Wavelet Trees for All

Gonzalo Navarro®!

% Department of Computer Science, University of Chile, Chile.

Abstract

The wavelet tree is a versatile data structure that serves a number of purposes,
from string processing to computational geometry. It can be regarded as a device
that represents a sequence, a reordering, or a grid of points. In addition, its space
adapts to various entropy measures of the data it encodes, enabling compressed
representations. New competitive solutions to a number of problems, based on
wavelet trees, are appearing every year. In this survey we give an overview
of wavelet trees and the surprising number of applications in which we have
found them useful: basic and weighted point grids, sets of rectangles, strings,
permutations, binary relations, graphs, inverted indexes, document retrieval
indexes, full-text indexes, XML indexes, and general numeric sequences.

1. Introduction

If one looks around for “wavelet trees”, one is likely to end up reviewing
signal processing bibliography [1, 2, 3]. The name wavelet is given to a time-
bounded oscillation, which is used to decompose an input signal into time and
frequency domains simultaneously. More elementarily, the wavelet is “found”
within the input signal at different starting positions and stretches. The input
signal is then transformed into another (called the “wavelet transform” of the
input signal) that indicates the stretches that are used to align the wavelet at
each starting position, so that the input signal is expressed as the sum of the
stretched wavelets. The “low frequencies” (wavelet stretched to a long time
interval and thus with a “soft” shape) make up a coarse description of the
original signal, whereas the “high frequencies” (wavelet stretched to a short
time interval and thus with a “crisp” shape) describe the “details”. One can
then, for example, discard the high frequencies to achieve lossy compression. In
the so-called multiresolution analysis, instead, one recursively analyzes low and
high frequencies separately. The resulting representation is called a “wavelet
packet decomposition” or a “wavelet packet tree”.
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The wavelet tree we describe in this survey was invented in 2003 by Grossi,
Gupta, and Vitter [4], as a space-efficient data structure to represent a sequence
and answer some queries on it. Its name reveals some affinity with the idea of the
wavelet packet decomposition: “high” and “low” symbol values of the sequence
are separated and the resulting subsequences are recursively subdivided.

It is interesting that, after some thought, one can see that the wavelet tree
is a slight generalization of an old (1988) data structure by Chazelle [5], heavily
used in Computational Geometry. This data structure represents a set of points
on a two-dimensional grid: it describes a successive reshuffling process where
the points start sorted by one coordinate and end up sorted by the other (by
recursively separating “low” and “high” coordinate values in the latter dimen-
sion). Kérkkéainen, in 1999 [6], was the first to put this structure in use in the
completely different context of text indexing. Still, the concept and usage were
totally different from the one Grossi et al. would propose four years later.

We have already mentioned three ways in which wavelet trees can be re-
garded: (i) as a representation of a sequence; (ii) as a representation of a
reordering of elements; (7ii) as a representation of a grid of points. Since 2003,
these views of wavelet trees, and their interactions, have been fruitful in a sur-
prisingly wide range of problems, extending well beyond the areas of text in-
dexing and computational geometry where the structure was conceived.

Our goal in this article is to give an overview of this marvellous data structure
and its many applications. We aim to introduce, to an audience with a general
algorithmic background, the basic data organization used by wavelet trees, the
information they can model, and the wide range of problems they can solve.
We will also mention the most technical results and give the references to be
followed by the more knowledgeable readers, advising the rest what to skip.

Being ourselves big fans of wavelet trees, and having squeezed them out for
several years, it is inevitable that there will be many references to our own
work in this survey. We apologize in advance for this, as well as for oversights
of others’ results, which are likely to occur despite our efforts. We also call
the attention of the reader to another thoughtful and comprehensive survey on
wavelet trees which has recently appeared [7].

2. Data Structure

Let S[1,n] = s152.. .5, be a sequence of symbols s; € &, where ¥ is a finite
alphabet of size o. To simplify we assume ¥ = [1..0]. Then S can be represented
in plain form using nflgo] = nlgo + O(n) bits (we use lgz = log, x). We first
describe the wavelet tree as a balanced binary tree over ordered leaves; later we
will lift those restrictions.

2.1. Structure

A wavelet tree [4] for sequence S[1,n] over alphabet [1..0] can be described
recursively. A wavelet tree over alphabet [a..b] C [1,0] is a binary balanced
tree with b — a 4+ 1 leaves. If a = b, the tree is just a leaf labeled a. Else
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Figure 1: A wavelet tree on string S = "alabar a la alabarda”. We draw the spaces as under-
scores. The subsequences of S and the subsets of ¥ labeling the edges are drawn (in gray) for
illustration purposes; the tree stores only the topology and the bitmaps (in black).

it has an internal root node, Vo0, that represents S[1,n]. This root stores a
bitmap B,,,.,[1,n] defined as follows: if S[i] < (a+b)/2 then B, __,[i] =0, else
B,,...[i] = 1. We define Sp[1,ng] as the subsequence of S[1,n] formed by the
symbols ¢ < (a+b)/2, and S1[1,n1] as the subsequence of S[1, n] formed by the
symbols ¢ > (a+b)/2. Then, the left child of v,,0¢ is a wavelet tree for Sy[1, ng]
over alphabet [a..|(a + b)/2]] and the right child of v, is a wavelet tree for
S1[1,n1] over alphabet [1 + |(a + b)/2]..b].

Figure 1 displays a wavelet tree for the sequence S = "alabar a la alabarda”.
Here for legibility we are using ¥ = {' ",a,b,d,|;r}, so n =19 and 0 = 6.

Note that this wavelet tree has height [lg o], and it has o leaves and o — 1
internal nodes. If we regard it level by level, it is not hard to see that it stores
exactly n bits at each level, and at most n bits in the last one. Thus, n[lgo] is
an upper bound to the total number of bits it stores. Storing the topology of
the tree requires O(co lgn) further bits, if we are careful enough to use O(lgn)
bits for the pointers. This extra space may be a problem on large alphabets.
We show in Section 2.3 how to save it.

2.2. Tracking Symbols

The wavelet tree we have described represents S, in the sense that one can
recover S from it. More than that, it is a succinct data structure for S, in the
sense that it takes space asymptotically equal to a plain representation of S,
and it permits accessing any S|i] in time O(lgo), as follows.

To extract S[i], we first examine B, [¢]. If it is a 0, we know that S[i] <
(0 + 1)/2, otherwise S[i{] > (o + 1)/2. In the first case, we must continue
recursively on the left child; in the second case, on the right child. The problem
is to determine where has position 7 been mapped to on the left (or right) child.
In the case of the left child, where B, _,[i] = 0, ¢ has been mapped to position
i9, which is the number of Os in B, , up to position i. For the right child,
where B, __,[i] = 1, this corresponds to position i1, the number of 1s in B

Vroot
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Figure 2: Accessing the symbol S[11] from our example wavelet tree, and finding out it is an
a'. Recall that only the tree topology and the bitmaps are actually stored.

up to position i. The number of Os (resp. 1s) up to position ¢ in a bitmap B
is called rank(B,i) (resp. rank;(B,4)). We continue this process recursively
until we arrive at a leaf. The label of this leaf is S[i]. Note that we do not store
the leaf labels; those are deduced as we successively restrict the subrange [a..D]
of [1..0] as we descend. Figure 2 illustrates the process.

Operation rank was already considered by Chazelle [5], who gave a simple
data structure using O(n) bits for a bitmap B[l,n|, that computed rank in
constant time (note that we only have to solve rank; (B, ), since ranky (B, i) =
i — rank;(B,4)). Jacobson [8] improved the space to n + O(nlglgn/lgn) =
n + o(n) bits, and Golynski [9, 10] proved this space is optimal as long as we
maintain B in plain form and build extra data structures on it. The solution is,
essentially, storing rank answers every s = lgZn bits of B (using lgn bits per
sample), then storing rank answers relative to the last sample every (lgn)/2
bits (using lg s = 21lglgn bits per sub-sample), and using a universal table to
complete the answer to a rank query within a sub-sample. We will use in this
survey the notation ranky(B, 1, j) = rank,(B, j) — rank,(B,i — 1).

Above, we have tracked a position from the root to a leaf, and as a conse-
quence we have discovered the symbol represented at the root position. It is
also useful to carry out the inverse process: given a position at a leaf, we track
it upwards and find out where it is on the root bitmap, and hence on string S.
This is done as follows.

