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Abstract

The representation of binary relations has been intensively studied and many
different theoretical and practical representations have been proposed to answer
the usual queries in multiple domains. However, ternary relations have not
received as much attention, even though many real-world applications require
the processing of ternary relations.

In this paper we present a new compressed and self-indexed data structure
that we call Interleaved K2-tree (IK2-tree), designed to compactly represent
and efficiently query general ternary relations. The IK2-tree is an evolution of
an existing data structure, the K2-tree [1], initially designed to represent Web
graphs and later applied to other domains. The IK2-tree is able to extend the
K2-tree to represent a ternary relation, based on the idea of decomposing it into
a collection of binary relations but providing indexing capabilities in all the three
dimensions. We present different ways to use IK2-tree to model different types
of ternary relations using as reference two typical domains: RDF and Temporal
Graphs. We also experimentally evaluate our representations comparing them
in space usage and performance with other solutions of the state of the art.
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1. Introduction

Graphs are a natural way to represent data. A way to model simple graphs
is to see them as binary relations between two data sets, taking advantage of the
good number of theoretical and practical results the research about binary rela-
tions has produced. In fact, the efficient representation of binary relations has
been extensively studied and, at present, many theoretical and practical repre-
sentations of binary relations have been proposed to answer the usual queries in
multiple domains. Theoretical representations provide optimal solutions for a
large number of operations and many practical data structures are in use [2, 3].
General binary relation representations are used everywhere: to represent text,
binary matrices, Web Graphs and, in general, simple graphs.

Ternary relations are also very common, but they have not received so
much attention. Many real-world data can be considered as a ternary rela-
tion and handled using a ternary relation representation. In addition to pure
3-dimensional data, many binary relations become ternary relations when other
dimension of the data (usually time) is considered, for example a Web Graph
is a snapshot of the Web pages as binary relations at a specific time instant,
but the evolution of the Web graph over time makes the relationship among
web pages three-dimensional. In the same way, in general, any collection of
2-dimensional representations where each one captures a different version of the
same data (or an instant of its temporal evolution), can be seen as a ternary re-
lation. Among those collections we can point out evolving web graphs, evolving
social networks, etc.

Ternary relations can be also found in other cases, for example, a bi-dimen-
sional matrix of values can be modeled as a ternary relation with the values
as a third dimension; a simple graph with labels in its edges is also a ternary
relation with the labels as a third dimension; digital images can also be seem as
binary relations among rows and columns of pixels and the color of each pixel;
etc. These representations arise in many areas: general raster data, images,
time-evolving raster representing oil patches or in general moving regions can
therefore be seen as a ternary relation.

An interesting example of ternary relations are the RDF graphs used on
the semantic web to represent knowledge. RDF databases are ternary relations
because they are collections of 3-tuples composed by the values for subject,
object and predicate.

In spite of the multiple applications, not much effort has been put to the
efficient representation of general ternary relations [4]. In most of the cases, data
that could be represented and managed as a general ternary relation is managed
using domain-oriented representations and, therefore, general representations
and operation sets are usually overlooked. Examples of domain-specific repre-
sentations include RDF-3X [5] for RDF graphs, or image representations such
as tiff and Geotiff [6] for both general images and raster data.

The absence of general ternary relation representations can also be related to
the variability in domain-specific operations over the data. Pure 3-dimensional
queries are required in many applications, but, in many cases, there are specific
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requirements for the different dimensions. An example of this is the repre-
sentation of time-evolving graphs, or in general time-evolving binary relations:
the usual operations on the “spatial” dimensions are well-defined, but in the
“temporal” dimension of the ternary relation the operations involved include
time-instant and time-interval constraints with special characteristics related
to the time domain. A similar reasoning can be applied to ternary relations
that correspond to general raster data, or any matrix of values: the “spatial”
dimension has specific semantics but the constraints and query capabilities in
the third dimension differ from those in the other two.

A usual strategy for the representation of ternary relations, using represen-
tations for binary relations, is called vertical partitioning [7]. The idea is to
reduce the ternary relation to a collection of binary relations, hence reducing
the problem to efficiently storing and querying several binary relations, one for
each value of the partitioning variable. This approach can lead to much sim-
pler solutions, but faces the challenge of efficiently managing query constraints
that involve the dimension used as partitioning variable, since the partition in
separate binary relations will usually provide no indexing capabilities on the
partitioning dimension and hence poor efficiency in that kind of queries.

The K2-tree is a compressed and self-indexed structure initially designed
for Web graphs [1, 8]. It was later used in other domains [9, 10] for the com-
pact representation and efficient querying of binary relations. Its quadtree-like
structure makes symmetric the operations over the two dimensions. This is a
valuable property that other classical approaches do not provide. For example,
an inverted index will provide fast access to the relations of the elements of one
dimension (direct-neighbors), but to recover the neighbors of the element of the
other dimension (reverse-neighbors) another inverted index will be needed to
avoid sequential navigation.

A collection of K2-trees has been used as an effective representation of RDF
graphs using a vertical partitioning approach [9]. The great compression capa-
bilities and efficient queries provided by the K2-trees made that representation
really competitive against other solutions of the state of the art. In this paper
we will show how the IK2-tree goes farther providing better performance due
to its capability to index the three dimensions in the same data structure.

Summarizing, we introduce in this paper the Interleaved K2-tree (IK2-tree).
The IK2-tree is a compressed and self-indexed structure to represent and query
general ternary relations that gathers in a single tree the three dimensions, pro-
viding indexing capabilities over all of them. The IK2-tree is inspired by the
vertical partitioning approach, and considers one of the dimensions as a par-
titioning dimension that is handled differently, but is able to provide efficient
access to any of the three dimensions. The IK2-tree is particularly suited to
represent relations where general “spatial” constraints are imposed on the two
main dimensions and “range” or “interval” constraints are imposed on the third
dimension. We will show the extended capabilities of the IK2-tree when com-
pared with simple approaches based on a collection of independent K2-trees to
represent RDF graphs. We will experimentally apply the IK2-tree to obtain
a compressed and self-indexed representation of real RDF datasets, comparing
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Figure 1: An example of a binary relation represented with a K2-tree

them with state-of-the-art solutions and also with previous approaches based
on collections of K2-trees.

Finally we show how the IK2-tree can be used to represent time evolving
graphs, using the changes between two different time instants as the base for
the representation.

2. Related work

2.1. The K2-tree

The K2-tree [1] is a compact data structure to represent binary relations,
conceptually represented by a binary adjacency matrix M , where M [i, j] is 1 if
element i is related with element j and 0 otherwise. It was originally designed
to represent Web graphs. The K2-tree takes advantage of the sparsity of the
matrix (large areas of zeros) and the clustering (proximity) of the ones. It
achieves very low space (less than 5 bits per link) over Web graphs, allowing
large graphs to fit in main memory. It also supports efficient navigation over the
compressed graph [1], efficiently answering direct and reverse neighbor queries,
individual cell and range queries.

The K2-tree conceptually subdivides the adjacency matrix into K2 subma-
trices of equal size. Each of the K2 submatrices is represented with one bit in
the first level of the tree, following a left to right and top to bottom order. The
bit that represents each submatrix will be 1 if the submatrix contains at least
one cell with value 1. Otherwise, if it is an empty area, the bit will be a 0. The
next level of the tree is created by expanding the 1 elements of the current level,
subdividing the submatrix they represent. In this way, K2 children are created
in the next level to represent the new subdivisions. This method continues re-
cursively until the subdivision reaches the cell-level. Fig. 1 shows an example
of this tree for K = 2. The first 1 of the first level (root) means the upper-left
8 × 8 submatrix has at least a cell with value 1. The second bit of the root is
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a 0, which shows that the upper-right submatrix does not contain any relation
between nodes, and so on.

