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lAbstra
t. The main bottlene
k of the resear
h in metri
 spa
e sear
h-ing is the so-
alled 
urse of dimensionality, whi
h makes the task ofsear
hing some metri
 spa
es intrinsi
ally diÆ
ult, whatever algorithmis used. A re
ent trend to break this bottlene
k resorts to probabilis-ti
 algorithms, where it has been shown that one 
an �nd 99% of therelevant obje
ts at a fra
tion of the 
ost of the exa
t algorithm. Thesealgorithms are wel
ome in most appli
ations be
ause resorting to metri
spa
e sear
hing already involves a fuzziness in the retrieval requirements.In this paper we push further in this dire
tion by developing probabilis-ti
 algorithms on data stru
tures whose exa
t versions are the best forhigh dimensions. As a result, we obtain probabilisti
 algorithms thatare better than the previous ones. We give new insights on the problemand propose a novel view based on time-bounded sear
hing. We also pro-pose an experimental framework for probabilisti
 algorithms that permits
omparing them in o�ine mode.1 Introdu
tionThe 
on
ept of proximity sear
hing has appli
ations in a vast numberof �elds, for example: multimedia databases, ma
hine learning and 
las-si�
ation, image quantization and 
ompression, text retrieval, 
omputa-tional biology, fun
tion predi
tion, et
. All those appli
ations have in
ommon that the obje
ts of the database form a metri
 spa
e [8℄, thatis, it is possible to de�ne a positive real-valued fun
tion d among theobje
ts, 
alled distan
e or metri
, that satis�es the properties of stri
tpositiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)), and? Work supported by the Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile (se
ond author), and the German S
ien
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triangle inequality (d(x; z) � d(x; y) + d(y; z)). For example, a ve
torspa
e is a parti
ular 
ase of metri
 spa
e, where the obje
ts are tuples ofreal numbers and the distan
e fun
tion belongs to the Ls family, de�nedas Ls ((x1; : : : ; xk); (y1; : : : ; yk)) = �P1�i�k jxi � yijs�1=s. For example,L1 is 
alled the Manhattan distan
e, L2 is the Eu
lidean distan
e andL1 = max1�i�k jxi � yij is 
alled the maximum distan
e.One of the typi
al queries that 
an be posed to retrieve similar obje
tsfrom a database is a range query, whi
h retrieves all the obje
ts withindistan
e r to a query obje
t q. The naive method to answer range queriesis to make an exhaustive sear
h on the database, but this turns out to betoo expensive for real-world appli
ations, be
ause the distan
e d is 
on-sidered expensive to 
ompute. Think, for example, of a biometri
 devi
ethat 
omputes the distan
e between two �ngerprints.Proximity sear
hing algorithms build an index of the database andperform range queries using this index, avoiding the exhaustive sear
h.Many of these algorithms are based on dividing the spa
e in partitionsor zones as 
ompa
t as possible. Ea
h zone stores a representative point,
alled the 
enter, and a few extra data that permit qui
kly dis
ardingthe entire zone at query time, without measuring the a
tual distan
efrom the obje
ts of the zone to the query obje
t, hen
e saving distan
e
omputations. Other algorithms are based in the use of pivots, whi
h aredistinguished obje
ts from the database and are used together with thetriangle inequality to �lter out obje
ts of the database at query time.An inherent problem of proximity sear
hing in metri
 spa
es is thatthe sear
h be
omes more diÆ
ult when the \intrinsi
" dimension of themetri
 spa
e in
reases, whi
h is known as the 
urse of dimensionality.The intrinsi
 dimension of a metri
 spa
e is de�ned in [8℄ as �2=2�2,where � and �2 are the mean and the varian
e of the distan
e histogramof the metri
 spa
e. This is 
oherent with the usual ve
tor spa
e de�ni-tion. Analyti
al lower bounds and experiments [8℄ show that all proximitysear
hing algorithms degrade their performan
e systemati
ally as the di-mension of the spa
e grows. For example, in the 
ase of ve
tor spa
e thereis no te
hnique that 
an reasonably 
ope with dimension higher than 20[8℄. This problem is due to two possible reasons: high dimensional metri
spa
es have a very 
on
entrated distan
e histogram, whi
h gives less in-formation for dis
arding obje
ts at query time; on the other hand, it isne
essary to use a larger sear
h radius in order to retrieve a �xed fra
tionof the obje
ts of the spa
e, be
ause in high dimensional spa
es the obje
tsare \far away" from ea
h other.



