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triangle inequality (d(x; z) � d(x; y) + d(y; z)). For example, a vetorspae is a partiular ase of metri spae, where the objets are tuples ofreal numbers and the distane funtion belongs to the Ls family, de�nedas Ls ((x1; : : : ; xk); (y1; : : : ; yk)) = �P1�i�k jxi � yijs�1=s. For example,L1 is alled the Manhattan distane, L2 is the Eulidean distane andL1 = max1�i�k jxi � yij is alled the maximum distane.One of the typial queries that an be posed to retrieve similar objetsfrom a database is a range query, whih retrieves all the objets withindistane r to a query objet q. The naive method to answer range queriesis to make an exhaustive searh on the database, but this turns out to betoo expensive for real-world appliations, beause the distane d is on-sidered expensive to ompute. Think, for example, of a biometri deviethat omputes the distane between two �ngerprints.Proximity searhing algorithms build an index of the database andperform range queries using this index, avoiding the exhaustive searh.Many of these algorithms are based on dividing the spae in partitionsor zones as ompat as possible. Eah zone stores a representative point,alled the enter, and a few extra data that permit quikly disardingthe entire zone at query time, without measuring the atual distanefrom the objets of the zone to the query objet, hene saving distaneomputations. Other algorithms are based in the use of pivots, whih aredistinguished objets from the database and are used together with thetriangle inequality to �lter out objets of the database at query time.An inherent problem of proximity searhing in metri spaes is thatthe searh beomes more diÆult when the \intrinsi" dimension of themetri spae inreases, whih is known as the urse of dimensionality.The intrinsi dimension of a metri spae is de�ned in [8℄ as �2=2�2,where � and �2 are the mean and the variane of the distane histogramof the metri spae. This is oherent with the usual vetor spae de�ni-tion. Analytial lower bounds and experiments [8℄ show that all proximitysearhing algorithms degrade their performane systematially as the di-mension of the spae grows. For example, in the ase of vetor spae thereis no tehnique that an reasonably ope with dimension higher than 20[8℄. This problem is due to two possible reasons: high dimensional metrispaes have a very onentrated distane histogram, whih gives less in-formation for disarding objets at query time; on the other hand, it isneessary to use a larger searh radius in order to retrieve a �xed frationof the objets of the spae, beause in high dimensional spaes the objetsare \far away" from eah other.



Probabilisti algorithms are aeptable in most appliations that needto searh in metri spaes, beause in general the modelization as a metrispae already arries some kind of relaxation. In most ases, �nding somelose objets is as good as �nding all of them.There exists a pivot-based probabilisti proximity searhing algorithmwhih largely improves the searh time at the ost of missing few relevantobjets [7℄. On the other hand, it is known that ompat partitioning al-gorithms perform better than pivot-based algorithms in high dimensionalmetri spaes [8℄ and they have lower memory requirements.In this paper we present several probabilisti algorithms for proximitysearhing based on ompat partitions, whih alleviate in some way theurse of the dimensionality. We also present experimental results thatshow that these algorithms perform better than probabilisti algorithmsbased on pivots, and the latter needs muh more memory spae to beatthe former when the dimension of the spae is very high.The paper is organized as follows: In Setion 2 we survey the exatalgorithms for proximity searh in metri spaes. In Setion 3 we givean overview of the atual probabilisti algorithms. In Setion 4 we de-sribe our approah, and Setion 5 presents the experimental results withsyntheti and real-world data sets. Finally, in Setion 6 we onlude anddisuss possible extensions of this work.2 Basi oneptsLet (X; d) be a metri spae and U � X the set of objets or database,with jUj = n. There are two typial proximity searhing queries:{ Range query. A range query (q; r), q 2 X, r 2 R+ , reports all objetsthat are within distane r to q, that is (q; r) = fu 2 U; d(u; q) � rg.{ k nearest neighbors (k-NN). Reports the k objets from U loser toq, that is, returns the set C � U suh that jC j = k and 8x 2 C ; y 2U � C ; d(x; q) � d(y; q).The volume de�ned by (q; r) is alled the query ball, and all the ob-jets from U inside it are reported. Nearest neighbors queries an beimplemented using range queries.There exist two lasses of tehniques used to implement proximitysearhing algorithms: based on pivots and based on ompat partitions.



