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2 � G. Navarro and M. Ra�notCategories and SubjectDescriptors: F.2.2 [Analysis of algorithms and problem complexity]:Nonnumerical algorithms and problems|Pattern matching, Computations on discrete structures;H.3.3 [Information storage and retrieval]: Information search and retrieval|Search process1. INTRODUCTIONThe string-matching problem is to �nd all the occurrences of a given pattern p =p1p2 : : : pm in a large text T = t1t2 : : : tn, both being sequences of characters drawnfrom a �nite character set �. This problem is fundamental in computer science andis a basic need of many applications, such as text retrieval, symbol manipulation,computational biology, data mining, network security, etc.Several algorithms exist to solve this problem. One of the most famous, and the�rst having linear worst-case behavior, is Knuth-Morris-Pratt (KMP) [Knuth et al.1977]. The search in KMP is done by scanning the text character by character, andfor each text position i remembering the longest pre�x of the pattern which is alsoa su�x of t1 : : : ti. This approach is O(n) worst-case time but it needs to scan allcharacters in the text, independently of the pattern. A second algorithm, as famousas KMP and which allows skipping characters, is Boyer-Moore (BM) [Boyer andMoore 1977]. The search in BM is done inside a window of length m, ending atposition i in the text. BM searches backwards the longest su�x of t1 : : : ti which isalso a su�x of the pattern. If the su�x is the whole pattern a match is reported.Then the window is shifted to the next occurrence of the su�x in the pattern. Thisalgorithm leads to several variations, like Horspool [Horspool 1980] and Sunday[Sunday 1990], considered the fastest string-matching algorithms in practice.A large part of the research in e�cient algorithms for string matching can beregarded as the quest for automata which are e�cient in some sense. For instance,KMP is simply a deterministic automaton that searches the pattern, being its mainmerit that it is O(m) in space and construction time. Many variations of the BMfamily are supported by an automaton too.Another automaton, called a \su�x automaton", is used in [Crochemore et al.1993; Crochemore and Rytter 1994; Czumaj et al. 1994; Lecroq 1992; Ra�not1997b], where the idea is to search a substring instead of a pre�x (as KMP), or asu�x (as BM). Optimal sublinear algorithms on average, like BDM or TurboBDM[Crochemore and Rytter 1994; Czumaj et al. 1994], have been obtained with thisapproach, which has also been extended to multipattern matching [Crochemoreet al. 1993; Crochemore and Rytter 1994; Ra�not 1997b] (i.e. looking for theoccurrences of any pattern from a given set).Besides speed, exibility in the types of patterns that can be searched is becominga more and more relevant issue in recent years, motivated by text retrieval, compu-tational biology and signal processing applications (see, e.g., [Navarro 2000a]). Inthese applications the pattern needs not be just a sequence of characters that is tobe found verbatim in the text, but it can includeClasses of characters, which are positions that match a set of characters of thealphabet, rather than just on character. This permits in particular searchingwith don't care characters (which match every character) and case insensitive



Fast and Flexible String Matching � 3searching. This models typical needs of text retrieval applications (such as caseinsensitive searching) and computational biology (where some pattern positionsare not completely determined). In computational biology is also possible thatthe text contains classes of characters.Bounded length gaps, which are pattern positions that match an arbitrary stringwhose length is between a minimum and a maximum speci�ed value. This istypically of interest, for example, in protein searching.Optional and repeatable characters, which are pattern characters or classesthat may or may not appear in a text occurrence; or that may appear 0, 1, ormore times; respectively. This is of interest in text retrieval.1Network and regular expressions, which permit building patterns composedfrom simple letters and the empty string, as well as union and concatenationof other patterns, and (in the case of regular expressions) an arbitrary numberof repetitions of another pattern. These patterns are extremely powerful tospecify complex searching.Approximate searching, which permits a limited number of di�erences betweenthe pattern and its occurrences in the text. Depending on the model, the di�er-ences permitted may be character substitutions (Hamming model); characterinsertions, deletions and substitutions (Levenshtein model); etc. Approximatesearching is of great interest when the text is of bad quality (e.g. text obtainedby optical character recognition or just poorly written as in the Web, DNAsequences which contain experimental errors, signals that have been corruptedduring transmission, etc.), or there is no absolute certainty about the searchpattern (e.g. searching for foreign names).A related line of research in string matching, called \bit-parallelism" [Baeza-Yates 1992], has yielded the best algorithms for exible searching. The generaltechnique is to use the automata in their nondeterministic form instead of makingthem deterministic. Usually the nondeterministic versions are very simple andregular. This permits mapping the state of the search onto the bits of a computerword and using the intrinsic parallelism of the bit manipulations of the processor toparallelize the operations necessary to update the state of the search. Competitivealgorithms have been obtained for exact string matching (e.g., Shift-Or [Baeza-Yates and Gonnet 1992; Wu and Manber 1992]), as well as for approximate stringmatching [Baeza-Yates and Gonnet 1992; Baeza-Yates and Navarro 1999; Myers1999; Wu and Manber 1992; Wu et al. 1996]. Although these algorithms generallywork well only on patterns of moderate length, they are simpler, more exible(e.g. they can easily handle classes of characters), and have very low memoryrequirements.In this paper we merge some aspects of the two approaches in order to obtain afast string matching algorithm, called Backward Nondeterministic Dawg Matching(BNDM), which can be seen as a cross between BDM and Shift-Or. BNDM can beextended to search classes of characters, to multipattern search and to approximatesearch, just like Shift-Or. BNDM uses a nondeterministic su�x automaton that issimulated using bit-parallelism, and it has the advantage of being faster than theprevious algorithms that could be extended in such a way (up to 7 times faster thanShift-Or), being faster than BDM (30%-40% faster), and for small alphabets being



4 � G. Navarro and M. Ra�notup to 3 times faster than the best algorithms of the BM family. Indeed, BNDMis the fastest search algorithm for small alphabets and moderate length patterns.For larger alphabets the BM-Sunday algorithm is up to 20% faster. AdditionallyBDNM uses few space in comparison with the BDM or TurboBDM algorithms (itdoes not need to construct the deterministic su�x automaton), and it is very simpleto implement (e.g. complex variations of BDM like TurboBDM and BM BDM areeasy to implement).In particular, the ability to search for classes of characters has never been stud-ied in relation to the BDM family. We give a new de�nition of an automatondesigned to recognize su�xes of patterns with classes of characters) and simulateits nondeterministic version using bit-parallelism.This paper is organized as follows. In section 2 we present the su�x automatonand the BDM algorithm. In section 3 we present the bit-parallelism approach. Insection 4 we present our new algorithms for short and long patterns. We presentmore complex and improved versions in section 5. The extension to classes ofcharacters is presented in section 6, to multipattern matching in section 7 and toapproximate string matching in section 8. We then present experimental resultsin section 9. Finally, we give our conclusions and future work directions in section10. Earlier partial versions of this work appeared in [Navarro 1998; Navarro andRa�not 1998].We use the following de�nitions throughout the paper.A word x 2 �� is a factor (or substring) of p if p can be written p = uxv, u; v 2 ��.We denote Fact(p) the set of factors of p. A factor x of p is called a su�x of p is p =ux, u 2 ��. The set of su�xes of p is called Su�(p). When we want to emphasizethe inter-letter positions in the pattern, we write p = 0 p1 1 p2 2:::pm�1 m�1 pm m.We denote as b`:::b1 the bits of a computer word of length `. We use expo-nentiation to denote bit repetition (e.g. 031 = 0001). Since the length w of thecomputer word is �xed, we are hiding the details on where we store the ` bits in-side it. We give such details when they are relevant. Finally, we use C-like syntaxfor operations on the bits of computer words: \j" is the bitwise-or, \&" is thebitwise-and, \ b " is the bitwise-xor and \�" complements all the bits. The shift-left operation, \<<", moves the bits to the left and enters zeros from the right, i.e.bmbm�1:::b2b1 << r = bm�r:::b2b10r. The shift-right, \>>" moves the bits in theother direction. Finally, we can perform arithmetic operations on the bits, such asaddition and subtraction, which operate the bits as if they formed a number. Forinstance, b`:::bx10000� 1 = b`:::bx01111.2. SEARCHING WITH SUFFIX AUTOMATAWe describe in this section the BDM pattern matching algorithm [Crochemore andRytter 1994; Czumaj et al. 1994]. This algorithm is based on a su�x automaton.We �rst describe such automaton and then explain how it is used in the searchalgorithm2.1 Su�x AutomataA su�x automaton on a pattern p = p1p2 : : : pm (frequently called DAWG(p) -for Deterministic Acyclic Word Graph) is the minimal (incomplete) deterministic�nite automaton that recognizes all the su�xes of this pattern. By \incomplete"



