
Indexing Text using the Ziv-Lempel TrieGonzalo NavarroDept. of Computer Siene, Univ. of Chile.Blano Enalada 2120, Santiago, Chile. gnavarro�d.uhile.l.Partially supported by Fondeyt Grant 1-020831.AbstratLet a text of u haraters over an alphabet of size � be ompressible to n symbols bythe LZ78 or LZW algorithm. We show how to build a data struture, alled the LZ-index,based on the Ziv-Lempel trie that takes 4n log2 n(1 + o(1)) bits of spae (that is, 4 times theentropy of the text) and reports the R ourrenes of a pattern of length m in worst ase timeO(m3 log� + (m+ R) logn). We present a pratial implementation of the LZ-index, whih isfaster than urrent alternatives when we take into onsideration the time to report the positionsor text ontexts of the ourrenes found.1 Introdution and Related WorkA text database is a system providing fast aess to a large mass of textual data. By far the mosthallenging requirement is that of performing fast text searhing for user-entered patterns. Thesimplest (yet realisti and rather ommon) senario is as follows. The text T1:::u is regarded as aunique sequene of haraters over an alphabet � of size �, and the searh pattern P1:::m as another(short) sequene over �. Then the text searh problem onsists of �nding all the R ourrenes ofP in T .Modern text databases have to fae two opposed goals. On the one hand, they have to providefast aess to the text. On the other, they have to use as little spae as possible. The goals areopposed beause, in order to provide fast aess, an index has to be built on the text. An index is adata struture built on the text and stored in the database, hene inreasing the spae requirement.In reent years there has been muh researh on ompressed text databases, fousing on tehniquesto represent the text and the index in suint form, yet permitting eÆient text searhing.Despite that there has been some work on suint inverted indexes for natural language for awhile [30, 26℄ (able of �nding whole words and phrases), until a short time ago it was believed thatany general index for string mathing would need 
(u) spae. In pratie, the smallest indexesavailable were the suÆx arrays [20℄, requiring u log2 u bits to index a text of u haraters, whihrequired u log2 � bits to be represented, so the index is in pratie larger than the text (typially 4times the text size).Sine the last deade, several attempts to redue the spae of the suÆx trees [3℄ or arrayshave been made by K�arkk�ainen and Ukkonen [12, 15℄, Kurtz [17℄, M�akinen [19℄, and Abouelhoda,1



Ohlebush and Kurtz [1℄, obtaining remarkable improvements, albeit no spetaular ones. More-over, they have onentrated on the spae requirement of the data struture only, needing the textseparately available.The �rst ahievement of a new trend started with Grossi and Vitter [9℄, who presented a suÆxarray ompression method for binary texts, whih needed O(u) bits and was able to report all theR ourrenes of P in T in O � mlog u + (R+ 1) log" u� time. However, they need the text as well asthe index in order to answer queries.Following this line, Sadakane [27℄ presented a suÆx array ompression method for generaltexts (not only binary) that requires u �1"H0 + 8 + 3 log2H0� (1 + o(1)) + � log2 � bits, where H0is the zero-order entropy of the text. This index an searh in time O(m log u + R log" u) andontains enough information to reprodue the text: any piee of text of length L is obtained inO(L+ log" u) time. This means that the index replaes the text, whih an hene be deleted. Thisis an opportunisti sheme, i.e., the index takes less spae if the text is ompressible. Yet there isa minimum of 8u bits of spae whih has to be paid independently of the entropy of the text.Ferragina and Manzini [6℄ presented a di�erent approah to ompress the suÆx array based onthe Burrows-Wheeler transform and blok sorting. They need 5uHk +O �u log log u+� log �log u � bits andan answer queries in O(m + R log" u) time, where Hk is the k-th order entropy and the formulais valid for any onstant k. This sheme is also opportunisti. However, there is a large onstant� log � involved in the sublinear part whih does not derease with the entropy, and a huge additiveonstant larger than ��. (In a real implementation [7℄ they removed these onstants at the prieof a not guaranteed searh time.)Reently, Sadakane [28℄ has proposed a ompat suÆx array representation that inludes longestommon pre�x information, whih is able to ount the ourrenes of P in O(m) time and oftraversing the suÆx tree in O(n log" n) time. It needs 1"nH1 + O(n) bits. Its main interest lies inits ability to handle large alphabets, where it is superior to [6℄.However, there are older attempts to produe suint indexes, by K�arkk�ainen and Ukkonen[14, 13℄. Their main idea is to use a suÆx tree that indexes only the beginnings of the bloksprodued by a Ziv-Lempel ompression (see next setion if not familiar with Ziv-Lempel). Thisis the only index we are aware of whih is based on this type of ompression. In [13℄ they obtaina range of spae-time trade-o�s. The smallest indexes need O �u �log � + 1"�� bits, i.e., the samespae of the original text, and are able to answer queries in O � log�logum2 +m log u+ 1"R log" u� time.Note, however, that this index is not opportunisti, as it takes spae proportional to the text, andindeed needs the text besides the data of the index.In this paper we propose a new index on these lines, alled the LZ-index. Instead of using ageneri Ziv-Lempel algorithm, we stik to the LZ78/LZW format and its spei� properties. We donot build a suÆx tree on the strings produed by the LZ78 algorithm. Rather, we use the very sameLZ78 trie that is produed during ompression, plus other related strutures. We borrow some ideasfrom K�arkk�ainen and Ukkonen's work, but in our ase we have to fae additional ompliationsbeause the LZ78 trie has less information than the suÆx tree of the bloks. As a result, our index issmaller but has a higher searh time. If we all n the number of bloks in the ompressed text, thenour index takes 4n log2 n(1+ o(1)) bits of spae and answers queries in O(m3 log �+(m+R) log n)time. It is shown in [16, 8℄ that Ziv-Lempel ompression asymptotially approahes Hk for any2