2.1 Pivot-based algorithmsThese algorithms selet a number of \pivots", whih are distinguishedobjets from the database, and lassify all the other objets aording totheir distane to the pivots.The anonial pivot-based algorithm is as follows: given a range query(q; r) and a set of k pivots fp1; : : : ; pkg; pi 2 U, by the triangle inequalityit follows for any x 2 X that d(pi; x) � d(pi; q) + d(q; x), and also thatd(pi; q) � d(pi; x) + d(x; q). From both inequalities it follows that a lowerbound on d(q; x) is d(q; x) � jd(pi; x)� d(pi; q)j. The objets u 2 U ofinterest are those that satisfy d(q; u) � r, so one an exlude all theobjets that satisfy jd(pi; u)� d(pi; q)j > r for some pivot pi (exlusionondition), without atually evaluating d(q; u).The index onsists of the kn distanes d(u; pi) between every objetand every pivot. Therefore, at query time it is neessary to omputethe k distanes between the pivots and the query q in order to apply theexlusion ondition. Those distane alulations are known as the internalomplexity of the algorithm, and this omplexity is �xed if there is a �xednumber of pivots. The list of objets fu1; : : : ; umg � U that annot beexluded by the exlusion ondition, known as the objet andidate list,must be heked diretly against the query. Those distane alulationsd(ui; q) are known as the external omplexity of the algorithm. The totalomplexity of the searh algorithm is the sum of the internal and externalomplexity, k+m. Sine one inreases and the other dereases with k, itfollows that there is an optimum k� that depends on the tolerane ranger of the query. In pratie, however, k� is so large that one annot storethe k�n distanes, and the index uses as many pivots as spae permits.Examples of pivot-based algorithms [8℄ are BK-Tree, Fixed QueriesTree (FQT), Fixed-Height FQT, Fixed Queries Array, Vantage Point Tree(VPT), Multi VPT, Exluded Middle Vantage Point Forest, Approximat-ing Eliminating Searh Algorithm (AESA) and Linear AESA.2.2 Algorithms based on ompat partitionsThese algorithms are based on dividing the spae in partitions or zonesas ompat as possible. Eah zone stores a representative point, alled theenter, and a few extra data that permit quikly disarding the entire zoneat query time, without measuring the atual distane from the objets ofthe zone to the query objet. Eah zone an be partitioned reursively intomore zones, induing a searh hierarhy. There are two general riteriafor partitioning the spae: Voronoi partition and overing radius.