Assume we start at a given leaf, at position i. If the leaf is the left child of
its parent v, then the position i’ corresponding to i at v is the i-th occurrence
of a 0 in its bitmap B,. If the leaf is the right child of its parent v, then ¢’
is the position of the i-th occurrence of a 1 in B,. This procedure is repeated
from v until we reach the root, where we find the final position. The operation
of finding the i-th 0 (resp. 1) in a bitmap BJ[1,n] is called selectq(B,%) (resp.
select;(B,1)), and it can also be solved in constant time using the n bits of
B plus o(n) bits [11, 12]. Thus the time to track a position upwards is also
O(lgo). Figure 3 illustrates this process.
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Figure 3: Tracking upwards to find the position of the second 'b’ in S, finding it at S[16].
Recall that only the tree topology and the bitmaps are actually stored.

The constant-time solution for select [11, 12] is analogous to that of rank.
The bitmap is cut into blocks with s 1s. Those that are long enough to store
all their answers within sublinear space are handled in this way. The others are
not too long (i.e., O(lgo(l) n)) and thus encoding positions inside them require
fewer bits (i.e., O(lglgn)). This permits repeating the idea recursively a second
time. The third time, the remaining blocks are so short that can be handled
in constant time using universal tables. Golynski [9, 10] reduced the o(n) extra
space to O(nlglgn/lgn) and proved this is optimal if B is stored in plain form.

With the support for rank and select, the space required by the basic binary
balanced wavelet tree reaches n[lgo]+o(n)lgo+O(olgn) bits. This completes
a basic wavelet tree description; the rest of the section is more technical.

2.3. Reducing Redundancy

As mentioned, the O(olgn) term can be removed if necessary [13, 14]. We
slightly alter the balanced wavelet tree shape, so that all the leaves at the last
level are grouped to the left, becoming a contiguous block of leaves (for this
sake we divide the interval [a..b] of [1..0] into [a..a 4 2M18(—e+D1=1 _ 1] and
[a + 2Me®=a+ D=1 py  Once there are no holes at any tree level, the bitmaps
at all the levels can all be concatenated into a large bitmap B[1,n[lgo]]. We
know the bitmap of level £ starts at position 1+ n(¢ — 1). Moreover, if we have
determined that the bitmap of a wavelet tree node corresponds to B][l, ], then
the bitmap of its left child is at B[n +I,n + [ + ranko(B,l,r) — 1], and that of
the right child is at B[n + [ + ranke(B,1,r),n + r]. Moving to the parent of a
node is more complicated, but upward traversals can always be handled by first
going down from the root to the desired leaf, so as to discover all the ranges
in B of the nodes in the path, and then doing the upward processing as one
returns from the recursion. Figure 4 illustrates this arrangement.

Using just one bitmap, we do not need pointers for the topology, and the
overall space becomes n[lgo| + o(n)lgo bits. The time complexities do not
change. However, in practice the operations are slowed down due to the extra
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Figure 4: A pointerless wavelet tree. Now the tree topology (in gray, also surrounding the
nodes in rectangles for clarity) is not represented; the structure just stores one bitmap per
level and concatenates them. Note that the alphabet partition is slightly modified.

rank operations needed to navigate. A recent solution to this is the so-called
“wavelet matrix” [15]. The idea is to send all the Os of a row to the left of all
the 1s. Then the wavelet tree nodes are scrambled across the level bitmap, but
are still contiguous, thus any algorithm on the wavelet tree can be emulated in
the wavelet matrix. Some simple ones, like accessing a sequence symbol, can
be carried out with just one rank operation per level, which is as fast as on the
explicit tree representation. Other operations are also speeded up.

The redundancy can be further reduced by representing the bitmaps using
a structure by Golynski et al. [16], which uses n 4+ O(nlglgn/lg®n) bits and
supports constant-time rank and select (this representation does not leave the
bitmap in plain form, and thus it can break the lower bound [10]). Added over
all the wavelet tree bitmaps, the space becomes nlgo+O(nlgolglgn/lg*n) =
nlg o+ o(n) bits.? This structure has not been implemented as far as we know.

2.4. Speeding up Traversals

Increasing the arity of wavelet trees reduces their height, which dictates the
complexity of the downward and upward traversals. If the wavelet tree is d-ary,
then its height is [lg;o]. However, the wavelet tree does not store bitmaps
anymore, but rather sequences B, over alphabet [1..d], so that the symbol at
Syi] is stored at the child numbered B,[i] of node v.

2We assume lgo = O(lgn) here; otherwise there are many symbols that do not appear in
S. If this turns out to be the case, one should use a mapping from X to the range [1..07],
where o/ < n is the number of symbols actually appearing in S. Such a mapping takes
constant time and o’ Ig(o /0’ )+0(c’)+O(lg g o) bits of space using the “indexable dictionaries”
of Raman et al. [17]. Added to the nlgo’ + o(n) bits of the wavelet tree, we are within
nlgo+o(n)+ O(lglg o) bits. This is nlgo + o(n) unless n = O(lglg o), in which case a plain
representation of S using n[lg o] bits solves all the operations in O(lglg o) time. To simplify,
a recent analysis [18] claims nlgo + O(n) bits under similar assumptions. We will ignore the
issue from now, and assume for simplicity that all symbols in [1..c] do appear in S.



In order to obtain time complexities O(1 + lg; o) for the operations, we
need to handle rank and select on sequences over alphabet [1..d], in constant
time. Ferragina et al. [19] showed that this is indeed possible, while maintaining
the overall space within nlgo + o(n)lgo, for d = o(lgn/lglgn). Using, for
example, d = 1g' ~“n for any constant 0 < e < 1, the overall space is nlgo +
O(nlgo/lg®n) bits. Golynski et al. [16] reduced the space to nlgo + o(n) bits.

To support symbol rank and select on a sequence R[1,n] over alphabet
[1..d], we assume we have d bitmaps B.[1,n], for ¢ € [1..d], where B.[i] = 1
iff R[i] = c¢. Then rank.(R,i) and select.(R,%) are reduced to rank;(B.,?)
and select;(B., ). We cannot afford to store those B, but we can store their
extra o(n) data for binary rank and select. Each time we need access to B,
we access instead R and use a universal table to simulate the bitmap’s content.
Such table gives constant-time access to chunks of length lg,(n)/2 instead of
lg(n)/2, so the overall space using Golynski et al.’s bitmap index representation
[9, 10] is O(dnlglgn/lg,;n), which added over the lg, o levels of the wavelet tree
gives O(nlgo - dlgdlglgn/lgn). This is o(nlgo) for any d = lg'~“n. Further
reducing the redundancy to o(n) bits requires more advanced techniques [16].

Thus, the O(lg o) upward/downward traversal times become O(lgo/1glgn)
with multiary wavelet trees. Although theoretically attractive, it is not easy to
translate their advantages to practice (see, e.g., a recent work studying inter-
esting practical alternatives [20]). An exception, for a particular application, is
described in Section 5.2.

The upward traversal can be speeded up further, using techniques known in
computational geometry [5]. Imagine we are at a leaf u representing a sequence
S[1,n,] and want to directly track position i to an ancestor v at distance ¢, which
represents sequence S[1,n,]. We can store at the leaf u a bitmap B,[1, n,], so
that the n, positions corresponding to leaf u are marked as 1s in B,. This
bitmap is sparse, so it is stored in compressed form as an “indexable dictio-
nary” [17], which uses n, 1g(n,/n,) + o(n,) + O(lglgn,) bits and can answer
selecty(By,%) queries in O(1) time. Thus we track position ¢ upwards for ¢
levels in O(1) time.

The space required for all the bitmaps that point to node v is the sum, over
at most 2! leaves u, of those n, lg(n,/n.) + o(ny) + O(lglgn,) bits. This is
maximized when n, = n, /2! for all those u, where the space becomes t - n, +
o(ny,)+0(2t1glgn,). Added over all the wavelet tree nodes with height multiple
of t, we get nlgo+o(nlgo)+0(clglgn) = nlgo+o(nlgo). This is in addition
to those nlgo + o(n) bits already used by the wavelet tree.