Probabilisti
 algorithms are a

eptable in most appli
ations that needto sear
h in metri
 spa
es, be
ause in general the modelization as a metri
spa
e already 
arries some kind of relaxation. In most 
ases, �nding some
lose obje
ts is as good as �nding all of them.There exists a pivot-based probabilisti
 proximity sear
hing algorithmwhi
h largely improves the sear
h time at the 
ost of missing few relevantobje
ts [7℄. On the other hand, it is known that 
ompa
t partitioning al-gorithms perform better than pivot-based algorithms in high dimensionalmetri
 spa
es [8℄ and they have lower memory requirements.In this paper we present several probabilisti
 algorithms for proximitysear
hing based on 
ompa
t partitions, whi
h alleviate in some way the
urse of the dimensionality. We also present experimental results thatshow that these algorithms perform better than probabilisti
 algorithmsbased on pivots, and the latter needs mu
h more memory spa
e to beatthe former when the dimension of the spa
e is very high.The paper is organized as follows: In Se
tion 2 we survey the exa
talgorithms for proximity sear
h in metri
 spa
es. In Se
tion 3 we givean overview of the a
tual probabilisti
 algorithms. In Se
tion 4 we de-s
ribe our approa
h, and Se
tion 5 presents the experimental results withsyntheti
 and real-world data sets. Finally, in Se
tion 6 we 
on
lude anddis
uss possible extensions of this work.2 Basi
 
on
eptsLet (X; d) be a metri
 spa
e and U � X the set of obje
ts or database,with jUj = n. There are two typi
al proximity sear
hing queries:{ Range query. A range query (q; r), q 2 X, r 2 R+ , reports all obje
tsthat are within distan
e r to q, that is (q; r) = fu 2 U; d(u; q) � rg.{ k nearest neighbors (k-NN). Reports the k obje
ts from U 
loser toq, that is, returns the set C � U su
h that jC j = k and 8x 2 C ; y 2U � C ; d(x; q) � d(y; q).The volume de�ned by (q; r) is 
alled the query ball, and all the ob-je
ts from U inside it are reported. Nearest neighbors queries 
an beimplemented using range queries.There exist two 
lasses of te
hniques used to implement proximitysear
hing algorithms: based on pivots and based on 
ompa
t partitions.



2.1 Pivot-based algorithmsThese algorithms sele
t a number of \pivots", whi
h are distinguishedobje
ts from the database, and 
lassify all the other obje
ts a

ording totheir distan
e to the pivots.The 
anoni
al pivot-based algorithm is as follows: given a range query(q; r) and a set of k pivots fp1; : : : ; pkg; pi 2 U, by the triangle inequalityit follows for any x 2 X that d(pi; x) � d(pi; q) + d(q; x), and also thatd(pi; q) � d(pi; x) + d(x; q). From both inequalities it follows that a lowerbound on d(q; x) is d(q; x) � jd(pi; x)� d(pi; q)j. The obje
ts u 2 U ofinterest are those that satisfy d(q; u) � r, so one 
an ex
lude all theobje
ts that satisfy jd(pi; u)� d(pi; q)j > r for some pivot pi (ex
lusion
ondition), without a
tually evaluating d(q; u).The index 
onsists of the kn distan
es d(u; pi) between every obje
tand every pivot. Therefore, at query time it is ne
essary to 
omputethe k distan
es between the pivots and the query q in order to apply theex
lusion 
ondition. Those distan
e 
al
ulations are known as the internal
omplexity of the algorithm, and this 
omplexity is �xed if there is a �xednumber of pivots. The list of obje
ts fu1; : : : ; umg � U that 
annot beex
luded by the ex
lusion 
ondition, known as the obje
t 
andidate list,must be 
he
ked dire
tly against the query. Those distan
e 
al
ulationsd(ui; q) are known as the external 
omplexity of the algorithm. The total
omplexity of the sear
h algorithm is the sum of the internal and external
omplexity, k+m. Sin
e one in
reases and the other de
reases with k, itfollows that there is an optimum k� that depends on the toleran
e ranger of the query. In pra
ti
e, however, k� is so large that one 
annot storethe k�n distan
es, and the index uses as many pivots as spa
e permits.Examples of pivot-based algorithms [8℄ are BK-Tree, Fixed QueriesTree (FQT), Fixed-Height FQT, Fixed Queries Array, Vantage Point Tree(VPT), Multi VPT, Ex
luded Middle Vantage Point Forest, Approximat-ing Eliminating Sear
h Algorithm (AESA) and Linear AESA.2.2 Algorithms based on 
ompa
t partitionsThese algorithms are based on dividing the spa
e in partitions or zonesas 
ompa
t as possible. Ea
h zone stores a representative point, 
alled the
enter, and a few extra data that permit qui
kly dis
arding the entire zoneat query time, without measuring the a
tual distan
e from the obje
ts ofthe zone to the query obje
t. Ea
h zone 
an be partitioned re
ursively intomore zones, indu
ing a sear
h hierar
hy. There are two general 
riteriafor partitioning the spa
e: Voronoi partition and 
overing radius.



