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Abstract. The main bottleneck of the research in metric space search-
ing is the so-called curse of dimensionality, which makes the task of
searching some metric spaces intrinsically difficult, whatever algorithm
is used. A recent trend to break this bottleneck resorts to probabilis-
tic algorithms, where it has been shown that one can find 99% of the
relevant objects at a fraction of the cost of the exact algorithm. These
algorithms are welcome in most applications because resorting to metric
space searching already involves a fuzziness in the retrieval requirements.
In this paper we push further in this direction by developing probabilis-
tic algorithms on data structures whose exact versions are the best for
high dimensions. As a result, we obtain probabilistic algorithms that
are better than the previous ones. We give new insights on the problem
and propose a novel view based on time-bounded searching. We also pro-
pose an experimental framework for probabilistic algorithms that permits
comparing them in offline mode.

1 Introduction

The concept of proximity searching has applications in a vast number
of fields, for example: multimedia databases, machine learning and clas-
sification, image quantization and compression, text retrieval, computa-
tional biology, function prediction, etc. All those applications have in
common that the objects of the database form a metric space [8], that
is, it is possible to define a positive real-valued function d among the
objects, called distance or metric, that satisfies the properties of strict
positiveness (d(z,y) = 0 & = = y), symmetry (d(z,y) = d(y,z)), and
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triangle inequality (d(z,z) < d(z,y) + d(y,z)). For example, a vector
space is a particular case of metric space, where the objects are tuples of
real numbers and the distance function belongs to the Ly family, defined
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Ly is called the Manhattan distance, Lo is the Fuclidean distance and
Lo = maxi<;<y |z; — y;| is called the mazimum distance.

One of the typical queries that can be posed to retrieve similar objects
from a database is a range query, which retrieves all the objects within
distance r to a query object ¢q. The naive method to answer range queries
is to make an exhaustive search on the database, but this turns out to be
too expensive for real-world applications, because the distance d is con-
sidered expensive to compute. Think, for example, of a biometric device
that computes the distance between two fingerprints.

Proximity searching algorithms build an indez of the database and
perform range queries using this index, avoiding the exhaustive search.
Many of these algorithms are based on dividing the space in partitions
or zones as compact as possible. Each zone stores a representative point,
called the center, and a few extra data that permit quickly discarding
the entire zone at query time, without measuring the actual distance
from the objects of the zone to the query object, hence saving distance
computations. Other algorithms are based in the use of pivots, which are
distinguished objects from the database and are used together with the
triangle inequality to filter out objects of the database at query time.

An inherent problem of proximity searching in metric spaces is that
the search becomes more difficult when the “intrinsic” dimension of the
metric space increases, which is known as the curse of dimensionality.
The intrinsic dimension of a metric space is defined in [8] as pu?/202,
where y and o2 are the mean and the variance of the distance histogram
of the metric space. This is coherent with the usual vector space defini-
tion. Analytical lower bounds and experiments [8] show that all proximity
searching algorithms degrade their performance systematically as the di-
mension of the space grows. For example, in the case of vector space there
is no technique that can reasonably cope with dimension higher than 20
[8]. This problem is due to two possible reasons: high dimensional metric
spaces have a very concentrated distance histogram, which gives less in-
formation for discarding objects at query time; on the other hand, it is
necessary to use a larger search radius in order to retrieve a fixed fraction
of the objects of the space, because in high dimensional spaces the objects
are “far away” from each other.



Probabilistic algorithms are acceptable in most applications that need
to search in metric spaces, because in general the modelization as a metric
space already carries some kind of relaxation. In most cases, finding some
close objects is as good as finding all of them.

There exists a pivot-based probabilistic proximity searching algorithm
which largely improves the search time at the cost of missing few relevant
objects [7]. On the other hand, it is known that compact partitioning al-
gorithms perform better than pivot-based algorithms in high dimensional
metric spaces [8] and they have lower memory requirements.

In this paper we present several probabilistic algorithms for proximity
searching based on compact partitions, which alleviate in some way the
curse of the dimensionality. We also present experimental results that
show that these algorithms perform better than probabilistic algorithms
based on pivots, and the latter needs much more memory space to beat
the former when the dimension of the space is very high.