If we want to track only from the leaves to the root, we may just use t = 1lgo
and do the tracking in constant time. In many cases, however, one wishes to
track from arbitrary to arbitrary nodes. In this case we can use 1/e¢ values of
t =1g"0, for i € [1..1/e — 1], so as to carry out O(lg® o) upward steps with
one value of ¢ before reaching the next one. This gives a total complexity for
upward traversals of O((1/¢€)1g o) using O((1/€)nlgo) bits of space.



2.5. Construction

It is easy to build a wavelet tree in O(nlg o) time, by a linear-time processing
at each node. It is less obvious how to do it in little extra space, which may be
important for succinct data structures. Two recent results [21, 22] offer various
relevant space-time tradeoffs, building the wavelet tree within the time given,
or close, and asymptotically negligible extra space.

3. Compression

The wavelet tree adapts elegantly to the compressibility of the data in
many ways. Two key techniques to achieve this are using specific encodings
on bitmaps, and altering the tree shape. This whole section is technical, yet
nonexpert readers may find inspiring the beginning of Sections 3.1 and 3.2.

3.1. Entropy Coding

Consider again Fig. 1. The fact that the 'a’ is much more frequent than the
other symbols translates into unbalanced 0/1 frequencies in various bitmaps.
Dissimilarities in symbol frequencies are an important source of compressibility.
The amount of compression that can be reached is measured by the so-called
empirical zero-order entropy of a sequence S[1,n]:

Ho(S) = Y (ne/n)lg(n/n;) < lgo

ceEX

where n. is the number of occurrences of ¢ in S and we sum only the symbols
that do appear in S. Then nHy(S) is the least number of bits into which S can
be compressed by always encoding the same symbol in the same way.3

Grossi et al. [4] already showed that, if the bitmaps of the wavelet tree are
compressed to their zero-order entropy, then their overall space is nHy(S). Let
B,,.., contain ng 0s and n; 1s. Then zero-order compressing it yields space

no lg(n/no) + n1lg(n/ny).

Now consider its left child v;. Its bitmap, B,,, is of length ng, and say it contains
ngo 0s and ng; 1s. Similarly, the right child is of length n; and contains nqg 0s
and ni; 1s. Adding up the zero-order compressed space of both children yields

noo1g(n0/n00) + no1 1g(no/no1) + niolg(ni/nio) +ni1lg(ni/ni).
Now adding the space of the root bitmap yields

noo 1g(n/noo) + no1 lg(n/no1) + niolg(n/nio) + niilg(n/nir).

31n classical information theory [23], Hp is the least number of bits per symbol achievable
by any compressor on an infinite source that emits symbols independently and randomly with
probabilities n¢/n.



This would already be nHy(S) if o = 4. It is easy to see that, by splitting the
spaces of the internal nodes until reaching the wavelet tree leaves, we arrive at
Y eex Nelg(n/ne) = nHy(S).

This enables using any zero-order entropy coding for the bitmaps that sup-
ports constant-time rank and select. One is the “fully-indexable dictionary” of
Raman et al. [17], which for a bitmap B[1,n] requires nHy(B)+O(nlglgn/lgn)
bits. A theoretically better one is that of Golynski et al. [16], which we have
already mentioned without yet telling that it actually compresses the bitmap,
to nHo(B) + O(nlglgn/lg?n). Pitrascu [24] showed this can be squeezed up
to nHy(B) + O(n/1g°n), answering rank and select in time O(c), for any
constant ¢, and that this is essentially optimal [25].

Using the second or third encoding, the wavelet tree represents S within
nHy(S) + o(n) bits, still supporting the traversals in time O(lgo). Ferragina
et al. [19] showed that the zero-order compression can be extended to multiary
wavelet trees, reaching nHy(S) + o(nlg o) bits and time O(1 + lgo/lglgn) for
the operations, and Golynski et al. [16] reduced the space to n.Hy(S)+o(n) bits.
Recently, Belazzougui and Navarro [26] showed that the times can be reduced to
O(1 +1go/lgw), where w = Q(lgn) is the size of the machine word. Basically
they replace the universal tables with bit-parallel operations. Their space grows
to nHy(S) 4+ o(n(Ho(S) 4+ 1)). (They also prove and match the lower bound
time complexity O(1 4 lg(lgo/lgw)) using techniques that are beyond wavelet
trees and this survey, but that do build on wavelet trees [27, 28].)

It should not be hard to see at this point that the sums of n,, 1g(n,, /n,) spaces
used for fast upward traversals in Section 2.4 also add up to (1/e)nHy(S).

3.2. Changing Shape

The algorithms for traversing the wavelet tree work independently of its
balanced shape. Furthermore, our previous analysis of the entropy coding of
the bitmap also shows that the resulting space, at least with respect to the
entropy part, is independent of the shape of the tree. This was already noted
by Grossi et al. [29], who proposed using the shape to optimize average query
time: If we know the relative frequencies f. with which each leaf ¢ is sought,
we can create a wavelet tree with the shape of the Huffman tree [30] of those
frequencies, thus reducing the average access time to ) . felg(1/f.) <lgo.

Miékinen and Navarro [31, Sec. 3.3], instead, proposed giving the wavelet
tree the Huffman shape of the frequencies with which the symbols appear in
S. This has interesting consequences. First, it is easy to see that the total
number of bits stored in the wavelet tree is exactly the number of bits output
by a Huffman compressor that takes the symbol frequencies in .S, which is upper
bounded by n(Hy(S) + 1). Therefore, even using plain bitmap representations
taking n + o(n) bits of space, the total space becomes at most n(Hp(S) + 1) +
o(n(Ho(S)+1))+O(clgn), that is, we compress not only the data, but also the
redundancy space. This may seem irrelevant compared to the nHy(S) + o(n)
bits that can be obtained using Golynski et al. [16] over a balanced wavelet
tree. However, it is unclear whether that approach is practical; only that of
Raman et al. [17] has successful implementations [32, 33, 34], and this one leads
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Figure 5: A wavelet tree with Huffman shape for our string S.

to total space nHy(S) + o(nlgo). Furthermore, plain bitmap representations
are significantly faster than compressed ones, and thus compressing the wavelet
tree by giving it a Huffman shape leads to a much faster implementation in
practice. Figure 5 illustrates this shape.

Another consequence of using Huffman shape, implied by Grossi et al. [29],
is that if the accesses to the leaves are done with frequency proportional to
their number of occurrences in S (which occurs, for example, if we access at
random positions in ), then the average access time is O(1 + Hy(S)), better
than the O(lgo) of balanced wavelet trees. A problem is that the worst case
could be as bad as O(lgn) if a very infrequent symbol is sought [31]. However,
one can balance wavelet subtrees after some depth, so that the average depth
is O(1 + Hy(S)), the maximum depth is O(lgo), and the total number of bits
is at most n(Ho(S) + 2) [31].

Recently, Barbay and Navarro [35] showed that Huffman shapes can be com-
bined with multiary wavelet trees and entropy compression of the bitmaps, to
achieve space nHy(S)+o(n) bits, worst-case time O(1+1g o/ 1glgn), and average
case time O(1 + Hy(S)/1glgn).

An interesting extension of Huffman shaped wavelet trees that has not been
emphasized much is to use them as a mechanism to give direct access on any
variable-length prefix-free coding. Let S = s1, $2,..., 5, be a sequence of sym-
bols, which are encoded in some way into a bit-stream C = c(s1)e(s2) ... c(sn).
For example, S may be a numeric sequence and ¢ can be a d-code, to favor
small numbers [36], or ¢ can be a Huffman or another prefix-free encoding. Any
prefix-free encoding ensures that we can retrieve S from C, but if we want to
maintain the compressed form C' and access arbitrary positions of S, we need
tricks like sampling S at regular intervals and store pointers to C.

Instead, a wavelet tree representation of S, where for each s; we rather
encode ¢(s;), uses the same number of bits of C' and gives direct access to any
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S[i] in time O(|e(s;)]). More precisely, at the bitmap root position B, ,[i] we
write a 0 if ¢(s;) starts with a 0, and 1 otherwise. In the first case we continue
by the left child and in the second case we continue by the right child, from the
second bit of ¢(s;), until the code is exhausted. Gagie et al. [37] combined this
idea with multiary wavelet trees to obtain a faster decoding.

Very recently, Grossi and Ottaviano [38] extended wavelet trees to handle
a sequence of strings, and gave the wavelet tree the shape of the trie of those
strings. The idea extends a previous, more limited, approach [13, 14].