k. Sine this ompressed text needs at least n log2 n bits of storage, we have that our index isopportunisti, taking at most 4uHk bits, for any k.This representation, moreover, ontains the information to reprodue the text. We an re-produe a text ontext of length L around an ourrene found (and in fat any sequene ofbloks) in O(L log �) time, or obtain the whole text in time O(u log �). The index an be built inO(u log �) time. Finally, the time an be redued to O(m3 log � +m log n+R log" n) provided wepay O �1"n log n� spae.About at the same time and independently of us [8℄, Ferragina and Manzini have proposedanother idea ombining ompressed suÆx arrays and Ziv-Lempel ompression. They ahieve opti-mal O(m+ R) searh time at the prie of O(uHk log" u) spae. Moreover, this spae inludes twoompressed suÆx arrays of the previous type [6℄ and their large onstant terms. It is interestingthat they share, like us, several ideas of previous work on sparse suÆx trees [14, 13℄.What is unique in our approah is the reonstrution of the ourrenes using a data struturethat does not reord full suÆx information but just of text substrings, thus addressing the problemof reonstruting pattern ourrenes from these piees information.In addition to our theoretial proposal, we have implemented our index. Some deisions arehanged in the implementation beause of pratial onsiderations. The �nal prototype was testedon large natural language and DNA texts. It takes about 5 times the spae needed by the om-pressed text (whih is lose to our predition 4uHk). On a 2 GHz Pentium IV mahine, the indexis built at a rate of 1{2 Mb/se (whih is ompetitive with urrent tehnology) and uses a tem-porary extra spae similar to a suÆx array onstrution (5 times the text size, whih is large butusual). On a 50 Mb text, a normal query takes 2 to 4 milliseonds (mses), depending linearly onits length, plus the time to report the R ourrenes, at a rate of 600{800 per mse. Text lines anbe displayed at a rate of 14 lines per mse.We have ompared our index against existing alternatives. Although our index is muh slowerto ount how many ourrenes are there, it is muh faster to report their position or their textontext. Indeed, we show that if there are more than 300{1,400 ourrene positions to report (thisdepends on the text type), then our index is faster than the others. This number goes down to13{65 if the text lines of the ourrenes have to be shown. Being able of reproduing the text isan essential feature, sine all these indexes replae the text and hene our only way to see the textis asking them to reprodue it.This paper is organized as follows. In Setion 2 we explain the Ziv-Lempel ompression. InSetion 3 we present the basi ideas of our tehnique. Setion 4 explains how to represent the datastrutures we use in suint spae. Setion 5 gives a theoretial analysis of the data struture, interms of spae, onstrution and query time. Setion 6 desribes the pratial implementation ofthe index. Setion 7 ompares our implementation against the most prominent alternatives. Setion8 gives our onlusions and future work diretions. A shorter version of this paper appeared in [24℄.2 Ziv-Lempel CompressionThe general idea of Ziv-Lempel ompression is to replae substrings in the text by a pointer toa previous ourrene of them. If the pointer takes less spae than the string it is replaing,ompression is obtained. Di�erent variants over this type of ompression exist, see for example [4℄.3