The K2-tree is stored with only two bitmaps: T for the intermediate levels
of the K2-tree, following a levelwise traversal, and L for the bits of the last level
(Fig. 1).

Retrieving direct or reverse neighbors requires obtaining the cells with value
1 for a given row or column in the adjacency matrix. Both operations are
symmetric. They are solved in the K2-tree by a top-down traversal over the
tree for the two appropriate branches of each node. The example shows the bits
of the tree traversed in order to obtain the direct neighbors of row 5 (i.e., the
ones in the 5th matrix row).

This navigation over the K2-tree is efficiently performed over the bitmaps
T and L. Given a 1 at position x in T , the children of x are K2 bits placed in
T : L starting at position rank1(T, x) × K2, where rank1 counts the number
of ones in T [1..x]. Rank operations are performed in constant time by using
an additional rank structure, created over the bitmap T , that requires sublinear
space in addition to T [11].

In the worst case the space in bits is K2e(logK2

n2

e
+ O(1)), where n is

the number of nodes and e the number of ones. Retrieving direct or reverse
neighbors in the worst case is O(n) time, although the time is much better in
practice.

The implementation of theK2-tree allows using differentK values depending
on the level of the tree (hybrid approach) or compressing the last levels of the
conceptual tree using a vocabulary of submatrices encoded with a statistically
compressor. Direct Access Codes [12] (DAC) are used to provide direct access
to each code. A dynamic variant of the K2-tree that combines good compression
ratios with fast query and update times has been proposed [13]. Other variants
compress efficiently not only large regions of zeros but also regions of ones [14].

The K2-tree can be generalized to represent datasets of any number of di-
mensions building a Kn-ary tree instead of the original K2-ary, and adapting
the traversal algorithms accordingly. This generalization, a K3-tree or Kn-tree,
has however implicit scalability problems as n increases due to the structure of
the conceptual tree. Since each node of the conceptual tree contains always Kn

children, and the bits for all of them must be stored even if only a few of them
are ones, lots of additional space may be necessary to store this information
in many nodes. The K2-tree is able to provide a very small representation of
a binary relation taking advantage of sparsity and clusterization of the ones,
but in 3-dimensional or generally in n-dimensional datasets it is very difficult
to find domains where the ones are highly clustered. Because of this, a Kn-tree
is unfeasible in general n-dimensional datasets.

2.2. Representation of RDF databases

The Resource Description Framework (RDF [15]) is a standard for the rep-
resentation of information. It models information as a set of triples (S, P,O)
where S (subject) is the resource being described, P (predicate) is a property
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of the resource and O (object) is the value of the property for the subject.
RDF was originally conceived as a basis for the representation of information
or metadata about documents.

RDF provides a framework for the conceptual representation of information.
As we said, it represents the information as a set of triples (S, P,O). These
triples can also be seen as edges in a labeled directed graph. The vision of a set of
RDF triples as a graph is called RDF graph in the original recommendation [15].

RDF datasets can be queried using a standard language called SPARQL [16].
This language is based on the concept of triple patterns: a triple pattern is
a triple where any of its components can be unknown. In SPARQL this is
indicated by prepending the corresponding part with ?. Different triple patterns
are created simply changing the parts of the triple that are variable. The possible
triple patterns that can be constructed are: (S, P,O), (S, P, ?O), (?S, P,O),
(S, ?P,O), (?S, P, ?O), (S, ?P, ?O), (?S, ?P,O) and (?S, ?P, ?O). For instance,
(S, P, ?O) is a triple pattern matching with all the triples with subject S and
predicate P , therefore it would return the values of property P for the resource
S. (S, ?P, ?O) is a similar query but it contains an unbounded predicate: the
results of this query would include all the values of any property P of subject
S.

SPARQL is a complex language, similar to the SQL of relational databases,
and it supports multiple selection clauses, ordering and grouping, but its main
features are based on the triple-pattern matching and join operations, that
involve merging the results of two triple patterns. For example, (?S, P1, O1) ⊲⊳
(?S, P2, O2) is a join operation between two triple patterns where the common
element ?S is the join variable. The result of this join operation would contain
the resources S whose value for property P1 is O1 and their value for P2 is O2.

2.2.1. Alternatives for the representation of RDF graphs

RDF is only a conceptual framework that does not enforce any physical rep-
resentation of the data. The recent popularity of RDF has led to the appearance
of many different proposals for the actual storage of information in RDF, known
as RDF stores. Some approaches to represent RDF triples are based on rela-
tional databases [17]. Nevertheless, multi-indexing native solutions are more
frequently used [5, 18].

A technique usual in RDF is vertical partitioning [7]. In this approach, since
the number of predicates in an RDF datasets usually has a moderate size, the set
of predicates is used as a “partitioning variable” and the complete RDF dataset
is partitioned into a collection of bi-dimensional datasets, each containing the
triples associated with one of the predicates. Following this philosophy, an
approach for RDF based on a collection of K2-trees was already studied and
shown to be competitive with the state of the art [9].

3. Our proposal: the IK2-tree

Consider a ternary relation Y defined as a set of triples {(xi, yj , zk)} ⊆
X × Y × Z. Our structure, called Interleaved K2-tree or IK2-tree, is designed
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to represent the relation in a single structure, but following a vertical partition-
ing approach where one of the dimensions will be considered a “partitioning
dimension” or “partitioning variable” and will be managed in a different way.
Usually the smaller dimension, that is, the one with less possible values, will
be considered as the partitioning dimension, but additional considerations on
the required operations may be taken into account. We will consider in our
examples that Y is the partitioning dimension. The IK2-tree starts from the
representation of the ternary relation as a collection of |Y | binary relations, one
for each different value yj ∈ Y . We may consider an adjacency matrix repre-
sentation of the binary relation, where rows represent the values of the variable
X , while columns represent the values of the variable Z. A one in a cell (xi, zk)
of the adjacency matrix yj implies the existence of the triple (xi, yj , zk).

Each adjacency matrix could be stored through an independent K2-tree
in order to compose a complete system containing the full ternary relation.
This would lead to a simple vertical partitioning approach with no indexing
capabilities over the partitioning dimension. The IK2-tree is able to combine
this vertical partitioning philosophy with a representation that conceptually
divides the ternary relation in several binary relations as explained, but gathers
all of them in a single tree structure, providing indexing capabilities in the three
dimensions.

3.1. Conceptual data structure

The Interleaved K2-tree can be considered as a combination of a collection
of K2-trees into a single tree structure that is able to group the information
of all the trees, providing efficient access to multiple K2-trees at once and at
the same time efficient and simple navigation algorithms similar to those of a
single K2-tree. The IK2-tree will be a K2-ary tree, where each node of the new
tree will contain information about all the different values of the partitioning
variable. In fact, the IK2-tree will contain in each node one bit for each of the
individual K2-trees that would have a valid node in that path. This means that
the IK2-tree can be seen as a reorganization of the bits of a collection of K2-
trees in a single structure, following a specific arrangement so that the structure
can be efficiently navigated and accessed.