3.3. High-order Entropy Coding

High-order compression extends zero-order compression by encoding each
symbol according to a context of length k that precedes or follows it. The k-th
order empirical entropy of S [39] is defined as Hy(S) = > 4cxx (|Sal/n) Ho(Sa) <
Hy_1(S5), where Sy is the string of symbols preceding context A in S. Any sta-
tistical compressor assigning fixed codes that depend on a context of length k
outputs at least nH(S) bits to encode S.

The Burrows-Wheeler transform [40] is a useful tool to achieve high-order
entropy. It is a reversible transformation that permutes the symbols of a string
S[1,n] as follows. First sort all the suffixes S[i, n] lexicographically, and then list
the symbols that precede each suffix (where S[n] precedes S[1,n]). The result,
SPw1 n], is the concatenation of the strings S for all the contexts A. By
definition, if we compress each substring S of St to its zero-order entropy,
the total space is the k-th order entropy of S, for k = |A].

The first [4] and second [41] reported use of wavelet trees used a similar par-
titioning to represent each range of S with a zero-order compressed wavelet
tree, so as to reach nHy(S) + o(nlgo) bits of space, for any k < alg, n and
any constant 0 < a < 1. In the second case [41], the use of S**! was explicit.
The partitioning was not with a fixed context length, but instead an optimal
partitioning was used [42]. This way, they obtained the given space simultane-
ously for any k in the range. In the first case [4], they made no reference to
the Burrows-Wheeler transform, but also compressed the sequences S4 of the
k-th order entropy formula, for a fixed k. We give more details on the reasons
behind the use of S in Section 5.

Already in 2004, Grossi et al. [29] realized that the careful partitioning into
many small wavelet trees, one per context, was not really necessary to achieve
k-th order compression. By using a proper encoding on its bitmaps, a wavelet
tree on the whole S*** could reach k-th order entropy compression of a string S.
They obtained 2nHj(S) bits, plus redundancy, by using vy-codes [36] on the runs
of 0s and 1s in the wavelet tree bitmaps. Mékinen and Navarro [43] observed the
same fact when encoding the bitmaps using Raman et al. [17] fully indexable
dictionaries. They reached nH(S) + o(nlgo) bits of space, simultaneously for
any k < alg, n and any constant 0 < a < 1, using just one wavelet tree for the
whole string. This yielded simpler and faster indexes in practice [33].

The key property is that some entropy-compression methods are local, that
is, their space is the sum of the zero-order entropies of short substrings of S,
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This can be shown to be upper-bounded by the entropy of the whole string, but
also by the sum of the entropies of the substrings S4. Even more surprisingly,
Kérkkéinen and Puglisi [44] recently showed that the k-th order entropy is still
reached if one cuts S*®! into equally-spaced regions of appropriate length, and
thus simplified these indexes further by using the faster and more practical
Huffman-shaped wavelet trees on each region.

There are also more recent and systematic studies [45, 46] of the compress-
ibility properties of wavelet trees, and how they relate to gap and run-length
encodings of the bitmaps, as well to the balancing and the arity.

3.4. Fxploiting Repetitions

Another relevant source of compressibility is repetitiveness, that is, that
S[1,n] can be decomposed into a few substrings that have appeared earlier in
S, or alternatively, that there is a small context-free grammar that generates S.
Many compressors build on these principles [36], but supporting wavelet tree
functionality on such compressed representations is harder.

Miékinen and Navarro [47] studied the effect of repetitions in the Burrows-
Wheeler transform of S. They showed that S*®* could be partitioned into at
most nHy(S) + o runs of equal letters in S, for any k. It is not hard
to see that those runs are inherited by the wavelet tree bitmaps, where run-
length compression would take proper advantage of them. Makinen and Navarro
followed a different path: they built a wavelet tree on the run heads and used
a couple of bitmaps to simulate the operations on the original strings. The
compressibility of those two bitmaps has been further studied by Mékinen et
al. [48, 49] in the context of highly repetitive sequence collections, and also by
Gog [50, Sec. 3.6.1].

In some cases, however, we need the wavelet tree of the very same string S
that contains the repetition, not its Burrows-Wheeler transform. We describe
such an application in Section 6.4.

Recently, Navarro et al. [51] proposed a grammar-compressed wavelet tree
for this problem. The key point is that repetitions in S[1, n| induce repetitions
in B,,,.,[1,n]. They used Re-Pair [52], a grammar-based compressor, on the
bitmaps, and enhanced a Re-Pair-based compressed sequence representation [53]
to support binary rank (they only needed downward traversals). This time, the
wavelet tree partitioning into left and right children cuts each repetition into
two, so quickly after a few levels such regularities are destroyed and another
type of bitmap compression (or none) is preferred. While the theoretical space
analysis is too weak to be useful, the result is good in practice and leaves open
the challenge of achieving stronger theoretical and practical results.

We will find even more specific wavelet tree compression problems later.

4. Sequences, Reorderings, or Point Grids?

Now that we have established the basic structure, operations, and encodings
of wavelet trees, let us take a view with more perspective. Various applications
we have mentioned display different ways to regard a wavelet tree representation.

12
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Figure 6: Computing rank/(S,11), that is, the number of occurrences of 'I' up to position 11
in S, using a wavelet tree, and finding out it is 2.

4.1. As a Sequence of Values

This is the most basic one. The wavelet tree on a sequence S = s1,...,s,
represents the values s;. The most important operations that the wavelet tree
must offer to support this view are, apart from accessing any S[i] (that we
already explained in Section 2), rank and select on S. For example, the
second main usage of wavelet trees [41, 19] used access and rank on the wavelet
tree built on sequence St in order to support searches on S.

The process to support rank.(.S,4) is similar to that for access, with a subtle
difference. We start at position ¢ in B, ,, and decide whether to go left or
right depending on where is the leaf corresponding to ¢ (and not depending
on B, . [i]). If we go left, we rewrite ¢ + ranko(B,,.,,,?), else we rewrite
i < rank;(B,,,.,,%). When we arrive at the leaf ¢, the value of i is the final
answer. Figure 6 illustrates operation rank. The time complexity for this
operation is that of a downward traversal towards the leaf labeled ¢. To support
select.(S,4) we apply the upward tracking, as described in Section 2, starting
at the i-th position of the leaf labeled c.

4.2. As a Reordering

Less obviously, the wavelet tree structure describes a stable ordering of the
symbols in S, so that if one traverses the leaves one finds first all the occurrences
of the smaller symbols, and within the same symbol (i.e., the same leaf), they
are ordered by original position. As it will be clear in Section 5, one can argue
that this is the usage of wavelet trees made by their creators [4].

In this case, tracking a position downwards in the wavelet tree tells where
it goes after sorting, and tracking a position upwards tells where each symbol
is placed in the sequence. An obvious application is to encode a permutation m
over [1..n]. Figure 7 illustrates the idea. Our best wavelet tree takes nlgn+o(n)
bits and can compute any (i) and 7=1(i) in time O(lgn/lglgn) by carrying
out, respectively, downward and upward tracking of position i. We will see
improvements on this idea later.
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Figure 7: Representing permutation 7 = (7 4 1 6 8 3 5 2) using a wavelet tree. As before, the
grayed values are not actually stored.

4.8. As a Grid of Points

The slightly less general structure of Chazelle [5] can be taken as the repre-
sentation of a set of points supported by wavelet trees. It is generally assumed
that we have an n x n grid with n points so that no two points share the same
row or column (i.e., a permutation). A general set of n points is mapped to such
a discrete grid by storing the real coordinates somewhere else and breaking ties
somehow (arbitrarily is fine in most cases).

Take the set of points (z;,y;), in z-coordinate order (i.e., ; < x;11). Now
define string S[1,n] = y1,¥2,...,Yn- Then we can find the i-th point in z-
coordinate order by accessing S[i]. Moreover, since the wavelet tree is repre-
senting the reordering of the points according to y-coordinate, one can find the
i-th point in y-coordinate order by tracking upwards the i-th point in the leaves.