We are partiularly interested in the LZ78/LZW format, whih we desribe in depth.The Ziv-Lempel ompression algorithm of 1978 (usually named LZ78 [31℄) is based on a ditio-nary of bloks, in whih we add every new blok omputed. At the beginning of the ompression,the ditionary ontains a single blok b0 of length 0. The urrent step of the ompression is asfollows: if we assume that a pre�x T1:::j of T has been already ompressed in a sequene of bloksZ = b1 : : : br, all them in the ditionary, then we look for the longest pre�x of the rest of the textTj+1:::u whih is a blok of the ditionary. One we have found this blok, say bs of length `s, weonstrut a new blok br+1 = (s; Tj+`s+1), we write the pair at the end of the ompressed �le Z, i.eZ = b1 : : : brbr+1, and we add the blok to the ditionary. It is easy to see that this ditionary ispre�x-losed (i.e. any pre�x of an element is also an element of the ditionary) and a natural wayto represent it is a trie.We show in Figure 1 the ompression of the text alabar a la alabarda para apalabrarla1 , whihwill be our running example. For readability we have hanged the spae to undersore and haveassumed its ode is larger than those of normal letters.The �rst blok is (0; a), and next (0; l). When we read the next a, a is already blok 1 in theditionary, but ab is not in the ditionary. So we reate a third blok (1; b). We then read the nexta, a is already blok 1 in the ditionary, but ar does not appear. So we reate a new blok (1; r),and so on. The full ompressed text is(0; a) (0; l) (1; b) (1; r) (0; ) (1; ) (2; a) (5; a) (7; b) (4; d) (6; p) (4; a) (8; p) (1; l) (3; r) (4; l) (1; $)were we have added a terminator harater \$", smaller than any other harater, to ensure thatevery blok orresponds to a di�erent node.The ompression algorithm is O(u) time in the worst ase and eÆient in pratie if the ditio-nary is stored as a trie, whih allows rapid searhing of the new text pre�x (for eah harater ofT we move one in the trie). The deompression needs to build the same ditionary (the pair thatde�nes the blok r is read at the r-th step of the algorithm).Many variations on LZ78 exist, whih deal basially with the best way to ode the pairs in theompressed �le. A partiularly interesting variant is from Welh, alled LZW [29℄. In this ase,the extra letter (seond element of the pair) is not oded, but it is taken as the �rst letter of thenext blok (the ditionary is started with one blok per letter). LZW is used by Unix's Compressprogram.In this paper we do not onsider LZW separately but just as a oding variant of LZ78. This isbeause the �nal letter of LZ78 an be readily obtained by keeping ount of the �rst letter of eahblok (this is opied diretly from the referened blok) and then looking at the �rst letter of thenext blok.An interesting property of this ompression format is that every blok represents a di�erent textsubstring. The only possible exeption is the last blok. We use this property in our algorithm,and deal with the exeption by adding a speial harater \$" (not in the alphabet) at the end ofthe text. The last blok will ontain this harater and thus will be unique too.Another onept that is worth reminding is that a set of strings an be lexiographially sorted,and we all the rank of a string its position in the lexiographially sorted set. Moreover, ifthe set is arranged in a trie data struture, then all the strings represented in a subtree form a1A not totally meaningful Spanish phrase, but one with nie periodiity properties!4
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Figure 1: Ziv-Lempel trie and parse for our running example. For example, blok number 10represents string ard, whih is spelled out when we move from the trie root to node labeled 10.lexiographial interval of the universe. We remind that, in lexiographi order, " � x, ax � by ifa < b, and ax � ay if x � y, for any strings x; y and haraters a; b.3 Basi TehniqueWe now present the basi idea to searh for a pattern P1:::m in a text T1:::u whih has been om-pressed using the LZ78 or LZW algorithm into n + 1 bloks T = B0 : : : Bn, suh that B0 = ";8k 6= `; Bk 6= B` (that is, no two bloks are equal); and 8k � 1; 9` < k;  2 �; Bk = B` �  (thatis, every blok exept B0 is formed by a previous blok plus a letter at the end).3.1 Data StruturesWe start by de�ning the data strutures used, without aring for the exat way they are represented.The problem of their suint representation, and onsequently the spae oupany and timeomplexity, is onsidered in Setion 4.1. LZTrie : is the trie formed by all the bloks B0 : : : Bn. Given the properties of LZ78 om-pression, this trie has exatly n+1 nodes, eah one orresponding to a string. LZTrie stores5