The K2 nodes in the first level of the IK2-tree will always contain |Y | bits
each, one per each different value yj ∈ Y . Inside a node, the j-th bit will be a
1 if the submatrix that is represented by that node has at least a 1 for the yj
value. Otherwise, this position will contain a 0. In other words, the j-th bit in
a node will be a 1 iff the K2-tree that would represent the values for yj would
contain a 1 in the node at the equivalent path.

Each node of the IK2-tree that contains at least a 1 in its associated bitmap
will have exactly K2 children nodes. The number of bits in each child is given
by the number of bits with value 1 in its parent. Hence, for a node Ni with m

ones, each one of its K2 children will contain m bits, one per value yj with at
least a one in the matrix corresponding to Ni.

Figure 2 shows an example of the IK2-tree structure, representing a simple
ternary relation. The ternary relation is already represented after a vertical
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Figure 2: A ternary relation represented with the Interleaved K2-tree

partitioning is applied to the smaller dimension Y , that contains only 3 possible
values and is used as partitioning variable. The adjacency matrices for each
value of Y are shown on the top of the figure. On the bottom the complete
IK2-tree structure is shown. A value K = 2 was chosen for that example, so
4 root nodes appear in the first level of the tree (these can be seen as 4 child
nodes of an omitted root node). Each node in the root of the tree contains three
bits, one per value of Y . The first bit of the first root node (N0) contains a 0,
meaning the top-left submatrix of the adjacency matrix for y0 does not contain
any one. However, the second bit of N0 is a one because the top-left submatrix
of y1 contains at least a one.

Given a node of this tree, its children are built recursively considering only
the information on the root node and the information in the corresponding sub-
matrix following the quadtree-like subdivision. Assuming we have a root node
of the tree of size |Y | with m ones, its K2 children will be created, following the
matrix subdivision, but each child will contain only m bits, that is, the number
of active values of the parent. The remaining |Y |−m elements in the root node
correspond to values of Y that do not contain any element in the corresponding
submatrix; therefore they do not need to be decomposed. Therefore, if all the
values in the bitmap of a node are zero then that node will not produce any
child. The process continues recursively as in the original K2-tree, building the
conceptual tree top-down until the leaves are reached. Notice that each element
in a node will be a bit, corresponding to a different value of Y in increasing
order. This will allow us to keep track of the actual values of Y represented by
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each bit during the navigation of the tree.

3.2. Physical representation and basic navigation

The conceptual IK2-tree is stored following the same ideas used by original
K2-trees. A breadth-first traversal of the tree is performed, reading the bitmaps
in each level of the tree from left to right into a final bitmap representation. The
last level of the tree will be stored as a bitmap L, and the other levels will be
stored together in a single bitmap T . The reason for the use of 2 bitmaps is
the same that in the K2-tree: rank operation support is needed in the upper
levels of the tree to support navigation to the children of a node, while in the
last level it is not necessary.

The IK2-tree construction process yields simple navigation algorithms over
the conceptual tree, following the same ideas than a single K2-tree. Although
nodes in the IK2-tree have a variable size (depending on the active values in
the parent), the navigation over the tree is quite similar. Notice that a one in
a node is still producing K2 bits in the lower level, and a zero is producing
no bits. This is identical to the K2-tree, with the only difference that the bits
induced by a node in the next level may not be consecutive now because nodes
can have several bits, and the bits of a node will be placed together.

The original K2-tree structure has the interesting property that the position
of the first child of a node can be computed directly. Since each one of the
tree produces K2 children, and the elements are stored in the bitmap ordered
by levels, the first children of a node in the position i in the bitmap is in the
position rank1(T, i− 1) ∗K2 of the bitmap T : L.

In the IK2-tree, a node is defined by its starting position in the bitmap
and the length of its bitmap. This information is trivially encoded in the root
nodes, and must be kept during the top-down navigation of the tree. The
position of the children of a node in the bitmap can be computed through a
simple formula. Consider a node starting at position i with b bits. First we
must count the number m of ones it contains. If m = 0 it has no children.
If m > 0, its children will have m bits each. Its first child node will start at
position rank1(T, i−1)∗K2+adjust, where adjust = |Y |∗K2. Trivially, starting
at this position, the next K2 ∗m bits are representing the children of that node
(K2 nodes of size m, storing the m bits of each child node consecutively). Note
that the formula is almost the same as in the original K2-tree, except by the
adjusting factor adjust accounting for having |Y | ∗ K2 bits in the first level
instead of K2 as in the K2-tree. Like in a K2-tree, when the position of a node
exceeds |T | the navigation continues in L as if the bitmaps were consecutive.

3.2.1. Leaves compression with DAC

In the original K2-tree compression could be improved significantly by col-
lapsing a few of the lower levels of the tree and statistically compressing the
resulting small subtrees. This improvement can also be applied to the IK2-tree
with a few adjustments. Note that in the IK2-tree each node has an arbitrary
number of bits, and each one of that node produces K2 nodes in the next level.
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Hence, it is more difficult to encode a submatrix vocabulary of complete nodes,
since a node in the third level (starting from the bottom of the tree) collapses a
cube of dimensions K2 ×K2 ×m where m is the number of ones of that node.
In order to obtain a collection of equally-sized submatrices that can be easily
stored in a vocabulary, the K2 ×K2 submatrix that each one of a node would
individually produce is stored. This means that the considered submatrices are
a subregion of an individual adjacency matrix. All of these submatrices are
used to compute a global submatrix vocabulary, that will be stored as a com-
pressed sequence represented using DAC. Notice also that this slightly modifies
the structure of the original proposal, since now in the compressed representa-
tion of L all the bits that represent the children of a node in the next-to-last
level of the conceptual tree will be placed together (represented as a dictionary
entry). In the original these bits were scattered in the bitmap L to allow the m

bits of a node to be placed consecutively.
Note that, taking into account that each individual submatrix corresponds to

an specific value of the variable Y , those submatrices could be encoded using a
different vocabulary for each yj . This would in practice lead to the creation of Y
vocabularies, each identical to the vocabulary representation that an individual
K2-tree for the corresponding value would store. However, in the IK2-tree
usually all the matrices will be encoded with the same vocabulary in order to
avoid storing Y independent matrix vocabularies.

3.3. Query algorithms

The query algorithms supported by the IK2-tree are based on the basic
navigation operations defined earlier, and consist of simple top-down traversals
of the tree to retrieve the values in the appropriate nodes of the conceptual
tree for each query. The main operations supported by the IK2-tree involve
arbitrary range constraints in each of the dimensions. We will consider our
basic operations denoted by a triple pattern (x, y, z), where each item in the
triple represents a fixed value, a range constraint or an unbounded value in one
of the dimensions.