Voronoi partition 
riterion. A set of m 
enters is sele
ted, and the rest ofthe obje
ts are assigned to the zone of their 
losest 
enter. Given a rangequery (q; r), the distan
es between q and the m 
enters are 
omputed.Let 
 be the 
losest 
enter to q. Every zone of 
enter 
i 6= 
 whi
h satis�esd(q; 
i) > d(q; 
) + 2r 
an be dis
arded, be
ause its Voronoi area 
annothave interse
tion with the query ball. Figure 1 shows an example of theVoronoi partition 
riterion. For q1 the zone of 
4 
an be dis
arded, andfor q2 only the zone of 
3 must be visited.
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Fig. 1. Voronoi partition 
riterionCovering radius 
riterion. The 
overing radius 
r(
) is the maximumdistan
e between a 
enter 
 and an obje
t that belongs to its zone. Givena range query (q; r), if d(q; 
i) � r > 
r(
i) then zone i 
annot haveinterse
tion with the query ball and all its obje
ts 
an be dis
arded. InFigure 2, the query ball of q1 does not have interse
tion with the zone of
enter 
, thus it 
an be dis
arded. For the query balls of q2 and q3, thezone 
annot be dis
arded, be
ause it interse
ts these balls.Generalized-Hyperplane Tree [17℄ is an example of an algorithm thatuses the Voronoi partition 
riterion. Examples of algorithms that use the
overing radius 
riterion are Bise
tor Trees (BST ) [14℄, Monotonous BST[16℄, Voronoi Tree [11℄, M-Tree [9℄ and List of Clusters [6℄. Also, thereexist algorithms that use both 
riteria, for example Spatial ApproximationTree (SAT ) [15℄ andGeometri
 Near-neighbor A

ess Tree [4℄. Of all thesealgorithms, two of the most eÆ
ient are SAT and List of Clusters, so nowwe explain brie
y how these algorithms work.
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Fig. 2. Covering radius 
riterion2.3 Spatial Approximation TreeThe SAT [15℄ is based on approa
hing the query spatially rather thandividing the sear
h spa
e, that is, start at some point in the spa
e andget 
loser to the query, whi
h is done only via \neighbors". The SATuses both 
ompa
t partition 
riteria for dis
arding zones, it needs O(n)spa
e, reasonable 
onstru
tion time O(n log2(n)= log(log(n))) and sublin-ear sear
h time O(n1��(1= log(log(n)))) in high dimensional spa
es.Constru
tion of SAT is as follows: an arbitrary obje
t a 2 U is 
hosenas the root node of the tree (note that sin
e there exists only one obje
tper node, we use both terms inter
hangeably in this se
tion). Then, wesele
t a suitable set of neighborsN(a) su
h that 8u 2 U; u 2 N(a), 8v 2N(a)� fug; d(u; v) > d(u; a). Note that N(a) is de�ned in terms of itselfin a non-trivial way, and that multiple solutions �t the de�nition. In fa
t,�nding the minimal set of neighbors seems to be a hard 
ombinatorialoptimization problem [15℄. A simple heuristi
 that works well in most
ases 
onsiders the obje
ts in U�fag in in
reasing order of their distan
efrom a, and adds an obje
t x to N(a) if x is 
loser to a than to anyobje
t already in N(a). Next, we put ea
h node in U�N(a) into the bagof it 
losest obje
t of N(a). Also, for ea
h subtree u 2 N(a) we store its
overing radius 
r(u). The pro
ess is repeated re
ursively in ea
h subtreeusing the obje
ts of its bag. Figure 3 shows an example of a SAT.This 
onstru
tion pro
ess ensures that if we sear
h for an obje
t q 2 Uby spatial approximation, we will �nd that obje
t in the tree be
ause weare repeating exa
tly what happened during the 
onstru
tion pro
ess,i.e., we enter into the subtree of the neighbor 
losest to q, until we rea
hq (in fa
t, in this 
ase we are doing an exa
t sear
h be
ause q is presentin the tree). For general range queries (q; r), instead of simply going tothe 
losest neighbor, we �rst determine the 
losest neighbor 
 of q among
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Fig. 3. Example of SATfag[N(a). Then, we enter into all neighbors b 2 N(a) su
h that d(q; b) �d(q; 
)+2r. During the sear
h pro
ess, all the nodes x su
h that d(q; x) � rare reported. The sear
h algorithm 
an be improved a bit more: when wesear
h for an obje
t q 2 U (exa
t sear
h), we follow a single path from theroot to q. At any node a0 in this path, we 
hoose the 
losest to q amongfa0g [N(a0). Therefore, if the sear
h is 
urrently at tree node a, we havethat q is 
loser to a than to any an
estor a0 of a and also any neighborof a0. Hen
e, if we 
all A(a) the set of an
estors of a (in
luding a), wehave that, at sear
h time, we 
an avoid entering any obje
t x 2 N(a)su
h that d(q; x) > 2r + minfd(q; 
); 
 2 fa0g [ N(a0); a0 2 A(a)g. This
ondition is a stri
ter version of the original Voronoi partition 
riterion.The 
overing radius stored for all nodes during the 
onstru
tion pro
ess
an be used to prune the sear
h further, by not entering into subtreessu
h that d(q; b) � r > 
r(b).2.4 List of ClustersThe List of Clusters [6℄ is a list of \zones". Ea
h zone has a 
enter andstores its 
overing radius. A 
enter 
 2 U is 
hosen at random, as wellas a radius rp, whose value depends on whether the number of obje
tsper 
ompa
t partition is �xed or not. The 
enter ball of (
; rp) is de�nedas (
; rp) = fx 2 X; d(
; x) � rpg. We then de�ne I = U \ (
; rp) as thebu
ket of \internal" obje
ts lying inside (
; rp), and E = U�I as the restof the obje
ts (the \external" ones). The pro
ess is repeated re
ursivelyinside E. The 
onstru
tion pro
ess returns a list of triples (
i; rpi; Ii)(
enter, radius, internal bu
ket), as shown in Figure 4.
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Fig. 4. Example of List of ClustersThis data stru
ture is asymmetri
, be
ause the �rst 
enter 
hosen haspreferen
e over the next 
enters in 
ase of overlapping balls, as shownin Figure 4. With respe
t to the value of the radius rp of ea
h 
ompa
tpartition and the sele
tion of the next 
enter in the list, there exist manyalternatives. In [6℄ it is shown experimentally that the best performan
e isa
hieved when the 
ompa
t partition has a �xed number of obje
ts, so rpbe
omes simply 
r(
), and the next 
enter is sele
ted as the obje
t whi
hmaximizes the distan
e sum to the 
enters previously 
hosen. The brutefor
e algorithm for 
onstru
ting the list takes O(n2=m), where m is thesize of the 
ompa
t partition, but it 
an be improved using auxiliary datastru
tures to build the partitions. For high dimensional metri
 spa
es, theoptimal m is very low (we used m = 5 in our experiments).For a range query (q; r), d(q; 
) is 
omputed, reporting 
 if it is withinthe query ball. Then, we sear
h exhaustively inside I only if d(q; 
) �
r(
) � r (
overing radius 
riterion).E is pro
essed only if 
r(
)�d(q; 
) <r, be
ause of the asymmetry of the data stru
ture. The sear
h 
ost has aform 
lose to O(n�) for some 0:5 < � < 1:0 [6℄.3 Probabilisti
 algorithms for proximity sear
hingAll the algorithms seen in the previous se
tion are exa
t algorithms, whi
hretrieve exa
tly the elements of U that are within the query ball of (q; r).In this work we are interested in probabilisti
 algorithms, whi
h relax the