Voronoi partition riterion. A set of m enters is seleted, and the rest ofthe objets are assigned to the zone of their losest enter. Given a rangequery (q; r), the distanes between q and the m enters are omputed.Let  be the losest enter to q. Every zone of enter i 6=  whih satis�esd(q; i) > d(q; ) + 2r an be disarded, beause its Voronoi area annothave intersetion with the query ball. Figure 1 shows an example of theVoronoi partition riterion. For q1 the zone of 4 an be disarded, andfor q2 only the zone of 3 must be visited.
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Fig. 1. Voronoi partition riterionCovering radius riterion. The overing radius r() is the maximumdistane between a enter  and an objet that belongs to its zone. Givena range query (q; r), if d(q; i) � r > r(i) then zone i annot haveintersetion with the query ball and all its objets an be disarded. InFigure 2, the query ball of q1 does not have intersetion with the zone ofenter , thus it an be disarded. For the query balls of q2 and q3, thezone annot be disarded, beause it intersets these balls.Generalized-Hyperplane Tree [17℄ is an example of an algorithm thatuses the Voronoi partition riterion. Examples of algorithms that use theovering radius riterion are Bisetor Trees (BST ) [14℄, Monotonous BST[16℄, Voronoi Tree [11℄, M-Tree [9℄ and List of Clusters [6℄. Also, thereexist algorithms that use both riteria, for example Spatial ApproximationTree (SAT ) [15℄ andGeometri Near-neighbor Aess Tree [4℄. Of all thesealgorithms, two of the most eÆient are SAT and List of Clusters, so nowwe explain briey how these algorithms work.
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Fig. 2. Covering radius riterion2.3 Spatial Approximation TreeThe SAT [15℄ is based on approahing the query spatially rather thandividing the searh spae, that is, start at some point in the spae andget loser to the query, whih is done only via \neighbors". The SATuses both ompat partition riteria for disarding zones, it needs O(n)spae, reasonable onstrution time O(n log2(n)= log(log(n))) and sublin-ear searh time O(n1��(1= log(log(n)))) in high dimensional spaes.Constrution of SAT is as follows: an arbitrary objet a 2 U is hosenas the root node of the tree (note that sine there exists only one objetper node, we use both terms interhangeably in this setion). Then, weselet a suitable set of neighborsN(a) suh that 8u 2 U; u 2 N(a), 8v 2N(a)� fug; d(u; v) > d(u; a). Note that N(a) is de�ned in terms of itselfin a non-trivial way, and that multiple solutions �t the de�nition. In fat,�nding the minimal set of neighbors seems to be a hard ombinatorialoptimization problem [15℄. A simple heuristi that works well in mostases onsiders the objets in U�fag in inreasing order of their distanefrom a, and adds an objet x to N(a) if x is loser to a than to anyobjet already in N(a). Next, we put eah node in U�N(a) into the bagof it losest objet of N(a). Also, for eah subtree u 2 N(a) we store itsovering radius r(u). The proess is repeated reursively in eah subtreeusing the objets of its bag. Figure 3 shows an example of a SAT.This onstrution proess ensures that if we searh for an objet q 2 Uby spatial approximation, we will �nd that objet in the tree beause weare repeating exatly what happened during the onstrution proess,i.e., we enter into the subtree of the neighbor losest to q, until we reahq (in fat, in this ase we are doing an exat searh beause q is presentin the tree). For general range queries (q; r), instead of simply going tothe losest neighbor, we �rst determine the losest neighbor  of q among
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Fig. 3. Example of SATfag[N(a). Then, we enter into all neighbors b 2 N(a) suh that d(q; b) �d(q; )+2r. During the searh proess, all the nodes x suh that d(q; x) � rare reported. The searh algorithm an be improved a bit more: when wesearh for an objet q 2 U (exat searh), we follow a single path from theroot to q. At any node a0 in this path, we hoose the losest to q amongfa0g [N(a0). Therefore, if the searh is urrently at tree node a, we havethat q is loser to a than to any anestor a0 of a and also any neighborof a0. Hene, if we all A(a) the set of anestors of a (inluding a), wehave that, at searh time, we an avoid entering any objet x 2 N(a)suh that d(q; x) > 2r + minfd(q; );  2 fa0g [ N(a0); a0 2 A(a)g. Thisondition is a striter version of the original Voronoi partition riterion.The overing radius stored for all nodes during the onstrution proessan be used to prune the searh further, by not entering into subtreessuh that d(q; b) � r > r(b).2.4 List of ClustersThe List of Clusters [6℄ is a list of \zones". Eah zone has a enter andstores its overing radius. A enter  2 U is hosen at random, as wellas a radius rp, whose value depends on whether the number of objetsper ompat partition is �xed or not. The enter ball of (; rp) is de�nedas (; rp) = fx 2 X; d(; x) � rpg. We then de�ne I = U \ (; rp) as thebuket of \internal" objets lying inside (; rp), and E = U�I as the restof the objets (the \external" ones). The proess is repeated reursivelyinside E. The onstrution proess returns a list of triples (i; rpi; Ii)(enter, radius, internal buket), as shown in Figure 4.
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Fig. 4. Example of List of ClustersThis data struture is asymmetri, beause the �rst enter hosen haspreferene over the next enters in ase of overlapping balls, as shownin Figure 4. With respet to the value of the radius rp of eah ompatpartition and the seletion of the next enter in the list, there exist manyalternatives. In [6℄ it is shown experimentally that the best performane isahieved when the ompat partition has a �xed number of objets, so rpbeomes simply r(), and the next enter is seleted as the objet whihmaximizes the distane sum to the enters previously hosen. The brutefore algorithm for onstruting the list takes O(n2=m), where m is thesize of the ompat partition, but it an be improved using auxiliary datastrutures to build the partitions. For high dimensional metri spaes, theoptimal m is very low (we used m = 5 in our experiments).For a range query (q; r), d(q; ) is omputed, reporting  if it is withinthe query ball. Then, we searh exhaustively inside I only if d(q; ) �r() � r (overing radius riterion).E is proessed only if r()�d(q; ) <r, beause of the asymmetry of the data struture. The searh ost has aform lose to O(n�) for some 0:5 < � < 1:0 [6℄.3 Probabilisti algorithms for proximity searhingAll the algorithms seen in the previous setion are exat algorithms, whihretrieve exatly the elements of U that are within the query ball of (q; r).In this work we are interested in probabilisti algorithms, whih relax the