Constraints that are applied over the “regular” dimensionsX and Z are han-
dled using the simple K2-tree algorithms for tree traversal: at each step of the
navigation, the branches that intersect with the queried region are determined
easily thanks to the fixed-size space partitioning used by the K2-tree. On the
other hand, constraints that involve the partitioning dimension Y are handled
in a completely different way, due to the asymmetric representation used in the
IK2-tree. Since the method to solve constraints in the other dimensions is al-
ready known, we will categorize queries according to the constraints imposed
to the partitioning dimension. We will distinguish three main kinds of queries:
those in which the partitioning variable is fixed to a specific value (“fixed parti-
tioning variable”), queries in which the partitioning variable can take any value
(“unbounded partitioning variable”) and queries where the partitioning variable
is restricted to a continuous range (“fixed-range partitioning variable”). Each
query type will be solved using a slightly different method depending on the
type of constraint used.
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3.3.1. Query patterns with fixed partitioning variable

When the partitioning variable is fixed (a single value) we must perform in
the IK2-tree the equivalent of a query in a single K2-tree. This is independent
of the filters in the other dimensions, that only determine the branches that
are explored. Let us consider the simplest query, the pattern (xi, yj, zk) that
searches for an individual triple in the dataset (that is, whether (xi, yj , zk) be-
longs to the ternary relation). To answer this query, a single branch is explored
in each level of the tree. In the corresponding node for each level of the tree, the
bit corresponding to the value yj is checked. If it is a zero, the element was not
found and the algorithm returns. Otherwise, the children of the current node
are located and the navigation continues in the corresponding child node; the
node traversed is determined by the constraints in dimenxions X and Z. When
we navigate to the child, we must keep track of the offset in the bitmap that
represents the location of the bit yj: this is computed by counting the number of
ones in the parent up to the bit representing yj in it. This counting operation
can be easily computed in constant time using additional rank operations at
each basic navigational step of the conceptual tree.

Figure 2 shows the nodes involved to solve the query (x6, y1, z0). In the root,
the node N5 is explored (because it corresponds to (x6, z0)) and the second bit
(corresponding to y1) is checked. It is a one and it is the first one of the node,
so in its children the position for y1 is the first one. The corresponding node for
(x6, z0) is N6 and the first bit is checked. The process continues until the leaves,
where the only bit of N7 is checked and it is a one, so the triple (x6, y1, z0) exists
in the dataset.

Any other queries involving a fixed value in the partitioning dimension are
solved in the same way, applying the K2-tree basic navigation techniques to an-
swer queries involving ranges in the other two dimensions. The only modification
when a range or an unbounded constraint is applied in the other dimensions is
that several branches may need to be checked for each explored node with a one

in the value corresponding to yj .
Even though the algorithms are very similar in the IK2-tree and the K2-

tree, notice that queries with fixed y in the IK2-tree require additional rank
operations for the navigation. These operations represent most of the traversal
cost of the tree; hence the added operations may make the IK2-tree significantly
slower than a single K2-tree in this kind of queries.

3.3.2. Unbounded partitioning variable

The second type of queries involve no constraint in the partitioning variable.
Again, we consider the simplest query of this type, the pattern (xi, ?, zk), where ?
denotes an unconstrained dimension; hence the pattern matches all the values of
Y related to the pair of elements (xi, zk). Following the same principles used for
fixed-partitioning-dimension queries, all queries involving ranges or unbounded
values in the other dimensions can be straightforwardly adapted from this one.
The process to answer this query is similar to the previous one, starting at the
root and selecting the appropriate node at each level of the tree. Navigation
will only stop if the current node is a leaf node, that is, if no values of Y
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exist for the current node. In the upper levels of the tree, this means that the
current node contains no ones in its bitmap. In this case, navigation ends and
no results are returned. Otherwise, the child node is recursively traversed until
the last level is reached. In each level, a node may be smaller than its parent
since only the values of Y that contain a one in the corresponding submatrix
will be represented in the children of each node. In order to keep track of the
association between bits of the node and values in Y , a list of the active values
has to be managed and updated in each level. If we name Aj the list of active
values in the node Nj , in a root node Nj , its list Aj will always be Y . The list
of active values Ak of a child of a node Nj , Nk, contains m elements, where m

is the number of ones in the node Nj , where Ak[i] = Aj [rank(Nj , i)] (the rank

operation in the node denotes counting the number of ones in the fragment of
T /L corresponding to Nj). In this assignment, the i-th position of the children
active list always contains the value corresponding to the i-th one in the parent
node. It is easy to see that, given the active list of the parent (Aj) and the node
Nj the list of the active values for the children of the nodes can be computed
by a sequential checking over the bits of the node.

For instance, returning to the example of the Figure 2, the query (x2, ?, z2)
starts by checking the first node of the tree, N0, with a list of active values
A0 = {0, 1, 2}, because it is a root node (so it initially contains all the different
values for the variable Y ). The values for the variables X and Z determines
that the explored child is N3. Since in N0 only the second and third bits have
value one, the list of active values for N3 is A3 = {1, 2} which determines
that the first bit of N3 (which is a one) corresponds to y1 and the second bit
(a zero) corresponds to y2. As N3 continues having at least a one value, the
process continues traversing down the tree until the leaves level, where node
N4 is explored. The list of active values of the node N4 is computed from the
bitmap of N3 and the list of active values A3. In that way, only the first bit ofN3

is a one, so A4 = {A3[1]} = {1}. Then, the bit one located in N4 corresponds
to y1 and the final result of the query (x2, ?, z2) is {(z2, y1, z2)}.

3.3.3. Fixed-range partitioning variable

The third type of query that may be of interest in a ternary relation involves
a range of values in the partitioning variable. In the simplest of these queries,
we have a pattern (xi, [yjl − yjr], zk), that is, a range of possible values in the
partitioning variable. These queries can be solved using a combination of the
procedures explained for the fixed-value and unbounded case. We need to keep
track of the offsets in the bitmap of each node that correspond to the query
range, which can be easily computed as in the fixed-value case, requiring in this
case two additional rank operations at each node to keep track of the start and
end of the range. Additionally, we need the same list of active values A to keep
track of the yj values associated to each bit in the node, in order to properly
answer the query.

Notice that, like in the case of fixed-value queries, the overhead required to
perform navigation in the IK2-tree will make it slower than querying a singleK2-
tree. However, when ranges are involved, queries cannot be answered directly in
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a single K2-tree but would require instead to perform a synchronized traversal
of multiple K2-trees in order to return a result. These operations depend on
the number of queried K2-trees, and are in general very inefficient for a large
number of them. Hence, queries with fixed-range partitioning dimension are
expected to be much more efficient in an IK2-tree than in a simpler approach
based on a collection of independent K2-trees as the size of the ranges increases.
Queries with unbounded partitioning variable can be considered as a special case
of the fixed-range queries, and would be in practice the best-case scenario when
comparing the IK2-tree with a collection of independent K2-trees.

4. Using the IK2-tree to Represent RDF Databases

A representation of RDF databases using a collection ofK2-trees has already
been proposed [9], and it was experimentally shown to be competitive with the
state of the art. In this section, we aim to take advantage of the increased
indexing capabilities of the IK2-tree in this domain, where many relevant op-
erations involve unbounded-partitioning-variable queries, that is, they include
RDF triple patterns with an unbounded predicate.

We build an IK2-tree representation and the equivalent representation based
on multiple K2-trees. We follow a hybrid approach using K = 4 in the first five
levels of the tree and K = 2 in the rest of the levels; the same values are used
always for the IK2-tree and for the multiple K2-tree. The last levels of the trees
(submatrices of size 8× 8) are statistically compressed using DACs [12]. Notice
that the multiple K2-tree approach compresses each matrix using an indepen-
dent vocabulary, which can model the distribution of each adjacency matrix
better than the single vocabulary of submatrices 8 × 8 used in the IK2-tree.
However, the single vocabulary of the IK2-tree is an advantage if the number
of predicates is large because it avoids storing too many small vocabularies.

4.1. Experimental framework and results

In our experiments we analyze the results using four datasets correspond-
ing to different domains and with very different characteristics. The Jamendo
dataset1 is a repository of music; Dblp2 stores Computer Science journals and
proceedings; Geonames3 is a geographic database; and DBpedia4 is an ency-
clopedic dataset extracted from Wikipedia. All our tests are run on an AMD-
PhenomTM-II X4 955@3.2 GHz, quad-core, 8GBDDR2, running Ubuntu 9.10.
The code was developed in C, and compiled using gcc (version 4.4.1) with full
optimizations enabled -O9.