ondition of delivering the exa
t solution. As explained before, this isa

eptable in most appli
ations.In [10℄ they propose a data stru
ture 
alled M(U; Q) to answer near-est neighbor queries. It requires a training data set Q of m obje
ts, takento be representative of typi
al query obje
ts. This data stru
ture mayfail to return a 
orre
t answer, but the failure probability 
an be madearbitrarily small at the 
ost of in
reasing the query time and spa
e re-quirements for the index. When the metri
 spa
e obeys a 
ertain sphere-pa
king bound [10℄, the authors show thatM(U; Q) answers range queriesin O(K ln(n) log � (U[Q)) time, with failure probability O(log2 n=K) andrequires O(Kn log � (U [Q)) spa
e, where K is a parameter that allowsone to 
ontrol the failure probability and � (T ) is the ratio of the distan
ebetween the farthest and 
losest pair of points of T .In [7℄ they present a probabilisti
 algorithm based on \stret
hing" thetriangle inequality. The idea is general, but they applied it to pivot basedalgorithms. Their analysis shows that the net e�e
t of the te
hnique is toredu
e the sear
h radius by a fa
tor �, and that that redu
tion is largerwhen the sear
h problem be
omes harder, i.e., the intrinsi
 dimension ofthe spa
e be
omes high. Even with very little stret
hing, they obtain largeimprovements in the sear
h time with low error probability. The fa
tor� 
an be 
hosen at sear
h time, so the index 
an be built beforehandand later one 
an 
hoose the desired level of a

urateness and speed ofthe algorithm. As the fa
tor is used only to dis
ard elements, no element
loser to q than r=� 
an be missed during the sear
h. In pra
ti
e, all theelements that satisfy jd(pi; u)� d(pi; q)j > r=� for some pi are dis
arded.Figure 5 illustrates how the idea operates. The exa
t algorithm guaranteesthat no relevant element is missed, while the probabilisti
 one stret
hesboth sides of the ring and 
an miss some elements.Approximation algorithms for ve
tor spa
es are surveyed in depth in[18℄. An example is [1℄, whi
h proposes a general framework to sear
hfor an arbitrary region Q in an Eu
lidean ve
tor spa
e. The idea is tode�ne areas Q� and Q+ su
h that Q� � Q � Q+. Points inside Q�are guaranteed to be reported and points outside Q+ are guaranteednot to be reported. In between, the algorithm 
an err. The maximumdistan
e between the real and the bounding areas is ". The ve
tor spa
e ispartitioned using trees, whi
h are used to guide the sear
h by in
luding orex
luding whole areas. Every de
ision about in
luding (ex
luding) a wholearea 
an be done using Q+ (Q�) to in
rease the probability of pruningthe sear
h in either way. Those areas that 
annot be fully in
luded orex
luded are analyzed in more detail by going down to the appropriate
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 algorithm based on pivots works
subtree. The 
omplexity is shown to be O(2k log(n) + (3pk=")k) and avery 
lose lower bound is proven for the problem.In [2℄, it is proposed a data stru
ture 
alled BBD-tree for sear
hingin a ve
tor spa
e Rd under any metri
 Ls. This stru
ture is inspired inthe kd-tree and it 
an be used to �nd the \(1+ ") nearest neighbor", thatis, to �nd an obje
t u� su
h that 8u 2 U; d(u�; q) � (1 + ")d(u; q). Theessential idea of the algorithm is to lo
ate the query q in a 
ell (ea
h leaf inthe tree is asso
iated with a 
ell in the spa
e de
omposition). Every pointinside the 
ell is pro
essed so as to obtain its nearest neighbor p. Thesear
h stops when no promising 
ells are found, i.e., when the radius ofany ball 
entered at q and interse
ting a nonempty 
ell ex
eeds the radiusd(q; p)=(1+"). The sear
h time for this algorithm is O(d1+6k="ek log(n)).In [19℄, a proposal 
alled \aggressive pruning" for \limited radius near-est neighbors" is presented. This query seeks for nearest neighbors thatare inside a given radius. The idea 
an be seen as a parti
ular 
ase of[1℄, where the sear
h area is a ball and the data stru
ture is a kd-tree.Relevant elements may be lost but irrelevant ones 
annot be reported,i.e., Q+ = Q. The ball Q, of radius r and 
entered at q = (q1; : : : ; qk), ispruned by interse
ting it with the area between hyperplanes qi�r+" andqi + r � ". The authors give a probabilisti
 analysis assuming normallydistributed distan
es, whi
h almost holds if the points are uniformly dis-tributed in the spa
e. The sear
h time is O(n�), where � de
reases as thepermitted failure probability " in
reases.



