
Pratial and Flexible Pattern Mathingover Ziv-Lempel Compressed Text �Gonzalo Navarroy Mathieu RaÆnotzAbstratWe address the problem of string mathing on Ziv-Lempel ompressed text. The goal is to searha pattern in a text without unompressing it. This is a highly relevant issue to keep ompressed textdatabases where eÆient searhing is still possible. We develop a general tehnique for string mathingwhen the text omes as a sequene of bloks. This abstrats the essential features of Ziv-Lempel om-pression. We then apply the sheme to eah partiular type of ompression. We present an algorithmto �nd all the mathes of a pattern in a text ompressed using LZ77. When we apply our sheme toLZ78, we obtain a muh more eÆient searh algorithm, whih is faster than unompressing the text andthen searhing on it. Finally, we propose a new hybrid ompression sheme whih is between LZ77 andLZ78, being in pratie as good to ompress as LZ77 and as fast to searh in as LZ78. We show alsohow to searh some extended patterns on Ziv-Lempel ompressed text, suh as lasses of haraters andapproximate string mathing.1 IntrodutionString mathing is one of the most pervasive problems in omputer siene, with appliations in virtuallyevery area. It is also one of the oldest and rihest area of development. The string mathing problem is:given a pattern P = p1:::pm and a text T = t1:::tu, both sequenes of symbols over a �nite alphabet � of size�, �nd all the ourrenes of P in T . There are many algorithms to solve this problem, from lassial to veryreent [20, 9, 4, 14, 33, 10, 29℄. The omplexity of this problem is O(u) in the worst ase and O(u log(m)=m)on average, where u = jT j and m = jP j, and there exist variants of [9, 10℄ whih ahieve this omplexity. Inpratie, however, [33, 29℄ are the fastest algorithms in most ases.Another old and rih area in omputer siene is text ompression. Its aim is to exploit the redundaniesof the text to redue its spae usage. There are many di�erent ompression shemes [6℄, among whih theZiv-Lempel family [38, 39℄ is one of the most ommonly used in pratie beause of their good ompressionratios (that is, the size of the ompressed �le as a perentage of that of the unompressed �le) ombinedwith eÆient ompression and deompression times. Other ompression shemes are Hu�man oding [15℄and arithmeti oding [35℄, among others.Today's textual databases are an exellent example of appliations where both problems are ruial:the texts should be kept ompressed to save spae and I/O time, and they should be eÆiently searhed.Surprisingly, these two ombined requirements are not easy to ahieve together, as the only solution beforethe 90's was to proess queries by unompressing the texts and then searhing into them.The ompressed mathing problem was �rst de�ned by Amir and Benson [1℄ as the task of performingstring mathing in a ompressed text without deompressing it. Given a text T , a orresponding ompressedstring Z = z1 : : : zn, and a pattern P , the ompressed mathing problem onsists in �nding all ourrenesof P in T , using only P and Z. A naive algorithm, whih �rst deompresses the string Z and then performsstandard string mathing, takes time O(u + m). An optimal algorithm takes worst-ase time O(n + m),where n = jZj. In [2℄, a new riterion, alled extra spae, for evaluating ompressed mathing algorithms,�Partially supported by ECOS/Coniyt Projet C99E04.yDept. of Computer Siene, University of Chile. Blano Enalada 2120, Santiago, Chile. gnavarro�d.uhile.l.Partially supported by Fondeyt grant 1-020831.zEquipe G�enome et Informatique, Tour Evry 2, 523, plae des terrasses de l'Agora, 91034 Evry, Frane.raffinot�genopole.nrs.fr. 1



was introdued. Aording to the extra spae riterion, algorithms should use at most O(n) extra spae,optimally O(m) in addition to the n-length ompressed �le.We de�ne now a variation where we are required to report all the mathing positions. That is, given Pand Z, report all the jxj suh that T = xPy. The optimal algorithm for this problem takes O(m + n + R)time, where R is the number of mathes.Two di�erent approahes have emerged in the last years to ombine ompression and searhing in textualdatabases. A �rst one is strongly oriented to natural language texts, whih are assumed to be omposed ofwords whih follow some statistial rules. The basi idea is to ompress the text using Hu�man, where thewords instead of the haraters are taken as the symbols [8, 25℄. As Hu�man assigns a �xed ode to eahsymbol, searhing a given string is a matter of ompressing it and searhing it in the ompressed text usinga lassial string mathing algorithm with minor modi�ations [27, 26℄. Despite its simpliity, this approahis very e�etive on natural language text, with better ompression ratios than those of the Ziv-Lempelfamily, and searh time whih is between 2 and 8 times faster than the fastest algorithms for standard stringmathing over the unompressed text. They are also able to searh for omplex patterns (suh as regularexpressions) and allow errors in the mathes, provided that words are mathed against words. The averagesearh time for a simple pattern is lose to O(m + n log(u=n)=(u=n)). The extra spae is O(pu), whih isthe same spae neessary to deompress the text. A weakness of this sheme is that it does not work wellon small texts (say, less than 10 Mb), sine in that ase the voabulary is almost as big as the text itself.Also, it an be applied only to natural language texts.Another pratial approah is an ad-ho tehnique [21℄, whih however obtains ompression ratios ofnear 70% (against 30% to 40% of Ziv-Lempel algorithms) and relies on the ASCII enoding. A more elegantgeneralization [32℄ is based on byte-pair enoding and ahieves similar searh times and ompression ratioslose to those of lassial Hu�man.The seond line of researh onsiders Ziv-Lempel ompression, whih is based on �nding repetitions inthe text and replaing them with referenes to similar strings previously appeared. LZ77 is able to refereneany substring of the text already proessed, while LZ78 referenes only a single previous referene plus anew letter that is added. In both ases, the referened text to be found is normally limited by a windowwhih preedes the urrent text position.String mathing in Ziv-Lempel ompressed texts is muh more omplex, sine the pattern an appear indi�erent forms aross the ompressed text. In [2℄ a ompressed mathing algorithm for LZ78 is presented,whih works in time and spae O(m2+n). For LZ77, the only result is [12℄, whih is a randomized algorithmto determine in time O(m + n log2(u=n)) whether a pattern is present or not in an LZ77-ompressed text,but they do not �nd all the pattern ourrenes. More pratial approahes to this problem have appearedin [30, 19℄ based on bit-parallelism and in [31℄ based on Boyer-Moore.On the other hand, little has been done for searhing exible patterns on ompressed text. Very reently,two solutions for approximate pattern mathing have been proposed [16, 23℄, although their main value istheoretial. Simpler apabilities, suh as permitting lasses of haraters and allowing replaements, havenot yet reeived muh attention.In this paper, an extended version of [30℄, we aim at eÆient algorithms for exible string mathing on Ziv-Lempel ompressed texts. We present new theoretial developments but also give pratial implementationsand experiments on our algorithms.Our approah is pratial and relies on bit-parallelism. Bit-parallelism [3, 36℄ is a general tehnique totake advantage of the fat that the omputer operates in parallel over all the bits of the mahine word, sothat if a proess is so simple that it an be expressed with bit operations we an perform many of thosesteps in a single operation of the proessor. If we all w the length in bits of the mahine word (typially 32or 64), then the possible speedups are up to O(w).Our main results are:� We develop a general tehnique for string mathing on a text whih is given as a sequene of bloks.This abstrats the essential features of Ziv-Lempel ompressed texts and is the basis for the algorithms2