enough information so as to permit the following operations on every node x:(a) idt(x) gives the node identi�er, i.e., the number k suh that x represents Bk;(b) leftrankt(x) and rightrankt(x) give the minimum and maximum lexiographial posi-tion of the bloks represented by the nodes in the subtree rooted at x, among the setB0 : : : Bn;() parentt(x) gives the tree position of the parent node of x; and(d) hildt(x; ) gives the tree position of the hild of node x by harater , or null if nosuh hild exists.Additionally, the trie must implement the operation rtht(rank), whih given a rank r givesthe node representing the r-th string in B0 : : : Bn in lexiographial order. Figure 2 showsthe LZTrie data struture for our running example.
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Figure 2: LZTrie data struture for our running example. The numbers over the nodes are theirrank. We show the values that orrespond to node x, whih represents blok number 4 and is the6th string in the set.2. RevTrie : is the trie formed by all the reverse strings Br0 : : : Brn. For this struture we donot have the nie properties that the LZ78/LZW algorithm gives to LZTrie: there ould be6



internal nodes not representing any blok. We need the same operations for RevTrie thanfor LZTrie, whih are alled idr, leftrankr, rightrankr, parentr, hildr and rthr.Figure 3 shows the RevTrie data struture for our running example.
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3.2.1 Ourrenes Lying Inside a Single BlokGiven the properties of LZ78/LZW, every blok Bk ontaining P is formed by a shorter blok B`onatenated to a letter . If P does not our at the end of Bk, then B` ontains P as well.We want to �nd the shortest possible blok B in the referening hain for Bk that ontains theourrene of P . This blok B �nishes with the string P , hene it an be easily found by searhingfor P r in RevTrie.Hene, in order to detet all the ourrenes that lie inside a single blok we do as follows:1. Searh for P r in RevTrie. We arrive at a node x suh that every string stored in the subtreerooted at x represents a blok ending with P .2. Evaluate leftrankr(x) and rightrankr(x), obtaining the lexiographial interval (in the re-versed bloks) of bloks �nishing with P .3. For every rank r 2 leftrankr(x) : : : rightrankr(x), obtain the orresponding node in LZTrie,y = Node(rthr(r)). Now we have identi�ed the nodes in the normal trie that �nish with Pand have to report all their extensions, i.e., all their subtrees.4. For every suh y, traverse all the subtree rooted at y and report every node found. In thisproess we an know the exat distane between the end of P and the end of the blok.Note that a single blok ontaining several ourrenes will report eah of them, sine we willreport a subtree that is ontained in another subtree reported.Figure 6 illustrates the �rst part on our running example. Assume we searh for ab. We lookfor ba on RevTrie and reah the highlighted node. With leftrank and rightrank we �nd that thelexiographial range orresponding to its subtree is [6 : : : 7℄. For eah suh position we use rthr todetermine the blok identi�er, so as to obtain the list of identi�ers of the subtree, f3; 9g.Figure 7 shows the seond part of the searh on our running example. For eah blok in the listf3; 9g, we use Node to �nd the orresponding node in LZTrie, and report all the subtrees. Heneblok 3 leads us to report also blok 15, while blok 9 just reports itself. It is easy to dedue theo�set in the reported bloks, ounting from the end: the nodes in the list have o�set m to the endof the blok, their hildren m+ 1, their grandhildren m+ 2, and so on.3.2.2 Ourrenes Spanning Two BloksP an be split at any position, so we have to try them all. The idea is that, for every possible split,we searh for the reverse pattern pre�x in RevTrie and the pattern suÆx in LZTrie. Now we havetwo ranges, one in the spae of reversed strings (i.e., bloks �nishing with the �rst part of P ) andone in that of the normal strings (i.e. bloks starting with the seond part of P ), and need to �ndthe pairs of bloks (k; k+1) suh that k is in the �rst range and k+1 is in the seond range. Thisis what the range searhing data struture is for. Hene the steps are:1. For every i 2 1 : : : m� 1, split P in pref = P1:::i and suff = Pi+1:::m and do the next steps.2. Searh for pref r in RevTrie, obtaining x. Searh for suff in LZTrie, obtaining y.9
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a