Fast and Flexible String Matching � 5we mean that unnecessary transitions are not present.The nondeterministic version of this automaton has a very regular structure andis shown in Figure 1. We show now how the corresponding deterministic automatonis built. I 0 1 2 3 4 5 6 7b a a b b a a� � � � � � � �Fig. 1. A nondeterministic su�x automaton for the pattern p = baabbaa. Dashed lines represent�-transitions (i.e. they occur without consuming any input). I is the initial state of the automaton.Given a factor x of the pattern p, endpos(x) is the set of all the pattern positionswhere an occurrence of x ends (there is at least one, since x is a factor of the pattern,and there are as many as repetitions of x inside p). Formally, given x 2 Fact(p), wede�ne endpos(x) = fi = 9u; p1p2:::pi = uxg. We call each such integer a position.For example, endpos(baa) = f3; 7g in the word baabbaa. Notice that endpos(�) isthe complete set of possible positions (recall that � is the empty string). Noticethat for any u; v, endpos(u) and endpos(v) are either disjoint or one contained inthe other.We de�ne an equivalence relation � between factors of the pattern. For u; v 2Fact(p), we de�ne u � v if and only if endpos(u) = endpos(v)(notice that one of the factors must be a su�x of the other for this equivalenceto hold, although the converse is not true). For instance, in our example patternp = baabbaa, we have that baa � aa because in all the places where aa ends in thepattern, baa ends too (and vice-versa).The nodes of the DAWG correspond to the equivalence classes of �, i.e. to setsof positions. A state, therefore, can be thought of as a factor of the pattern alreadyrecognized, except that we do not distinguish between some factors. Another wayto see this is that the set of positions is in fact the set of active states in thenondeterministic automaton.There is an edge labeled � from the set of positions fi1; i2; : : : ikg to p(i1+1; �)[p(i2 + 1; �) [ : : :[ p(ik; �), wherep(i; �) = (fig if i � m and pi = �; otherwisewhich is the same to say that we try to extend the factor that we recognized with thenext text character �, and keep the positions that still match. If we are left with nomatching positions, we do not build the transition. The initial state corresponds tothe set f0::mg. A state is terminal if its corresponding subset of positions containsthe last position m (i.e. we matched a su�x of the pattern). As an example, thedeterministic su�x automaton of the word baabbaa is given in Figure 2.The (deterministic) su�x automaton is a well known structure [Blumer et al.1989; Crochemore 1986; Crochemore and Rytter 1994; Ra�not 1997a], and we do



6 � G. Navarro and M. Ra�not0,1,2,3,4,5,6,7 1,4,5 2,6 3,72,3,6,7 4 5 6 7b a a b b a aba baFig. 2. Deterministic su�x automaton of the word 0b1a2a3b4b5a6a7not prove any of its properties here (nor the correctness of the previous construc-tion). The size of DAWG(p) is linear in m (counting both nodes and edges), and alinear on-line construction algorithm exists [Crochemore 1986]. A very importantfact for our algorithm is that this automaton can not only be used to recognize thesu�xes of p, but also factors of p. By the su�x automaton de�nition, there is apath labeled x form the initial node of DAWG(p) if and only if x is a factor of p.2.2 Search AlgorithmThe su�x automaton structure is used in [Crochemore and Rytter 1994; Czumajet al. 1994] to design a simple pattern matching algorithm called BDM. This al-gorithm is O(mn) time in the worst case, but optimal on average (O(n logm=m)time1). Other more complex variations such as TurboBDM[Czumaj et al. 1994]and MultiBDM[Crochemore and Rytter 1994; Ra�not 1997b] achieve linear timein the worst case. To search a pattern p = p1p2 : : : pm in a text T = t1t2 : : : tn, thesu�x automaton of pr = pmpm�1 : : : p1 (i.e the pattern read backwards) is built.A window of length m is slid along the text, from left to right. The algorithmsearches backwards inside the window for a factor of the pattern p using the suf-�x automaton. During this search, if a terminal state is reached which does notcorrespond to the entire pattern p, the window position is recorded (in a variablelast). This corresponds to �nding a pre�x of the pattern starting at position lastinside the window and ending at the end of the window (since the su�xes of pr arethe reverse pre�xes of p). Since we remember the last pre�x recognized backwards,we have the longest pre�x of p in the window. This backward search ends in twopossible forms:(1) We fail to recognize a factor, i.e we reach a letter � that does not correspond toa transition in DAWG(pr). Figure 3 illustrates this case. In this case we shiftthe window to the right, its starting position corresponding to the position last(we cannot miss an occurrence because in that case the su�x automaton wouldhave found its pre�x in the window).(2) We reach the beginning of the window, therefore recognizing the pattern p. Wereport the occurrence, and shift the window exactly as in the previous case(notice that we have the previous last value).1The lower bound of 
(n logm=m) average time for any pattern matching algorithm under aBernouilli model with uniform character distribution and a RAM complexity model is from A. C.Yao [Yao 1979].



Fast and Flexible String Matching � 7� lastWindowRecord in last the window position where a terminal state is reachedSearch for a factor with the DAWGlastThe maximum pre�x starts at lastFail to recognize a factor at �: the pattern can not start before �.�safe shift New windowFig. 3. Basic search with the su�x automatonThe pseudo-code of the BDM algorithm is given in Figure 2.2. We note �DAWG(q; �)the transition function of the su�x automaton. �DAWG(q; �) is the node that wereach if we move along the edge labeled by � from the node q. If such an edge doesnot exist, then �DAWG(q; �) is null.BDM(p = p1p2 : : : pm, T = t1t2 : : : tn)1. Preprocessing2. Build DAWG(pr)3. Search4. pos 05. While pos � n�m do6. j  m; last m7. state  initial state of DAWG(pr)8. While state 6= null do9. state �DAWG(state; tpos+j)10. j  j � 111. If state is terminal then12. If j > 0 then last  j13. Else report an occurrence at pos+ 114. End of if15. End of while16. pos  pos + last17. End of whileFig. 4. Pseudo-code of the BDM algorithm. The variable pos points at the character just beforethe window, j is used to traverse the window backwards and last to record the last pre�x matched.



8 � G. Navarro and M. Ra�not2.2.0.1 Search example:. we search the pattern aabbaab in the textT = a b b a b a a b b a a b:We �rst build DAWG(pr =baabbaa), which is given in Figure 2. We note the currentwindow between square brackets and the recognized pre�x in a box. We begin withT = [ a b b a b a a ]b b a a b, m = 7, last = 7.(1) T = [ a b b a b a a ] b b a a b. a isa factor of pr and a reverse pre�x ofp. last = 6.(2) T = [ a b b a b a a ] b b a a b. aa isa factor of pr and a reverse pre�x ofp. last = 5.(3) T = [ a b b a b a a ] b b a a b. aabis a factor of pr .(4) T = [ a b b a b a a ] b b a a b.We fail to recognize the next a. Sowe shift the window to last. Wesearch again in the position: T =a b b a b [ a a b b a a b ], last = 7.(5) T = a b b a b [ a a b b a a b ]. b isa factor of pr.
(6) T = a b b a b [ a a b b a a b ]. ba isa factor of pr.(7) T = a b b a b [ a a b b a a b ]. baais a factor of pr , and a reverse pre�xof p. last = 4.(8) T = a b b a b [ a a b b a a b ]. baabis a factor of pr .(9) T = a b b a b [ a a b b a a b ].baabb is a factor of pr .(10) T = a b b a b [ a a b b a a b ].baabba is a factor of pr .(11) T = a b b a b [ a a b b a a b ].We recognize the word aabbaab andreport an occurrence.3. BIT-PARALLELISMIn [Baeza-Yates and Gonnet 1992], a new approach to text searching was proposed.It is based on bit-parallelism [Baeza-Yates 1992], a technique consisting in takingadvantage of the intrinsic parallelism of the bit operations inside a computer word.By using cleverly this fact, the number of operations that an algorithm performscan be cut down by a factor of at most w, where w is the number of bits in thecomputer word. Since in current architectures w is 32 or 64, the speedup is verysigni�cant in practice.The Shift-Or algorithm uses bit-parallelism to simulate the operation of a nonde-terministic automaton that searches the pattern in the text (see Figure 5). As thisautomaton is simulated in time O(mn), the Shift-Or algorithm achieves O(mn=w)worst-case time (optimal speedup). Notice that if we convert the nondeterministicautomaton to a deterministic one so as to have O(n) search time, we get a version ofthe KMP algorithm [Knuth et al. 1977] (KMP, however, is twice as slow as Shift-Orfor m � w).We explain now the Shift-And algorithm, which is an easier-to-explain (though alittle less e�cient) variant of Shift-Or. The algorithm �rst builds a table B whichfor each character stores a bit mask bm:::b1. The mask in B[c] has the i-th bit set ifand only if pi = c. The state of the search is kept in a machine word D = dm:::d1,where di is set whenever p1p2:::pi matches the end of the text read up to now(another way to see it is to consider that di tells whether the state numbered i inFigure 5 is active). Therefore, we report a match whenever dm is set.