whih run over spei� members of the family.� We apply the tehnique to the LZ78 ompression sheme. The result is an algorithm whih turns outto be a pratial implementation of the theoretial proposal of [2℄. This algorithm is O(ndm=we+R)time in the worst and average ase (O(n + R) on short patterns), and is in pratie twie as fast asdeompressing and searhing.� We apply our tehnique to LZ77-ompressed texts. The result is an algorithm to searh under thisompression sheme (reall that [12℄ annot �nd all the ourrenes of the pattern). The algorithm,however, is O(u) time at best. In pratie, the algorithm is slower than unompressing the text andsearhing it with a lassial algorithm.� We propose LZ-Bloks, a hybrid ompression sheme whih is between LZ77 and LZ78, whih keepssome of the good features of LZ77 and whih an be searhed in O(min(u; n logm) + ndm=we + R)time on average (and O(min(u;mn) + ndm=we+ R) in the worst ase). In pratie, the ompressioneÆieny is similar to LZ77 and the searh time is similar to LZ78.� We show how to searh some extended patterns in a sequene of bloks, suh as how to allow lassesof haraters or approximate string mathing, the last one being an open problem advoated in [2℄.In all ases our preproessing ost is O((� +m)dm=we) and our extra spae is O(ndm=we + R), almostthe same neessary to deompress the text.2 String Mathing on BloksWe desribe now a general tehnique for string mathing when the text is presented as a sequene of atomistrings (here alled \bloks") instead of a sequene of haraters. This tehnique is the basis for all thedi�erent searhing algorithms on Ziv-Lempel ompressed text, whih are desribed in the next setions. Tosimplify the notation, we number pattern positions starting at zero.Our general assumption is that the bloks either have just one letter (that we an aess diretly) orare formed by a onatenation of previously seen bloks. We desribe an online algorithm where we proessthe text blok by blok. At any moment of the searh we denote T 0 the text already proessed (of jT 0jharaters). When we �nish the searh, T 0 = T , i.e. the original text.The method works as follows. We proess the bloks one by one. For eah new blok B, we ompute adesription for B whih has all the information of the blok whih is relevant for the searh. This desriptionis denoted D(B) = (L;O; S; P;M), where� L = jBj, that is, the length of B in haraters;� O = O�s(B) = the length in haraters of the text we had proessed when B appeared;� S = Su�(B) = all the pattern positions whih either start a omplete ourrene of B inside thepattern, or start a proper pattern suÆx whih mathes with a pre�x of B. Formally,Su�(B) = fjxj; 9y; P = xByg [ fjxj; 9y; z; jxj > 0 ^ jzj > 0 ^ P = xz ^ B = zyg ;� P = Pref(B) = all the pattern positions whih either follow a omplete ourrene of B inside thepattern, or follow a proper pattern pre�x whih mathes with a suÆx of B. Formally,Pref(B) = fjxBj; 9y; P = xBy ^ jyj > 0g [fjzj; 9y; z; jzj > 0 ^ jyj > 0 ^ P = zy ^ B = xz g ;3



� M = Mathes(B) = all the blok positions where the pattern ours (; if jBj < jP j). Formally,Mathes(B) = fjxj; 9y; B = xPyg :Figure 1 illustrates these onepts.
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P PFigure 1: Pre�xes (P) and suÆxes (S) for a long and a short blok. The pattern has the diagonal tilingand the possible bloks have a bar tiling. The suÆxes (dotted lines) and pre�xes (dashed lines) are patternpositions. Pre�xes are marked after the position where they �nish, suÆxes are marked at the position theystart.The desription D(B) of a new blok B is obtained in two forms: (a) the blok is an expliit letter andthen we obtain the desription diretly, or (b) the blok is a onatenation of other bloks previously known,and we obtain its desription by operating on the desriptions of the previous bloks.One the desription of the new blok is omputed, we use that desription to update the state of thesearh. This onludes the proessing of the blok and we move to the next one. The state of the searhontains the mathes that have already ourred and the potential mathes in progress, that is,� Res(T 0) = the text positions that mathed up to now, formallyRes(T 0) = fjxj; 9y; T 0 = xPyg ;� Ative(T 0) = the set of positions following the pattern pre�xes whih math a suÆx of the urrenttext. Formally, Ative(T 0) = fjxj; 9y; z jxj > 0 ^ jyj > 0 ^ P = xy ^ T 0 = zxg :Hene, when we omplete the text proessing and T 0 is not a text pre�x anymore but the whole text,Res(T ) is our answer. The initial state of the searh is T 0 = �, and Res(�) = Ative(�) = ;.We have de�ned already the information we keep, and onsider now how to ompute that information.For the formulas that follow, we de�ne some auxiliary funtions, namely� Lefti(X) = fx� i; x 2 Xg [ fm� i;m� i+1; : : : ;m� 1g, whih reeives a set of Su�() positionsnot smaller than i, subtrats i to all them and then adds new pattern positions �lling the hole left bythe shift.� Righti(X) = fx+ i; x 2 Xg [ f1; 2; : : : ; ig, whih does the same for Pref() positions, in the otherdiretion.� Addi(X) = fi+ x; x 2 Xg, whih adds i to all the elements of the set.� Subtri(X) = fi� x; x 2 Xg, whih subtrats all the elements of the set from i.4



2.1 Desription of a LetterThe base ase of our sheme is to obtain the desription of a blok whih is a letter a. The following isobtained by diret appliation of the general formulas.� jBj = 1� O�s(B) = jT 0j� Su�(B) = fjxj; 9y; P = xayg� Pref(B) = fjxaj; 9y; P = xay ^ jyj > 0g� Mathes(B) = if P = a then f0g else ;2.2 Conatenating Two BloksAssume that our blok B is de�ned as the onatenation of one or more previous bloks. If only one previousblok B0 is referened, we just opy its de�nition. We show now how to onatenate two bloks, sine thease of more than two bloks is a simple iteration over this proedure. We are given two bloks B1 and B2,and we have to obtain the desription for their onatenation D(B) = D(B1B2) = D(B1) � D(B2) (wherewe de�ne � as the onatenation of blok desriptions). The formulas are as follows� jBj = jB1j+ jB2j� O�s(B) = jT 0j� Su�(B) = Su�(B1) \ LeftjB1j(Su�(B2))� Pref(B) = Pref(B2) \ RightjB2j(Pref(B1))� Mathes(B) = Mathes(B1) [ AddjB1j(Mathes(B2))[ (SubtrjB1j(Pref(B1) \ Su�(B2)) \ f0; 1; 2; : : : ; jBj �mg)We explain now the rationale for the formulas (see Figure 2). The �rst two are immediate. For Su�(B),note that Su�(B1B2) onsiders that either a pre�x of B1 may be a suÆx of P or B1 may be ompletelyinside P followed by a pre�x of B2 mathing the a suÆx of P . That is, if the number i belongs to Su�(B1B2)then either� i � m� jB1j, that is, a pre�x of B1B2 is a suÆx of P . Notie that in this ase also a pre�x of B1 is asuÆx of P . Sine LeftjB1j will add all these positions, they will appear in the result if and only if theyare present in Su�(B1), whih is orret.� i < m� jB1j, that is, B1 appears inside P and is immediately followed by an ourrene of B2 (whihan be a omplete ourrene or share a pre�x with the pattern suÆx). If we subtrat jB1j to theelements in Su�(B2), then we are interested in the positions whih also appear in Su�(B1) (whih sinei < m� jB1j an only orrespond to omplete ourrenes of B1).The rationale for Pref() is analogous to Su�(). For Mathes(B), there are three parts. The �rst one isthe mathes whih are inside B1, and the seond one is the same for B2 (displaed sine now B2 omes afterB1 in B). The third one aounts for mathes that appear only when B1 and B2 are onatenated. If apre�x of the pattern is at the end of B1, and the orresponding suÆx is at the beginning of B2, then we havethe pattern in B1B2. The Subtr onverts pattern to blok positions and the �nal set whih is intersetedwith the results ensures that we have really pre�xes and suÆxes instead of substrings of the bloks.5
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Figure 2: SuÆxes of the onatenation of two bloks. It is possible that the result involves only B1 (rightmostpair) or that it involves both. In this ase B1 is ompletely inside the pattern and B2 may or may not betotally inside (leftmost and middle pairs, respetively).2.3 Updating the Searh StateWe want now to update the state of our searh by proessing a new blok B whose desription has justbeen omputed. The formulas to obtain the new Res(T 0B) and Ative(T 0B) values from the old Res(T 0)and Ative(T 0) ones are� Ative(T 0B) = RightjBj(Ative(T 0)) \ Pref(B)� Res(T 0B) = Res(T 0) [ AddjT 0j(Mathes(B)) [SubtrjT 0j(Ative(T 0) \ Su�(B) \ fm� jBj;m� jBj+ 1; : : : ;m� 1g)The new Ative(T 0B) value onsiders that, sine a new blok B has been added to T 0, the pattern pre�xesthat are suÆxes of T 0B are those that are already suÆxes of B (i.e. Pref(B)), or those whih are suÆxesof T 0 and are followed by B in the pattern. As before, Right does the trik of onsidering both ases in asingle formula.The new value Res(T 0B) adds to Res(T 0) not only the mathes whih are ompletely inside B, but alsothose whih appear when T 0 is onatenated to B. For this sake, we onsider pattern pre�xes whih aresuÆxes of T 0 (i.e. Ative(T 0)), and whih are followed by the orresponding pattern suÆx in B. The �nalintersetion ensures that the omplete pattern has appeared. Figure 3 illustrates.
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Figure 3: Updating the state of the searh. In the �rst ase we illustrate the updating of Ative(T 0) (a shortblok is added). In the seond ase we show how the mathes are updated (when a long blok is added). Ingeneral both updates are neessary.2.4 Extended PatternsWe show now how to handle some extended patterns in this paradigm. A �rst alternative, whih is easilyimplemented using bit-parallelism (see next setion) is to allow lasses of haraters, i.e. the pattern atposition i mathes not just one letter but a set of letters. The pattern an then be seen as a sequene ofsets of haraters P = 1 : : : m, i � �. This is easily implemented by modifying our equations for a singleletter a, so that instead of P = xay we require P = xAy ^ a 2 A.6