ondition of delivering the exat solution. As explained before, this isaeptable in most appliations.In [10℄ they propose a data struture alled M(U; Q) to answer near-est neighbor queries. It requires a training data set Q of m objets, takento be representative of typial query objets. This data struture mayfail to return a orret answer, but the failure probability an be madearbitrarily small at the ost of inreasing the query time and spae re-quirements for the index. When the metri spae obeys a ertain sphere-paking bound [10℄, the authors show thatM(U; Q) answers range queriesin O(K ln(n) log � (U[Q)) time, with failure probability O(log2 n=K) andrequires O(Kn log � (U [Q)) spae, where K is a parameter that allowsone to ontrol the failure probability and � (T ) is the ratio of the distanebetween the farthest and losest pair of points of T .In [7℄ they present a probabilisti algorithm based on \strething" thetriangle inequality. The idea is general, but they applied it to pivot basedalgorithms. Their analysis shows that the net e�et of the tehnique is toredue the searh radius by a fator �, and that that redution is largerwhen the searh problem beomes harder, i.e., the intrinsi dimension ofthe spae beomes high. Even with very little strething, they obtain largeimprovements in the searh time with low error probability. The fator� an be hosen at searh time, so the index an be built beforehandand later one an hoose the desired level of aurateness and speed ofthe algorithm. As the fator is used only to disard elements, no elementloser to q than r=� an be missed during the searh. In pratie, all theelements that satisfy jd(pi; u)� d(pi; q)j > r=� for some pi are disarded.Figure 5 illustrates how the idea operates. The exat algorithm guaranteesthat no relevant element is missed, while the probabilisti one strethesboth sides of the ring and an miss some elements.Approximation algorithms for vetor spaes are surveyed in depth in[18℄. An example is [1℄, whih proposes a general framework to searhfor an arbitrary region Q in an Eulidean vetor spae. The idea is tode�ne areas Q� and Q+ suh that Q� � Q � Q+. Points inside Q�are guaranteed to be reported and points outside Q+ are guaranteednot to be reported. In between, the algorithm an err. The maximumdistane between the real and the bounding areas is ". The vetor spae ispartitioned using trees, whih are used to guide the searh by inluding orexluding whole areas. Every deision about inluding (exluding) a wholearea an be done using Q+ (Q�) to inrease the probability of pruningthe searh in either way. Those areas that annot be fully inluded orexluded are analyzed in more detail by going down to the appropriate
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Fig. 5. How the probabilisti algorithm based on pivots works
subtree. The omplexity is shown to be O(2k log(n) + (3pk=")k) and avery lose lower bound is proven for the problem.In [2℄, it is proposed a data struture alled BBD-tree for searhingin a vetor spae Rd under any metri Ls. This struture is inspired inthe kd-tree and it an be used to �nd the \(1+ ") nearest neighbor", thatis, to �nd an objet u� suh that 8u 2 U; d(u�; q) � (1 + ")d(u; q). Theessential idea of the algorithm is to loate the query q in a ell (eah leaf inthe tree is assoiated with a ell in the spae deomposition). Every pointinside the ell is proessed so as to obtain its nearest neighbor p. Thesearh stops when no promising ells are found, i.e., when the radius ofany ball entered at q and interseting a nonempty ell exeeds the radiusd(q; p)=(1+"). The searh time for this algorithm is O(d1+6k="ek log(n)).In [19℄, a proposal alled \aggressive pruning" for \limited radius near-est neighbors" is presented. This query seeks for nearest neighbors thatare inside a given radius. The idea an be seen as a partiular ase of[1℄, where the searh area is a ball and the data struture is a kd-tree.Relevant elements may be lost but irrelevant ones annot be reported,i.e., Q+ = Q. The ball Q, of radius r and entered at q = (q1; : : : ; qk), ispruned by interseting it with the area between hyperplanes qi�r+" andqi + r � ". The authors give a probabilisti analysis assuming normallydistributed distanes, whih almost holds if the points are uniformly dis-tributed in the spae. The searh time is O(n�), where � dereases as thepermitted failure probability " inreases.