4 Our approa
hWe fo
us in probabilisti
 algorithms for high dimensional metri
 spa
es,where for exa
t sear
hing it is very diÆ
ult to avoid the exhaustive sear
hregardless of the index and sear
h algorithm used.It is well known that 
ompa
t partition algorithms perform betterthan pivot-based algorithms in high dimensional metri
 spa
es [8℄, andthat the latter need more spa
e requirements, i.e., many pivots, to rea
hthe performan
e of the former. For this reason, it is interesting to developprobabilisti
 algorithms based on 
ompa
t partitions, with the hope thatthese algorithms 
ould have at least the same performan
e than pivot-based probabilisti
 algorithms, with less memory requirements. It is worthnoting that the index data stru
ture used with the probabilisti
 sear
halgorithm is the same used with the exa
t sear
h algorithm.We propose two te
hniques: the �rst based on in
remental sear
hingand the last based on ranking zones.4.1 Probabilisti
 In
remental Sear
hThis te
hnique is an adaptation of the in
remental nearest neighbor sear
halgorithm [13℄. The in
remental sear
h traverses the sear
h hierar
hy de-�ned by the index (whatever it be) in a \best-�rst" manner. At any stepof the algorithm, it visits the \element" (zone or obje
t) with the smallestdistan
e from the query obje
t among all unvisited elements in the sear
hhierar
hy. This 
an be done by maintaining a priority queue of elementsorganized by their maximum lower bound distan
e known to the queryobje
t at any time.In [13℄ is proved that this sear
h is range-optimal, that is, it obtains thekth nearest neighbor, ok, after visiting the same sear
h hierar
hy elementsas would a range query with radius d(q; ok) implemented with a top-downtraversal of the sear
h hierar
hy.The in
remental nearest neighbor sear
h 
an be adapted to answerrange queries. We report all obje
ts u that satisfy d(q; u) � r, but we stopwhen it is dequeued an element with lower bound l > r (global stopping
riterion). It is not possible to �nd another obje
t within the query ballamong the unexplored elements, be
ause we have retrieved them orderedby their lower bounded distan
es to q. An equivalent method is to enqueueelements only if they have a lower bound l � r, in whi
h 
ase the queuemust be pro
essed until it gets empty.The idea of the probabilisti
 te
hnique based on the in
remental sear
his to �x in advan
e the number of distan
e 
omputations allowed to answer



a range query. Using the adapted in
remental sear
h for range queries,if the sear
h is pruned after we make the maximum number of distan
e
omputations allowed, then we obtain a probabilisti
 algorithm in thesense that some relevant obje
ts 
an be missed. However, as the sear
his performed range-optimally, one 
an presume that the allotted distan
e
omputations are used in an eÆ
ient way.Figure 6 depi
ts the general form of the probabilisti
 in
rementalsear
h. Index is the data stru
ture that indexes U, q is the query obje
t,e is an element of the index and dLB(q; e) is a lower bound of the real dis-tan
e between q and all the elements rooted in the sear
h hierar
hy of e,where dLB(q; e) = d(q; e) if e is an obje
t of U, and dLB(q; e) � dLB(q; e0)if e0 is an an
estor of e in the hierar
hy. For example, in the List ofClusters, if e is a 
hild of a and belongs to the zone of 
enter 
 thendLB(q; e) = d(q; 
) � 
r(
); in SAT if e is a 
hild of a then dLB(q; e) =max(d(q; e)� 
r(e); (d(q; e)�minfd(q; 
); 
 2 fa0g[N(a0); a0 2 A(a)g)=2.The maximum number of distan
e 
omputations allowed to perform thesear
h is denoted by quota. On
e quota has been rea
hed, no more el-ements are enqueued. Note that the only stopping 
riterion of the al-gorithm is that the queue gets empty, even if the work quota has beenrea
hed, be
ause for all the obje
ts enqueued their distan
e to q are al-ready known. Variable 
ost indi
ates the number of distan
e 
omputationsneeded to pro
ess a 
hild e0 of an element e in the sear
h hierar
hy. InSAT, the 
ost of pro
essing all the 
hildren of e is equal to N(e); in Listof Clusters, this 
ost is equal to the size of the 
ompa
t partition, m.4.2 Ranking of zonesThe probabilisti
 in
remental sear
h aims at qui
kly �nding obje
ts withinthe query ball, before the work quota gets exhausted. As the maximumnumber of distan
e 
omputations is �xed, the total sear
h time is alsobounded. This te
hnique 
an be generalized to what we 
all ranking ofzones, where the idea is to sort the zones in order to favor the mostpromising and then to traverse the list until we use up the quota. Theprobabilisti
 in
remental sear
h 
an be seen as a ranking method, wherewe �rst rank all the zones using dLB(q; e) and then work until we useup the quota. However, this ranking does not have to be the best zoneranking 
riterion.The sorting 
riterion must aim at qui
kly �nding obje
ts that are
lose to the query obje
t. As the spa
e is partitioned into zones, we mustsort these zones in a promising sear
h order using the information givenby the index data stru
ture. For example, in List of Clusters the only