Table 1 shows the size of the different RDF datasets and the compression
results obtained by the IK2-tree, the multiple K2-tree (MK2-tree) and RDF-
3X. The first columns show the number of triples and the number of predicates

1dbtune.org/jamendo
2dblp.l3s.de/dblp++.php
3download.geonames.org/all-geonames-rdf.zip
4wiki.dbpedia.org/Downloads351
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Dataset |Triples| |Predicates| MK2-tree IK2-tree RDF-3X

Jamendo 1,049,639 28 0.74 0.74 37.73
Dblp 46,597,620 27 82.48 84.04 1,643.31
Geonames 112,235,492 26 152.20 156.01 3,584.80
DBpedia 232,542,405 39,672 931.44 788.19 9,757.58

Table 1: Space comparison for different RDF datasets (in MB)

that each dataset contains. The number of predicates determines the number
of independent K2-trees that would be used in the multiple K2-tree approach,
and also the number of bits in each of the root nodes of the IK2-tree.

The multiple K2-tree approach obtains slightly better space results in the
datasets Jamendo, DBLP and Geonames. However, in the DBPedia dataset
the IK2-tree obtains much better compression. The difference in space is due
to the fact that a matrix vocabulary is used to statistically compress the lower
levels of the conceptual trees, since the plain bitmaps of the IK2-tree are strictly
identical to those of the individual K2-trees. The IK2-tree uses a global vocab-
ulary, while the multiple K2-tree approach stores a different vocabulary per
K2-tree; hence, the IK2-tree saves some redundancy in the DBPedia dataset,
where many small vocabularies must be created for a large number of predi-
cates, while in the smaller datasets the specific vocabularies are able to obtain
better compression than the global one in the IK2-tree. Notice that in all the
datasets both representations obtain much better compression than RDF-3X.

Regarding query efficiency, in order to compare the relative efficiency of the
IK2-tree with a multiple K2-tree approach we test all the basic RDF triple
patterns. We built a collection of 500 queries for each query pattern, and mea-
sured average query times for each query pattern in each of the representations.
Table 2 shows the results for the Geonames dataset (as a representative domain
with few predicates) and for DBpedia (as an example with many predicates).

For bounded-predicate queries, the multiple K2-tree is the fastest repre-
sentation, and the query times of the IK2-tree are about twice those of the
multiple K2-tree. This is consistent with the expected results: in query pat-
terns with bounded predicates, the query can be answered simply performing
a row, column or full-range query over a single predicate, and therefore only
a single K2-tree must be accessed in the multiple K2-tree representation. In
these queries, the IK2-tree is expected to obtain higher query times due to the
increased complexity in the low-level navigation operations over the IK2-tree:
it must execute additional rank operations at each traversed node in order to
count the number of ones in the current node bitmap and therefore obtain the
number of bits in its children. In general, RDF-3X is much slower than the
other approaches.

For patterns with unbounded predicates, instead, the IK2-tree is able to
clearly outperform the multiple K2-tree representation. This difference is much
more noticeable in the DBPedia dataset (lower sub-table), due to the much
larger number of predicates, because if a multiple K2-tree approach is used all

the K2-trees in the collection must be queried to retrieve their results; when
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Geonames
Category Pattern MK2-tree IK2-tree RDF-3X

(S,P,O) 1.8 3.9 2,346.5
(S,P,?) 64.9 110.4 4,882.3
(?,P,O) 0.1 0.3 0.6

Bounded
Predicate

(?,P,?) 0.4 0.5 0.7
(S,?,O) 5.3 4.4 6,118.6
(S,?,?) 95.0 69.7 229.7

Unbounded
Predicate

(?,?,O) 240.0 187.0 2,473.1

DBpedia
Category Pattern MK2-tree IK2-tree RDF-3X

(S,P,O) 3.2 6.2 2,532.4
(S,P,?) 358.7 608.5 4,117.3
(?,P,O) 0.6 1.6 143.9

Bounded
Predicate

(?,P,?) 0.7 1.6 0.9
(S,?,O) 7,186.1 155.2 6,330.6
(S,?,?) 3,925.2 911.2 272.3

Unbounded
Predicate

(?,?,O) 10,918.1 1,444.6 1,377.9

Table 2: Time evaluation of simple patterns for RDF, in µs per result

using the IK2-tree representation, results are obtained much more efficiently
in a single traversal of the data structure. In the Geonames dataset, represen-
tative of dataset with fewer predicates, the IK2-tree obtains still a significant
improvement in this family of queries and obtains the best query times in all
the query patterns. In the DBPedia dataset, even though the IK2-tree is much
more efficient than the multiple K2-tree, it is still slower than RDF-3X on the
query patterns involving unbounded subjects or objects, even though it is rela-
tive close in query times to it. In the next section we will analyze the reasons
for this and introduce an alternative query technique to improve efficiency of
these queries in datasets with a larger partitioning variable such as DBPedia.

5. A lazy evaluation

The IK2-tree is designed to be much more efficient than a simpler approach
based on a collection of independent K2-trees when answering queries involving
the partitioning dimension in a ternary relation. Particularly, in the previous
section we showed that its query times for RDF datasets were much better than
a multiple K2-tree in unbounded-predicate queries, especially when the number
of different predicates (i.e. the size of the partitioning variable) is large. In
spite of this improvement, the IK2-tree still failed to beat a state-of-the-art
representation of RDF datasets in some unbounded-predicate query patterns.

The navigation algorithms over the IK2-tree that we have introduced are still
inefficient when performing unbounded-partitioning-variable queries: at each
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basic navigational step over the conceptual tree we still have to keep track of a
list of active predicates that will be updated during traversal. To maintain and
update this list, all the bits of each node must be checked, and the corresponding
values for the next level are updated for each one found. This process can be
very expensive for nodes containing many predicates. Notice also that this
process may be not only expensive but also unnecessary, since the complete
branch may not yield any result when the traversal completes. Therefore, all
this greedy process of computing, for each level, which value of Y corresponds
with each bit of the current node could be avoided for many branches that do
not produce any result.

In this section we propose a lazy evaluation strategy for the navigation of
the conceptual IK2-tree. This strategy delays the computation of real values,
storing only the minimum amount of information during a top-down active
values of the predicate in each node until a result is found in the branch. This
navigation strategy is designed to optimize the performance of queries with
unbounded partitioning variable in datasets with a large partitioning dimension.

The lazy evaluation approach subdivides the search process in two steps:
first, a top-down traversal of the tree retrieves the results of the query and then
a bottom-up traversal of the tree is performed to recover the Y values for each
result when necessary. The main difference in the top-down traversal of the
tree is that the list of active values is not computed at each node. Instead of
computing the complete list, the only value that is computed is the number of
bits set to one, like in a fixed-partitioning-variable query. This count of the
number of ones in a node Ni can be easily performed with additional rank
operations to obtain rank1(Nj) = rank1(T, init+ |N |)− rank1(T, init), where
init is the position of the first bit of Ni in the tree (T ). Hence, the top-down
traversal only takes into account the number of values of Y that are active in
each node, but not the actual values of Y associated with each bit.