The paper is organized as follows: In Section 2 we survey the exact
algorithms for proximity search in metric spaces. In Section 3 we give
an overview of the actual probabilistic algorithms. In Section 4 we de-
scribe our approach, and Section 5 presents the experimental results with
synthetic and real-world data sets. Finally, in Section 6 we conclude and
discuss possible extensions of this work.

2 Basic concepts

Let (X,d) be a metric space and U C X the set of objects or database,
with |Ul = n. There are two typical proximity searching queries:

— Range query. A range query (q,7), ¢ € X, r € R", reports all objects
that are within distance r to ¢, that is (¢,7) = {u € U, d(u,q) < r}.

— k nearest neighbors (k-NN). Reports the k objects from U closer to
g, that is, returns the set C C U such that |C| = k and Vz € C,y €
U—Cd(z,q) < d(y,q)

The volume defined by (g,r) is called the query ball, and all the ob-
jects from U inside it are reported. Nearest neighbors queries can be
implemented using range queries.

There exist two classes of techniques used to implement proximity
searching algorithms: based on pivots and based on compact partitions.



2.1 Pivot-based algorithms

These algorithms select a number of “pivots”, which are distinguished
objects from the database, and classify all the other objects according to
their distance to the pivots.

The canonical pivot-based algorithm is as follows: given a range query
(g,r) and a set of k pivots {p1,...,pr}, pi € U, by the triangle inequality
it follows for any = € X that d(p;,z) < d(pi,q) + d(q,z), and also that
d(pi,q) < d(p;,x) + d(z,q). From both inequalities it follows that a lower
bound on d(q,z) is d(q,z) > |d(pi,z) — d(pi,q)|. The objects u € U of
interest are those that satisfy d(q,u) < r, so one can exclude all the
objects that satisfy |d(p;,u) — d(pi,q)| > r for some pivot p; (exclusion
condition), without actually evaluating d(q, u).

The index consists of the kn distances d(u, p;) between every object
and every pivot. Therefore, at query time it is necessary to compute
the k distances between the pivots and the query ¢ in order to apply the
exclusion condition. Those distance calculations are known as the internal
complezity of the algorithm, and this complexity is fixed if there is a fixed
number of pivots. The list of objects {u1,...,u,} C U that cannot be
excluded by the exclusion condition, known as the object candidate list,
must be checked directly against the query. Those distance calculations
d(u;,q) are known as the external complezity of the algorithm. The total
complexity of the search algorithm is the sum of the internal and external
complexity, k + m. Since one increases and the other decreases with k, it
follows that there is an optimum k* that depends on the tolerance range
r of the query. In practice, however, k* is so large that one cannot store
the k*n distances, and the index uses as many pivots as space permits.

Examples of pivot-based algorithms [8] are BK-Tree, Fized Queries
Tree (FQT), Fized-Height FQT, Fized Queries Array, Vantage Point Tree
(VPT), Multi VPT, Excluded Middle Vantage Point Forest, Approzimat-
ing Eliminating Search Algorithm (AESA) and Linear AESA.

2.2 Algorithms based on compact partitions

These algorithms are based on dividing the space in partitions or zones
as compact as possible. Each zone stores a representative point, called the
center, and a few extra data that permit quickly discarding the entire zone
at query time, without measuring the actual distance from the objects of
the zone to the query object. Each zone can be partitioned recursively into
more zones, inducing a search hierarchy. There are two general criteria
for partitioning the space: Voronoi partition and covering radius.



Voronoi partition criterion. A set of m centers is selected, and the rest of
the objects are assigned to the zone of their closest center. Given a range
query (q,r), the distances between ¢ and the m centers are computed.
Let ¢ be the closest center to gq. Every zone of center ¢; # ¢ which satisfies
d(q,c;) > d(q,c) + 2r can be discarded, because its Voronoi area cannot
have intersection with the query ball. Figure 1 shows an example of the
Voronoi partition criterion. For ¢; the zone of ¢4 can be discarded, and
for go only the zone of ¢3 must be visited.

Fig. 1. Voronoi partition criterion

Covering radius criterion. The covering radius cr(c) is the maximum
distance between a center ¢ and an object that belongs to its zone. Given
a range query (q,r), if d(q,¢;) — r > cr(¢;) then zone i cannot have
intersection with the query ball and all its objects can be discarded. In
Figure 2, the query ball of ¢; does not have intersection with the zone of
center ¢, thus it can be discarded. For the query balls of g2 and g3, the
zone cannot be discarded, because it intersects these balls.