Probabilisti
In
rementalSear
h(q, Index, quota)1. e  root of Index2. 
ounter  0 // Number of distan
es 
omputed3. Q  f(e; 0)g // Priority queue4. while Q is not empty do5. (e; dLB(q; e))  element in Q with lower dLB(q; e)6. Q  Q � f(e; dLB(q; e)g7. if e is a zone then8. for ea
h 
hild element e0 of e do9. 
ost  
ost to 
ompute dLB(q; e0)10. if 
ounter + 
ost � quota11. Compute dLB(q; e0)12. if dLB(q; e0) � r then13. Q  Q [ f(e0;max(dLB(q; e); dLB(q; e0))g14. 
ounter  
ounter + 
ost15. endif16. enddo17. endif18. else report e // e is an obje
t within the query ball19. enddoFig. 6. Probabilisti
 in
remental sear
h algorithminformation we have is the distan
es from q to ea
h 
enter (d(q; 
)) andthe 
overing radius of ea
h zone (
r(
)), whi
h is pre
omputed, so weestimate how promising a zone is using only d(q; 
) and 
r(
). One notonly would like to sear
h �rst the zones 
loser to the query, but also tosear
h �rst the zones that are more 
ompa
t, that is, the zones whi
hhave \higher obje
t density". In spite of the fa
t that it is very diÆ
ultto de�ne the volume of a zone in a general metri
 spa
e, we assume that ifthe zones have the same number of obje
ts, as in the best implementationof List of Clusters, then the zones with smaller 
overing radii have higherobje
t density than those with larger 
overing radii.We have tested several zone ranking 
riteria, all in as
ending order:{ d(q; 
): the distan
e from q to ea
h zone 
enter.{ 
r(
): the 
overing radius of ea
h zone, 
r(
).{ d(q; 
) + 
r(
): an upper bound of the distan
e from q to the farthestobje
t in the zone of 
enter 
.{ d(q; 
) � 
r(
): a lower bound of the distan
e from q to the 
losestobje
t in the zone of 
enter 
.{ �(d(q; 
) � 
r(
)): what we 
all dynami
 beta.