Unlike permutations, here the emphasis is in counting and reporting the
points that lie within a rectangle [Zin, Tmaz] X [Ymins Ymaz]- This is solved
through a more complicated tracking mechanism, well-known in computational
geometry and also described explicitly on wavelet trees [13]. We start at the
root bitmap range B, , [, 2], where ; = Zpin and &, = Zyg.. Now we map
the interval to the left and to the right, using x; < rankg/ (By,,,,., 21 — 1) +1
and , < rankg/;(By,,,,; Zr), and continue recursively. At any node along the
recursion, we may stop if (i) the interval [z}, 2,] becomes empty (thus there
are no points to report); (i¢) the interval of leaves (i.e., y-coordinate values)
represented by the node has no intersection with [Ymin, Ymaz); (#4¢) the interval
of leaves is contained in [Ymin, Ymaz]- In case (ii7) we can count the number
of points falling in this sub-rectangle as z, — z; + 1. As it is well known that
we visit only O(lgn) wavelet tree nodes before stopping all the recursive calls
(see, e.g., a recent detailed proof, among other more sophisticated wavelet tree
properties [18]), the counting time is O(lgn). Each of the z,.—2;+1 points found
in each node can be tracked up and down to find their z- and y-coordinates,
in O(lgn) time per reported occurrence. Figure 8 illustrates the structure and
query process. There are more efficient variants of this technique that we will
cover in Section 7, but they build on this basic idea.
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Figure 8: Representing a grid with a wavelet tree, and a range search. (a) The grid and
the range as the intersection of an z- and a y-range. On top, the sequence of y-coordinates
sorted by x-coordinate. The final structure is just the wavelet tree of that sequence. (b)
Partitioning into small and large y-values, and the subsequences belonging to each partition.
(c) First wavelet tree decomposition, at the root. The bitmap indicates to which partition
each y-coordinate belongs, in z-coordinate order. (d) The final wavelet tree, indicating in bold
arrows the edges traversed to count the points in the range. Nodes are followed as long as they
contain some nonempty part of the z-range, they have nonempty intersection with the y-range,
and are not contained in the y-range. We highlight the maximal nodes covering the query
y-range (round-corner hatched boxes, in bold those reached), and the query z-range inside
the sequence of each involved node (sharp-corner hatched boxes, in bold those traversed).
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Figure 9: The suffix array A and the ¥ array of our text. We have separated the areas where
A starts with the same letter. ¥ is monotone increasing within each such area.

5. Applications as Sequences

5.1. Full-text Indexes

A full-text index built on a string S[1,n] is able to count and locate the
occurrences of arbitrary patterns P[1,m] in S. A classical index is the suffiz
array [54, 55], A[1,n|, which lists the starting positions of all the suffixes of S,
S[A[i],n], in lexicographic order, using n[lgn] bits. The starting positions of
the occurrences of P in S appear in a contiguous range in A, which can be binary
searched in time O(mlgn), or O(m + lgn) by doubling the space. A suffix tree
[56, 57, 58] is a more space-consuming structure (yet still O(nlgn) bits) that
can find the range in time O(m). After finding the range, each occurrence is
reported in constant time, both in suffix trees and arrays.

The suffix array of S is closely related to its Burrows-Wheeler transform:
Sbwt[j] = S[A[i]—1] (taking S[0] = S[n]). Ferragina and Manzini [59, 60] showed
how, using at most 2m access and rank operations on S*“*, one could count
the number of occurrences in S of a pattern P[1,m]. Using multiary wavelet
trees [19, 16] this gives a counting time of O(m) on polylog-sized alphabets, and
O(mlgo/lglgn) in general. Each such occurrence can then be located in time
O(lg*“nlgo/lglgn) for any € > 0, at the price of O(n/lg®n) = o(n) further
bits of space. This result has been superseded very recently [27, 61, 28, 26], in
some cases using wavelet trees as a part of the solution, and in all cases with
some extra redundancy, such as o(nHy(S)) and O(n) further bits.

Grossi et al. [62, 63, 4] used wavelet trees to obtain a similar result via a
quite different strategy. They represented A by means of a permutation ¥(i) =
A7YA[{] + 1], that is, the cell in A pointing to A[i] + 1. ¥ turns out to be
formed by o contiguous ascending runs. The suffix array search can be simulated
in O(mlgn) accesses to ¥. Figure 9 illustrates a ¥ function, and Figure 12
shows how it can be represented in compressed form using a wavelet tree. They
encode ¥ in a more sophisticated form, however: separately for the range of each
context Sa (recall Section 3.3). As all the ¥ pointers coming from each run are
increasing, a wavelet tree is used to describe how the ¢ ascending sequences
of pointers coming from each run are intermingled in the range of S4. This
turns out to be, precisely, the wavelet tree of S4. This is why both Ferragina
et al. and Grossi et al. obtain basically the same space, nHy(S) + o(nlg o) bits.
Due to the different search strategy, the counting time of Grossi et al. is higher.
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Figure 10: Representing text ‘to be or not to be’ with an inverted list (left) or with a wavelet
tree (right). Words are mapped to 1, 2, 3, 4 and the wavelet tree represents the sequence
of mapped words. Then we access any text word (e.g., the 4th text word is 4, or ‘not’), and
successive select, operations retrieve the content of the inverted list of word 2, or ‘be’.

On the other hand, the representation of ¥ allows them to locate patterns in
sublogarithmic time, still using O(nHy(S)) + o(nlg o) bits.

This is the best known usage of wavelet trees as sequences, and it is well
covered in earlier surveys [64]. New extensions of these basic concepts, support-
ing more sophisticated search problems, appear every year (e.g., [65, 66]). We
cover next other completely different applications.

5.2. Positional Inverted Indexes

Consider a natural language text collection. A positional inverted index
is a data structure that stores, for each word, the list of the positions where it
appears in the collection [67]. In compressed form [68] it takes space close to the
zero-order entropy of the text seen as a sequence of words [64]. This entropy
yields very competitive compression in natural language texts. Yet, we need
to store both the text (usually zero-order compressed, so that direct access is
possible) and the inverted index, adding up to at least 2nHy(S) bits, where S
is the text regarded as a sequence of word identifiers. Inverted indexes are by
far the most popular data structures to index natural language text collections,
so reducing their space requirements is of high relevance.

By representing the sequence of word identifiers using a wavelet tree, we
obtain a single representation for both the text and the inverted index, all within
nHo(S)+o(n) bits [33]. In order to access any text word, we just compute S[i].
In order to access the i-th element of the inverted list of any word ¢, we compute
select.(S,4). Furthermore, operation rank.(S,) is useful to implement some
list intersection algorithms [69], as it finds the position ¢ in the inverted list
of word ¢ more efficiently than with a binary or exponential search. Figure 10
illustrates the basic idea.

Arroyuelo et al. [70] extended this functionality to document retrieval: re-
trieve the distinct documents where a word appears. They use a special sym-
bol “$” to mark document boundaries. Then, given the first occurrence of a
word ¢, p = select.(S,1), the document where this occurrence lies is j =
rankg(S,p) + 1, document j ends at position p’ = selectg(S, ), it contains
o = rank.(S, p, p') occurrences of the word ¢, and the search for further relevant
documents can continue from query select.(S,0+ 1).

An improvement over the basic idea is to use multiary wavelet trees, more
precisely of arity up to 256, and using the property that wavelet trees give
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Figure 11: Representing a graph (left) with a wavelet tree plus a bitmap (right). The direct
neighbors of v3 are obtained by accessing part of the sequence (square-corner rectangle). The
reverse neighbors of vs are found by successive selects operations (curved arrows, on top)
and rank on the bitmap (straight arrows, on the bottom). The presence of an edge from v
to vg is decided via ranks in the area of the edges leaving v1 (rounded-corner rectangle).

direct access to any variable-length code. Brisaboa et al. [71] started with a
byte-oriented encoding of the text words (using either Huffman with 256 tar-
get symbols, or other practical encoding methods [72]) and then organized the
sequence of codes into a wavelet tree, as described in Section 3.2. A naive byte-
based rank and select implementation on the wavelet tree levels gives good
results in this application, with the bytes represented in plain form. The re-
sulting structure is indeed competitive with positional inverted indexes in many
cases. A variant specialized on XML text collections, where the codes are also
used to distinguish structural elements (tags, content, attributes, etc.) in order
to support some XPath queries, is also being developed [73].