Once the leaves of the conceptual tree are reached, the real values of Y

must be computed in a bottom-up traversal of the tree. The main advantage
of this technique is that this additional computation is only performed for the
branches that have actually led to a valid result. This bottom-up traversal
starting at a leaf node performs the inverse mapping of the one computed in
the eager evaluation: at each node, the list of relative values within that node
is computed. In that way, a bit one in the position m of a leaf node has initially
associated the value ym; this value will be mapped in the upper levels of the
tree, updating it in each step of the bottom-up traversal until its real value is
obtained at the root of the tree. Given a node with a list of relative values,
they are transformed by checking the bitmap of the parent node. A relative

value yj in a node will be mapped to the position of the j-th one in the bitmap
of the parent node. The process continues by recursively updating the lists of
relative values, mapping each value with its position in the parent, until the
root is reached. When the root is reached, the actual position of the node
determines the final value of Y corresponding to each item. The selection of
the j-th one in the bitmap of the parent node can be efficiently computed with
a select1 operation, that reverses the rank operations performed in the greedy
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computations.
An additional optimization of this process can be performed for such queries

where dimensions X , Z or both are unbounded, or when a range of values is
queried in X or Z. In those query patterns, several branches are explored,
so many results could have common ancestor nodes, that have to be explored
many times (once for the mapping of relative values of each result). When
many branches are expanded in a query, a merge sort of the relative lists for
all the children of a node can be performed, obtaining a single list of relative
values which is mapped once using the bitmap of the parent node. In this way,
several lists of results can be kept at each step of the traversal, all of them sorted
by their Y value; the lists of sibling nodes are progressively merged during the
bottom-up traversal before updating them with the contents of the parent node,
hence avoiding redundant mapping operations.

To illustrate the lazy strategy we present a complete example of the query
algorithms using lazy evaluation for a dataset with three different values for the
variable Y through a set of figures. Figure 3 shows the initial top-down traversal
performed over the tree. For each node, only the number of active values are
stored (in order to know the size of the children). In this way, node N0 contains
2 bits with one value so its children has 2 bits each one. N1 contains one bit
with one value so its leaves only contain one bit. On the other hand, the two
bits with value one of N2 produce leaves with two bits each one. At the end of
this process, four results are obtained, which are highlighted in the figure. Their
values for the variable X and Z are given by the branch of the tree which they
are located. Their values for the Y variable are unknown and a relative value is
computed as their position in the leaf node they belong. For instance, the leaf
(x2, y1, z2) is related to the second value of Y because is located in the second
position of the leaf node. In this point the down-top traversal starts, shown in
Figure 4. First, a merge sort is performed to join the lists of results which belong
to the same parent node. The element (x0, y0, z0) is in an independent branch.
However, the other three results {(x2, y1, z2), (x2, y0, z3), (x2, y1, z3)} are merged
in the same list: y0 has one result associated (x2, z3) and y1 contains two results
(x2, z2), (x2, z3). Next step consists of transforming the current relative values
in basis to the parent nodes. Then, as the Figure 5 shows, the list y0 with the
element (x0, z0) is transformed to y1 since the first bit one in the parent N1 is
in the second position. However, the list y0 : (x2, z3) continues associated to
the y0 value since the first one in the parent N2 is in the first position. The
same happens with y1 : (x2, z2), (x2, z3) which is transformed to y1 because the
second one of the parent node N2 is in the second position. The three lists of
this level share the same parent node so they are merged by Y value. Finally,
in Figure 6, the lists are transformed with the information of N0. The first one
of N0 is in the second position and the second one is in the third position, so
the final results will be (x2, y1, z3), (x0, y2, z0), (x2, y2, z2), (x2, y2, z3).

5.1. Evaluation on RDF datasets

To measure the efficiency of the lazy evaluation strategy we compare it with
the basic navigation strategy in the RDF dataset DBPedia, the dataset with a

17



Figure 3: First step of the top-down traversal of the lazy evaluation

Figure 4: Reaching the leaf level of the lazy evaluation

Figure 5: Starting the bottom-up traversal of the lazy evaluation
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Figure 6: Reaching the root in lazy evaluation

Query M K2-tree Interleaved K2-tree Lazy IK2-tree RDF-3X
(S,*,*) 3,925.2 911.2 232.7 272.3
(*,*,O) 10,918.1 1,444.6 430.8 1,377.9

Table 3: Time, in µs per result, of basic and lazy evaluation in patterns with
unbounded predicate on DBpedia

large number of predicates. We focus only on the query patterns that involve an
unbounded partitioning variable (unbounded predicate), and particularly on the
query patterns (S, ?, ?) and (?, ?, O), in which many branches of the conceptual
tree were traversed and the IK2-tree was slower than RDF-3X in our previous
experimentation. We do not show the results for the query pattern (S, ?, O)
because in this query pattern only a single branch of the conceptual tree is
expanded; hence the advantages of these technique become negligible and the
additional navigation cost of the lazy evaluation would dominate the overall
query time. The same experimental setup and query sets were used in these
experiments, adding the lazy IK2-tree algorithms to the results.

Table 3 shows the results obtained. The lazy evaluation improves signifi-
cantly the results for the studied query patterns, and achieves query times up
to 5 times faster than the original eager algorithm, becoming the fastest repre-
sentation in both query patterns. This new evaluation technique, combined with
the original eager algorithms, make the IK2-tree faster than RDF-3X in all the
unbounded-predicate queries in our experiments, therefore making the IK2-tree
the most consistent alternative in space and query times. Note also that the
application of a lazy evaluation technique can be easily determined depending
on the characteristics of the dataset and the query; hence simple heuristics can
be used to determine the appropriate evaluation strategy for each case.
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6. Differential IK2-tree

In the previous sections we introduced the IK2-tree as an alternative for the
representation of a collection of binary relations, showing that it is much more
efficient than the equivalent collection of K2-trees when many of these K2-trees
would be accessed in a single query. In this section we explore an alternative
application of the IK2-tree to the representation of binary relations and their
changes, that is, the evolution of binary relations along time. Our proposal is
a “differential” representation of the data that attempts to achieve maximum
compression representing only the changes in the data instead of a complete
snapshot of the data at each time instant.

Let us consider a temporal graph that models the evolution of a binary
relation over time, that is, a ternary relation over X × Y × T , where X and Y

are sets of nodes (and usually X = Y ) and T is a set of time instants at which
a relation changed (that is, an edge in the graph appeared or disappeared).
Notice that, when following a vertical partitioning approach, we will consider
in this domain that time (T ) is our partitioning variable, and X and Y are our
regular dimensions.

The operations of interest in this domain involve usual queries on graph
nodes, that is, direct or reverse neighbors of specific nodes, or checking whether
there was a connection between two specific nodes. These basic graph queries
will be increased in a temporal graph with a temporal constraint. Time-instant

queries refer to a specific time instant t in T , and ask for the state of the graph
at that specific t. Time-interval queries refer to one or more intervals in time,
which were the neighbors of node x between times t5 and t13. Time-interval
queries can have different semantics that determine the expected results from
a query: weak time-interval queries ask for the relations that occurred at any

point during the interval, whereas strong time-interval queries would only return
the relations that were active at all points of the time interval.

In [10] several proposals based on collections of K2-trees were introduced.
These proposals based onK2-trees allow simple query in simple binary relations,
but querying a collection of K2-trees used to represent a temporal graph proved
to be very inefficient in time-interval queries, due to the need to synchronize
access to an arbitrary number of K2-trees in time-interval queries, leading to
poor performance as the time dimension increased in size, and being overcome
by simpler strategies based on the pure compression of log changes per node.