Approximate searhing an also be performed in this senario. In this ase we allow that the patterndoes not math exatly but up to k errors. An alternative de�nition is that we want all the text segmentst suh that dist(t; P ) � k, where dist(a; b) gives the minimum number of operations (errors) to perform onP or t to transform one into the other. There are many hoies to de�ne what is an error, but the mostommonly used are: allow substitutions (Hamming distane) or allow substitutions, insertions, and deletions(Levenshtein distane). If we want to searh all the pattern ourrenes with up to 0 < k < m substitutionerrors, we keep for eah blok and eah i 2 0::k a desription Di(B). It represents all the blok informationwhen the mathes are allowed to ontain up to i errors. There is a di�erent searh state for eah i (i.e.Ativei(T 0)), representing that a pattern pre�x mathes a text suÆx with up to i errors. Res(T 0) is the samefor any i, and keeps trak of the mathes allowing k errors.We write Prefi(B) and Su�i(B) when we refer to Di(B), while the other omponents are independenton i. Mathes(B) refers to the mathes allowing up to k errors whih ourred ompletely inside the blok.GivenD(B) = (L;O; S; P;M) andD(B0) = (L;O; S0; P 0;M) we de�neD(B) [ D(B0) = (L;O; S[S0; P[P 0;M) as their union. With this notation we an express the onatenation of two bloksDi(B) = Di(B1B2),allowing i errors: Di(B) = i[j=0Dj(B1) �Di�j(B2)(where we reall that � represents the onatenation of desriptions). The reason for this formula is as follows:imagine that we searh with k = 2 errors. Then, we an pair a pre�x that mathed with zero errors with asuÆx that mathed with two errors, or a pre�x that mathed with one error with a suÆx that mathed withone error, or a pre�x that mathed with two errors with a suÆx that mathed with zero errors. In general,the sum of errors between pre�x and suÆx must be k. This is easily generalized if we are interested in i � kerrors.To update the Ativei(T 0) values we use a similar idea, i.e.Ativei(T 0B) = i[j=0RightjBj(Ativej(T 0)) \ Prefi�j(B)where the rationale is the same as before: we math with i errors if we already mathed a pattern pre�xwith j errors and the blok starts with the orresponding pattern suÆx mathed with i� j errors. Figure 4illustrates.
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2 errors2 errorsFigure 4: Updating Ative(T 0) when 2 errors are allowed.The Res(T 0) value is interested only in k errors:Res(T 0B) = Res(T 0) [ AddjT 0j(Mathes(B))[ SubtrjT 0j(Ativek(T 0) \ Su�k(B) \ fm� jBj;m� jBj+ 1; : : : ;m� 1g)while however the other Ativei(T 0) values are neessary to maintain Ativek(T 0).The values for an individual letter a is also modi�ed:7



� Su�i(B) = f0; 1; 2; : : : ;m� 1g� Prefi(B) = f1; 2; 3; : : : ;m� 1g� Mathes(B) = if (m = k + 1 ^ 9x; y P = xay) then f0g else ;Notie that if k > 0 (i.e. our ase of interest), then a single letter mathes at any pattern position. Onthe other hand, the pattern mathes inside the letter only if we an delete all its letters and leave a singleone whih is equal to a (the ase of deleting all the letters is not onsidered beause it implies m = k, whihis a trivial problem).The ase of the Levenshtein distane is more ompliated, beause the mathes may not have the samelength. In this ase we need to store, instead of initial and �nal positions of mathes (Prefi(B) and Su�i(B)),the segments of the pattern that math with i errors or less. We de�neSegmi(B) = f(i; j); dist(Pi::j�1; B) � kginstead of Prefi(B) and Su�i(B). For blok onatenation, instead of interseting pre�xes of B1 with suÆxesof B2, we onsider the segments of B1 immediately followed by segments of B2 and take their onatenation.We do not work out the details beause, as explained in the next setion, we do not have an eÆientimplementation (the naive implementation is O(m2k2n) if we perform O(n) blok onatenations).3 A Bit-Parallel ImplementationUntil now, we have de�ned our algorithms in terms of sets of pattern positions. We present now a verywell-suited implementation paradigm whih allows to onvert the previous algorithms into eÆient imple-mentations.We use the tehnique alled bit-parallelism [3, 36℄. This tehnique takes advantage of the fat that theproessor works in parallel on all the bits of the omputer word. We all w the number of bits of the omputerword, whih is 32 or 64 in urrent arhitetures. If one is able to map the elements of a set onto bits, andto express the operations to perform on them by using only the operators provided by the proessor (whihare rather limited, i.e. bit shifts, masking, et.), then one an e�etively parallelize the work on the set,obtaining speedups of up to O(w) over the original algorithm.Our aim is to represent a set of pattern positions (whih is a subset of f0 : : :m� 1g) as a bit mask of mbits. The i-th bit of the bit mask will be 1 (and said to be \ative") if and only if position i�1 belongs to therepresented set. When writing down bit masks, the �rst bit position is the rightmost one, and exponentiationis used to denote bit repetition, e.g., 031 means 0001, where only the �rst bit is ative. We speak of bitmasks of length m even if m > w, in whih ase we would atually need dm=we atual omputer registers torepresent the bit mask.To write down the operations done on bit masks, we use a C-like syntax: \j" is the bitwise-or of two bitmasks, and represents set union; \&" is the bitwise-and of two bit masks, and represents set intersetion;\<< `" is a bit shift operation whih assigns the i-th bit to the (i+ `)-th, setting the �rst ` bits to zero; and\>> `" does the same in the other diretion.The sets Pref(B), Su�(B), and Ative(T 0) will be represented as bit masks. For bloks of one letter awe have Su�(B) = S[a℄ and Pref(B) = (S[a℄ << 1), where S is a preomputed bit mask table suh that, forany a 2 �, the i-th bit of S[a℄ is ative if and only if Pi = a.The formulas to onatenate bloks are diretly translated by notiing that:� Left`(X) is omputed as (X >> `) j 1i0m�i.� Right`(X) is omputed as (X << `) j 0m�i�11i0.� X [ Y is omputed as X j Y . 8