5.3. Graphs

Another simple application of this idea is the representation of directed
graphs [33]. Let G be a graph with n nodes and e edges. An adjacency list,
using nlge+elgn bits (the n pointers to the lists plus the e target nodes) gives
direct access to the neighbors of any node v. If we want also to perform re-
verse nagivation, that is, to know which nodes point to v, we must spend other
nlge + elgn bits to represent the transposed graph.

Once again, representing with a wavelet tree the sequence S[1,e] concate-
nating all the adjacency lists, plus a compressed bitmap B[l,e] marking the
beginnings of the lists, gives access to both types of neighbors within space
nlg(e/n) + elgn + O(n) + o(e), which is close to the space of the plain rep-
resentation (actually, possibly less). To retrieve the i-th neighbor of a node v,
we compute the starting point of the list of v, I + select;(B,v), and then
access S[l+1i—1]. To retrieve the i-th reverse neighbor of a node v, we compute
p < select,(S,1) to find the i-th time that v is mentioned in an adjacency list,
and then compute with rank; (B, p) the owner of the list where v is mentioned.
Both operations take time O(lgn/lglgn). This is also useful to represent undi-
rected graphs, where adjacency lists must usually represent each edge twice.
With a wavelet tree we can choose any direction for an edge, and at query
time we join direct and reverse neighbors of nodes to build their list. Figure 11
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illustrates this arrangement.

Note, finally, that the wavelet tree can compress S to its zero-order entropy,
which corresponds to the distribution of in-degrees of the nodes. A more so-
phisticated variant of this idea, combined with Re-Pair compression [52], was
shown to be competitive with current Web graph compression methods [74]. A
different arrangement [75] has been useful to compress social networks, by ex-
tracting dense subgraphs (S;, C;) where all the nodes in \S; point to all the nodes
in C;. Then by storing a sequence S1 : Cq : S92 : Cs : ... of node identifiers, and
a bitmap that marks their limits, one can reproduce all the edges using access
and select on the node sequence, and rank/select on the bitmap.

6. Applications as Reorderings

Apart from its first usage [4], that can be regarded as encoding a reordering,
wavelet trees offer various interesting applications when seen in this way.

6.1. Permutations

As explained in Section 4, one can easily encode a permutation with a wavelet
tree. It is more interesting that the encoding can take less space when the
permutation is, in a sense, compressible. Barbay and Navarro [76, 35] considered
permutations 7 of [1..n] that can be decomposed into p contiguous ascending
runs, of lengths 71,72,...,7,. They define the entropy of such a permutation as
H(m)=3"_,(ri/n)lg(n/r;), and show that it is possible to sort an array with
such ascending runs in time O(n(H(w) 4+ 1)). This is obtained by building a
Huffman tree on the run lengths (seen as frequencies) and running a mergesort-
like algorithm that follows the Huffman tree shape.

They note that, if we encode with 0 or 1 the results of the comparisons of the
mergesort algorithm at each node of the merging tree, the resulting structure
contains at most n(H () + 1) bits, and it represents the permutation. Starting
at position ¢ in the top bitmap B, , one can track down the position exactly as
done with wavelet trees, so as to arrive at position j of the t-th leaf (i.e., run). By
storing, in O(plgn) bits, the starting position of each run in m, we can convert
the leaf position into a position in 7. Therefore the downward traversal solves
operation 7~ 1(i), because it starts from value i (i.e., position i after sorting ),
and gives the position in 7 from where it started before the merging took place.
The corresponding upward traversal, consequently, solves 7(i). Other types of
runs, more and less general, are also studied [76, 35]. Figure 12 illustrates how
a permutation is encoded.

Some thought reveals that this structure is indeed the wavelet tree of a
sequence formed by replacing, in 7!, each symbol belonging to the i-th run, by
the run identifier . Then the fact that a downward traversal yields 7—1(i) and
that the upward traversal yields 7 (i) are natural consequences. This relation is
made more explicit in a later article [27, 28].
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Figure 12: Representing a permutation with runs (on the bottom, the runs are shown with
rectangles). Only the tree shape and the bitmaps, in black, are stored.

6.2. Generic Numeric Sequences

There are several basic problems on sequences of numbers that can be solved
in nontrivial ways using wavelet trees. We mention a few that have received
attention in the literature.

One such problem is the range quantile query: Preprocess a sequence of
numbers S[1,n] on the domain [1..0] so that later, given a range [l,r] and a
value ¢, we can compute the i-th smallest element in S[l, r].

Classical solutions to this problem have used nearly quadratic space and
constant time. Only a very recent solution [77] reaches O(nlgn) bits of space
(apart from storing S) and O(lgn/lglgn) time. We show that, by representing
S with a wavelet tree, we can solve the problem in O(lgo) time and just o(n)
extra bits [78, 18]. This is close to O(lgn/lglgn) (in this problem, we can
always make o < n hold), and it can be even better if ¢ is small compared to n.

Starting from the range S[l,r], we compute rankg(B,,,,,!,r). If this is ¢
or more, then the i-th value in this range is stored in the left subtree, so we
go to the left child and remap the interval [I,r] as done for counting points in
a range (see Section 4). Otherwise we go right, subtracting ranky(B,,.,,{,T)
from ¢ and remapping [I, 7] in the same way. When we arrive at a leaf, its label
is the i-th smallest element in S[l, r|. Figure 13 illustrates this operation within
an application to inverted lists.

Another fundamental problem is called range next value: Preprocess a se-
quence of numbers S[1,n] on the domain [1..0] so that later, given a range [I, 7]
and a value z, we return the smallest value in S[I, 7] that is larger than x.

The state of the art also includes superlinear-space and constant-time solu-
tions, as well as one using O(nlgn) bits of space and O(lgn/lglgn) time [79].
Once again, we achieve o(n) extra bits and O(lg o) time using wavelet trees [18]
(we improve this time in Section 7.2).

Starting at the root from the range S[I,7], we see if value x labels a leaf
descending from the left or from the right child. If  descends from the right
child, then no value on the left child can be useful, so we recursively descend
to the right child and remap the interval [I, 7] as done for counting points in a
range. Else, there may be values > x on both children, but we prefer those on
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the left, if any. So we first descend to the left child looking for an answer (there
may be no answer if, at some node, the interval [I,7] becomes empty). If the
left child returns an answer, this is what we seek and we return it. If, however,
there is no value > x on the left child, we seek the smallest value on the right
child. We then enter into another mode where we see if there is any 0-bit in
B,[l,r]. If there is one, we go to the left child, else we go to the right child. Tt
can be shown that the overall process takes O(lg o) time.

A variant of the range next value problem is called prevLess [80]: return the
rightmost value in S[1,r] that is smaller than z. Here we start with S[1,r]. If
value x labels a leaf descending from the left, we map the interval to the left
child and continue recursively from there. If, instead, x descends from the right
child, then the answer may be on the left or the right child, and we prefer the
rightmost in [1,7]. Any 0-bit in B,[1,7] is a value smaller than x and thus a
valid answer. We use rank and select to find the rightmost 0 in B,[1,7]. We
also continue recursively by the right child, and if it returns an answer, we map
it to the bitmap B,[l,r]. Then we choose the rightmost between the answer
from the right child and the rightmost zero. The overall time is O(lg o).

6.3. Non-positional Inverted Indexes

These indexes store only the list of distinct documents where each word
appears, and come in two flavors [68, 67]. In the first, the documents for each
word are sorted by increasing identifier. This is useful to implement list unions
and intersections for boolean, phrase and proximity queries. In the second, a
“weight” (measuring importance somehow) is assigned to each document where
a word appears. The lists of each word store those weights and are sorted
by decreasing weight. This is useful to implement ranked bag-of-word queries,
which give the documents with highest weights added over all the query words.
It would seem that, unless one stores two inverted indexes, one must choose one
order in detriment of the queries of the other type.

By representing a reordering, wavelet trees can store both orderings simul-
taneously [81, 18]. Let us represent the documents where each word appears
in decreasing weight order, and concatenate all the lists into a sequence S[1,n].
A bitmap B[1,n] marks the starting positions of the lists, and the weights are
stored separately. Then, a wavelet tree representation of S simulates, within
the space of just one list, both orderings. By accessing S[l + ¢ — 1], where
I = selecti(B,c), we obtain the i-th element of the inverted list of word
¢, in decreasing weight order. To access the i-th element of the inverted list
of a word in increasing document order, we also compute the end of its list,
r = select1(B,c+ 1) — 1, and then run a range quantile query for the i-th
smallest value in the range [, r]. Figure 13 illustrates this operation.