Fast and Flexible String Matching � 90 1 2 3 4 5 6 7� b a a b b a aFig. 5. A nondeterministic automaton to search the pattern p = baabbaa in a text. The initialstate is 0.We set D = 0m originally and, for each new text character tj, update D usingthe formula D0  ((D << 1) j 0m�11) & B[tj]The formula is correct because the i-th bit is set if and only if the (i�1)-th bit wasset for the previous text character and the new text character matches the patternat position i. In other words, tj�i+1::tj = p1::pi if and only if tj�i+1::tj�1 = p1::pi�1and tj = pi. Again, it is possible to relate this formula to the movement that occursin the nondeterministic automaton for each new text character: each state gets thevalue of the previous state, but this happens only if the text character matches thecorresponding arrow. Finally, the \j 0m�11" after the shift allows a match to beginat the current text position. This corresponds to the self-loop at the beginning ofthe automaton and is saved in Shift-Or, where all the bits are complemented.The cost of this algorithm is O(n). Although we consider only masks of length mhere, in practice the masks are of length w (as explained earlier) and some provisionsmay be necessary to handle the unwanted extra bits. For patterns longer than thecomputer word (i.e. m > w), the algorithm uses dm=we computer words for thesimulation (not all them are active all the time), with a worst-case cost of O(mn=w)and an average case cost of O(n).The Shift-And algorithm is very simple, and has some further advantages. Themost immediate one is that it is very easy to extend so as to handle classes ofcharacters. That is, each pattern position does not match just a single characterbut a set of characters. If Ci is the set of characters at position i in the pattern,then we set the i-th bit of B[c] for all c 2 Ci. In [Baeza-Yates and Gonnet 1992]they show also how to allow a limited number k of mismatches in the occurrences,at O(nm log(k)=w) cost.Later [Wu and Manber 1992] enhanced this paradigm to support extended pat-terns, which allow wild cards (i.e. gaps of unbounded length), regular expressions,approximate search with nonuniform costs, and combinations. Further developmentof the bit-parallelism approach for approximate string matching led to some of thefastest algorithms for short patterns [Baeza-Yates and Navarro 1999; Myers 1999].In most cases, the key idea was to simulate a nondeterministic �nite automaton. Itis interesting also to mention [El-Mabrouk and Crochemore 1996], which searchesallowing mismatches by using a combination of bit-parallelism and Boyer-Moore.Bit-parallelism has become a general way to simulate simple nondeterministicautomata instead of converting them to deterministic. This is how we use it in thispaper.



10 � G. Navarro and M. Ra�not4. BIT-PARALLELISM ON SUFFIX AUTOMATAWe simulate the BDM algorithm using bit-parallelism. The result is an algorithmwhich is simpler, uses less memory, has more locality of reference, and is easilyextended to handle more complex patterns, as shown in the next sections. We �rstassume that m � w and later show how to extend the algorithm for longer patterns.4.1 The Basic AlgorithmWe simulate the automaton of Figure 1 on the reversed pattern. Just as for Shift-And, we keep the state of the search using m bits of a computer word D = dm:::d1.The BDM algorithm moves a window over the text. Each time the window ispositioned at a new text position just after pos, it searches backwards the windowtpos+1::tpos+m using the DAWG automaton, until either m iterations are performed(which implies a match in the current window) or the automaton cannot follow anytransition. In our case, the bit di at iteration k is set if and only if pm�i+1::m�i+k =tpos+1+m�k::tpos+m. Some observations follow|Since we begin at iteration 0, the initial value for D is 1m (recall that we useexponentiation to denote bit repetition).|There is a match if and only if after iteration m it holds dm = 1.|Whenever dm = 1, we have matched a pre�x of the pattern in the current window.The longest pre�x matched (excluding the complete pattern) corresponds to thenext window position (variable last).|Since there is no initial self-loop, this automaton eventually runs out of activestates. Moreover, states (m � k) : : :m are inactive at iteration k.The algorithm works as follows. Each time we position the window in the textwe initialize D and scan the window backwards. For each new text character weupdate D. Each time we �nd a pre�x of the pattern (dm = 1) we remember theposition in the window. If we run out of 1's in D then there cannot be a match andwe suspend the scanning (this corresponds to not having any transition to followin the automaton). If we can perform m iterations then we report a match.We use a mask B which for each character c stores a bit mask. This masksets the bits corresponding to the positions i where pi = c (just as in Shift-And).Interestingly enough, the formula to update D turns out to be very similar to thatof the Shift-Or algorithm:D0  (D & B[tj]) << 1which should not be surprising given the similarity between both automata. Thealgorithm is summarized in Figure 6. Some optimizations done on the real code,related to improved ow of control and bit manipulation tricks, are not shown forclarity.4.1.0.2 Search example:. we search the pattern aabbaab in the textT = a b b a b a a b b a a b:We note the current window between square brackets and the recognized pre�x ina box. We begin with



Fast and Flexible String Matching � 11BNDM (p = p1p2:::pm; T = t1t2:::tn)1. Preprocessing2. For c 2 � do B[c] 0m3. For i 2 1:::m do B[pm�i+1] B[pm�i+1] j 0m�i10i�14. Search5. pos 06. While pos � n�m do7. j  m; last m8. D = 1m9. While D 6= 0m do10. D  D & B[tpos+j]11. j  j � 112. If D & 10m�1 6= 0m then13. If j > 0 then last j14. Else report an occurrence at pos+ 115. End of if16. D  D << 117. End of while18. pos pos+ last19. End of whileFig. 6. Bit-parallel code for BDM. Some optimizations are not shown for clarity.T = [ a b b a b a a ] b b a a b, D = 1 1 1 1 1 1 1, B = a 1 1 0 0 1 1 0b 0 0 1 1 0 0 1 , m = 7, last= 7, j = 7.(1) T = [ a b b a b a a ] b b a a b.1 1 1 1 1 1 1& 1 1 0 0 1 1 0D = 1 1 0 0 1 1 0 j = 6last = 6(2) T = [ a b b a b a a ] b b a a b.1 0 0 1 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0 j = 5last = 5(3) T = [ a b b a b a a ] b b a a b.0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0 j = 4last = 5(4) T = [ a b b a b a a ] b b a a b.0 0 1 0 0 0 0& 1 1 0 0 1 1 0D = 0 0 0 0 0 0 0 j = 3last = 5
We fail to recognize the next a. Sowe shift the window to last. Wesearch again in the position: T =a b b a b [ a a b b a a b ], last = 7,j = 7.(5) T = a b b a b [ a a b b a a b ].1 1 1 1 1 1 1& 0 0 1 1 0 0 1D = 0 0 1 1 0 0 1 j = 6last = 7(6) T = a b b a b [ a a b b a a b ].0 1 1 0 0 1 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 1 0 j = 5last = 7