d l bp

a

a l ab ar _ a_ lab_ala ard a_p ara _ap al abr arl a$

0

1

17 764

52

8

139111012 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p

a

15

r a

3 14

l

b$ l r _

_

0

1

2 3

4

5 6

7 8 9

10

11

12

13

14

15

16

17
Node(3)

Node(9)

Report matches inside B(3), B(15) and B(9)

Figure 7: Reporting ourrenes of type 1 of P = ab in our running example, seond part.j. Then, we try to �nd onatenations of suessive bloks Bk, Bk+1, et. that math ontiguouspattern substrings. Again, there is only one andidate (namely Bk+1) to follow an ourrene ofBk in the pattern. Finally, for eah maximal onatenation of bloks Pi:::j = Bk : : : B` ontained inthe pattern, we determine whether Bk�1 �nishes with P1:::i�1 and B`+1 starts with Pj+1:::m. If thisis the ase we an report an ourrene. Note that there annot be more than O(m2) ourrenesof this type. So the algorithm is as follows:1. For every 1 � i � j � m, searh for Pi:::j in LZTrie and reord the node x found in Ci;j = x,as well as add (idt(x); j) to array Ai. The searh is made for inreasing i and for eah i valuewe inrease j. This way we perform a single searh in the trie for eah i. If there is no nodeorresponding to Pi:::j we stop searhing and adding entries to Ai, and store null values inCi;j0 for j0 � j. At the end of every i-turn, we sort Ai by blok number. Mark every Ci;j asunused.2. For every 1 � i � j < m, for inreasing j, try to extend the math of Pi:::j to the right. We donot extend to the left beause this, if useful, has been done already (we mark used ranges toavoid working on a sequene that has been tried already from the left). Let S and S0 denoteidt(Ci;j), and �nd (S+1; r) in Aj+1. If r exists, mark Cj+1;r as used, inrement S and repeatthe proess from j = r. Stop when the ourrene annot be extended further (no suh r isfound). 11
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Figure 8: Reporting ourrenes of type 2 of P = ala in our running example, �rst part.(a) For eah maximal ourrene Pi:::r found ending at blok S suh that r < m, hekwhether blok S + 1 starts with Pr+1:::m, i.e., whether leftrankt(Node(S + 1)) 2leftrankt(Cr+1;m) : : : rightrankt(Cr+1;m). Note that leftrankt(Node(S + 1)) is the ex-at rank of node S + 1, sine every internal node is the �rst among the ranks of itssubtree. Note also that there annot be an ourrene if Cr+1;m is null. If r < m andblok S + 1 does not start with Pr+1:::m, then stop here and move to the next maximalourrene.(b) If i > 1, then hek whether blok S0 � 1 �nishes with P1:::i�1. For this sake, �ndNode(S0 � 1) and use the parentt operation to hek whether the last i� 1 nodes, readbakward, equal P r1:::i�1. If i > 1 and blok S0�1 does not �nish with P1:::i�1, then stophere and move to the next maximal ourrene.() Report node S0 � 1 as the one ontaining the beginning of the math. We know thatPi�1 is aligned at the end of this blok.Note that we have to make sure that the ourrenes reported span at least 3 bloks.Figure 11 exempli�es the �rst part on our running example. Assume we searh for alaba. Welook for all the substrings of P and �ll matrix C and the A vetors.Figure 12 shows the seond part. We obtain the maximal ourrenes from the A vetors. Inour example, we ould join bloks B1 to B3 in a single maximal ourrene.Figure 13 shows the third part of the searh. We hek that the maximal ourrenes ontinue12
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Figure 10: Reporting ourrenes of type 2 of P = ala in our running example, third part.spae, the following operations an also be answered in onstant time: leafrank(x) (number ofleaves to the left of node x), leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)and rightmost(x) (leftmost and rightmost leaves in the subtree rooted at x).In the same paper [23℄ they show that a trie an be represented using this same struture byrepresenting the alphabet � in binary. This trie is able to point to an array of identi�ers, so thatthe identity of eah leaf an be known. Moreover, path ompressed tries (where unary paths areompressed and a skip value is kept to indiate how many nodes have been ompressed) an berepresented without any extra spae ost, as long as there exists a separate representation of thestrings stored readily available to ompare the portions of the pattern skipped at the ompressedpaths.We use the above representation for LZTrie as follows. We do not use path ompression, butrather onvert the alphabet to binary and store the n+ 1 strings orresponding to eah blok, inbinary form, into LZTrie. For reasons that are made lear soon, we pre�x every binary represen-tation with the bit \1". So every node in the binary LZTrie will have a path of length 1 + log2 �to its real parent in the original LZTrie, reating at most 1 + log2 � internal nodes. We make surethat all the binary trie nodes that orrespond to true nodes in the original LZTrie are leaves inthe binary trie. For this sake, we use the extra bit alloated: at every true node that happens tobe internal, we add a leaf by the bit 0, while all the other hildren neessarily desend by the bit 1.Hene we end up with a binary tree of n(1 + log2 �) nodes, whih an be represented using14
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Figure 11: Reporting ourrenes of type 3 of P = alaba in our running example, �rst part.2n(1 + log2 �) + o(n log �) bits. The identity assoiated to eah leaf x will be idt(x). This arrayof node identi�ers is stored in order of inreasing rank, whih requires n log2 n bits, and permitsimplementing rtht in onstant time.The operations parentt and hildt an therefore be implemented in O(log �) time. Theremaining operations, leftrank(x) and rightrank(x), are omputed in onstant time usingleafrank(leftmost(x)) and leafrank(rightmost(x)), sine the number of leaves to the left or-responds to the rank in the original trie.For RevTrie we have up to n leaves, but there may be up to u internal nodes. We use also thebinary string representation and the trik of the extra bit to ensure that every node that representsa blok is a leaf. In this trie we do use path ompression to ensure that, even after onvertingthe alphabet to binary, there are only n nodes to be represented. Hene, all the operations an beimplemented using only 2n+ o(n) bits, plus n log2 n bits for the identi�ers.It remains to explain how we store the representation of the strings in the reverse trie, sine inorder to ompress paths one needs the strings readily available elsewhere. Instead of an expliitrepresentation, we use the same LZTrie. Assume that we are at a reverse trie y node representingstring a, and we have to onsider going down to the hild node x. To �nd out whih is the string bjoining y to x, we obtain, using Node(rthr(leftrank(x)) and Node(rthr(rightrank(x)), two nodesin LZTrie. We have to go up from both nodes until we read ar (string a reversed), and then weontinue going up to the parent in LZTrie. What we read after ar is br. The proess �nishes15