4 Our approahWe fous in probabilisti algorithms for high dimensional metri spaes,where for exat searhing it is very diÆult to avoid the exhaustive searhregardless of the index and searh algorithm used.It is well known that ompat partition algorithms perform betterthan pivot-based algorithms in high dimensional metri spaes [8℄, andthat the latter need more spae requirements, i.e., many pivots, to reahthe performane of the former. For this reason, it is interesting to developprobabilisti algorithms based on ompat partitions, with the hope thatthese algorithms ould have at least the same performane than pivot-based probabilisti algorithms, with less memory requirements. It is worthnoting that the index data struture used with the probabilisti searhalgorithm is the same used with the exat searh algorithm.We propose two tehniques: the �rst based on inremental searhingand the last based on ranking zones.4.1 Probabilisti Inremental SearhThis tehnique is an adaptation of the inremental nearest neighbor searhalgorithm [13℄. The inremental searh traverses the searh hierarhy de-�ned by the index (whatever it be) in a \best-�rst" manner. At any stepof the algorithm, it visits the \element" (zone or objet) with the smallestdistane from the query objet among all unvisited elements in the searhhierarhy. This an be done by maintaining a priority queue of elementsorganized by their maximum lower bound distane known to the queryobjet at any time.In [13℄ is proved that this searh is range-optimal, that is, it obtains thekth nearest neighbor, ok, after visiting the same searh hierarhy elementsas would a range query with radius d(q; ok) implemented with a top-downtraversal of the searh hierarhy.The inremental nearest neighbor searh an be adapted to answerrange queries. We report all objets u that satisfy d(q; u) � r, but we stopwhen it is dequeued an element with lower bound l > r (global stoppingriterion). It is not possible to �nd another objet within the query ballamong the unexplored elements, beause we have retrieved them orderedby their lower bounded distanes to q. An equivalent method is to enqueueelements only if they have a lower bound l � r, in whih ase the queuemust be proessed until it gets empty.The idea of the probabilisti tehnique based on the inremental searhis to �x in advane the number of distane omputations allowed to answer