12 � G. Navarro and M. Ra�not(7) T = a b b a b [ a a b b a a b ].1 0 0 0 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0 j = 4last = 4(8) T = a b b a b [ a a b b a a b ].0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0 j = 3last = 4(9) T = a b b a b [ a a b b a a b ].0 0 1 0 0 0 0& 0 0 1 1 0 0 1D = 0 0 1 0 0 0 0 j = 2last = 4
(10) T = a b b a b [ a a b b a a b ].0 1 0 0 0 0 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 0 0 j = 2last = 4(11) T = a b b a b [ a a b b a a b ].1 0 0 0 0 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 0 0 0 j = 0last = 4We report an occurrence at 6.4.2 Handling Longer PatternsWe can cope with longer patterns by setting up an array of wordsDt and simulatingthe work of a long computer word (we call this a \multi-word simulation" of thesimple algorithm). We propose a di�erent alternative which was experimentallyfound to be faster.If m > w, we partition the pattern in M = dm=we consecutive subpatterns si,p = s1 s2 ::: sM , so that each subpattern si is of length mi = w if i < M and the lastone has the remaining characters (i.e. mM = m � w(M � 1)). Those subpatternscan therefore be searched with the basic algorithm.We now search s1 in the text with the basic algorithm. If s1 is found at atext position j, we check whether s2 follows it. That is, we position a windowat tj+m1 ::tj+m1+m2�1 and use the basic algorithm for s2 in that window. If s2 isin the window, we continue similarly with s3 and so on. This process ends eitherbecause we �nd the complete pattern and report it, or because we fail to �nd somesubpattern si in its window.We have to shift the window now. An easy alternative is to use the shift last1that corresponds to the search of s1. However, if we have tested the subpatternss1 to si, then each one gives a possible shift lasti, and we use the maximum of allthose shifts.Although this algorithm searches on a shorter window (i.e. of length w < m) andtherefore it performs shifts shorter than the multi-word simulation, this multi-wordsimulation has to work on M computer words to traverse the window, in generalcancelling any possible bene�t from performing a longer shift. Finally, the multi-word simulation switches very fast the Dt word it operates on, while our algorithmoperates a long time over a single Dt word, therefore making it pro�table to putDt in a computer register for faster operation.4.3 AnalysisThe preprocessing time for our algorithm is O(m + j�j) if m � w, and O(m(1 +j�j=w)) otherwise.In the simple case m � w, the analysis of the search time is the same as for theBDM algorithm. That is, O(mn) in the worst case (e.g. T = an; p = am�1b),



Fast and Flexible String Matching � 13O(n=m) in the best case (e.g. T = an; p = bm), and O(n logj�jm=m) on average.Our algorithm, however, bene�ts from more locality of reference, since we do notaccess an automaton but only a few variables which can be put in registers (withthe exception of the B table). As we show in the experiments, this di�erence makesour algorithm the fastest one.When m > w, our algorithm is O(nm2=w) time in the worst case (since each ofthe O(mn) steps of the BDM algorithm forces to work on dm=we computer words).The best case occurs when the text traversal using s1 always performs its maximumshift after looking one character, which leads to O(n=w) time. We show, �nally,that the average case is O(n logj�j w=w). Clearly these complexities are worse thanthose of the simple BDM algorithm for long enough patterns. We show in theexperiments up to which length our version is faster in practice.The search cost for s1 is O(n logj�jw=w). With probability 1=j�jw, we �nd s1and check for the rest of the pattern. The search for s2 in the window costs O(w)at most. With probability 1=j�jw we �nd s2 and search for s3, and so on. Thetotal cost incurred by the existence of s2:::sM is at mostMXi=1 wj�jwi � " = wj�jw = O(1)which therefore does not a�ect the main cost to search s1 (neither in theory since theextra cost is O(1) nor in practice since " is very small). We consider the shifts now.The search of each subpattern si provides a shift lasti, and we take the maximumshift. Now, the shift lasti participates in this maximum with probability 1=j�jwi.The longest possible shift is w. Hence, if we sum (instead of taking the maximum)the longest possible shifts w weighted with their probability of participating, weget into the same sum above, which is " = O(1). Therefore, the average shift islast1+ " = last1+O(1), and hence the cost is that of searching s1 plus lower orderterms.Notice that, on the other hand, the multi-word simulation has worse complexity,namely O(n logj�j(m)=w), since it performs the same number of operations as BDM(i.e. O(n logj�j(m)=m)) but for each operation it has to update O(m=w) machinewords.5. FURTHER IMPROVEMENTS5.1 A Linear Time AlgorithmAlthough our algorithm has an optimal average case, it is not linear in the worstcase even for m � w, since we can traverse the complete window backwards andadvance it by one character (e.g. T = an; p = am�1b). In the worst case, thealgorithm is O(nm2=w). Our aim now is to reduce its worst case to O(nm=w), i.e.O(n) when m = O(w).In the last few years, studies have been undertaken to obtain, using DAWGs,algorithms which are linear in the worst case and still sublinear on average, forinstance TurboRF2 in [Czumaj et al. 1994], TurboBDM in [Czumaj et al. 1994;Lecroq 1992]. The main idea is to avoid retraversing the same characters in the2TurboRF uses a su�x tree, but it can be adapted to DAWGs.



14 � G. Navarro and M. Ra�notbackward window veri�cation. When we determine that the window must be ad-vanced in last positions, for last < m, we already know that tj+last::tj+m�1 is apre�x of the pattern, and therefore it is possible to use this knowledge to avoid tra-versing backwards the complete window tj+last::tj+last+m�1. The ending position(j + last+m� 1) of the pre�x in the window is usually called the critical position.Therefore, we want to avoid that the backward window veri�cation continues afterreaching the critical position.The main problem is how to determine the next shift if we are not going totraverse again the area tj+last::tj+m�1. Recall that we have not stored informationabout the next possible shifts following last (we only remembered the shortestshift).Two main strategies exist. The �rst one is to use a KMP algorithm to read againthe characters we read with the DAWG once we reach the critical position. Wekeep in memory the longest pre�x of the pattern that is also a su�x of the text weread. We stop using the KMP algorithm when the maximal pre�x we found is lessthan half the size of the pattern. This strategy is used in [Crochemore and Rytter1994; Lecroq 1992; Ra�not 1997b]. The algorithm obtained is linear in the worstcase, but the DAWG is used just to \help" KMP to skip some characters.The second strategy makes a better use of the power of DAWGs by adding akind of BM machine to the BDM algorithm. To explain the algorithm we need thede�nition of a border: the border of a string u is the set of pre�xes of u which arealso su�xes.The algorithm works as follows: if we reach the critical position after reading afactor z with the DAWG, it is possible to know whether zr is a su�x of the patternp.|If zr is a su�x, then we have recognized the whole pattern p, and the next shiftcorresponds to the longest pre�x of p that is also a su�x of p, i.e the longestborder of p, which can be computed in advance.|If zr is not a su�x, then it appears in the pattern in a set of positions which isgiven by the state we reached in the su�x automaton. If we shift to the rightmostoccurrence of zr in the pattern, like in the BM algorithm, then the shift is safe.It is not di�cult to simulate this idea in our BNDM algorithm. To know whetherthe factor z we read with the DAWG is a su�x, we just have to test whetherthere is a 1 at the jzj-th bit in D, i.e. djzj. To get the rightmost occurrence,we seek the rightmost 1 in D, which we can get (if it exists) in constant time withlog2(D& � (D�1)) 3. We implemented this algorithm under the name BM BNDMin the experimental part of this paper, but the plain BNDM is faster in practice.Still this algorithm remains quadratic, because we do not keep a pre�x of thepattern after the BM shift. To make it linear time, we must keep this pre�x. Thissituation is shown in Figure 7.Let u be the pre�x �nishing at the critical position. The TurboRF algorithm(second variation) [Czumaj et al. 1994] uses a complicated preprocessing phase to3In practice, it is faster and cleaner to implement this log2 by shifting the mask to the right untilit becomes zero. Using this technique we can use the simpler expression D ^ (D � 1) and get thesame result. However, the log2 expression is important in theory because it can be computed inconstant time.