� X \ Y is omputed as X & Y .For example, the formula to update Pref(B) in Setion 2.2 is omputed asPref(B) = Pref(B2) & ((Pref(B1) << `) j 0m�i�11i0)Hene, all those operations on sets are performed in O(1) time if m � w, and O(m=w) time in general.In pratial text searhing we an assume m = O(w).On the other hand, the sets Res(T 0) and Mathes(B) are expliitly stored in an array. However, it is notdiÆult to see that the total amount of work to handle them is O(R), where R is the number of ourrenesof the pattern in the text. The ost annot be o(R) if we report all the ourrenes.Hene, if f(n) onatenations are performed along all the proess, our total searh ost is O(f(n) + R).The value of f(n) depends on the ompression algorithm. We have also to add a preproessing ost to buildthe S[ ℄ table, whih is O((� +m)dm=we).The bit-parallel paradigm allows to seamlessly expand the type of patterns we are able to searh. Sinethe T table is the only onnetion between the pattern and the searh, we an for instane allow having lassesof haraters, that is, eah pattern position mathes with a set of haraters instead of just one harater.To ahieve this, just set the i-th bit of S[a℄ to \math" for any a 2 Pi. Other extended patterns onsideredin [36℄, suh as regular expressions, are not easily adapted to this sheme. It is also possible to handle errorsin the mathes, suh as replaement errors [4℄ (at O(m log(k)=w) ost per harater) or insertions, deletionsand replaements at O(mk=w) [36, 5℄ or even O(m=w) [28℄ ost per harater. The implementation of ourtehnique to handle mismathes is O(k2f(n) + R) ost, while the extension for Levenshtein distane is noteasily implemented.In all ases, the spae omplexity of our algorithms is O(ndm=we + R), sine we need to store thedesriptions of the bloks already seen and the mathes found. Notie that this n refers in fat to the sizeof the ompression window, and the R to the mathes present in that window only.Finally, we onsider the pratial problem of unompressing a neighborhood of the ourrenes. Inpratie it is undesirable that we just give the text positions mathing the pattern. It is muh better tounompress and show a neighborhood of the math. This neighborhood an be de�ned as the line holdingthe ourrene, the reord (delimited by some given pattern), a �xed number of haraters, et.Assume that we �nd a pattern ourrene in the ompressed text and want to show a neighborhood of theourrene. Sine we have searhed up to that point, we have the information to deompress the surroundingbloks forward and bakward, until from the plain text obtained we determine that the neighborhood hasbeen deompressed. To deompress a blok we have two ases: (a) the blok is a letter, in whih asewe deliver the letter, (b) the blok is a onatenation of other bloks, in whih ase we deompress eahof those bloks in turn. This proess takes O(N) time at most (where N is the size of the deompressedneighborhood), sine at eah step we either obtain one harater of N or split the �nal text to be obtained,and it is not possible to split it more than O(N) times. This shows that it is pratial to show a part of aZiv-Lempel ompressed �le without neessarily unompressing the whole �le.4 LZ78 Compression4.1 Compression AlgorithmThe Ziv-Lempel ompression algorithm of 1978 (usually named LZ78 [39℄) is based on a ditionary of bloks,in whih we add every new blok omputed. At the beginning of the ompression, the ditionary ontainsa single blok b0 of length 0. The urrent step of the ompression is as follows: if we assume that a pre�xt1 : : : ti of T has been already ompressed in a sequene of bloks Z = b1 : : : b, all them in the ditionary,then we look for the longest pre�x of the rest of the text ti+1 : : : tu whih is a blok of the ditionary. Onewe found this blok, say bk of length lk, we onstrut a new blok b+1 = (k; ti+lk+1), we write the pair at9



the end of the ompressed �le Z, i.e Z = b1 : : : bb+1, and we add the blok to the ditionary. It is easy tosee that this ditionary is pre�x-losed (i.e. any pre�x of an element is also an element of the ditionary)and a natural way to represent it is a trie.We give as an example the ompression of the word ananas in Figure 5. The �rst blok is (0; a), and next(0; n). When we read the next a, a is already the blok 1 in the ditionary, but an is not in the ditionary.So we reate a third blok (1; n). We then read the next a, a is already the blok 1 in the ditionary, but asdo not appear. So we reate a new blok (1; s).
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Figure 5: Compression of the word ananas with the algorithm LZ78.The ompression algorithm is O(u) in the worst ase and eÆient in pratie if the ditionary is stored asa trie, whih allows rapid searhing of the new text pre�x (for eah harater of T we move one in the trie).The deompression needs to build the same ditionary (the pair that de�nes the blok  is read at the -thstep of the algorithm), although this time it is not onvenient to have a trie, and an array implementationis preferable. Compared to LZ77, the ompression is rather fast but deompression is slow. LZ78 is used byUnix's Compress program.Many variations on LZ78 exist, whih deal basially with the best way to ode the pairs in the ompressed�le, or with the best way to update the window. A partiularly interesting variant is from Welh, alledLZW [34℄. In this ase, the extra letter (seond element of the pair) is not oded, but it is taken as the �rstletter of the next blok (the ditionary is started with one blok per letter). A variant over this is presentedby Miller and Wegman [24℄ (whih we all LZMW), where the new blok is not the previous one plus the�rst letter of the new one, but simply the onatenation of the previous and the new one.4.2 Pattern Mathing in LZ78 Compressed FilesOur general algorithm for searhing in a sequene of bloks Z = b1 : : : bn an be diretly applied if we onsiderthe new letter added after eah blok reated by the LZ78 ompression algorithm as a separate blok. Thatis, eah new pair (k; a) read at step  is taken as a referene to a previous blok (bk) followed by a literalblok (a). Hene, we ompute the desription of the onatenation of bk and a and add it as the new blokb to our ditionary. At the same time, we update the state of the searh using the desription of b justomputed. Of ourse, in pratie we manage this one-letter blok in a speial way, to speed-up the blokonatenation. We keep all the desriptions of the bloks bk in an array whih is diretly aessed.The algorithm we obtain is quite the same as in [2℄. The main di�erenes are that we obtain thisalgorithm as a partiular ase of a general string searh algorithm for text that omes in bloks, that theiralgorithm is originally designed for LZW ompression, and that we searh all the ourrenes of the pattern,not only the �rst one. Moreover, we present a pratial implementation based on bit-parallelism, while [2℄ isa theoretial work that has not been implemented. To our knowledge ours is the �rst real implementation10