a range query. Using the adapted inremental searh for range queries,if the searh is pruned after we make the maximum number of distaneomputations allowed, then we obtain a probabilisti algorithm in thesense that some relevant objets an be missed. However, as the searhis performed range-optimally, one an presume that the allotted distaneomputations are used in an eÆient way.Figure 6 depits the general form of the probabilisti inrementalsearh. Index is the data struture that indexes U, q is the query objet,e is an element of the index and dLB(q; e) is a lower bound of the real dis-tane between q and all the elements rooted in the searh hierarhy of e,where dLB(q; e) = d(q; e) if e is an objet of U, and dLB(q; e) � dLB(q; e0)if e0 is an anestor of e in the hierarhy. For example, in the List ofClusters, if e is a hild of a and belongs to the zone of enter  thendLB(q; e) = d(q; ) � r(); in SAT if e is a hild of a then dLB(q; e) =max(d(q; e)� r(e); (d(q; e)�minfd(q; );  2 fa0g[N(a0); a0 2 A(a)g)=2.The maximum number of distane omputations allowed to perform thesearh is denoted by quota. One quota has been reahed, no more el-ements are enqueued. Note that the only stopping riterion of the al-gorithm is that the queue gets empty, even if the work quota has beenreahed, beause for all the objets enqueued their distane to q are al-ready known. Variable ost indiates the number of distane omputationsneeded to proess a hild e0 of an element e in the searh hierarhy. InSAT, the ost of proessing all the hildren of e is equal to N(e); in Listof Clusters, this ost is equal to the size of the ompat partition, m.4.2 Ranking of zonesThe probabilisti inremental searh aims at quikly �nding objets withinthe query ball, before the work quota gets exhausted. As the maximumnumber of distane omputations is �xed, the total searh time is alsobounded. This tehnique an be generalized to what we all ranking ofzones, where the idea is to sort the zones in order to favor the mostpromising and then to traverse the list until we use up the quota. Theprobabilisti inremental searh an be seen as a ranking method, wherewe �rst rank all the zones using dLB(q; e) and then work until we useup the quota. However, this ranking does not have to be the best zoneranking riterion.The sorting riterion must aim at quikly �nding objets that arelose to the query objet. As the spae is partitioned into zones, we mustsort these zones in a promising searh order using the information givenby the index data struture. For example, in List of Clusters the only



ProbabilistiInrementalSearh(q, Index, quota)1. e  root of Index2. ounter  0 // Number of distanes omputed3. Q  f(e; 0)g // Priority queue4. while Q is not empty do5. (e; dLB(q; e))  element in Q with lower dLB(q; e)6. Q  Q � f(e; dLB(q; e)g7. if e is a zone then8. for eah hild element e0 of e do9. ost  ost to ompute dLB(q; e0)10. if ounter + ost � quota11. Compute dLB(q; e0)12. if dLB(q; e0) � r then13. Q  Q [ f(e0;max(dLB(q; e); dLB(q; e0))g14. ounter  ounter + ost15. endif16. enddo17. endif18. else report e // e is an objet within the query ball19. enddoFig. 6. Probabilisti inremental searh algorithminformation we have is the distanes from q to eah enter (d(q; )) andthe overing radius of eah zone (r()), whih is preomputed, so weestimate how promising a zone is using only d(q; ) and r(). One notonly would like to searh �rst the zones loser to the query, but also tosearh �rst the zones that are more ompat, that is, the zones whihhave \higher objet density". In spite of the fat that it is very diÆultto de�ne the volume of a zone in a general metri spae, we assume that ifthe zones have the same number of objets, as in the best implementationof List of Clusters, then the zones with smaller overing radii have higherobjet density than those with larger overing radii.We have tested several zone ranking riteria, all in asending order:{ d(q; ): the distane from q to eah zone enter.{ r(): the overing radius of eah zone, r().{ d(q; ) + r(): an upper bound of the distane from q to the farthestobjet in the zone of enter .{ d(q; ) � r(): a lower bound of the distane from q to the losestobjet in the zone of enter .{ �(d(q; ) � r()): what we all dynami beta.