Many other operations of interest, like list intersections, can be carried out
with this representation and little auxiliary data [81, 18].

6.4. Document Retrieval Indexes

An interesting extension to full-text retrieval is document retrieval, where
a collection S[1,n] of general strings (so inverted indexes cannot be used) is to
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Figure 13: Representing a non-positional inverted list for a collection of four documents. The
L lists are sorted by decreasing frequency; the F' lists by increasing document identifier. The
wavelet tree on the right represents both lists simultaneously. An L list is obtained by just
accessing the sequence. An element of the F list (in this example, the 2nd element of the
list Fima) by a range quantile query for the 2nd smallest value in the range. We first go left
because there are 2 or more Os in the range, then right because there are less than 2 Os.

be indexed to answer different document retrieval queries. The most basic one,
document listing, is to output the distinct documents where a pattern P[1,m]
appears. Muthukrishnan [82] defined a so-called document array D1, n], where
Dli] gives the document to which the i-th lexicographically smallest suffix of S
belongs (i.e., where the suffix S[A[i], n] belongs, where A is the suffix array of S).
He also defined an array C[1,n], where C[i] points to the previous occurrence
of D[i] in D. A suffix tree was used to identify the range A[l,r] of the pattern
occurrences, so that we seek to report the distinct elements in D[l,r]. With
further structures to find minima in ranges of C' [83], Muthukrishnan gave an
O(m+ occ) algorithm to find the oce distinct documents where P appears. This
is time-optimal, yet the space is impractical.

Wavelet trees have also proved extremely useful here. Méakinen and V&liméki
[84] showed that, if one implemented D as a wavelet tree, then array C' was not
necessary, since Cfi] = selectpp;)(D,rankpp(D,i — 1)). They also used a
compressed full-text index [41] to identify the range D[l,r], so the total time
turned out to be O(mlgo + occlg d), where d is the number of documents in S.
Moreover, for each document ¢ output, rank.(D, [, r) gave the number of times
P appeared in ¢, which is important for ranked document retrieval.

Gagie et al. [78, 18] showed that an application of range quantile queries
enabled the wavelet tree to solve this problem elegantly and without any range
minima structure: The first distinct document is the smallest value in DI, r].
If it occurs f; times, then the second distinct document is the (14 f1)-th small-
est value in D[l,r], and so on. They retained the complexities of Mé&kinen
and Valiméaki, but the solution used less space and time in practice. Later
[18] they replaced the range quantile queries by a depth-first traversal of the
wavelet tree that reduced the time complexity, after the suffix array search,
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Figure 14: The suffix array SA of a collection, its document array D, and its wavelet tree
representation on the bottom. A query for “la” yields an interval D[21,25], and the wavelet
tree is used to spot all the different values of D in that interval.

to O(occlg(d/occ)). The technique is similar to the two-dimensional range
searches: recursively enter into every wavelet tree branch where the mapped
interval [I,7] is not empty, and report the leaves found, with frequency r — 1+ 1.
Figure 14 illustrates this process.

This depth-first search method can easily be extended to support more com-
plex queries, for example ¢-thresholded ones: given s patterns, we want the
documents where at least t of the terms appear. We can first identify the s
ranges in D and then traverse the wavelet tree while maintaining the s ranges,
stopping when less than ¢ intervals are nonempty, or when we arrive at leaves
(where we report the document). Other sophisticated traversals have been pro-
posed for retrieving the documents ranked by number of occurrences of the
patterns [85].

An interesting problem is how to compress the wavelet tree of D effectively.
The zero-order entropy of D has to do with document lengths, which is gener-
ally uninteresting, and unrelated to the compressiblity of S. It has been shown
[86, 51] that the compressibility of S shows up as repetitions in D, which has
stimulated the development of wavelet tree compression methods that take ad-
vantage of the repetitiveness of D, as described at the end of Section 3.

7. Applications as Grids

7.1. Discrete Grids

Much work has been done in Computational Geometry over structures very
similar to wavelet trees. We only highlight some results of interest, generally
focusing on structures that use linear space. We assume here that we have
an n X n grid with n points not sharing rows nor columns. Interestingly, these
grids with range counting and reporting operations have been intensively used in
compressed text indexing data structures [6, 87, 60, 13, 88, 89, 90, 80]. Figure 15
gives a typical example.
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Figure 15: An LZ78 parsing of the text "alabar a la alabarda$", into 11 phrases. To find
pattern "bar" split over phrases, we look for a phrase ending with "b" followed by another
starting with "ar" (partition ("ba","r") must also be tried). The grid connects those consec-
utive phrases: on the z coordinate, the reversed preceding phrases; on the y-coordinate, the
following phrases. By sorting both sets in lexicographic order, the problem becomes a range
search, where our pattern is found in phrases 3 and 9.

Range counting can be done in time O(lgn/lglgn) and O(nlgn) bits [91].
This time cannot be improved within space O(nlg®™® n) [92], but it can be
matched with a multiary wavelet-tree like structure using just nlgn + o(nlgn)
bits [89]. Reaching this time, instead of the easy O(lgn) time bound we have
explained in Section 4, requires a sophisticated solution to the problem of do-
ing the range counting among several consecutive children of a node, that are
completely contained in the z-range of the query. They [89] also obtain a range
reporting time (for the occ points in the range) of O((1+ occ)lgn/lglgn). This
is not surprising once counting has been solved: it is a matter of upward or
downward tracking on a multiary wavelet tree. The technique for faster upward
tracking we described in Section 2.4 can be used to improve the reporting time
to O((1 4 occ)1g® n), using O((1/€)nlgn) bits of space [93].

Wavelet trees offer relevant solutions to other geometric problems, such as
finding the dominant points in a grid, or solving visiblity queries. Those prob-
lems can be recast as a sequence of queries of the form “find the smallest element
larger than z in a range”, described in Section 6.2, and therefore solved in time
O(lgn) per point retrieved [94]. That paper [94] also studies extensions of ge-
ometric queries where the points have weights and statistical queries on them
are posed, such as finding range sums, averages, minima, quantiles, majorities,
and so on. The way those queries are solved open interesting new avenues in
the use of wavelet trees.

Some queries, such as finding the minimum value of a two-dimensional range,
are solved by enriching wavelet trees with extra information aligned to the
bitmaps. Recall that each wavelet tree node v handles a subsequence S, of the
sequence of points S[1,n]. To each node v with bitmap B,[1,n,] we associate
a data structure using 2n, + o(n,) bits that answers one-dimensional range
minimum queries [95] on S,[1,n,]. Once built, this structure does not need to
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Figure 16: A grid with weights (left) and its wavelet tree representation (right). The wavelet
tree represents the points; the weights are represented separately as an array on top, sorted
by z-coordinate. A range is decomposed into maximal wavelet tree nodes (shaded), and the
position of the minimum weight within each range is obtained. Then these positions are
tracked to the top sequence to find the actual weights and give the global minimum, 1.

access Sy, yet it gives the position of the minimum in constant time. Since,
as explained, a two-dimensional range is covered by O(lgn) wavelet tree nodes,
only those O(lgn) minima must be tracked upwards, where the actual weights
are stored, to obtain the final result. Thus the query requires O(lg'**n) time
and O((1/€)nlgn) bits of space by using the fast upward tracking mechanism.
Figure 16 illustrates this idea.

Other queries, such as finding the i-th smallest value of a two-dimensional
range, are handled with a wavelet tree on the weight values. Each wavelet tree
node stores a grid with the points whose weights are in the range handled by that
node. Then, by doing range counting queries on those grids, one can descend
left or right, looking for the rightmost leaf (i.e., value) such that the counts of
the children to the left of the path followed add up to less than ¢. The total
time is O(lg n/1glgn), however the space becomes superlinear, O(nlg? n) bits.