of this algorithm1. It is quite easy to adapt our algorithm to work on other variants of LZ78, suh as LZWor LZMW. In partiular we an easily adapt to di�erent window management poliies. The simplest one isthat when the ompressor memory is full, the ditionary is deleted and ompression is restarted. Others tryto remove the least interesting bloks from the ditionary, e.g. [13℄. Our searher an follow the same stepsof the ompressor along the searh, using the same amount of memory.4.3 AnalysisThe theoretial omplexity of the pattern mathing algorithm is O(ndm=we+R), whih beomes O(n+R)on short patterns. If n = o(u), this is faster than searhing in the unompressed text. In pratial terms,the algorithm is rather eÆient sine no extra work apart from one blok onatenation and one update ofthe searh is performed per element of the ompressed �le.Our experimental results, however (Setion 7), show that the algorithm takes in pratie twie the timeof a Shift-Or run on the unompressed text. This is beause Shift-Or is very simple, and although weproess many haraters of the unompressed text in one shot, in pratie the ost of eah step is bigenough to amortize any possible gain due to ompression. A spei� problem is the loality of referene:the ompressed mathing algorithm reads random positions in the array of blok de�nitions, while theunompressed algorithm works basially in-plae. The ahing mehanism of the omputer largely favorsthis last approah.However, there is a positive result. Searhing the ompressed �le with this algorithm is twie as fastas deompressing it and then searhing the unompressed �le. For this omparison we are assuming thatthe �le is ompressed with LZ77 (whih is muh faster than LZ78 to deompress) and onsider the timeof gunzip, whih is an optimized deompression software. Hene, if the text olletion is kept ompressed(whih is de�nitely of interest) then it is muh faster to searh diretly the ompressed �les.We have tried to further improve our algorithm. For instane, we have reated a variant alled Mark-LZ78. In this ompression algorithm, we mark with a bit ag for eah blok if the blok is a leaf of theditionary trie or not, to avoid storing the blok desription if this blok is not used anymore. However, aswe show in the experiments, the performane does not improve.5 LZ77 Compression5.1 Compression AlgorithmThe Ziv-Lempel ompression algorithm of 1977 (usually named LZ77 [38℄) is, in some sense, simpler thanLZ78, sine the basi idea is just to reognize two repeated segments of the text and to mark the seond asa referene (position in the text and length of the repeated part) to the �rst one. More formally, assumethat a pre�x t1 : : : ti of T has been already ompressed in a sequene of bloks Z = b1 : : : b. We look for thelongest pre�x v of ti+1 : : : tu whih appears already in t1 : : : titi+1 : : : ti+jvj�1. One we have it, say that we�nd it starting at position j � i, we add a new blok (j; jvj) to the ompressed �le Z. A speial ase oursif v is empty, in whih ase ti+1 is a new letter and we ode it with a speial blok (0; ti+1). With the sameexample ananas, we obtained: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 3) s; (0; a)(0; n)(1; 3)(0; s).Notie that the above de�nition allows that the referened blok overlaps the one whih is being om-pressed. Another variant avoids this for simpliity, i.e. v must be found in t1 : : : ti. In this ase theompression of ananas beomes: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 2) as; (0; a)(0; n)(1; 2)(1; 1) s;(0; a)(0; n)(1; 2)(1; 1)(0; s).Yet another variant odes the repeated blok and then the letter whih follows it in the still unompressedtext. There are many other variants as well, mainly related to how to represent the pairs in the ompressed1See, however, [19℄, in this very same onferene. 11



�le and how to ompress fast. In general, the position j is oded as the di�erene i + 1� j, sine the lastourrene of the blok is used and v is normally restrited to not appear too far away from ti.LZ77 ompresses more than LZ78, both in theory and in pratie. From a theoretial point of view,LZ77 an referene any text substring seen before, while LZ78 an only referene a subset of those strings.In partiular, the LZ77 variant that allows overlaps an obtain a ompressed �le of O(1) bloks in the bestase, while the one not allowing overlaps obtains at most O(log u). LZ78, on the other ase, annot obtainless than O(pu). This is easily seen by onsidering the best-ase �le T = au. In pratie it is also true thatLZ77 ompresses more than LZ78. LZ77 is implemented in the Gnu gzip program.Compression is rather slow with LZ77. It is expensive in time and spae to �nd the longest pre�x of theunompressed part of the �le that appears already in the ompressed part. In theory, the ompression isO(u) in time and spae by the use of a suÆx tree or a DAWG automaton [38, 37℄. In pratie, the searh indone in a bu�er window and an large hash table is normally used, as in gzip. An experimental omparison ofdi�erent tehniques to �nd the pre�x an be found in [7℄. The deompression algorithm, on the other hand,is very fast (faster than for LZ78) beause to deompress a blok is it just neessary to opy a part of thetext and no ditionary has to be kept.5.2 Pattern Mathing in LZ77 Compressed FilesOur algorithm for LZ77 is an adaptation of the general algorithm on bloks, with a main di�erene. On LZ77ompressed �les, when we want to proess a new blok, the situation shown in Figure 6 generally ours:the new blok referenes a sequene of r ontiguous previously proessed bloks, but it overlaps with the�rst and last one (u and v in the Figure). That is, the new blok does not exatly orrespond to previouslyproessed bloks. Therefore, we do not have all the information on the bloks u and v that we need toonatenate the bloks.We solve this by omputing reursively the desriptions of the two bloks u and v with the same method.That is, we simulate that we are bak in the text, where those bloks appeared, and ompute their desription(this may trigger more reursive invoations with the same purpose). When we �nally obtain the desriptionsof u and v, we onatenate all the referened bloks to obtain the desription of the new blok. Anotherpossibility is that the new blok is ompletely inside another blok already proessed, in whih ase we haveto reursively onsider the bloks that de�ne the referened blok.
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Figure 6: Reursive omputation of the desription of a blok in LZ77 ompressed �les.We explain now a tehnique to onatenate the r bloks in low average time. Instead of omputingPref(B) and Su�(B) of the �rst blok, then onatenating with the seond, then to the third, until the rbloks are onatenated, we ompute Su�(B) from the �rst blok to the r-th and Pref(B) from the r-thblok to the �rst one. We analyze this shortly.5.3 Analysis and ImprovementsWe analyze now the many aspets of our algorithm and propose some improvements.12



Blok onatenation. If we use the proposed blok onatenation tehnique, we have that in the worstase only the �rst m bloks an a�et Su�(B) and only the last m bloks an a�et Pref(B), so the worstase time for onatenating the bloks beomes O(min(u;mn)).We show now that on average only O(logm) bloks are proessed until Su�(B) beomes stable. Eah newblok harater we proess will either extend the urrent suÆxes of the set Su�(B) or make them disappearfrom the set. Eah suÆx is removed from the set with probability 1 � 1=� (i.e. if the new harater blokannot extend it). Before we read the blok haraters all the m pattern positions are in Su�(B), andtherefore on average no pattern positions remain in the set after O(logm) blok haraters are read (afterthe i-th harater is read, the pattern positions m � i to m � 1 annot be removed from the set, but theirsituation annot hange anyway).Even if we onsider all bloks of length 1 (the worst), we work on average O(n logm) beause of onate-nations. The same reasoning holds for Pref(B).The only part of the blok onatenation whih annot skip bloks is the omputation of Mathes(B).However, this adds up O(R) time along all the searh. Therefore, the total time for blok onatenation isO(min(u; n logm) +R) on average.Finding the bloks. We onsider now how to �nd the indies of the blok that de�ne a text positionj. We keep an array with the bloks already seen. Binary searhing the text position among these bloksadds O(n logn) to the ost. Instead, we keep a table of O(n) entries where the element i points to theblok where the text position biu=n is de�ned. By aessing this table we diretly arrive at the orretblok with an average inauray of O(u=n), and a �nal binary searh �nds the orret position, for atotal ost of O(n log(u=n)) (in pratie a linear searh is faster for the �nal part). This gives good resultsin pratie. Another alternative is that the ompressor does not store the text position and length ofthe repeated part, but instead it gives the blok numbers involved and the o�sets inside u and v. Sinea text position needs O(log u) bits and a blok number plus an o�set inside the blok needs on averagedlog2 ne + dlog2(u=n)e = O(log u) bits, the order of ompression ratio should not worsen. We show in theexperiments that this version of the algorithm (alled Blok-LZ77) is faster than the plain version, sine nosearhing of the text position is neessary. However, ompression ratios worsen signi�antly in pratie dueto round-o�s.Computing partial bloks. However, the really ostly part of the algorithm is not here, but in thereursive omputation of the partial bloks u and v. If we onsider that eah time we perform a reursiveall we \split" the original blok B at a new position, then it is lear that at most jBj reursive alls an bedone until we have split it in single haraters and therefore we have found the de�nition of eah one. Thisshows that the total ost of the reursive alls is O(u) in the worst ase. Our experiments suggest that thisis also the average ase, but we were not able to prove it.Consider now the ost of the reursive invoations in the ase where the new blok B is stritly insideits referening blok. For instane, a letter whih repeats inside a large blok ould trigger a long hain ofreursive invoations until its real de�nition is found. In the worst ase, we ould have a blok of size swhih referenes one of size s� 1, and this one referenes another of size s� 2, and so on. We would workO(s), but the size of the text at that point is O(s2). Hene, at text position i we annot work more thanpi, whih gives a total worst-ase ost of O(npu), whih is too high. This problem does not disappear ifthe ompressor always stores the �rst ourrene of the repeated blok instead of the last one, beause wemay not point to the �rst ourrene when we onsider partial bloks.Hene the total amount of work is !(u) in the worst ase whenever n = !(pu), and we onjeture thatthis is also the average ase. See the left plot of Figure 7, where we have experimented with the English textdesribed in Setion 7. Least squares �tting shows that a good model for the number of reursive invoationsper text harater is 0:177+0:1 lnu (with less than 0.5% error in the approximation). The experiment suggests13