Fast and Flexible String Matching � 15WindowSearch for a factor with the DAWGcritical positionzrwe reached the critical position, but uzr is not the pattern p.critical positionuiuisafe shiftborderof ui zr New critical positionFig. 7. Skeleton of the BM shift if we reach the critical position.associate in linear time an occurrence of zr in the pattern to a border bu of u, inorder to obtain the maximal pre�x of the pattern that is a su�x of uzr . Moreover,the TurboRF uses a su�x tree, and it is quite di�cult (though not impossible) touse this preprocessing phase on DAWGs. With our simulation, this preprocessingphase becomes simple. To each pre�x ui of the pattern p, we associate a maskBord[i] that registers the starting positions of the borders of ui (� included). Thistable can be precomputed in O(m) time. Now, to join one occurrence of zr witha border of u, we want the positions which start a border of u and continue withan occurrence of zr . The �rst set of positions is Bord[i], and the second one isprecisely the current D value (i.e. positions in the pattern where the recognizedfactor z ends). Hence, the bits of X = Bord[i] & D are the positions satisfyingboth criteria. As we want the rightmost such occurrence (i.e. the maximal pre�x),we take again log2(X & � (X � 1)). We implemented this algorithm under thename TurboBNDM in the experimental part of this paper.5.2 A Constant-Space AlgorithmIt is also interesting to notice that, although the algorithm needs O(j�jm=w) extraspace, we can make it constant space on a binary alphabet �2 = f0; 1g. The trickis that in this case, B[1] = p and B[0] = � B[1]. Therefore, we need no extrastorage apart from the pattern itself to perform all the operations. In theory, anytext over a �nite alphabet � could be searched in constant space by representingthe symbols of � with bits and working on the bits (the misaligned matches haveto be discarded later). This involves an average search time ofO� n log2 j�jm log2 j�j log2(m log2 j�j)� = Normal time � log2 j�j � �1 + log2 log2 j�jlog2m �which if the alphabet is considered of constant size is of the same order of thenormal search time.We present now some extensions applicable to our basic scheme, which form asuccessful combination of e�ciency and exibility. The general concept is that all



16 � G. Navarro and M. Ra�notthe extensions devised for the Shift-Or algorithm can be enriched with our approachin order to speed them up.6. HANDLING CLASSES OF CHARACTERSAs in the Shift-Or algorithm, we allow that each position in the pattern matchesnot only a single character but an arbitrary set of characters. Some solutions for thecase of don't care characters (i.e. pattern positions that match any character) havebeen presented in [Abrahamson 1987; Fischer and Paterson 1974; Pinter 1985], butthese have been shown to be only of theoretical interest in [Baeza-Yates and Gonnet1992]. Simple attempts to extend classical algorithms such as KMP or BM do notwork well. To the best of our knowledge, the fastest algorithm for this problem isShift-Or.This type of patterns is called \limited expressions" in [Wu et al. 1996], and it isa subset of the wealth of alternatives for \extended patterns" presented in [Baeza-Yates and Gonnet 1992; Wu and Manber 1992]. Although formally it is enough tosay that each pattern position can match a set of characters, it is useful to give anintuitive idea of the power allowed. The following patterns are examples of limitedexpressions:|word in case insensitive, i.e. fw; Wgfo; Ogfr; Rgfd; Dg.|wo.d, where the '.' means any character, i.e. fwgfog�fdg.|wor[a-z], where [a-z] means any character in the range from 'a' to 'z', i.e.fwgfogfrgfa::zg.|wo[abx]d, where [abx] means 'a', 'b' or 'x', i.e. fwgfogfa; b; xgfdg.|w[�ou]rd, where [�o] means any character except 'o' and 'u', i.e. fwg(� �fo; ug)frgfdg.We denote a limited expression p = C1C2 : : :Cm. A word x = x1x2 : : :xrin �� is a factor of a limited expression p = C1C2 : : :Cm if there exists an isuch that x1 2 Ci�r+1; x2 2 Ci�r+2; : : : ; xr 2 Ci. Such an i is called a po-sition of x in p. A factor x = x1x2 : : : xr of p = C1C2 : : :Cm is a su�x ifx1 2 Cm�r+1; x2 2 Ci�r+2; : : : ; xr 2 Cm.Similarly to the �rst part of this work, we design an automaton which recognizesall the su�xes of a limited expression p = C1C2 : : :Cm. This automaton is notanymore a DAWG. We call it Extended DAWG. To our knowledge, this kind ofautomaton has never been studied. We �rst give a formal construction, and thenprove its correctness.6.1 ConstructionThe construction we use is quite similar to the one given for the DAWG, but withthe new de�nition of su�xes. For any x factor of p, we denote L-endpos(x) theset of positions of x in p. For example, L-endpos(baa) = f3; 7g in the limitedexpression b[a,b]abbaa, and L-endpos(bba) = f3; 6g (notice that, unlike before, thesets of positions may be non-disjoint and no one a subset of the other). We de�nethe equivalence relation �E for u; v factors of p byu �E v if and only if L-endpos(u) = L-endpos(v):



Fast and Flexible String Matching � 17We de�ne p(i; �) with i 2 f0; 1; : : : ;m;m+ 1g; � 2 � byp(i; �) = (fig if i � m and � 2 Ci; otherwiseLemma 1. Let p be a limited expression and �E the equivalence relation on itsfactors (as previously de�ned). The equivalence relation �E is compatible with theconcatenation of words.Proof. Let u and v be two di�erent factors of p that belong to the same equiva-lence class q, and let � 2 �. S = fi1; i2; : : : ; ikg is the set of positions correspondingto q. Two cases appear:|if u� (resp. v�) is not a factor of p, neither is v� (resp. u�). Suppose u� is nota factor, but v� is. Then there exists a position 2 � i � m where v� ends in p.Hence v ends at i� 1. But, as u and v are at the same positions, u appears alsoat position i � 1 in p, and u� appears in i. A contradiction.|if u� (resp. v�) is a factor of p, v� (resp. u�) is also a factor of p and u� �E v�.Assume that u� is a factor, then u� ends in p at positions S� = (i1; �) [ : : :[(ik; �). As v ends at the same set of positions S as u, v� ends at S� too.Therefore u� and v� belong to the same equivalence class.Hence, the equivalence �E is compatible with the concatenation.This lemma allows us to de�ne an automaton from our equivalence class. Thestates of the automaton are the equivalence classes of �E . There is an edge labeledby � from the set of positions fi1; i2; : : : ikg to p(i1 + 1; �) [ p(i2 + 1; �) [ : : : [p(ik + 1; �), if this is not empty. The initial node of the automaton is the set thatcontains all the positions. Terminal nodes of the automaton are the sets of positionsthat contain m. As an example, the su�x automaton of the word [a,b]aa[a,b]baa isgiven in Figure 8.0,1,2,3,4,5,6,7 1,4,5 2,6 3,7 4,51,2,3,4,6,7 2,3,4,7 3,4 4 5 6 7a a a a b a aa ab b
b b aa,bb bFig. 8. Extended DAWG of the limited expression 0[a; b]1a2a3[a; b]4b5a6a7.Lemma 2. The Extended DAWG of a limited expression p = C1C2 : : :Cm recog-nizes the set of su�xes of p.Proof. (1) Let u = u1u2 : : :ur be a su�x of p. We show that u is recognizedby Extended DAWG(p). We call Er = fi1; i2; : : : ikg the set of ending positionsof u in p, which is not empty since it at least contains m. We denote:E0 = f0; 1; 2; : : : ;mg and Ej = fi1 � r + j; i2 � r + j; : : : ; ik � r + jg:



18 � G. Navarro and M. Ra�notE0 is the initial set of Extended DAWG(p). There is a path from E0 to a stateE01 � E1 labeled u1, because E01 = p(1; u1) [ p(2; u1) [ : : : [ p(m;u1), andthere is at least one u1 in the positions E1 (set of beginning positions of u in p).Assume now there is a path from the initial state labeled u1u2 : : :uj arrivingat the set of nodes E0j , j < r and E0j � Ej. Let E0j+1 the state we reached byusing the edge labeled uj+1 from E0j. This state exists, because Ej � E0j, Ej isnot empty and uj+1 appears at least at position Ej+1. More than that, for thesame reason, Ej+1 � E0j+1. By induction, we proved that there is a path fromthe initial node labeled u arriving at the set of nodes E0r, which contains Er.As Er contains m, E0r also does. Therefore, E0r is marked as a terminal statein Extended DAWG(p) and the su�x u is recognized.(2) If there is a path from the initial state to a �nal state labeled by the word uin Extended DAWG(p), then we show that u is a su�x of p. Let now Ej be thestate we reach with u1 : : : uj. Er contains m. To arrive at this state by readingur, ur must at least belong to Cm, and the previous state, Er�1, containsm � 1. By induction, it is clear that ur 2 Cm; ur�1 2 Cm�1; : : :u1 2 Cm�r+1,and hence u is a su�x of p.Therefore, Extended DAWG(p) recognizes the set of su�xes of p.We can use this new automaton to recognize the set of su�xes of a limited ex-pression p. We do not give an algorithm to build this Extended DAWG in its deter-ministic form, but we simulate the deterministic automaton using bit-parallelism.6.2 A Bit-parallel Implementationfrom the above construction, the only modi�cation that our algorithm needs isthat the B table has the i-th bit set for all characters belonging to the set ofthe i-th position of the pattern. Therefore we simply change line 3 (part of thepreprocessing) in the algorithm of Figure 6 toFor i 2 1:::m; c 2 � do If c 2 Ci then B[c] B[c] j 0m�i10i�1such that now the preprocessing takes O(j�jm) time but the search algorithm doesnot change.We combine the exibility of limited expressions with the e�ciency of a Boyer-Moore-like algorithm. It should be clear, however, that the e�ciency of the shiftscan be degraded if the classes of characters are signi�cantly large and prevent longshifts. However, as we show later in the experiments, BNDM is much more resistantthan some simple variations of Boyer-Moore since it uses more knowledge aboutthe matched characters.We point out now another extension related to classes of characters: the textitself may have basic characters as well as other symbols denoting sets of basiccharacters. This is common, for instance, in DNA databases. We can easily handlesuch texts. Assume that the symbol C represents the set fc1; :::; crg. Then we setB[C] = B[c1] j ::: j B[cr ]. This is much more di�cult to achieve with algorithmsnot based on bit-parallelism.



Fast and Flexible String Matching � 197. SEARCHING FOR MULTIPLE PATTERNSSuppose we are interested in searching a set of patterns P 1:::P r (where P i =pi1::pimi), i.e. reporting the occurrences of all P i's. Assume that they are all of thesame length m, otherwise truncate them to the length of the shortest one. Thismay be ine�ective for patterns of very di�erent lengths but it is a common practicein all the algorithms of the Boyer-Moore family as well.If the total length of the patterns does not exceed the size of a computer word,i.e. r�m � w, we can very e�ciently search all the patterns in parallel, exploitingagain the intrinsic parallelism inside computer words. This technique, based onan arrangement described in [Baeza-Yates and Gonnet 1992], concatenates the rpatterns P 1:::P r as followsP = p11 p21 :::pr1 p12 p22 :::pr2 ::::: p1m p2m :::prm(i.e. all the �rst letters, then all the second letters, etc.) and searches P just asa single pattern. The only di�erence in the algorithm of Figure 6 is that the shiftis not by one bit but by r bits in line 16 (since we have r bits per multipatternposition) and that instead of looking for the highest bit dm of the computer wordwe consider all the r bits corresponding to the highest position. That is, we replacethe old 10m�1 test mask by 1r0r(m�1) in line 12.This method will automatically search for words of length m and keep all the bitsneeded for each word. Moreover, it will report the matches of any of the patternsand will not allow shifting more than what all patterns allow to shift.An alternative arrangement is as follows:P = P 1 P 2 ::: P r(i.e. just concatenate the patterns). In this case the shift in line 16 is by one bit,and the mask for line 12 is (10m�1)r . On some processors a shift in one positionis faster than a shift in r > 1 positions, which could be an advantage for thisarrangement. On the other hand, in this case we must clear the bits that arecarried from the highest position of a pattern to the next one, replacing line 16by D = (D << 1) & (1m�10)r . This involves an extra operation. Finally, thisarrangement allows us to have patterns of di�erent lengths for the algorithm of[Baeza-Yates and Gonnet 1992] which is not possible in their current proposal.Clearly this technique cannot be applied to the case m > w. However, if 2m � wand r �m > w we divide the set of patterns into dr=bw=mce groups, so that thepatterns in each group �t in w bits. Therefore the cost to search r patterns oflength m can be made O(rm2n=w) in the worst case, and O(rn=w) in the bestcase. This is respectively better than O(rmn) and O(rn=m) (which corresponds tosequentially searching the r patterns with BDM).8. APPROXIMATE STRING MATCHINGApproximate string matching is the problem of �nding all text factors which areat a \distance" of at most k to the pattern. This has a number of applicationsin text retrieval, computational biology, pattern recognition, signal processing, etc.Of course, the nature of the problem depends directly on the distance function weuse. Many distances exist, and among them two are commonly used: the Hamming



20 � G. Navarro and M. Ra�notand the Levenshtein (or edit) distance. We explain now how to use our algorithmfor approximate matching with these two distances.8.1 Hamming DistanceThe Hamming distance between two words is the minimal number of substitu-tions of characters that have to be performed to make them equal. For example,d("test","text") = 1. A number of algorithms exist to solve this problem [Baeza-Yates and Gonnet 1994; El-Mabrouk and Crochemore 1996; Tarhio and Ukkonen1993].To adapt our algorithm to this problem, we still move a window of length mon the text, and search backward a su�x u of the window that matches a patternfactor after at most k substitutions. Instead of just storing one bit to know whetherur ends at each position i in the reverse pattern pr , we use L = blog2(k)c + 1 bitsto encode the distance between ur and the factor of length juj that ends at positioni in pr. If this distance is larger than k we just encode k + 1. We record in thevariable last the longest su�x of the window that is at distance at most k to apattern pre�x.When reading a new character of the window, we update the state of the searchby adding a properly spaced B mask to the current set of distances, so that eachmismatch adds 1 to the distances. Some provisions are needed to prevent thedistances to grow over k + 1 (basically clearing overow bits). We can know inO(1) time whether or not to update last by examining the L highest bits of thecomputer word and determining whether the number is larger than k or not. Ifall the distances in the computer word are greater than k, then we can shift thewindow to last since no pattern factor matches the window with k errors or less.This fact can be tested in constant time by storing the distances plus 2L�k�1, sowhen the distance reaches k + 1 the highest bit is set. Hence when all the highestbits are set we know that we can shift the window.Figure 9 illustrates this algorithm. We note that most of the bit manipulationpart comes from [Baeza-Yates and Gonnet 1994].8.2 Edit DistanceThe Levenshtein distance (or just edit distance) between two words is the minimalnumber of substitutions, insertions and deletions of characters needed to make themequal. For instance, d("survey","surgery" ) = 2. A number of solutions to thisproblem exist [Navarro 2000a], being [Baeza-Yates and Navarro 1999; Navarro andBaeza-Yates 1999; Jokinen et al. 1996; Myers 1999; Navarro 1997; Wu et al. 1996]the fastest in practice.We present two extensions of our algorithm for approximate string matching.Just like the original proposals they are based on, our solutions can be extendedto handle extensions of the edit distance, e.g. permitting each operation to have adi�erent cost.8.2.1 Partitioning into Exact Searching. In [Wu and Manber 1992], a simple butvery e�ective �lter is proposed for approximate string matching. It is based onthe observation that if a pattern of length m appears with at most k errors in atext position, and we divide the pattern in k + 1 pieces, then at least one of the