Generalized-Hyperplane Tree [17] is an example of an algorithm that
uses the Voronoi partition criterion. Examples of algorithms that use the
covering radius criterion are Bisector Trees (BST) [14], Monotonous BST
[16], Voronoi Tree [11], M-Tree [9] and List of Clusters [6]. Also, there
exist algorithms that use both criteria, for example Spatial Approzimation
Tree (SAT) [15] and Geometric Near-neighbor Access Tree [4]. Of all these
algorithms, two of the most efficient are SAT and List of Clusters, so now
we explain briefly how these algorithms work.



Fig. 2. Covering radius criterion

2.3 Spatial Approximation Tree

The SAT [15] is based on approaching the query spatially rather than
dividing the search space, that is, start at some point in the space and
get closer to the query, which is done only via “neighbors”. The SAT
uses both compact partition criteria for discarding zones, it needs O(n)
space, reasonable construction time O(n log?(n)/log(log(n))) and sublin-
ear search time O(n!~@(1/108(0g(n))) in high dimensional spaces.

Construction of SAT is as follows: an arbitrary object a € U is chosen
as the root node of the tree (note that since there exists only one object
per node, we use both terms interchangeably in this section). Then, we
select a suitable set of neighbors N (a) such that Vu € U,u € N(a) < Vo €
N(a) — {u},d(u,v) > d(u,a). Note that N(a) is defined in terms of itself
in a non-trivial way, and that multiple solutions fit the definition. In fact,
finding the minimal set of neighbors seems to be a hard combinatorial
optimization problem [15]. A simple heuristic that works well in most
cases considers the objects in U—{a} in increasing order of their distance
from a, and adds an object = to N(a) if z is closer to a than to any
object already in N (a). Next, we put each node in U— N(a) into the bag
of it closest object of N(a). Also, for each subtree u € N(a) we store its
covering radius cr(u). The process is repeated recursively in each subtree
using the objects of its bag. Figure 3 shows an example of a SAT.

This construction process ensures that if we search for an object ¢ € U
by spatial approximation, we will find that object in the tree because we
are repeating exactly what happened during the construction process,
i.e., we enter into the subtree of the neighbor closest to ¢, until we reach
q (in fact, in this case we are doing an exact search because ¢ is present
in the tree). For general range queries (q,7), instead of simply going to
the closest neighbor, we first determine the closest neighbor ¢ of ¢ among
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Fig. 3. Example of SAT

{a}UN(a). Then, we enter into all neighbors b € N (a) such that d(q,b) <
d(q, ¢)+2r. During the search process, all the nodes z such that d(q,z) < r
are reported. The search algorithm can be improved a bit more: when we
search for an object ¢ € U (exact search), we follow a single path from the
root to gq. At any node o’ in this path, we choose the closest to ¢ among
{a’} U N(a'). Therefore, if the search is currently at tree node a, we have
that ¢ is closer to a than to any ancestor a’ of a and also any neighbor
of a'. Hence, if we call A(a) the set of ancestors of a (including a), we
have that, at search time, we can avoid entering any object z € N(a)
such that d(q,z) > 2r + min{d(q,c),c € {a’} UN(d'),a’ € A(a)}. This
condition is a stricter version of the original Voronoi partition criterion.
The covering radius stored for all nodes during the construction process
can be used to prune the search further, by not entering into subtrees
such that d(q,b) —r > cr(b).

2.4 List of Clusters

The List of Clusters [6] is a list of “zones”. Each zone has a center and
stores its covering radius. A center ¢ € U is chosen at random, as well
as a radius rp, whose value depends on whether the number of objects
per compact partition is fixed or not. The center ball of (¢, rp) is defined
as (¢,rp) = {z € X,d(c,z) < rp}. We then define I = UnN (¢, rp) as the
bucket of “internal” objects lying inside (¢, rp), and E = U—1TI as the rest
of the objects (the “external” ones). The process is repeated recursively
inside F. The construction process returns a list of triples (¢;, rp;, ;)
(center, radius, internal bucket), as shown in Figure 4.
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Fig. 4. Example of List of Clusters

This data structure is asymmetric, because the first center chosen has
preference over the next centers in case of overlapping balls, as shown
in Figure 4. With respect to the value of the radius rp of each compact
partition and the selection of the next center in the list, there exist many
alternatives. In [6] it is shown experimentally that the best performance is
achieved when the compact partition has a fixed number of objects, so rp
becomes simply cr(c), and the next center is selected as the object which
maximizes the distance sum to the centers previously chosen. The brute
force algorithm for constructing the list takes O(n?/m), where m is the
size of the compact partition, but it can be improved using auxiliary data
structures to build the partitions. For high dimensional metric spaces, the
optimal m is very low (we used m = 5 in our experiments).