that the algorithm is O(u log u) on average. This is, unfortunately, worse than unompressing and searhing.We present now some tehniques to improve this situation.Improvements. A �rst improvement we tried onsisted in storing more information than simply onedesription per blok. For instane, when we ompute the desription for the partial bloks u and v (whihare not part of the original sequene of bloks), we ould store instead of disarding them. If later anotherblok needs the desription of u and v, we have already omputed them. Figure 7 (right plot) shows thatthe total amount of reursive alls is redued using this tehnique, and we onjeture that in this ase wework O(u) (least squares �tting yields a omplexity of O(u0:99927)). These bloks, however, annot be easilystored in the array of bloks sine they do not belong to the sequene. A hashing implementation gave badresults in pratie, that is, the ost to add the new bloks outweighted the gains of having them alreadyomputed. This ould hange for longer texts, if the orders of the two algorithms are di�erent.
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1.01.21.4 nFigure 7: Number of reursive invoations (thik line) and blok onatenations (thin line) per text harater,for natural language text. The left plot shows the basi algorithm and the right plot shows the improvementof adding the omputed bloks.Another improvement, whih gave good pratial results, was to try to ompute less (instead of more)information. Our aim was to avoid the reursive omputation of u and v. Hene, instead of omputing theirdesriptions reursively, we pessimistially assume that they math all the pattern positions. If they are shortenough we will not have a math even assuming this, and we ould proess them without atually obtainingtheir desriptions. Only when we �nd a (possible) math we baktrak to the point where it ould have beenstarted and ompute orretly the involved bloks. For eah blok, we store whether it has been orretly orpessimistially omputed. As we show in the experiments, this improves searh time for patterns of length15 or more in pratie. However, the method is limited sine we annot skip more than m haraters of Twithout having at least one harater orretly omputed, hene in the very best ase we pay O(u=m) withthis speedup. We all this algorithm Skip-LZ77 (and ombined with Blok-LZ77 it yields Skip-Blok-LZ77).Final remarks. Even with all these improvements, the experiments show that this algorithm is muhslower than deompressing (with gunzip) and searhing (with Shift-Or). We believe that it is not possible inpratie to beat a deompress-then-searh approah. The root of this limitation lies in the need to reursivelyompute u and v. Another onsequene of the existene of partial bloks is that, even if the ompressor usesa window of �xed size to selet the strings to repeat, we need to keep in memory all the previous bloks, sineeven if they are not diretly referened anymore, we may need to resort to them in ase of partial bloks.We propose in the next setion a slightly di�erent ompression sheme whih gets rid of all the aspets ofLZ77 ompression that degrade the searhing performane.14



We �nish this setion with a ouple of omments. First, as it is lear from the algorithm, we do nothandle the ase of overlapping ompression, i.e. when the referened blok an overlap with the new blokB. Although we ould handle it, the result is the same in ost as if the ompressor avoided suh overlapping(i.e. performing many steps, where a step ends when an overlap ours). Seond, other variants of LZ77are easily aommodated. Finally, we notie that a neighborhood of size N around the ourrenes an beobtained using the general mehanism at O(Npu) ost (or, aording to the empirial results, O(N logu)ost). This is beause of the ost to �nd the de�nitions of the inomplete bloks.6 LZ-Bloks: A New Hybrid Compression AlgorithmIt beame lear in the previous setion that the worst part of the ost of the LZ77 searh algorithm was due tothe ost of reursively omputing partial bloks, and of �nding the blok orresponding to a text position. Wedesign a new ompression algorithm between LZ78 and LZ77, to have multiple-blok ompression (not justone blok like in LZ78), but also to avoid the reursive situation whih appears in searhing LZ77-ompressed�les (Figure 6).We propose the following algorithm. Assume that a pre�x t1 : : : ti of T has been already ompressed ina sequene of blok Z = b1 : : : b. We look now for the longest pre�x v of ti+1 : : : tu whih is representedby a sequene br : : : br+h already present in the ompressed �le. If there are many alternative hoies forthe same v, we take the one with the minimum of bloks (to redue the ost of onatenations). And ifstill several possibilities our, we take the �rst ourrene (the minimum in the number of the �rst blok).We ode this new blok by (r; h). As in LZ77, if v is empty (i.e the letter ti+1 is new), we ode a speialblok (0; ti+1). With the same example ananas, we obtain: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 1)as; (0; a)(0; n)(1; 1)(1; 0) s; (0; a)(0; n)(1; 1)(1; 0)(0; s).The main advantage of this ompression sheme is that it avoids the reursive ase in the LZ77 patternmathing (Figure 6), beause we know already that the new blok orresponds diretly to a onatenationof already proessed bloks. Moreover, we do not need to searh the text position in the bloks, sine wean diretly aess the relevant bloks.The ompression an still be performed in O(u) time by using a sparse suÆx tree [17℄ where only theblok beginnings are inserted and when we fall out of the trie we take the last node visited whih orrespondsto a blok ending. Deompression is slower than for LZ77, sine we need to keep trak of the bloks alreadyseen to be able to retrieve the appropriate text. Finally, the ompression ratio is in priniple worse than forLZ77 sine we are limited in the text segments that we an use. On the other hand, the numbers to ode aresmaller sine we ode blok positions in O(logn) bits instead of text positions in O(log u) bits. Moreover, ifwe use a simple trik, the ompression is in general better than for LZ78 sine we are not limited to usingjust one blok. The trik is to represent the pairs (r; 0) as (2r), and the pairs (r; h+ 1) as (2r + 1; h). Thispays o� beause the seond element of the pair is frequently zero.The searhing algorithm is like that of LZ77 exept beause we do not need to searh for the bloks andwe do not have to reursively �nd the partial bloks u and v (they simply do not exist now). From theanalysis of the LZ77 pattern mathing algorithm we have that we work O(min(u; n logm)+ndm=we+R) onaverage and O(min(u;mn)+ndm=we+R) in the worst ase (thanks to the improved algorithm to onatenatebloks). In pratie, this algorithm performane is very lose to LZ78 pattern mathing. We also tried amarked version (alled Mark-LZBloks) where for eah blok a bit is stored whih tells whether or not theblok will be used again, but as for LZ78, the searh time does not improve in pratie.Unlike LZ77, we an use less memory if the ompressor restrits the referenes to a window of the text.Sine there are no reursive referenes, those bloks whih are far away in the past need not be stored sinethey will not be referened anymore. Hene, as in LZ78, we need the same memory as the ompressor. Awindow of size N an be displayed in O(N) time. 15