A first approach to represent a temporal graph using K2-trees would store
independent K2-trees for each time instant, each storing a complete snapshot
of the graph. This approach essentially uses T (time) as a partitioning variable
and stores the state of the graph at each time instant. This approach relies on
the compression capabilities of the K2-tree to efficiently store the data, but it
is unfeasible in domains with very large graphs and relatively few changes. An
IK2-tree representation of the same snapshots would be more efficient in queries
but still too large.

The IK2-tree, based on vertical partitioning but providing efficient access to
ranges in the partitioning dimension, is well-suited to represent time-evolving
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binary relations in a “differential” way. Its ability to represent a collection ofK2-
trees in a single data structure allows it to follow a space-efficient philosophy,
storing only changes in the graph, and its indexing capabilities in the time
dimension aim to provide query efficiency close to that of a naive snapshot-based
representation. To demonstrate the efficiency of the IK2-tree to handle ternary
relations in comparison with previous, simpler approaches based on collections
of independent K2-trees, we present here an experimental comparison between
both alternatives for the compact representation of temporal graphs.

Let us consider a representation of a time-evolving graph based on a collec-
tion of K2-trees. In our proposal, we will represent each time instant (except
t0) as a change log. That is, at t0 we store a complete snapshot of the graph (all
triples (x, y, t0) in the ternary relation). At tk, for k > 0, we store (xi, yj , tk) in
tree k iff the relation between xi and yj changed between tk−1 and tk, that is,
we store for each edge of the graph the time instants when the edge appears or
disappears. Notice that, because of how K2-trees are built, in each differential
K2-tree an internal node in a K2-tree Ki will be set to 1 if and only if there
has been at least one change in the region it covers between ti−1 and ti.

Our representation can be seen as a “differential” approach that represents
the complete state of the graph at the beginning but only the changing occurring
in the successive time instants. Considering a typical domain, where the number
of changes in a graph at any time instant is much smaller than the overall number
of edges, the expected space results would be much smaller than those of a
naive snapshot-based approach. Figure 7 shows a “differential” representation
of a graph using a collection of differential snapshots, each encoded using a
simple K2-tree. The original full snapshots for each time instant are shown
at the top (black cells represent items in the adjacency matrix); in the middle
we show the corresponding “differential” snapshots for the time instants 1 and
2, and finally the K2-tree representations for the full snapshot at t0 and the
differential snapshots at t1 and t2 are shown at the bottom.

Despite its increased compression, if we use a simple collection ofK2-trees to
store the snapshots, the query efficiency of this proposal is severely limited by the
efficiency to solve constraints in the time dimension. Using this representation,
a relation exists between xi and yj at time tk iff there is an odd number of
triples (xi, yj, tm), where m ∈ [0..k]. Therefore, any query involving a time
instant must be able to efficiently query the representation of the graph at all
times before that time in order to count the number of changes. This count
operation can be implemented with an x-or operation involving all the K2-trees
corresponding to the interval [t0, tk], that requires a synchronized traversal of
all the trees in the interval. To answer time-interval queries (x, y, I = [tℓ, tr])
we need to perform a similar operation adapted to the semantics of the query.
To answer weak time-interval queries semantics, that return all elements active
at any point in the interval, a cell will be returned if it was active at tℓ or
if it changed its state at any point between tℓ and tr. We can compute this
performing an x-or operation to check if the cell was active at tℓ and an or
operation in the interval [tℓ, tr] to check for changes within the query interval.
Again, this operation must be checked for each node expanded in the K2-trees
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Figure 7: Representation of a temporal graph with “differential” K2-trees.

depending on the range R determined in the other dimensions. Operations
are similar for strong time-interval queries, required a synchronized traversal
of multiple K2-trees performing logical operations on the collection: in strong

queries we return only elements active during the complete interval, so we must
check that the element was active at tℓ and that no changes occurred in [tℓ, tr].

Therefore, using a simple approach based on multiple K2-trees, a purely
differential approach like the one just proposed faces the usual limitations in
vertical partitioning: queries involving the partitioning variable, time, may have
poor efficiency. In addition, the proposed representation requires any query in
the temporal graph to access a variable number of K2-trees, and that number
depends not on the length of a query interval but simply on the time instant of
the query.

A proposal based on the IK2-tree for the same representation requires es-
sentially the same space, as explained previously. The IK2-tree can be seen as
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a combination of the multiple K2-trees in a single data structures, combining
their corresponding nodes in the final conceptual tree, so that their bits are
placed together in the final physical representation and can be accessed more
efficiently. This makes the IK2-tree able to allow simpler access to a sequence
of values in the third dimension. In our case, this means that once a single leaf
node in the tree is accessed (an edge in the graph), all the changes for that edge
will be stored consecutively and the complex synchronized traversals of multi-
ple K2-trees are reduced to much simpler counting operations in the IK2-tree
bitmap.

Figure 8: “Differential” IK2-tree representation of the graph in Figure 7

Figure 8 shows the representation of the same graph in Figure 7 using a
“differential” IK2-tree representation. In each leaf of the IK2-tree we store a
bit for each change in the associated edge. In the internal nodes of the IK2-tree
we store a bit for each time instant where at least one cell covered by that node
suffered a change. For example, node N1 represents row 6, column 5 of the
adjacency matrix. This cell is active at t0 and does not change at any other
instant; hence its bitmap contains a single 1 in the first position, corresponding
to t0 (the actual mappings of the bits are t0 and t2, as we can see in the bitmap of
N0). On the other hand, node N2, that represents row 7, column 5, is active at
t0 and becomes inactive at t2; therefore its bitmap contains two bits set to 1, one
for each change. Notice that in this case the IK2-tree representation provides
a huge advantage to perform the counting operations required by queries, since
the changes for each node are consecutive in the final bitmap representation.
As we will see, all queries can be rewritten in terms of counting operations that
are solved by means of rank operations in the bitmaps of the K2-tree:

• To answer a time-instant query, (x, y, ti), we navigate the IK2-tree like in
a fixed-value query. In each internal node, we only stop navigation in the
branch if the bitmap of the current node has all bits set to 0 until (and
including) the bit corresponding to ti: this case indicates that all cells in
the current submatrix were 0 at t0 and never changed. When we reach
a leaf node, we can know whether the cell was active at ti counting the
number of ones between t0 and ti, which can be easily computed with 2
rank operations on the bitmap L. Notice that we need to add rank support
to L, which is not needed in basic K2-trees, but the small increase in space
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provides a much more efficient query method. The cost of a time-instant
query does not depend anymore on ti, the number of time instants before
the current one. However, in order to provide efficient rank support on
L we may disregard some of the improvements to compression that could
be achieved using for instance a statistical compression of the last levels
using DAC.

• To answer time-interval queries, we behave exactly like in time-slice queries:
we navigate until we reach the leaves, and in the leaves we check the num-
ber of changes using just rank operations. As explained, the operations to
obtain results depend on the semantics: in weak queries we need to count
the number of changes up to the beginning of the interval (i.e. check if
the relation was active at the beginning) or whether a change occurred in
the interval (i.e. the relation appeared at some point in the interval). On
strong queries, we need to make sure that the relation was active at the
beginning of the interval and no changes occurred in the complete interval.
In both cases, operations are reduced to simple rank operations to count
ones in the bitmap of the leaf node.

6.1. Experimental comparison with independent K2-trees

To demonstrate the indexing capabilities of the IK2-tree for the representa-
tion of the temporal evolution of graphs or binary relations, we compare it with
a simple collection of “differential” K2-trees for the representation of different
real and synthetic time-evolving graphs.