For a range query (q,r), d(q, ¢) is computed, reporting c if it is within
the query ball. Then, we search exhaustively inside I only if d(q,c) —
cr(c) < r (covering radius criterion). E is processed only if er(c) —d(g, ¢) <
r, because of the asymmetry of the data structure. The search cost has a
form close to O(n?) for some 0.5 < a < 1.0 [6].

3 Probabilistic algorithms for proximity searching

All the algorithms seen in the previous section are exzact algorithms, which
retrieve exactly the elements of U that are within the query ball of (g, 7).
In this work we are interested in probabilistic algorithms, which relax the



condition of delivering the exact solution. As explained before, this is
acceptable in most applications.

In [10] they propose a data structure called M (U, @) to answer near-
est neighbor queries. It requires a training data set () of m objects, taken
to be representative of typical query objects. This data structure may
fail to return a correct answer, but the failure probability can be made
arbitrarily small at the cost of increasing the query time and space re-
quirements for the index. When the metric space obeys a certain sphere-
packing bound [10], the authors show that M (U, Q) answers range queries
in O(K In(n) log Y (UUQ)) time, with failure probability O(log? n/K) and
requires O(Knlog?7 (U U Q)) space, where K is a parameter that allows
one to control the failure probability and 7' (7T') is the ratio of the distance
between the farthest and closest pair of points of 7.

In [7] they present a probabilistic algorithm based on “stretching” the
triangle inequality. The idea is general, but they applied it to pivot based
algorithms. Their analysis shows that the net effect of the technique is to
reduce the search radius by a factor 8, and that that reduction is larger
when the search problem becomes harder, i.e., the intrinsic dimension of
the space becomes high. Even with very little stretching, they obtain large
improvements in the search time with low error probability. The factor
B can be chosen at search time, so the index can be built beforehand
and later one can choose the desired level of accurateness and speed of
the algorithm. As the factor is used only to discard elements, no element
closer to ¢ than r/f can be missed during the search. In practice, all the
elements that satisfy |d(p;, u) — d(p;, q)| > r /[ for some p; are discarded.
Figure 5 illustrates how the idea operates. The exact algorithm guarantees
that no relevant element is missed, while the probabilistic one stretches
both sides of the ring and can miss some elements.

Approximation algorithms for vector spaces are surveyed in depth in
[18]. An example is [1], which proposes a general framework to search
for an arbitrary region () in an Euclidean vector space. The idea is to
define areas @~ and Q% such that Q= C @ C Q*. Points inside Q~
are guaranteed to be reported and points outside Q* are guaranteed
not to be reported. In between, the algorithm can err. The maximum
distance between the real and the bounding areas is €. The vector space is
partitioned using trees, which are used to guide the search by including or
excluding whole areas. Every decision about including (excluding) a whole
area can be done using QT (Q ) to increase the probability of pruning
the search in either way. Those areas that cannot be fully included or
excluded are analyzed in more detail by going down to the appropriate
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Fig. 5. How the probabilistic algorithm based on pivots works

subtree. The complexity is shown to be O(2¥log(n) + (3vk/¢)*) and a
very close lower bound is proven for the problem.

In [2], it is proposed a data structure called BBD-tree for searching
in a vector space R? under any metric Lg. This structure is inspired in
the kd-tree and it can be used to find the “(1+ ¢) nearest neighbor”, that
is, to find an object u* such that Vu € U, d(u*,q) < (1 + ¢)d(u,q). The
essential idea of the algorithm is to locate the query ¢ in a cell (each leaf in
the tree is associated with a cell in the space decomposition). Every point
inside the cell is processed so as to obtain its nearest neighbor p. The
search stops when no promising cells are found, i.e., when the radius of
any ball centered at g and intersecting a nonempty cell exceeds the radius
d(q,p)/(1+¢€). The search time for this algorithm is O([146k/<]¥ log(n)).