7 Experimental ResultsWe show in this setion our empirial results on the behavior or our searh and ompression shemes. We�rst study the ompression tehniques and later the searh performane.We use mainly two �les for the experiments. One is an English literary text (from B. Franklin) of 1.29Mb, �ltered to lower-ase and with separators normalized. The other is the DNA hain of \h.inuenzae", of1.36 Mb. For omparative purposes, we also show the results on some �les of the the Calgary Corpus2: twobooks (book*), six tro�-formatted sienti� artiles (paper*) and three soure program odes (prog*).7.1 Compression PerformaneIt is interesting to study the ompression performane of the algorithms for two reasons: �rst, we proposeLZ-Bloks, a hybrid ompression sheme whih we have to evaluate in terms of ompression ratios. Seond,our searh algorithms use a tehnique to ode the pairs whih speeds up searh time but whih is suboptimal:the numbers are stored in as many bytes as needed (using the highest bit to denote if there are more bytesor not).We �rst ompare the number of bits needed to ode a �le with LZ-Bloks against the same numberfor LZ77 and LZ78. We all this approah \bit-oding". This is aimed to give and idea of the expetedompression performane when the �le is ompressed with a real tehnique (suh as Elias [11℄ or Hu�manodes). Many other improvements are possible. A deeper study of the best tehniques for LZ-Bloks isdeferred for future study.Table 1 shows the results. The \Ideal" olumn ounts exatly the bits used by eah number stored in theompressed �le, while both \Elias" olumns ount the number of bits needed to represent the numbers usingthese odes3 [11℄. The letters, on the other hand, are Hu�man oded. For English and DNA we show ina seond line the perentages for di�erent variants of the ompressors: Blok-LZ77, Mark-LZ78 and Mark-LZBloks, respetively. With LZ-Bloks we obtain estimated ompression ratios omparable to LZ77. TheLZ-Bloks and LZ77 ompression are better than LZ78 exept for DNA, where only two bits are neessaryto ode a letter. Blok-LZ77, on the other hand, ompresses quite badly.We now perform a pratial omparison using our byte-oding tehniques against good LZ77 and LZ78ompressors, namely gzip and Compress respetively. This is to show how muh ompression are we loosingin order to ease the searhing proess.Table 2 shows the ompression ratios ahieved. The perentages in the seond row of English and DNAhave the same meaning as before. Interestingly, Compress is better than gzip on DNA, whih rarely happenson natural language texts. Our ompression ratios show a penalty with respet to those of gzip. Our byteompression method is very simple, and these results show in whih proportion our ompression ratios ouldbe improved by engineering tehniques, keeping in mind that ompliating the enoding of the numbers risksslowing down the pattern mathing proess.7.2 Searh AlgorithmsWe ompare now the searh time for our algorithms against the deompressing and searhing approah.The experiments were run on a Sun UltraSpar-1 of 167 MHz, with 64 Mb of RAM, running Solaris 2.5.1.We onsider user time, whih is within 2% of auray with 95% on�dene. Time is expressed in seondseverywhere in this setion.In general, searhing a ompressed text has the additional advantage over the unompressed text that itperforms less I/O. However, this is relevant if we ompare ompressed versus unompressed searhing. Thisis not what we ompare here: we onsider that the text is always ompressed. Hene, we measure the ost2ftp://ftp.ps.ualgary.a/pub/projets/text.ompression.orpus/3Reall that Elias- preedes the number x by its length in unary, while Elias-Æ uses Elias- to ode that length that preedesthe number. 16



File Size Ideal Elias- Elias-Æ(Kb) LZ77 LZ78 LZBloks LZ77 LZ78 LZBloks LZ77 LZ78 LZBloksEnglish 1,324 29.67% 36.15% 29.28% 59.34% 64.01% 58.57% 48.96% 52.04% 46.17%52.45% 38.01% 31.24% 104.9% 82.31% 62.48% 74.25% 54.71% 48.75%DNA 1,390 28.03% 25.30% 29.08% 56.06% 47.33% 58.18% 45.77% 37.71% 46.40%47.21% 26.77% 31.15% 94.43% 67.62% 62.30% 73.14% 39.91% 49.03%book1 751 34.10% 40.70% 35.62% 68.20% 70.83% 71.25% 41.26% 44.96% 41.50%book2 597 29.33% 40.21% 30.44% 58.66% 69.46% 60.89% 35.51% 44.41% 35.72%paper1 52 32.33% 46.20% 34.29% 64.53% 77.01% 68.59% 41.05% 51.92% 41.91%paper2 80 32.68% 43.00% 34.80% 65.27% 72.84% 69.60% 41.08% 48.28% 42.01%paper3 45 35.10% 45.50% 38.12% 70.07% 76.23% 76.24% 44.84% 51.36% 46.55%paper4 13 37.60% 47.95% 41.07% 74.74% 78.30% 82.15% 49.92% 54.81% 51.55%paper5 12 39.85% 50.79% 41.74% 79.13% 82.42% 83.49% 52.63% 57.92% 52.39%paper6 37 33.60% 47.72% 35.69% 67.03% 79.08% 71.38% 42.91% 53.72% 43.81%prog 39 32.21% 47.99% 34.16% 64.24% 79.14% 68.32% 41.24% 53.96% 41.95%progl 70 22.45% 39.10% 23.30% 44.82% 65.83% 44.92% 28.04% 43.85% 27.65%progp 48 21.34% 40.36% 22.46% 42.54% 66.95% 46.60% 27.16% 45.33% 28.46%Table 1: Estimated ompression ratios with three di�erent methods. For eah number in the ompressed�le, if we note n the bits needed to ode it, then Ideal ounts only n, Elias- ounts 2n and Elias-Æ ountsn + 2dlog2 ne. The seond line (in italis) of English and DNA orrespond to Blok-LZ77, Mark-LZ78 andMark-LZBloks, respetively.
File gzip Compress Byte-LZ77 Byte-LZ78 Byte-LZBloksEnglish 35.58% 38.90% 44.49% 54.41% 43.29%79.32% 56.20% 45.24%DNA 30.44% 27.96% 41.07% 43.17% 42.23%75.24% 44.90% 44.22%book1 40.76% 43.19% 53.21% 59.92% 53.30%book2 33.83% 41.05% 45.60% 58.55% 46.53%paper1 34.94% 47.17% 54.70% 66.17% 52.67%paper2 36.19% 43.99% 54.65% 62.02% 52.10%paper3 38.89% 47.63% 60.19% 67.92% 58.75%paper4 41.66% 52.36% 69.20% 75.71% 68.24%paper5 41.78% 55.04% 72.27% 79.47% 68.16%paper6 34.72% 49.06% 56.84% 69.33 % 54.76%prog 33.51% 48.32% 54.97% 67.99% 51.95%progl 22.71% 37.89% 37.82% 55.30% 35.47%progp 22.77% 38.90% 35.97% 57.20% 34.20%Table 2: Compression ratios for lassial ompressors and our byte versions. The seond (italis) lines ofEnglish and DNA orrespond to Blok-LZ77, Mark-LZ78 and Mark-LZBloks, respetively.17



of searhing it without deompressing versus the ost of deompressing it and then searhing. Clearly thelast task an be done using an intermediate bu�er in main memory, and therefore the I/O is the same inboth ases. Therefore, we will measure user time, whih exludes I/O time.When we ompare our algorithms against deompressing plus searhing, we have to bear in mind that,in this alternative, one an use any ompression format (not neessarily LZ78, whih happens to be thebest for diret searhing). Therefore, we have opted for gzip/gunzip, an LZ77-based optimized ompressionsoftware that gives better ompression and faster deompression when ompared to other Ziv-Lempel basedompressors. When onsidering the overall deompress-plus-searh time, we add the user time of gunzip plusthat of a searh program run over the plain �le. In our experiene, the user time is almost the same as thatof a speialized implementation using an internal bu�er.Figure 8 ompares the marked and unmarked versions of LZ78 and LZ-Bloks. As it an be seen, there isno advantage in pratie by the use of marking. Therefore, we do not further onsider the marked versions.Another onlusion we take from the �gure is that the searher for LZ-Bloks is slightly faster than for LZ78on English but slower for DNA. This may be related to the good performane of the LZ78 ompressor onDNA.
� � � � � � �� � � � � � �Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.15