The �rst two riteria are the simplest ones. The third riterion aimsto searh �rst in those zones that are loser to q and also are ompat.The fourth riterion is similar to the probabilisti inremental searh. Thelast tehnique is equivalent to reduing the searh radius by a fator � asin [6℄, where 1=� 2 [0::1℄. If � is �xed, then this riterion is equivalent tod(q; ) � r(), beause the ordering is the same in both ases. However,instead of using a onstant fator � we de�ne a dynami fator of theform � = 1=(1:0� r()mr ), where mr is the maximum size of the overingradius of all zones. This implies that we redue more the searh radii inzones of larger overing radii. A speial ase is when r(0) = mr for azone 0. In this ase we de�ne dLB(q; e) =1 for all objets in that zone.Note that d(q; ) � r() is the only riterion that an be used withthe probabilisti inremental searh, beause only with this riterion isguaranteed that dLB(q; e) � dLB(q; e0) for any objet e0 anestor of e.5 Performane of the new tehniques5.1 Experimental resultsWe use the SAT and List of Clusters to implement the probabilisti teh-niques desribed in Setion 4, but with SAT we only implement the prob-abilisti inremental searh beause in this data struture every node isa enter, so it takes O(n) time to ompute the distanes between thequery and every enter. We have tested the probabilisti tehniques ona syntheti set of random points in a k-dimensional vetor spae treatedas a metri spae, that is, we have not used the fat that the spae hasoordinates, but treated the points as abstrat objets in an unknownmetri spae. The advantage of this hoie is that it allows us to ontrolthe exat dimensionality we are working with, whih is very diÆult todo in general metri spaes. The points are uniformly distributed in theunitary ube, our tests use the L2 (Eulidean) distane, the database sizeis n = 10; 000 and we perform range queries returning 0.10% of the totaldatabase size, taking an average from 1,000 queries. The tehniques weretested using a spae of dimension 128, where no known exat algorithman avoid an exhaustive searh to answer useful range queries.Figure 7 shows the results of the probabilisti List of Clusters andSAT. The best tehnique, in this ase, is the ranking zone method withriterion d(q; ) + r().Figure 8 shows a omparison of the probabilisti List of Clusters andthe probabilisti pivot-based algorithm, implemented in its anonial form
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Fig. 7. Probabilisti List of Clusters and SAT in a vetor spae of dimension 128(see Setion 2.1 and 3). In this experiment, the probabilisti List of Clus-ters performs almost equal than the pivot-based algorithm with 256 pivotswhen more than 97% of the result is atually retrieved. The pivot-basedtehniques are slightly better when the pivots are seleted using the \goodpivots" riterion [5℄. However, the size of the List of Clusters index (0.12Mb) is about 82 times less than the size of the pivot-based index with 256pivots (9.78 Mb) and about 5 times less than the size of the pivot-basedindex with 16 pivots (0.62 Mb). Experiments with di�erent searh radiusand database size obtained similar results to those presented here.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 4000  5000  6000  7000  8000  9000  10000

F
ra

ct
io

n 
of

 th
e 

re
su

lt 
ac

tu
al

ly
 r

et
rie

ve
d

Distance computations

10,000 objects, dimension 128, retrieving 0.10% of the database

16 pivots, random
256 pivots, random

16 pivots, good
256 pivots, good

List of Clusters: d(q,c)+cr(c)

Fig. 8. Comparison among probabilisti algorithms in a vetor spae of dimension 128