In [19], a proposal called “aggressive pruning” for “limited radius near-
est neighbors” is presented. This query seeks for nearest neighbors that
are inside a given radius. The idea can be seen as a particular case of
[1], where the search area is a ball and the data structure is a kd-tree.
Relevant elements may be lost but irrelevant ones cannot be reported,
i.e., QT = Q. The ball Q, of radius r and centered at ¢ = (q1,...,qx), is
pruned by intersecting it with the area between hyperplanes ¢; —r +¢ and
q; + r — €. The authors give a probabilistic analysis assuming normally
distributed distances, which almost holds if the points are uniformly dis-
tributed in the space. The search time is O(n?), where \ decreases as the
permitted failure probability € increases.



4 Our approach

We focus in probabilistic algorithms for high dimensional metric spaces,
where for exact searching it is very difficult to avoid the exhaustive search
regardless of the index and search algorithm used.

It is well known that compact partition algorithms perform better
than pivot-based algorithms in high dimensional metric spaces [8], and
that the latter need more space requirements, i.e., many pivots, to reach
the performance of the former. For this reason, it is interesting to develop
probabilistic algorithms based on compact partitions, with the hope that
these algorithms could have at least the same performance than pivot-
based probabilistic algorithms, with less memory requirements. It is worth
noting that the index data structure used with the probabilistic search
algorithm is the same used with the exact search algorithm.

We propose two techniques: the first based on incremental searching
and the last based on ranking zones.

4.1 Probabilistic Incremental Search

This technique is an adaptation of the incremental nearest neighbor search
algorithm [13]. The incremental search traverses the search hierarchy de-
fined by the index (whatever it be) in a “best-first” manner. At any step
of the algorithm, it visits the “element” (zone or object) with the smallest
distance from the query object among all unvisited elements in the search
hierarchy. This can be done by maintaining a priority queue of elements
organized by their maximum lower bound distance known to the query
object at any time.

In [13] is proved that this search is range-optimal, that is, it obtains the
k'" nearest neighbor, o, after visiting the same search hierarchy elements
as would a range query with radius d(g, o;) implemented with a top-down
traversal of the search hierarchy.

The incremental nearest neighbor search can be adapted to answer
range queries. We report all objects u that satisfy d(q,u) < r, but we stop
when it is dequeued an element with lower bound | > r (global stopping
criterion). It is not possible to find another object within the query ball
among the unexplored elements, because we have retrieved them ordered
by their lower bounded distances to g. An equivalent method is to enqueue
elements only if they have a lower bound [ < r, in which case the queue
must be processed until it gets empty.

The idea of the probabilistic technique based on the incremental search
is to fix in advance the number of distance computations allowed to answer



a range query. Using the adapted incremental search for range queries,
if the search is pruned after we make the maximum number of distance
computations allowed, then we obtain a probabilistic algorithm in the
sense that some relevant objects can be missed. However, as the search
is performed range-optimally, one can presume that the allotted distance
computations are used in an efficient way.

Figure 6 depicts the general form of the probabilistic incremental
search. Index is the data structure that indexes U, ¢ is the query object,
e is an element of the index and dy,5(q, €) is a lower bound of the real dis-
tance between g and all the elements rooted in the search hierarchy of e,
where dr,g(q,e) = d(q, e) if e is an object of U, and dj,5(q,€) > dr,B(q,¢)
if ¢’ is an ancestor of e in the hierarchy. For example, in the List of
Clusters, if e is a child of a and belongs to the zone of center ¢ then
drp(g,e) = d(g,c) — cr(c); in SAT if e is a child of a then drp(q,e) =
max(d(q, e) — cr(e), (d(g,e) —min{d(q,c),c € {a'} UN(d'),d" € A(a)})/2.
The maximum number of distance computations allowed to perform the
search is denoted by quota. Once quota has been reached, no more el-
ements are enqueued. Note that the only stopping criterion of the al-
gorithm is that the queue gets empty, even if the work quota has been
reached, because for all the objects enqueued their distance to ¢ are al-
ready known. Variable cost indicates the number of distance computations
needed to process a child ¢’ of an element e in the search hierarchy. In
SAT, the cost of processing all the children of e is equal to N (e); in List
of Clusters, this cost is equal to the size of the compact partition, m.