0.23
0.150.170.190.210.23

m
� � � � � �� � � � � � �Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ5 305 10 15 20 25 300.13

0.21
0.130.150.170.190.21

mÆ LZ78Æ Mark-LZ78 � LZ-Bloks� Mark-LZBloksFigure 8: Comparison between the marked and unmarked versions of LZ78 and LZ-Bloks ompressors. Theleft plot is for English text and the right one for DNA. The y axis is the user time in seonds for the whole�les.Figure 9 ompares all the searh algorithms together, as well as deompression (with gunzip) plus searhtime (with Shift-Or and BNDM [29℄, a bit-parallel searher whih is the fastest in pratie together with[33℄). It an be seen that Blok-LZ77 improves signi�antly over LZ77, and that the Skip-LZ77 versionsimprove as the pattern length grows. However, all the LZ77 searh algorithms are not ompetitive againstdeompressing and searhing, espeially on DNA. On the other hand, both the LZ-Bloks and LZ78 searhalgorithms are twie as fast as deompressing and searhing.Table 3 ompares the time to searh a random 10-letter pattern on English, DNA and the seleted �les ofthe Calgary Corpus. We onsider the time to deompress with gunzip and to searh with Shift-Or (as seen,for m = 10 the time is very lose to BNDM). We show the results for LZ78 and LZ-Bloks only, as LZ77 hasbeen shown to be muh inferior.
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m� LZ77� Skip-LZ77 � Blok-LZ77� Skip-Blok-LZ77 Æ LZ78� LZ-Bloks gunzip + Shift-Orgunzip + BNDMFigure 9: Comparison of the searh algorithms. The dotted line is the time taken by gunzip alone. The leftplot is for English text and the right one for DNA. The y axis is the user time in seonds for the whole �les.8 ConlusionsWe have foused in the problem of string mathing on Ziv-Lempel ompressed text. This is an importantpratial problem, as it is of interest keep the texts ompressed and at the same time being able to eÆientlysearh on them.We presented a general paradigm to searh in a text that is expressed as a sequene of bloks, whihabstrats the main features of Ziv-Lempel ompression. Then, we applied the tehnique to the di�erentvariants, i.e. LZ77 and LZ78. For LZ78, we are able to searh in half the time of unompressing andsearhing, while for LZ77 our algorithm, is muh slower. This motivated us to present LZ-Bloks, a newhybrid ompression tehnique whih allows to searh as fast as in LZ78 but whih keeps many of the featuresof LZ77 ompression, being in pratie similar in ompression ratios.Therefore, we are able to searh in a ompressed text faster than unompressing and then searhing. Ingeneral, on the other hand, searhing on ompressed text at the same speed of on unompressed text seemsdiÆult to ahieve in pratie beause of a basi problem of loality of referene.It is interesting to note that our algorithms are general enough to work on general ollage systems (whihenompass LZ77), and have good performane on regular ollage systems (whih enompass LZ78, LZW andLZ-Bloks) [18℄. This model divides the ompression format in two parts: a ditionary D whih stores the setof symbols that an be used in the ompressed text, and the ompressed text S itself, whih is a sequene ofelements in D. A regular ollage system builds D using atomi elements and onatenation of other elementsin D. As we have desribed our algorithms in terms of onatenations of bloks, the tehniques immediatelygeneralize to regular ollage systems. General ollage systems also permit repetition and trunation of otherelements in D. More insights are given in [18℄ about the diÆulty of searhing on general ollage systems.Later work reported in [31℄ presents fast searhing on LZ78/LZW by using Boyer-Moore tehniques. Still,aording to the experiments presented there, our approah is the fastest one for moderate length patterns(m � 15), whih is a very ommon ase in pratie. Moreover, their approah has not yet been extended to19



File gunzip Shift-Or LZ78 LZ-BloksEnglish 28.80 8.90 17.24 (45.7%) 16.65 (44.2%)DNA 28.10 9.21 15.10 (40.5%) 17.27 (46.3%)book1 18.40 4.92 10.91 (46.8%) 11.42 (49.0%)book2 12.40 4.14 8.01 (48.4%) 7.78 (47.0%)paper1 1.80 1.67 1.88 (54.2%) 1.92 (55.3%)paper2 2.40 1.76 2.07 (49.8%) 2.18 (52.4%)paper3 1.80 1.60 1.73 (50.9%) 1.88 (55.3%)paper4 1.20 1.48 1.50 (56.0%) 1.59 (59.3%)paper5 0.80 1.42 1.52 (68.5%) 1.54 (69.4%)paper6 1.90 1.53 1.69 (49.3%) 1.78 (51.9%)prog 1.50 1.55 1.73 (56.7%) 1.75 (57.4%)progl 1.90 1.72 1.88 (51.9%) 1.84 (50.8%)progp 1.20 1.62 1.74 (61.7%) 1.70 (60.3%)Table 3: Searh times for di�erent �les, in 1/100-th of seonds. The perentages indiate the time of theompressed searhing as a fration of unompressing plus Shift-Or searhing.LZ-Bloks, although this seems possible as well.Some open questions left involve studying better the performane of LZ-Bloks, both in theory and inpratie (espeially on �nding better methods to enode the numbers while keeping the good searh times).In partiular, it would be interesting to ompare it against other ompression formats that seem to liebetween the simpliity of LZ78 and the ompression eÆieny of LZ77 [24, 13, 22℄.Referenes[1℄ A. Amir and G. Benson. EÆient two-dimensional ompressed mathing. In Pro. 2nd Data CompressionConferene (DCC'92), pages 279{288, Marh 1992.[2℄ A. Amir, G. Benson, and M. Farah. Let sleeping �les lie: Pattern mathing in Z-ompressed �les.Journal of Computer and System Sienes, 52(2):299{307, 1996.[3℄ R. Baeza-Yates. Text retrieval: Theory and pratie. In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Siene, September 1992.[4℄ R. Baeza-Yates and G. Gonnet. A new approah to text searhing. Communiations of the ACM,35(10):74{82, Otober 1992.[5℄ R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string mathing. In Pro. 7th AnnualSymp. on Combinatorial Pattern Mathing (CPM'96), LNCS 1075, pages 1{23. Springer-Verlag, 1996.[6℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prentie Hall, New Jersey, 1990.[7℄ T. Bell and D. Kulp. Longest-math string searhing for Ziv-Lempel ompression. Software{ Pratieand Experiene, 23(7):757{771, July 1993.[8℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A loally adaptive data ompression sheme. Communi-ations of the ACM, 29:320{330, 1986.[9℄ R. S. Boyer and J. S. Moore. A fast string searhing algorithm. Communiations of the ACM, 20(10):762{772, 1977. 20
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