The �rst two 
riteria are the simplest ones. The third 
riterion aimsto sear
h �rst in those zones that are 
loser to q and also are 
ompa
t.The fourth 
riterion is similar to the probabilisti
 in
remental sear
h. Thelast te
hnique is equivalent to redu
ing the sear
h radius by a fa
tor � asin [6℄, where 1=� 2 [0::1℄. If � is �xed, then this 
riterion is equivalent tod(q; 
) � 
r(
), be
ause the ordering is the same in both 
ases. However,instead of using a 
onstant fa
tor � we de�ne a dynami
 fa
tor of theform � = 1=(1:0� 
r(
)m
r ), where m
r is the maximum size of the 
overingradius of all zones. This implies that we redu
e more the sear
h radii inzones of larger 
overing radii. A spe
ial 
ase is when 
r(
0) = m
r for azone 
0. In this 
ase we de�ne dLB(q; e) =1 for all obje
ts in that zone.Note that d(q; 
) � 
r(
) is the only 
riterion that 
an be used withthe probabilisti
 in
remental sear
h, be
ause only with this 
riterion isguaranteed that dLB(q; e) � dLB(q; e0) for any obje
t e0 an
estor of e.5 Performan
e of the new te
hniques5.1 Experimental resultsWe use the SAT and List of Clusters to implement the probabilisti
 te
h-niques des
ribed in Se
tion 4, but with SAT we only implement the prob-abilisti
 in
remental sear
h be
ause in this data stru
ture every node isa 
enter, so it takes O(n) time to 
ompute the distan
es between thequery and every 
enter. We have tested the probabilisti
 te
hniques ona syntheti
 set of random points in a k-dimensional ve
tor spa
e treatedas a metri
 spa
e, that is, we have not used the fa
t that the spa
e has
oordinates, but treated the points as abstra
t obje
ts in an unknownmetri
 spa
e. The advantage of this 
hoi
e is that it allows us to 
ontrolthe exa
t dimensionality we are working with, whi
h is very diÆ
ult todo in general metri
 spa
es. The points are uniformly distributed in theunitary 
ube, our tests use the L2 (Eu
lidean) distan
e, the database sizeis n = 10; 000 and we perform range queries returning 0.10% of the totaldatabase size, taking an average from 1,000 queries. The te
hniques weretested using a spa
e of dimension 128, where no known exa
t algorithm
an avoid an exhaustive sear
h to answer useful range queries.Figure 7 shows the results of the probabilisti
 List of Clusters andSAT. The best te
hnique, in this 
ase, is the ranking zone method with
riterion d(q; 
) + 
r(
).Figure 8 shows a 
omparison of the probabilisti
 List of Clusters andthe probabilisti
 pivot-based algorithm, implemented in its 
anoni
al form
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Fig. 7. Probabilisti
 List of Clusters and SAT in a ve
tor spa
e of dimension 128(see Se
tion 2.1 and 3). In this experiment, the probabilisti
 List of Clus-ters performs almost equal than the pivot-based algorithm with 256 pivotswhen more than 97% of the result is a
tually retrieved. The pivot-basedte
hniques are slightly better when the pivots are sele
ted using the \goodpivots" 
riterion [5℄. However, the size of the List of Clusters index (0.12Mb) is about 82 times less than the size of the pivot-based index with 256pivots (9.78 Mb) and about 5 times less than the size of the pivot-basedindex with 16 pivots (0.62 Mb). Experiments with di�erent sear
h radiusand database size obtained similar results to those presented here.
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One of the most 
lear appli
ations of metri
 spa
e te
hniques to In-formation Retrieval is the task of �nding do
uments relevant to a query(whi
h 
an be a set of terms or a whole do
ument itself) [3℄. Do
uments(and queries) are seen as ve
tors, where every term is a 
oordinate whosevalue is the weight of the term in that do
ument. The distan
e betweentwo do
uments is the angle between their ve
tors, so do
uments sharingimportant terms are seen as more similar. Do
uments 
loser to a queryare 
onsidered to be more relevant to the query. Hen
e the task is to �ndthe elements of this metri
 spa
e of do
uments whi
h are 
losest to agiven query.Despite of this 
lear link, metri
 spa
e te
hniques have seldom beenused for this purpose. One reason is that the metri
 spa
e of do
umentshas a very high dimension, whi
h makes any exa
t sear
h approa
h unaf-fordable. This is a 
ase where probabilisti
 algorithms would be of greatvalue, sin
e the de�nition of relevan
e is fuzzy and it is 
ustomary to per-mit approximations. Figure 10 shows the result of an experiment testingthe zone ranking 
riteria on a subset of the TREC-3 
olle
tion [12℄. Thedatabase 
onsisted on 24,960 do
uments, and we average over 1,000 querydo
uments 
hosen at random from the original subset (m = 10 for theList of Clusters, retrieving on average 0.035% of the database per query).The results show that, for this experiment, the best 
riteria for rankingzones is the dynami
 beta and d(q; 
).
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dynamic betaFig. 9. Comparison among ranking 
riteria in a do
ument databaseFigure 10 shows a result 
omparing the pivot-based algorithm with theranking zone method using the dynami
 beta 
riterion. The results showthat our probabilisti
 algorithms 
an handle better this spa
e, retrieving



more than 99% of the relevant obje
ts and traversing merely a 17% of thedatabase, using mu
h less memory, approximately 16 times less than theindex with 64 pivots, hen
e be
oming for the �rst time a feasible metri
spa
e approa
h to this long standing problem.
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dynamic betaFig. 10. Comparison among probabilisti
 algorithms in the do
ument database5.2 Ranking of zones versus ranking of obje
tsThe sorting 
riterion d(q; 
) � 
r(
) 
an be modi�ed to take advantageof the information provided by the List of Clusters data stru
ture. If forea
h zone, in addition to the 
overing radius, we store the distan
es fromits 
enter 
 to all the obje
ts ui that belongs to this zone, then we 
anobtain an improved lower bound of the distan
e from q to ui, whi
h isd(q; 
) � d(
; ui). Therefore, a variant of the original 
riterion is to sortthe obje
ts a