4.2 Ranking of zones

The probabilistic incremental search aims at quickly finding objects within
the query ball, before the work quota gets exhausted. As the maximum
number of distance computations is fixed, the total search time is also
bounded. This technique can be generalized to what we call ranking of
zones, where the idea is to sort the zones in order to favor the most
promising and then to traverse the list until we use up the quota. The
probabilistic incremental search can be seen as a ranking method, where
we first rank all the zones using djp(q,e) and then work until we use
up the quota. However, this ranking does not have to be the best zone
ranking criterion.

The sorting criterion must aim at quickly finding objects that are
close to the query object. As the space is partitioned into zones, we must
sort these zones in a promising search order using the information given
by the index data structure. For example, in List of Clusters the only



ProbabilisticIncrementalSearch(q, Index, quota)

e < root of Index
counter < (0 // Number of distances computed
Q « {(e,0)} // Priority queue
while ) is not empty do
(e,drB(q,€)) <+ element in () with lower dig(q,e)
Q « Q@ — {(e.dip(g.e)}
if ¢ is a zone then
for each child element e of e do

W o0 ~N O O WN =

cost + cost to compute drg(q,e’)
10. if counter 4+ cost < quota

11. Compute dm;(q,e')

12. if drg(q,e’) < r then

13. Q <« Q U {(¢,max(drp(q,e),drr(q,¢'))}

14. counter < counter + cost

15. endif

16. enddo

17. endif

18. else report e // e is an object within the query ball
19. enddo

Fig. 6. Probabilistic incremental search algorithm

information we have is the distances from ¢ to each center (d(q,c)) and
the covering radius of each zone (c¢r(c)), which is precomputed, so we
estimate how promising a zone is using only d(g,c) and cr(c). One not
only would like to search first the zones closer to the query, but also to
search first the zones that are more compact, that is, the zones which
have “higher object density”. In spite of the fact that it is very difficult
to define the volume of a zone in a general metric space, we assume that if
the zones have the same number of objects, as in the best implementation
of List of Clusters, then the zones with smaller covering radii have higher
object density than those with larger covering radii.
We have tested several zone ranking criteria, all in ascending order:

— d(q, c): the distance from ¢ to each zone center.
— cr(c): the covering radius of each zone, cr(c).

— d(q,c¢) + cr(c): an upper bound of the distance from ¢ to the farthest
object in the zone of center c.

— d(gq,c) — er(c): a lower bound of the distance from ¢ to the closest
object in the zone of center c.

— B(d(q,c) — er(c)): what we call dynamic beta.



The first two criteria are the simplest ones. The third criterion aims
to search first in those zones that are closer to ¢ and also are compact.
The fourth criterion is similar to the probabilistic incremental search. The
last technique is equivalent to reducing the search radius by a factor 8 as
in [6], where 1/ € [0..1]. If /8 is fixed, then this criterion is equivalent to
d(q,c) — cr(c), because the ordering is the same in both cases. However,
instead of using a constant factor § we define a dynamic factor of the
form g =1/(1.0 — (Zl(p?), where mer is the maximum size of the covering
radius of all zones. This implies that we reduce more the search radii in
zones of larger covering radii. A special case is when cr(c¢') = mer for a
zone ¢'. In this case we define dj,g(q,e) = oc for all objects in that zone.

Note that d(q,c) — er(c) is the only criterion that can be used with
the probabilistic incremental search, because only with this criterion is
guaranteed that dy,g(q,e) > drg(q,€') for any object e’ ancestor of e.

5 Performance of the new techniques

5.1 Experimental results

We use the SAT and List of Clusters to implement the probabilistic tech-
niques described in Section 4, but with SAT we only implement the prob-
abilistic incremental search because in this data structure every node is
a center, so it takes O(n) time to compute the distances between the
query and every center. We have tested the probabilistic techniques on
a synthetic set of random points in a k-dimensional vector space treated
as a metric space, that is, we have not used the fact that the space has
coordinates, but treated the points as abstract objects in an unknown
metric space. The advantage of this choice is that it allows us to control
the exact dimensionality we are working with, which is very difficult to
do in general metric spaces. The points are uniformly distributed in the
unitary cube, our tests use the Lo (Euclidean) distance, the database size
is m» = 10,000 and we perform range queries returning 0.10% of the total
database size, taking an average from 1,000 queries. The techniques were
tested using a space of dimension 128, where no known exact algorithm
can avoid an exhaustive search to answer useful range queries.