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B(1)..B(3) = "alab" B(9) = "lab"Figure 12: Reporting ourrenes of type 3 of P = alaba in our running example, seond part.when the haraters read from both nodes is di�erent or one reahes the root of LZTrie. Notethat advaning to a hild may require O(m log �) time in RevTrie.For the Node mapping we simply have a full array of n log2 n bits.Finally, we need to represent the data struture for range searhing, Range, where we store nblok identi�ers k (representing the pair (k; k+1)). Among the plethora of data strutures o�eringdi�erent spae-time tradeo�s for range searhing [2, 13℄, we prefer one of minimal spae requirementby Chazelle [5℄. This struture is a perfet binary tree dividing the points along one oordinate plusa buketed bitmap for every tree node indiating whih points (ranked by the other oordinate)belong to the left hild. There are in total n log2 n bits in the buketed bitmaps plus an array ofthe point identi�ers ranked by the �rst oordinate whih represents the leaves of the tree.This struture permits two dimensional range searhing in a grid of n pairs of integers in therange [0 : : : n℄ � [0 : : : n℄, answering queries in O((R + 1) log n) time, where R is the number ofourrenes reported. A newer tehnique for buketed bitmaps [11, 21℄ needs N + o(N) bits torepresent a bitmap of length N , and permits the rank operation (now meaning number of 1'sup to a given position) and its inverse in onstant time. Using this tehnique, the struture ofChazelle requires just n log2 n(1 + o(1)) bits to store all the bitmaps. Moreover, we do not needthe information at the leaves, whih maps rank (in a oordinate) to blok identi�ers: as long as weknow that the r-th blok quali�es in normal (or reverse) lexiographial order, we an use rtht (orrthr) to obtain the identi�er k + 1 (or k).5 Spae and Time ComplexityFrom the previous setion it beomes lear that the total spae requirement of our index isndlog2 ne(4 + o(1)) bits. The tries and Node an be built in O(u log �) time, while Rangeneeds O(n log n) onstrution time. Sine n log n = O(u log �) [4℄, the overall onstrution timeis O(u log �). Let us now onsider the searh time of the algorithm.16
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Figure 13: Reporting ourrenes of type 3 of P = alaba in our running example, third part.Finding the bloks that totally ontain P requires a searh in RevTrie of ost O(m2 log �).Later, we may do an indeterminate amount of work, but for eah unit of work we report a distintourrene, so we annot work more than R, the size of the result.Finding the ourrenes that span two bloks requires m searhes in LZTrie and m searhes inRevTrie, for a total ost of O(m3 log �), as well as m range searhes requiring O(m log n+R log n)(sine every distint ourrene is reported only one).Finally, searhing for ourrenes that span three bloks or more requiresm searhes in LZTrie(all the Ci;j for the same i are obtained with a single searh), at a ost of O(m2 log �). Extendingthe ourrenes osts O(m2 logm). To see this, onsider that, for eah unit of work done in theloop of lines 27{29 in Figure 15, we mark one C ell as used and never work again on that ell.There are O(m2) suh ells. This means that we make O(m2) binary searhes in the Ai arrays. Theost to sort the m arrays of size m is also O(m2 logm). The �nal veri�ations to the right and tothe left ost O(1) and O(m log �), respetively, and there may be O(m2) independent veri�ations.Note that we have not inluded the time to searh the left piee in RevTrie, in whih ase the ostswould have raised to O(m4 log �). The reason is that, overall, we have to searh for every reversedsubstring of P , whih requires O(m2) moves in RevTrie, for a total ost of O(m3 log �).Hene the total searh ost to report the R ourrenes of pattern P1:::m is O(m3 log � + (m+R) log n). If we onsider the alphabet size as onstant then the algorithm is O(m3+(m+R) log n).The existene problem an be solved in O(m3 log � +m log n) time (note that we an disregard inthis ase bloks totally ontaining P , sine these ourrenes extend others of the other two types).17
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Figure 14: Reporting ourrenes of type 3 of P = alaba in our running example, fourth part.Finally, we an unompress and show the text of length L surrounding any ourrene reported inO(L log �) time, and unompress the whole text T1:::u in O(u log �) time.Chazelle [5℄ permits several spae-time tradeo�s in his data struture. In partiular, by payingO �1"n log n� spae, reporting time an be redued to O(log" n). If we pay for this spae omplexity,then our searh time beomes O(m2 log(m�) +m log n+R log" n).6 ImplementationWe briey desribe in this setion the implementation of our LZ-index. We fous on the mostrelevant parts, espeially when the theoretially appealing deisions turn out to be diÆult toapply in pratie. A more detailed disussion of the implementation an be found in [25℄.6.1 Balaned Parentheses and General TreesWe represent general trees using a sequene of balaned parentheses, so that eah tree node isrepresented by a ouple of mathing parentheses. Tree traversal operations are mapped to thissequene, and we seek to support the following operations: findlose(i) �nds the position of the18