We analyze the temporal evolution of three different graphs: the CommNet

dataset is a synthetic graph simulating a small, highly active network where
relations are created randomly and last for a few time instants; the Monkey

Contact dataset is a collection of snapshots taken from a real social network;
the Power Law dataset is also a synthetic graph where edges follow a power-
law degree distribution, where the first nodes in numbering order contain much
more relations than the others. The three datasets are represented using our
IK2-tree and also using multiple K2-trees that encode the same change logs
(MK2-tree).

Collection Size Snapshots change nodes/ edges/
(MB) rate snapshot snapshot

CommNet 225.9 10,000 25% 10,000 20,000
Monkey Contact 4,303.9 220 1% 3,200,000 2,500,000

Power Law 22,377.1 1,000 2% 1,000,000 2,900,000

Table 4: Temporal graphs used in our experiments.

Table 4 summarizes some basic information of the datasets. It aims to give
a raw estimation of the size of the dataset. The first column shows a simple
estimation of the “base size” of the dataset, given by the size of all the edges
in all of the snapshots of the graph, each stored as a pair of integers. The
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Dataset |Snapshots| “Diff. size” MK2-trees IK2-tree

CommNet 10.000 716.4 137,28 136,51
Monkey contact 220 222 281,11 281,03

Power Law 1.000 33.5 4,55 4,54

Table 5: Space comparison on different temporal graphs (in MB)

CommNet Monkey Contact Power Law
Patterns MK2-tr IK2-tr MK2-tree IK2-tree MK2-tr IK2-tree
Instant 86,78 1,7 0,27 0,14 17,60 1,28

Weak 87,19 1,84 0,27 0,14 20,72 1,56

Strong 88,02 1,82 0,26 0,16 19,73 1,44

Table 6: Time comparison: direct neighbors of a node on temporal graphs (in
ms/query)

next columns represent the number of snapshots (time instants) considered in
the sequence, the change rate (percentage of edges that appear/disappear at
each time instant, over the average number of edges) and finally the (average)
number of nodes and active edges per snapshot of the graph.

Table 5 shows a comparison in space between the IK2-tree and a collection of
independent K2-trees. As reference and baseline for comparison, we also include
the number of snapshots in each dataset and an additional column with the
“differential size” of the dataset. This size is the space of a plain representation
of the first complete snapshot (as pairs of integers) and a representation of each
change as a tuple (source, destination, appear/disappear); a smaller differential
size indicates a graph with few nodes and/or few changes, and acts as a simple
baseline for the space efficiency of a compact representation based on encoding
lists of differences.

For the comparison we build “equivalent” versions of the MK2-tree and the
IK2-tree, using the same values of K (K = 4 in the first level and K = 2 in the
remaining levels), without applying a statistical compression in the lower levels.
In our results the IK2-tree is even smaller than a collection of independent
K2-trees, due to the fact that we use an unmodified K2-tree structure that
stores some internal information about the size of the matrix and additional
parameters of the internal tree structure; this information becomes redundant in
this case, since we have a collection of K2-trees representing graphs of the same
size and with the same internal structure. If the redundant information in the
K2-trees were omitted, the IK2-tree would be slightly larger than the individual
K2-trees, since the only real difference in the size of the data structures would
be due to the addition of a rank structure to the last level of the conceptual
tree, in order to perform efficiently counting operations.

Tables 6 and 7 show the query performance achieved for the three datasets
with the IK2-tree, in contrast with the multiple K2-tree approach. We ask for
direct and reverse neighbors of a given node at a time instant or time interval
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CommNet Monkey Contact Power Law
Patterns MK2-tr IK2-tr MK2-tree IK2-tree MK2-tr IK2-tree
Instant 89,07 1,79 0,28 0,15 19,86 1,43

Weak 90,96 2,07 0,26 0,15 18,36 1,46

Strong 93,75 2,05 0,26 0,16 19,98 1,50

Table 7: Time comparison: reverse neighbors of a node on temporal graphs (in
ms/query)

with strong and weak semantics. Each query set contains 2000 queries. Nodes
and time instants are selected randomly on the size of the node set and the
number of snapshots respectively. Different query sets are built for direct and
reverse neighbors. Finally, for time-interval queries, we show the results for
a fixed interval length of 100, hence limiting starting points of the interval so
that the complete length of the interval will be valid. Note that the length
of the interval has almost no effect on query times in the multiple K2-tree
representation when using a differential approach. In the IK2-tree query times
do change with interval length, but the query cost is more related to the number
of matched results than to an increased cost in querying for long intervals.

The experimental results show the superiority of the IK2-tree in all queries.
The results are consistent in all the datasets and query types, with the IK2-tree
being much faster to obtain the results. In the Monkey Contact dataset the
difference is much smaller than in the other two datasets, due to the reduced
number of snapshots existing in the collection (just over 200), which means
that the number of instants that must be accessed are a significant percentage
of the overall representation. As soon as the number of snapshots increases,
the relative efficiency of the IK2-tree against a multiple K2-tree approach also
increases. This result is expected, since a purely differential representation
in a collection of trees forces the query algorithms to traverse multiple trees
simultaneously even to answer time-instant queries regarding the multiple K2-
tree approach in terms of querying efficiency in the context of temporal graphs.
The huge improvement in the performance of time-specific constraints shows the
relative efficiency of the IK2-tree against a simpler solution based on a simple
collection of independent K2-tree structures.

Notice that in a “differential” representation the IK2-tree is much faster
even in time-instant queries because all our queries (even time-instant queries)
require traversing a series of time points to be answered. Particularly, in this
differential approach the cost of the query depends more on the time point
used in the query than on the length of the query interval: if the time-instant
query refers to an early time point ti (or time interval [tℓ, tr]), we only need to
check the changes in the interval [0, ti] (or [0, tr]); on the other hand, a time-
instant query that asks for a time point tj > ti requires us to check more time
instants and compute a higher number of changes. This is confirmed in our
experiments, since time points and time intervals are selected randomly and
the cost of time-instant and time-interval queries is very similar in Table 6 and
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Table 7, with only minor differences. The flexibility of the IK2-tree opens the
possibility of exploring new representations such as this one, where instead of
a simple vertical partitioning of the datasets we perform an oriented, smarter
partitioning focused on increasing compression or improving query support.

7. Conclusions

The IK2-tree is a compact data structure able to represent in very compact
space ternary relations, providing indexing capabilities over the 3 dimensions
and supporting different constraints in all of them with simple algorithms. The
IK2-tree is especially well suited to ternary relations where one of the dimensions
is smaller than the other two, since it follows a vertical partitioning approach
that treats one of the dimensions in a different way. Nevertheless, the IK2-tree
is able to answer queries involving fixed values or ranges in the partitioning
dimension efficiently.

Our experimental evaluation shows that the IK2-tree is able to provide very
compact representations in real-world datasets. In particular, our experiments
show that a representation of RDF datasets using the IK2-tree improves on
previous results based on K2-trees and is competitive with state-of-the-art pro-
posals.

We also introduce several variations of the IK2-tree that improve on the basic
structure and increase its applications. A lazy evaluation strategy is presented,
that provides a more efficient query technique in datasets where the partitioning
dimension is relatively large. A differential IK2-tree representation is introduced
to manage the state of a time-evolving binary relation, storing the changes at
each time instant in a compact way while providing efficient methods to retrieve
the actual status of the relation at any point in time.
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