Figure 7 shows the results of the probabilistic List of Clusters and
SAT. The best technique, in this case, is the ranking zone method with
criterion d(q, ¢) + cr(c).

Figure 8 shows a comparison of the probabilistic List of Clusters and
the probabilistic pivot-based algorithm, implemented in its canonical form
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Fig. 7. Probabilistic List of Clusters and SAT in a vector space of dimension 128

(see Section 2.1 and 3). In this experiment, the probabilistic List of Clus-
ters performs almost equal than the pivot-based algorithm with 256 pivots
when more than 97% of the result is actually retrieved. The pivot-based
techniques are slightly better when the pivots are selected using the “good
pivots” criterion [5]. However, the size of the List of Clusters index (0.12
Mb) is about 82 times less than the size of the pivot-based index with 256
pivots (9.78 Mb) and about 5 times less than the size of the pivot-based
index with 16 pivots (0.62 Mb). Experiments with different search radius
and database size obtained similar results to those presented here.
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Fig. 8. Comparison among probabilistic algorithms in a vector space of dimension 128



One of the most clear applications of metric space techniques to In-
formation Retrieval is the task of finding documents relevant to a query
(which can be a set of terms or a whole document itself) [3]. Documents
(and queries) are seen as vectors, where every term is a coordinate whose
value is the weight of the term in that document. The distance between
two documents is the angle between their vectors, so documents sharing
important terms are seen as more similar. Documents closer to a query
are considered to be more relevant to the query. Hence the task is to find
the elements of this metric space of documents which are closest to a
given query.

Despite of this clear link, metric space techniques have seldom been
used for this purpose. One reason is that the metric space of documents
has a very high dimension, which makes any exact search approach unaf-
fordable. This is a case where probabilistic algorithms would be of great
value, since the definition of relevance is fuzzy and it is customary to per-
mit approximations. Figure 10 shows the result of an experiment testing
the zone ranking criteria on a subset of the TREC-3 collection [12]. The
database consisted on 24,960 documents, and we average over 1,000 query
documents chosen at random from the original subset (m = 10 for the
List of Clusters, retrieving on average 0.035% of the database per query).
The results show that, for this experiment, the best criteria for ranking
zones is the dynamic beta and d(q, c).
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Fig. 9. Comparison among ranking criteria in a document database

Figure 10 shows a result comparing the pivot-based algorithm with the
ranking zone method using the dynamic beta criterion. The results show
that our probabilistic algorithms can handle better this space, retrieving



more than 99% of the relevant objects and traversing merely a 17% of the
database, using much less memory, approximately 16 times less than the
index with 64 pivots, hence becoming for the first time a feasible metric
space approach to this long standing problem.
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Fig. 10. Comparison among probabilistic algorithms in the document database

5.2 Ranking of zones versus ranking of objects

The sorting criterion d(g,c) — er(c) can be modified to take advantage
of the information provided by the List of Clusters data structure. If for
each zone, in addition to the covering radius, we store the distances from
its center c¢ to all the objects u; that belongs to this zone, then we can
obtain an improved lower bound of the distance from ¢ to u;, which is
d(q,c) — d(c,u;). Therefore, a variant of the original criterion is to sort
the objects according to the values given by the improved lower bound.
Note that in this variant we are not ranking the zones, but we are ranking
each object of the database.

However, in practice this variant results in no improvements over the
original technique, but the opposite. The comparison between both tech-
niques and the dynamic beta criterion is shown in Figure 11. The dynamic
beta criterion have still far superior performance than the other criteria.