Fast and Flexible String Matching � 21a b b a b b b b b baba bPattern a b b a b b b b b baba bPattern bbbsafe shift New windowabaabbb
lastD abaa1 4 2 2 2 4 1 3 2 2 3 - - -Record in last the longest pre�x that matches with at most 1 errorSearch backward for a factor with at most 1 errorlastD - - -- --53332533Fail to recognize a factor with at most 1 errorabaaFig. 9. Basic search for approximate pattern matching with the Hamming distance.pieces will appear with no errors in the occurrence (since k errors cannot alter k+1pieces). Therefore, they propose to split the pattern into k+1 pieces of equal lengthbm=(k + 1)c (discarding some characters at the end if necessary) and searching allthe pieces in parallel. A classical algorithm is run on the text areas surroundingthe occurrences of pattern pieces, therefore �ltering out all the rest of the text.The multipattern search mechanism they propose is very similar to our setupof Section 7 (although the bit arrangement is di�erent). However, they use theShift-Or algorithm to search and therefore their e�ciency is limited. On the otherhand, they keep their ability to handle classes of characters and other extensions.Later, [Navarro and Baeza-Yates 1999] used a multipattern Boyer-Moore strategyto perform the above search, which at the cost of not allowing limited expressionsgives a much more e�cient algorithm. This algorithm was shown to be the fastestin practice when the number of errors is low enough (this is, k=m � 1=(3 logj�jm)on random text and k=m � 1=4 on natural language).Our multipattern search technique presented in Section 7 combines the best ofboth worlds: our performance is comparable to that of the algorithms of the Boyer-Moore family, and we keep the exibility of the Shift-Or approach to handle classesof characters. In this case the Sunday extension to multipattern search used in[Navarro and Baeza-Yates 1999] is slightly faster in general because the searchpatterns are rather short. We show later their relative performance.8.2.2 A New Bit-Parallel Algorithm. Another algorithm for approximate stringmatching is presented in [Wu and Manber 1992]. It is based on the bit-parallelsimulation of an NFA built from the pattern, which recognizes its approximateoccurrences in the text. In [Baeza-Yates and Navarro 1999] this automaton issimulated using a di�erent technique.Our approach is based on the same automaton. We modify the NFA so that it
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Fast and Flexible String Matching � 23window the automaton still has active states, then it is possible that the currentwindow starts an occurrence, so we use the traditional automaton to compute theedit distance from the initial window position in the text. After reading at mostm+ k characters we have either found a match starting at the window position orleft the automaton without active states.The rationale for this algorithm is as follows. We are interested only in occur-rences that start at the current window position. Any occurrence has a lengthbetween m � k and m + k. If there is an occurrence of the pattern p starting atthe window position with k errors, then a pre�x of p must match the �rst m � kcharacters with k errors or less. Hence, we cannot miss an occurrence if we keepcount of the matches of all the pattern pre�xes in a window of length m� k. If theautomaton runs out of active states, then we cannot miss the start of an occurrenceand we shift the window to the next candidate. Finally, if the automaton has activestates after reading the complete window, then a match starting at the window ispossible and we have to check it explicitly since we can only ensure that a factor ofthe pattern matches in the window.The automaton can be simulated in a number of ways. Wu and Manber [Wuand Manber 1992] do it row-wise (each row of the automaton is packed in a com-puter word), while Baeza-Yates and Navarro [Baeza-Yates and Navarro 1999] do itdiagonal-wise. In this case we prefer the technique of Wu and Manber, since in theother the initial diagonals of length � k are discarded and they are needed here.9. EXPERIMENTAL RESULTSWe ran extensive experiments on random and real-world texts in order to showhow e�cient are our algorithms in practice. The experiments were run on a SunUltraSparc-1 of 167 MHz, with 64 Mb of RAM and a machine word of 32 bits,under Solaris 2.5.1. We measured CPU times and repeated the experiments manytimes so that the relative error of the results is �2% with 95% con�dence (thisinvolved thousands of repetitions).All the algorithms were implemented by ourselves with a uniform I/O interface.The text is read in chunks of 64 Kb, which gives the best tradeo� between locality ofreference and disk accesses in our machine. We use open instead of fopen because itis much faster. The pattern is placed at the end of the text bu�er to avoid checkingfor the end point all the times. We made our best coding e�ort to implement allthe algorithms, carefully optimizing the register usage and turning on the compileroptimizations.We used texts of 10 Mb of size over which we searched many patterns. We ranexperiments on random text with uniformly distributed alphabets of sizes from 2 to64, as well as non-random text, such as English text (from the TREC Wall StreetJournal collection) and DNA sequences (from \h.inuenzae"). For random textthe patterns were randomly generated on the same alphabet, while for non-randomtexts the patterns were selected randomly from the same text (at word beginningsin the case of natural language).9.1 Structural MeasuresBefore measuring real CPU times, we will study the number of operations of dif-ferent kinds executed by our algorithms in comparison to the rest. These measures