ording to the values given by the improved lower bound.Note that in this variant we are not ranking the zones, but we are rankingea
h obje
t of the database.However, in pra
ti
e this variant results in no improvements over theoriginal te
hnique, but the opposite. The 
omparison between both te
h-niques and the dynami
 beta 
riterion is shown in Figure 11. The dynami
beta 
riterion have still far superior performan
e than the other 
riteria.Another possibility for ranking obje
ts instead of zones is using apivot-based index. Given a set fp1; : : : ; pkg of k pivots, we de�ne themetri
 D = Dp1;:::;pk(x; y) = max1�i�k jd(x; pi)� d(y; pi)j. It follows thatthe pivot ex
lusion 
ondition (see Se
tion 2.1) 
an be expressed in termsof D as Dp1;:::;pk(q; u) > r. Note that D is a lower bound of the d distan
e
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dynamic betaFig. 11. Comparison between ranking of obje
ts and ranking of zonesbetween q and u. The ranking in this 
ase 
onsists on sorting the obje
tsby in
reasing D distan
e to the query, and then sear
h in that order,stopping when the work quota is over or when the distan
e D is greaterthan r. Figure 12 shows the results of an experiment in the do
umentdatabase, using di�erent number of pivots. The results show that thismethod is quite 
ompetitive, but it is outperformed by the dynami
 beta
riterion when retrieving more than 99% of the relevant do
uments. Wealso 
ompared the di�eren
e between random and good pivots index. Theresult shows that the use of good pivots in
reases the performan
e of thissorting 
riterion.
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5.3 A model for ranking 
riteria 
omparisonNow we des
ribe a model for ranking 
riteria 
omparison, whi
h allows usto 
ompare di�erent ranking 
riteria in an o�ine mode, without havingto repeat ea
h experiment for ea
h di�erent pair of parameters.Let U be a database with jUj = n. For a given set Q of k queries, ea
hquery is performed using some 
riterion without work limit. We save theorder in whi
h elements were retrieved and their distan
e to the queryobje
t. With this information, we generate a 
loud of points whi
h isrepresented in a graph distan
e to the query as a fun
tion of the numberof distan
es 
omputations. The X axis range is [0; n℄ and the Y axis rangeis R+ . If obje
t u was retrieved after performing i distan
e 
omputations,then the point (i; d(q; u)) is added to the 
loud. This pro
edure is repeatedfor all obje
ts retrieved in all the queries, totalizing kn points. Figure 13shows an example of a 
loud of points.
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Fig. 13. Example of a 
loud of points for a given 
riterionThis 
loud of points allows us to simulate any experiment on theprepro
essed query set, varying the allowed amount of work or the sear
hradius. For example, if one wants to know how many relevant obje
ts thealgorithm would retrieve on average with a sear
h radius r and a workquota t, then one just have to 
ount the points (x; y) of the 
loud whi
hsatisfy x � t and y � r, and then divide this quantity by the total numberof queries, k. Let A(t; r) be the resulting value. Sin
e that all distan
es



between obje
ts and queries are known, it is easy to know how manyobje
ts are within a query ball for a �xed sear
h radius, whi
h turns outto be A(1; r). Then, the fra
tion f of retrieved relevant obje
ts using awork quota t is f = A(t;r)A(1;r) .The pro
edure des
ribed 
an be repeated for di�erent r0 and t0 values.If the sear
h radius is �xed and one 
omputes f for di�erent amounts ofwork quota, then we 
an obtain several points of the 
ost fun
tion for aspe
i�
 
riterion. Figure 14 shows the results obtained with a traditionalexperiment, and Figure 15 shows the results obtained with 100 queries,using the 
omparison model. There are just minor di�eren
es betweenboth �gures.
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dynamic betaFig. 14. Fra
tion of the retrieved obje
ts as a fun
tion of the traversed fra
tion of thedatabase, 0,064% retrievedThe disadvantage of this 
omparison model is that it requires to savehuge amounts of information, be
ause ea
h query 
ontributes with anamount of data proportional to the size of the database. This 
an besolved using s dis
rete values for d(q; u) and de�ning a matrix of s � nstorage 
ells for the dis
rete values of (i; d(q; u)). With this approa
h, thespa
e 
ost is st, but some pre
ision will be lost when 
omputing A(t; r).6 Con
lusionsWe have de�ned a general probabilisti
 te
hnique based on the in
re-mental nearest neighbor sear
h, that allows us to perform time-boundedrange sear
h queries in metri
 spa
es with a high probability of �nding
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dynamic betaFig. 15. Result using the 
omparative model, 0,064% retrievedall the relevant obje
ts. We also de�ned a probabilisti
 te
hnique basedon ranking zones, whi
h is a generalization of the former te
hnique. Ourexperimental results show in both syntheti
 and real-world examples thatthe best 
riteria for ranking zones perform better than the pivot-basedprobabilisti
 algorithm in high dimensional metri
 spa
es, as the latterneeds mu
h more memory spa
e to be 
ompetitive. Also, we studied vari-ants of this te
hnique whi
h rank obje
ts instead of zones, but our ex-perimental results show that these variants make no improvement overthe ranking of zones te
hnique. We 
onje
ture that the reason of the badperforman
e of the ranking of obje
ts is that we lose valuable 
lusteringinformation when we rank ea
h obje
t separately.Future work involves testing more zone ranking 
riteria and to usemore advan
ed 
lustering te
hniques for testing our probabilisti
 sear
halgorithms. Also, we are interested on �nding a theoreti
al frameworkthat supports our experimental results and that allow us to predi
t howwell will perform an arbitrary index with our probabilisti
 te
hniques.Based on the results obtained with the do
ument database, the rank-ing of zones seems to be a promising alternative as a ranking methodfor e�e
tive and eÆ
ient similarity sear
hing for Information Retrievalappli
ations. It would be interesting to 
ompare the e�e
tiveness of ourranking te
hnique against the traditional approa
hes in terms of pre
isionversus re
all �gures.Referen
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