One of the most lear appliations of metri spae tehniques to In-formation Retrieval is the task of �nding douments relevant to a query(whih an be a set of terms or a whole doument itself) [3℄. Douments(and queries) are seen as vetors, where every term is a oordinate whosevalue is the weight of the term in that doument. The distane betweentwo douments is the angle between their vetors, so douments sharingimportant terms are seen as more similar. Douments loser to a queryare onsidered to be more relevant to the query. Hene the task is to �ndthe elements of this metri spae of douments whih are losest to agiven query.Despite of this lear link, metri spae tehniques have seldom beenused for this purpose. One reason is that the metri spae of doumentshas a very high dimension, whih makes any exat searh approah unaf-fordable. This is a ase where probabilisti algorithms would be of greatvalue, sine the de�nition of relevane is fuzzy and it is ustomary to per-mit approximations. Figure 10 shows the result of an experiment testingthe zone ranking riteria on a subset of the TREC-3 olletion [12℄. Thedatabase onsisted on 24,960 douments, and we average over 1,000 querydouments hosen at random from the original subset (m = 10 for theList of Clusters, retrieving on average 0.035% of the database per query).The results show that, for this experiment, the best riteria for rankingzones is the dynami beta and d(q; ).
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more than 99% of the relevant objets and traversing merely a 17% of thedatabase, using muh less memory, approximately 16 times less than theindex with 64 pivots, hene beoming for the �rst time a feasible metrispae approah to this long standing problem.
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dynamic betaFig. 10. Comparison among probabilisti algorithms in the doument database5.2 Ranking of zones versus ranking of objetsThe sorting riterion d(q; ) � r() an be modi�ed to take advantageof the information provided by the List of Clusters data struture. If foreah zone, in addition to the overing radius, we store the distanes fromits enter  to all the objets ui that belongs to this zone, then we anobtain an improved lower bound of the distane from q to ui, whih isd(q; ) � d(; ui). Therefore, a variant of the original riterion is to sortthe objets aording to the values given by the improved lower bound.Note that in this variant we are not ranking the zones, but we are rankingeah objet of the database.However, in pratie this variant results in no improvements over theoriginal tehnique, but the opposite. The omparison between both teh-niques and the dynami beta riterion is shown in Figure 11. The dynamibeta riterion have still far superior performane than the other riteria.Another possibility for ranking objets instead of zones is using apivot-based index. Given a set fp1; : : : ; pkg of k pivots, we de�ne themetri D = Dp1;:::;pk(x; y) = max1�i�k jd(x; pi)� d(y; pi)j. It follows thatthe pivot exlusion ondition (see Setion 2.1) an be expressed in termsof D as Dp1;:::;pk(q; u) > r. Note that D is a lower bound of the d distane
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5.3 A model for ranking riteria omparisonNow we desribe a model for ranking riteria omparison, whih allows usto ompare di�erent ranking riteria in an o�ine mode, without havingto repeat eah experiment for eah di�erent pair of parameters.Let U be a database with jUj = n. For a given set Q of k queries, eahquery is performed using some riterion without work limit. We save theorder in whih elements were retrieved and their distane to the queryobjet. With this information, we generate a loud of points whih isrepresented in a graph distane to the query as a funtion of the numberof distanes omputations. The X axis range is [0; n℄ and the Y axis rangeis R+ . If objet u was retrieved after performing i distane omputations,then the point (i; d(q; u)) is added to the loud. This proedure is repeatedfor all objets retrieved in all the queries, totalizing kn points. Figure 13shows an example of a loud of points.
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Fig. 13. Example of a loud of points for a given riterionThis loud of points allows us to simulate any experiment on thepreproessed query set, varying the allowed amount of work or the searhradius. For example, if one wants to know how many relevant objets thealgorithm would retrieve on average with a searh radius r and a workquota t, then one just have to ount the points (x; y) of the loud whihsatisfy x � t and y � r, and then divide this quantity by the total numberof queries, k. Let A(t; r) be the resulting value. Sine that all distanes



between objets and queries are known, it is easy to know how manyobjets are within a query ball for a �xed searh radius, whih turns outto be A(1; r). Then, the fration f of retrieved relevant objets using awork quota t is f = A(t;r)A(1;r) .The proedure desribed an be repeated for di�erent r0 and t0 values.If the searh radius is �xed and one omputes f for di�erent amounts ofwork quota, then we an obtain several points of the ost funtion for aspei� riterion. Figure 14 shows the results obtained with a traditionalexperiment, and Figure 15 shows the results obtained with 100 queries,using the omparison model. There are just minor di�erenes betweenboth �gures.
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