24 � G. Navarro and M. Ra�nothelp explain why the simple BNDM version is better than the other algorithms ina wide range of cases. We have included BDM, the simple BNDM, our two variantsBM BNDM and TurboBNDM, the classical Boyer-Moore, its Horspool and Sun-day versions and the linear time algorithms that do not improve with the patternlength: the naive algorithm, KMP and Shift-Or.Figure 11 shows the number of characters inspected on random texts of di�erentalphabet sizes. In these plots BDM and BNDM are indistinguishable. As canbe seen, the theoretical improvements of BM BNDM and TurboBNDM have apractical e�ect only for binary alphabets and short patterns (m � 10). Only Boyer-Moore comes close to BDM/BNDM for small alphabet sizes, but it gets farther andfarther as the pattern length grows. From the linear time algorithms, Shift-Orperforms exactly one access to each text character, followed by KMP and Naive.As the alphabet size grows, all the Boyer-Moore algorithms become closer toBDM/BNDMs. The classical Boyer-Moore becomes indistinguishable from BDMfor an alphabet of size 16 (which is similar to natural language), while Horspooland Sunday never get close enough. The linear time algorithms also get closer toShift-Or, but they never reach it.This shows that our new algorithms are the best in terms of number of textcharacters inspected, but they are not better than BDM and (sometimes) thanBoyer-Moore in this respect.To get more insight on the reasons behind the di�erent behavior of the algorithms,Figure 12 shows the number of table accesses performed by the algorithms. By a\table access" we mean any access to an indexed array (including the pattern itself).We do not pay attention to the sizes of the tables, since all are of size O(m+ j�j)and very small in practice. In all cases the tables �t even in very small caches, sotheir sizes should not a�ect the relative performance of the algorithms.As can be seen, BDM and Boyer-Moore pay their few accesses to the text with ahigh number of table accesses. In this respect, the BNDM algorithm and its variantsare by far superior. The relative performances between our three algorithms remainunchanged when considering table accesses. About the linear time algorithms, wesee that KMP also pays a high price for its guaranteed linear time, being worse thanthe naive algorithm in terms of table accesses. For non binary alphabets we do notshow KMP anymore. It is stabilized around 3 table accesses per text character.For higher alphabet sizes, BDM gets closer to the BNDM family, while Boyer-Moore stays far away, even farther than Horspool and Sunday.The third part of the cost is given by the number of register accesses. We un-derstand that every non-indexed variable is stored in a register, which is realisticin modern architectures with many registers and for our algorithms that normallyhave a few important variables. We observe that, despite that the register accessesare much cheaper than the previous operations considered, the number of accessesis an order of magnitude higher, so they should have an e�ect on the performance.Only here we see the price paid by BM BNDM and TurboBNDM. These morecomplex algorithms inspect (slightly) less text characters and table cells than thesimple BNDM, but they pay this with much more accesses to register variables.BDM and Boyer-Moore also stay far away from BNDM. On the other hand, KMPand the naive algorithm are much more expensive than Shift-Or, KMP stabilizingat a higher cost for larger alphabets (they are not shown in all the plots, but they
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Fast and Flexible String Matching � 27stay about the same as for j�j = 4).For higher alphabets, we see that BDM gets closer to BNDM (but it is alwaysworse than BM BNDM and TurboBNDM), while Boyer-Moore stays de�nitely moreexpensive. A much more interesting e�ect is achieved by Sunday, which progres-sively gets better than BNDM as the alphabet size grows.As we have seen, BNDM has important algorithmic advantages over its competi-tors. It inspects far less text characters than Horspool and Sunday, it pays far lesstable accesses than Boyer-Moore and BDM, and it pays far less register accessesthan BM BNDM and TurboBNDM. Hence, BNDM provides the best combinationwhen all the costs are considered together.In which follows we see see how these algorithmic advantages map into realimprovements in the CPU time. There are many reasons that make this mappingnontrivial to predict. For example, di�erent machines will have di�erent accesscosts in their memory hierarchy. But more important, the pipelining mechanism ofthe processor may permit performing some operations in parallel (e.g. a memoryfetch can be done in parallel with some register accesses), so it is not just a matterof counting accesses multiplied by their relative costs.9.2 Exact MatchingWe consider real CPU times from now on. We included in this comparison all thealgorithms of the previous experiments. To make the plots more readable, we re-moved the least interesting algorithms: Horspool is discarded because it is strictlyworse than Sunday and also slower in practice, the naive algorithm is always slowerthan Shift-Or (4{10 milliseconds per megabyte), KMP is even slower (11{14 mil-liseconds per megabyte) and, in some cases, Shift-Or (always around 4 millisecondsper megabyte) is outside the range of interesting values.Figure 14 shows the results for random text. For small alphabet sizes (up to 4)BNDM is the fastest algorithm, provided the pattern is not too short. In particular,simple BNDM is slightly faster than the BM BNDM and TurboBNDM variationsbecause of the number of register accesses.BNDM is especially good for small alphabets since it uses more information thanothers on the matched text, and pays less table and register accesses to do it.BDM and Boyer-Moore also use enough information on the matched text, but theypay more processing time. Sunday pays little processing but it accesses more textcharacters.As the alphabet size grows, the di�erences in terms of text accesses with theSunday algorithm start to blur, and Sunday starts to dominate for short patterns.The area where BNDM is the fastest starts to shrink, totally disappearing forj�j � 32. Only Sunday beats BNDM, never by more than 20%.We do not show the results for longer patterns but comment the main result:BNDM ceases to improve for patterns longer than w = 32 letters, so BDM eventu-ally becomes faster. This cut point is close to m = 50.Figure 15 shows the results on non-random text: English and DNA. The resultsare very similar to random text for j�j = 16 and j�j = 4, respectively. That is,BNDM is reasonably competitive on English and the fastest for DNA. On Frenchand Spanish texts we obtained results similar as on English.
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Shift-OrFig. 15. Times in milliseconds per megabyte, for non-random text and increasing pattern length.9.3 Classes of CharactersWe show some illustrative results using classes of characters, which were generatedas follows: we generated random texts of alphabet sizes j�j = 4; 16 and 64, insidewhich we searched random patterns of length 15 (resp. 30). In those patterns weintroduced from 1 to 7 (resp. 1 to 15) don't cares randomly placed. By a don't carewe mean a class of characters that matches all the alphabet. The results are shownin Figure 16. Our algorithm is the fastest in all cases, far below Shift-Or (whichstays almost constant whatever the number of don't cares is), Sunday and Boyer-Moore extended to classes of characters4. As the length of the patterns grows, thedi�erence between our algorithm and the others increases sharply.9.4 Multipattern SearchWe present in Figure 17 some results on our multipattern algorithm, to show thatalthough we take the minimum shift among all the patterns, we can still do betterthan searching each pattern separately. We take random groups of �ve patternsof length 6 and show how our multipattern algorithm (Multi-BNDM, in its �rstand second versions) performs against �ve sequential searches with our sequentialalgorithm (BNDM), and against the parallel version proposed in [Baeza-Yates andGonnet 1992] (Multi-Shift-Or).As it can be seen, our second arrangement is slightly more e�cient than the�rst one, both are always more e�cient than a sequential search (although theimprovement is not �ve-fold but two- or three-fold because of shorter shifts), andboth more e�cient than the proposal of [Baeza-Yates and Gonnet 1992] providedj�j � 8.9.5 Searching Allowing SubstitutionsWe show now the performance of our approximate string matching algorithm forHamming distance. Figure 18 shows the results for m = 10. We show random4These extensions consist simply in rede�ning the equality among characters when a don't care isinvolved.
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Fig. 17. Times in milliseconds per megabyte, for multipattern search on random text of di�erentalphabet sizes.text with j�j = 8 as well as English text. We included in the comparison all thealgorithms we are aware of: Shift-Add [Baeza-Yates and Gonnet 1994; Wu andManber 1992], BY-�lter [Baeza-Yates and Gonnet 1994], EMC-�lter [El-Mabroukand Crochemore 1996], TU-�lter [Tarhio and Ukkonen 1993], and Counting [Baeza-Yates and Gonnet 1994]. We also included some algorithms that were designedfor edit distance and that we adapted for this simpler case: NFA [Baeza-Yatesand Navarro 1999], Part.Ex. [Navarro and Baeza-Yates 1999] and DFA [Navarro1997]. Our algorithm is called simply BNDM in the plots, and we include theNaive algorithm as well (the trivial extension of the naive exact string matchingalgorithm).In this case our algorithm is the fastest for moderate error levels (i.e. k � 3).The same happens for 4 � j�j � 16 and pattern lengths between 10 and 16.It is interesting to notice that for Hamming distance our algorithm beats exactpartitioning [Navarro and Baeza-Yates 1999], which is the fastest known algorithmfor edit distance.In the areas where exact partitioning is faster, our algorithm is still reasonablycompetitive. Moreover, we can e�ciently handle classes of characters, while exactpartitioning quickly degrades if it uses the Sunday search algorithm. On the otherhand, exact partitioning can be made more resistant to errors by using our extensionof BNDM to multipattern search.9.6 Searching Allowing ErrorsWe show now the performance of our extensions to deal with errors. We �rst showhow our multipattern algorithm performs when used for approximate string match-ing. This algorithm is called Ex.Part./BNDM. We include also the fastest knownalgorithms in the comparison: Ex.Part./Sunday is the same algorithm except thatSunday is used for the multipattern search [Navarro and Baeza-Yates 1999] (thisis the fastest known algorithm for low error levels); Ex.Part./Shift-Or is the sameusing Shift-Or for the multipattern search [Wu and Manber 1992]; Bit.Par.NFA[Baeza-Yates and Navarro 1999] and Bit.Par.Matrix [Myers 1999] are bit-parallel
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NaiveFig. 18. Times in milliseconds per megabyte, for approximate search under Hamming distanceon random and English text. We use m = 10 and the x axis is the number of errors allowed.algorithms; and �nally we include algorithms based on Counting [Jokinen et al.1996], DFA [Navarro 1997] and 4-Russians [Wu et al. 1996].Figure 19 shows the results for two alphabet sizes and m = 20 (we obtainedsimilar results for m = 10 and 30). As it can be seen, our implementation of exactpartitioning is quite close to Ex.Part./Sunday (sometimes even faster) and thereforeour algorithm is a competitive yet more exible replacement, while it is faster thanthe other exible candidate Ex.Part./Shift-Or [Wu and Manber 1992].Since BNDM is not very good for very short patterns, our algorithm works betterfor m = 20 and 30. Moreover, it ceases to be competitive for higher error levelssince the length of the patterns to search for is O(m=k).
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34 � G. Navarro and M. Ra�notAs the algorithm works well for very low error levels, we show only the case k = 1,for random (j�j = 4) and English text. In the �rst case (very similar to DNA) ouralgorithm outperforms all the others (this happens also for k = 2 and k = 3). ForEnglish text, it can be seen that for very low error levels and intermediate patternlengths, our algorithm becomes very close to [Navarro and Baeza-Yates 1999], whichis the fastest known algorithm for low error levels, beating all the other algorithms(we have shown only those that are the fastest for these cases).
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DFAFig. 20. Times in milliseconds per megabyte, for random and English and k = 1 error under editdistance.10. CONCLUSIONS AND FUTURE WORKWe have presented a new text searching algorithm called BNDM, which is based onthe bit-parallel simulation of a nondeterministic su�x automaton. This automatonhas been previously used in deterministic form in an algorithm called BDM. Bit-parallelism is a general way to simulate nondeterministic automata using the bitsof the computer word, which has up to now led to exible but slow algorithms forexact searching and to competitive algorithms for approximate searching. Hence,BNDM obtains the best of both worlds: the speed of BDM and the exibility ofbit-parallelism.We present also some variations called TurboBNDM and BM BNDM which arederived from the corresponding variants of BDM. These variants are much moresimply implemented using bit-parallelism and become practical algorithms. Tur-boBNDM has an average performance very close to BNDM and O(n) worst case.We have also extended BNDM in simple ways to solve a large set of extensions overthe basic string matching problem, such as matching classes of characters, multiplepattern matching and approximate pattern matching.Our new algorithm is experimentally shown to be very fast in practice. For ex-act patterns it is the fastest on small alphabets and remains competitive for largerones. It is also competitive when dealing with extended patterns, being in particu-lar the fastest to handle classes of characters and some cases of approximate pattern
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