Searh (P1:::m, LZTrie, RevTrie, Node, Range)1. /* Lying inside a single blok */2. x searh for P r in RevTrie3. For r 2 leftrankr(x) : : : rightrankr(x) Do4. y  Node(rthr(r))5. For z in the subtree rooted at y Do6. Report (idt(z);m+ depth(y)� depth(z))7. /* Spanning two bloks */8. For i 2 1 : : :m� 1 Do9. x searh for P r1:::i in RevTrie10. y  searh for Pi+1:::m in LZTrie11. Searh for [leftrankr(x) : : : rightrankr(x)℄�[leftrankt(y) : : : rightrankt(y)℄ in Range12. For (k; k + 1) in the result of this searh Do Report (k; i)13. /* Spanning three or more bloks */14. For i 2 1 : : :m Do15. x root node of LZTrie16. Ai  ;17. For j 2 i : : :m Do18. If x 6= null Then x hildt(x; Pj)19. Ci;j  x20. usedi;j  false21. If x 6= null Then Ai  Ai [ (idt(x); j)22. For j 2 1 : : :m Do23. For i 2 i : : : j Do24. If Ci;j 6= null and usedi;j = false Then25. S0  idt(Ci;j)26. S  S0 � 1; r  j � 127. While (S + 1; r0) 2 Ar+1 Do /* always exists the 1st time */28. usedr+1;r0  true29. r  r0; S  S + 130. span S � S0 + 131. If i > 1 Then span span+ 132. If r < m Then span span+ 133. If span � 3 Then34. If Cr+1;m = null orleftrankt(Cr+1;m) � leftrankt(Node(S + 1)) � rightrankt(Cr+1;m) Then35. x Node(S0 � 1); i0  i� 136. While i0 > 0 and parentt(x) 6= nulland x = hild(parentt(x); Pi0 ) Do37. x parentt(x); i0  i0 � 138. If i0 = 0 Then Report (S0 � 1; i� 1)Figure 15: The searh algorithm. The value depth(y)� depth(z) is determined on the y sine wetraverse the whole subtree of z. 19



