. S., Pinzon, Y. J., and Reid, J. F. 2001. A fast and practical
bit-vector algorithm for the longest common subsequence problem. Information Processing
Letters 80, 279–285.

Fredriksson, K. 2003. Row-wise tiling for the Myers’ bit-parallel dynamic programming algo-
rithm. In Proc. 10th International Symposium on String Processing and Information Retrieval
(SPIRE’03). LNCS 2857. Springer, Berlin, Germany, 66–79.

Fredriksson, K. and Navarro, G. 2004. Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics (JEA) 9, 1.4.

Horspool, R. N. 1980. Practical fast searching in strings. Software Practice and Experience 10, 6,
501–506.
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