Another possibility for ranking objects instead of zones is using a
pivot-based index. Given a set {pi,...,pr} of k pivots, we define the
metric D = Dy, . (2,y) = max <<y, |d(z,p;) — d(y,p;)|. It follows that
the pivot exclusion condition (see Section 2.1) can be expressed in terms
of D as Dy, .. p.(q.u) > r. Note that D is a lower bound of the d distance
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Fig. 11. Comparison between ranking of objects and ranking of zones

between ¢ and u. The ranking in this case consists on sorting the objects
by increasing D distance to the query, and then search in that order,
stopping when the work quota is over or when the distance D is greater
than r. Figure 12 shows the results of an experiment in the document
database, using different number of pivots. The results show that this
method is quite competitive, but it is outperformed by the dynamic beta
criterion when retrieving more than 99% of the relevant documents. We
also compared the difference between random and good pivots index. The
result shows that the use of good pivots increases the performance of this
sorting criterion.

24,960 documents, retrieving 0.064% of the database
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Fig. 12. Ranking of objects using a pivot-based index



5.3 A model for ranking criteria comparison

Now we describe a model for ranking criteria comparison, which allows us
to compare different ranking criteria in an offline mode, without having
to repeat each experiment for each different pair of parameters.

Let U be a database with |U| = n. For a given set @ of k queries, each
query is performed using some criterion without work limit. We save the
order in which elements were retrieved and their distance to the query
object. With this information, we generate a cloud of points which is
represented in a graph distance to the query as a function of the number
of distances computations. The X axis range is [0, n] and the Y axis range
is RT. If object u was retrieved after performing 4 distance computations,
then the point (i, d(q,u)) is added to the cloud. This procedure is repeated
for all objects retrieved in all the queries, totalizing kn points. Figure 13
shows an example of a cloud of points.

d(a,u)

work

Fig. 13. Example of a cloud of points for a given criterion

This cloud of points allows us to simulate any experiment on the
preprocessed query set, varying the allowed amount of work or the search
radius. For example, if one wants to know how many relevant objects the
algorithm would retrieve on average with a search radius r and a work
quota t, then one just have to count the points (z,y) of the cloud which
satisfy < ¢t and y < r, and then divide this quantity by the total number
of queries, k. Let A(t,r) be the resulting value. Since that all distances



between objects and queries are known, it is easy to know how many
objects are within a query ball for a fixed search radius, which turns out

to be A(oo,r). Then, the fraction f of retrieved relevant objects using a
R

The procedure described can be repeated for different 7’ and ¢’ values.
If the search radius is fixed and one computes f for different amounts of
work quota, then we can obtain several points of the cost function for a
specific criterion. Figure 14 shows the results obtained with a traditional
experiment, and Figure 15 shows the results obtained with 100 queries,
using the comparison model. There are just minor differences between
both figures.

work quota ¢t is f =

24,960 documents, retrieving 0.064% of the database
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Fig. 14. Fraction of the retrieved objects as a function of the traversed fraction of the
database, 0,064% retrieved

The disadvantage of this comparison model is that it requires to save
huge amounts of information, because each query contributes with an
amount of data proportional to the size of the database. This can be
solved using s discrete values for d(q,u) and defining a matrix of s X n
storage cells for the discrete values of (7, d(q,u)). With this approach, the
space cost is st, but some precision will be lost when computing A(¢, 7).

6 Conclusions

We have defined a general probabilistic technique based on the incre-
mental nearest neighbor search, that allows us to perform time-bounded
range search queries in metric spaces with a high probability of finding
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all the relevant objects. We also defined a probabilistic technique based
on ranking zones, which is a generalization of the former technique. Our
experimental results show in both synthetic and real-world examples that
the best criteria for ranking zones perform better than the pivot-based
probabilistic algorithm in high dimensional metric spaces, as the latter
needs much more memory space to be competitive. Also, we studied vari-
ants of this technique which rank objects instead of zones, but our ex-
perimental results show that these variants make no improvement over
the ranking of zones technique. We conjecture that the reason of the bad
performance of the ranking of objects is that we lose valuable clustering
information when we rank each object separately.

Future work involves testing more zone ranking criteria and to use
more advanced clustering techniques for testing our probabilistic search
algorithms. Also, we are interested on finding a theoretical framework
that supports our experimental results and that allow us to predict how
well will perform an arbitrary index with our probabilistic techniques.

Based on the results obtained with the document database, the rank-
ing of zones seems to be a promising alternative as a ranking method
for effective and efficient similarity searching for Information Retrieval
applications. It would be interesting to compare the effectiveness of our
ranking technique against the traditional approaches in terms of precision
versus recall figures.
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