Finally, an interesting extension to the typical point grids are grids of rectan-
gles, which are used in geographic information systems as minimum bounding
rectangles of complex objects. Then one wishes to find the set of rectangles
that intersect a query rectangle. This is well solved with an R-tree data struc-
ture [96], but a wavelet tree may offer interesting space reductions. Brisaboa et
al. [97] describe a technique to store n rectangles where one does not contain
another in the x-coordinate range (so the set is first separated into maximal
“z-independent” subsets and each subset is queried separately). Two arrays
with the ascending lower and upper z-coordinates of the rectangles are stored
(as the sets are z-independent, the same position in both arrays corresponds to
the same rectangle). A wavelet tree on those x-coordinate-sorted rectangles is
set up, so that each node handles a range of y-coordinate values. This wavelet
tree stores two bitmaps per node v: one tells whether the rectangle S,[i] ex-
tends to the y-range of the left child, and the other whether it extends to the
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right child. Both bitmaps can store a 1 at a position ¢, and thus the rectangle
is stored in both subtrees. To avoid representing a large rectangle more than
O(lgn) times, both bits are set to 0 (which is otherwise impossible) when the
rectangle completely contains the y-range of the current node. The total space
is O(nlgn) bits.

Given a query [Tmin, Tmaz) X [Ymin, Ymaz), We look for X, in the array
of upper x-coordinates, to find position x;, and look for x4, in the array of
lower x-coordinates, to find position x,. This is because a query intersects a
rectangle on the z-axis if the query does not start after the rectangle ends and
the query does not end before the rectangle starts. Now the range [z;, x| is used
to traverse the wavelet tree almost like on a typical range search, except that
we map to the left child using rank; on one bitmap, and to the right child using
rank; on the other bitmap. Furthermore, we report all the rectangles where
both bitmaps contain a 0-bit, and we remove duplicates by merging results at
each node, as the same rectangle can be encountered several times. The overall
time to report the occ rectangles is still O((1 4 occ) lgn).

7.2. Binary Relations

A binary relation R between two sets A and B can be thought of as a grid
of size |A| x |B|, containing |R| points. Binary relations are not only good
abstractions of strings, permutations and our grids, which are particular cases,
but also of a large number of more applied structures. For example, a non-
positional inverted index is a binary relation between a set of words and a set
of documents, so that a word is related to the documents where it appears. As
another example, a graph is a binary relation between the set of nodes and itself.

The most typical operations on binary relations are determining the elements
b € B that are related to some a € A and vice versa, and determining whether
a pair (a,b) € A x B is related in R. However, more complex queries are also
of interest. For example, counting or retrieving the documents related to any
term in a range enables on-the-fly stemming and query expansion. Retrieving
the terms associated to a document permits vocabulary analyses. Accessing the
documents in a range related to a term enables searches local to subcollections.
Range counting and reporting allows regarding graphs at different granularities
(e.g., a Web graph can be regarded as a graph of hosts, or of pages, on the fly).

Barbay et al. [98, 99] studied a large number of complex queries for binary
relations, including accessing the points in a range in various orders, as well
as reporting rows or columns containing points in a range. They proposed two
wavelet-tree-like data structures for handling the operations. One is basically a
wavelet tree of the set of points (plus a bitmap that indicates when we move from
one column to the next). It turns out that almost all the solutions described so
far on wavelet trees find application to solve some of the operations.

In the extended version [99] they use multiary wavelet trees to reduce the
times of most of the operations. Several nontrivial structures and algorithms
are designed in order to divide the times of various operations by lglgn (the
only precedent we know of is that of counting the number of points in a range
[89]). For example, it is shown how to solve the range next value problem (recall
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Section 6.2) in time O(lgn/lglgn). Others, like the range quantile query, stay
no better than O(lgn).

Barbay et al. also propose a second data structure that is analogous to the
one described for rectangles in Section 7.1. Two bitmaps are stored per node,
indicating whether a given column has points in the first and in the second
range of rows. This extension of a wavelet tree is less powerful than the previous
structure, but it is shown that its space is close to the entropy of the binary
relation: (14++v/2)H+O(|A|+|B|+|R|) bits, where H = Ig (lAlll'%‘lBl). This is not
achieved with the classical wavelet tree. A separate work [100] builds on this to
obtain a fully-compressed grid representation, within H + o(H) bits.

7.3. Colored Range Queries

A problem of interest in areas like query log and web mining is to count
the different colors in a sequence S[1,n] over a universe of o colors. Inspired
in the idea of Muthukrishnan [82] for document retrieval (recall Section 6.4),
Gagie et al. [86] showed that this is a matter of counting how many values
smaller than [ are there in C[l,r], where C[i] = max{j<i,S[j]=S[i]}. This
is a range counting query for [I,r] x [1,I—1] on C seen as a grid, that can
be solved in time O(lgn) using the wavelet tree of C. Note that this wavelet
tree, unlike that of S, uses nlgn + o(n) bits. Gagie et al. compressed it to
nlgo 4+ O(nlglgn) bits, by taking advantage of the particular structure of C,
which shows up in the bit-vectors. Gagie and Kérkkéinen [101] then reduced
the space to nHy(S) + o(nHy(S)) + O(n) with more advanced techniques, and
also reduced the query time to O(lg(r — [ + 1)).

8. Dynamism

We have described the wavelet tree as a static data structure. However, if
the bitmaps or sequences stored at the nodes support insertions and deletions
(“indels”) in time indel(n), then a wavelet tree of height h also supports indels
in the sequence S[1,n] it represents, in time O(h-indel(n)). This has been used
to support indels in time O((1 +1go/lglgn)lgn/lglgn) [102, 103].

The alphabet, however, is still fixed in those solutions. While such a lim-
itation may seem natural for sequences, it looks definitely artificial when rep-
resenting grids: one can insert and delete new x-coordinates and points, but
the y-coordinate universe cannot change. Creating or removing alphabet sym-
bols requires changing the shape of the wavelet tree, and the bitmaps or se-
quences stored at the nodes undergo extensive modifications upon small tree
shape changes (e.g., when undergoing rotations as in AVL or Red-Black trees).

Very recently [104], compressed dynamic wavelet tree representations have
been achieved, reaching O(logn/loglogn) worst-case time for the operations
rank, select, and access, and the same time complexity, yet amortized, for
indels. This time is optimal even for binary alphabets [105]. In addition, the
space used is nHq(S) + o(n(1 + Hy(S)) and the alphabet can be dynamic. This
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does not yet close the problem, because apart from the amortized update time?,
the representation cannot emulate any wavelet tree operation, but just those
mostly associated to sequences (Section 5). Those related to grids, for example
(Section 7), cannot be emulated (this is hardly achievable with this solution,
given lower bounds like Q((logn/loglogn)?) for dynamic range counting [92]).

A recent wavelet-tree-inspired scheme for storing sequences of strings has
been proposed [38]. It is related with the idea of Section 3.2, as they use a
wavelet tree with the shape of the Patricia tree of the strings stored.

9. Conclusions and Further Challenges

We have described the wavelet tree, a surprisingly versatile data structure
that offers nontrivial solutions to a wide range of problems in areas like string
processing, computational geometry, and many more. An important additional
asset of the wavelet tree is its simplicity to understand, teach, and program.
This makes it a good data structure to be introduced at an undegraduate level,
at least in its more basic variants. In many cases, solutions with better time
complexity than the ones offered by wavelet trees are not so practical nor easy
to implement.

Wavelet trees seem to be unable to reach access and rank/select times of
the form O(lglg o), as other structures for representing sequences do [107], close
to the lower bounds [26]. However, both have been combined to offer those
time complexities and good zero-order compression of data and redundancy
[27, 28, 26]. Yet, the lower bounds on some geometric problems [93], matched
with current wavelet trees [89, 99], suggest that this combination cannot be
carried out much further than those three operations. Still, there are some
complex operations where it is not clear that wavelet trees have matched lower
bounds [18].

A path that, in our opinion, has only started to be exploited, is to enhance
the wavelet tree with “one-dimensional” data structures at its nodes v, so that,
by efficiently solving some kind of query over the corresponding subsequences S,
we solve a more complex query on the original sequence S. In most cases along
this survey, these one-dimensional queries have been rank and select on the
bitmaps, but we have already shown some examples involving more complicated
queries [86, 94]. This approach may prove to be very fruitful.

In terms of practice, although there are many successful and publicly avail-
able implementations of wavelet tree variants (see, e.g., libcds.recoded.cl and
github.com/simongog/sdsl), there are some challenges ahead, such as carrying
to practice the theoretical results that promise fast and small multiary wavelet
trees [19, 16, 20] and lower redundancies [10, 24, 16].

4This was recently improved to worst-case for all the operations, but now rank and updates
cost time O(logn) [106].
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