losing parenthesis that mathes opening parenthesis at position i; parent(i) gives the position ofthe opening parenthesis orresponding to the parent of the node represented by i; and several othersimpler ones.As the solution proposed in [22, 23℄ to handle balaned parentheses turned out to be tooompliated, and the asymptotially vanishing terms turned out to be not so small, we opted for analternative implementation. It guarantees O(log log n) average time for the operation and (almost)guarantees bounded extra spae.Basially, the idea is that, sine most trees are small, most of the parentheses sought are loseenough in the sequene and ould be found after a short brute-fore searh. For the ases wherethe answer would not be found, we store the answer diretly in a hash table. Hene, only \large"trees have their answer preomputed. In pratie the hash tables pose a small spae overhead.The hash tables for the \near" parentheses ould be quite large, but we store the distanesto the mathing parentheses rather than the absolute positions. This redues the number of bitsneeded. Collisions are solved beause, among all the potential answers that have the same exess(number of opening minus number of losing preeding parentheses), the right answer is the losestone. It is not neessary to store the searh key in order to solve ollisions.6.2 LZTrieInstead of onverting our alphabet to binary and representing the trie as a binary tree and this inturn as a sequene of parentheses of maximum arity 2, we hoose to diretly represent the trie in itsgeneral tree form, as a sequene of parentheses. The main onsequene is that, by onverting thealphabet to binary, we would pay O(log �) for any hild(i; a) operation, while with a representationas a general tree we ould pay O(�), assuming we searh linearly for the proper hild a. In pratie,however, only the highest nodes of the trie have a signi�ant arity, while most of them will havemuh less than log2 �. On the other hand, the diret implementation as a general tree is muhsimpler and requires less spae.The letters and blok identi�ers orresponding to eah node are implemented as simple arraysindexed by rank.6.3 RevTrieThe reverse trie is also represented by a sequene of balaned parentheses and a sequene of blokidenti�ers, but this time (1) the edge between two nodes an be labeled by a string, whih is notrepresented; (2) we remove unary nodes that have no blok identi�er, but still non-unary nodeswithout blok identi�ers remain and are represented (these will be alled empty nodes). In pratiethe perentage of empty nodes is minimal, and storing them simpli�es matters a lot.The only omplex problem is how to implement hild(i; a), beause (1) edges are labeled byfull strings, and (2) we do not have any representation of these strings. This is done basially asexplained in Setion 4. The proess is tedious and slow, so we seek to limit it as muh as possible.On the other hand, we do not need the parent(i) operation on RevTrie.
20



6.4 Range versus RNodeInstead of implementing the Range data struture, we opted by a reverse Node data struture,RNode. RNode maps blok identi�ers to their (nonempty) nodes in RevTrie.With RNode we ould solve quite deently the same problem addressed by Range, as follows.Say that the searh for P r1:::i in RevTrie leads us to node ir and the searh for Pi+1:::m in LZTrieleads us to node it (if any of the two nodes does not exist we know immediately that this partitionof P produes no mathes2). Both for it and ir, we an use rank and rightrank to determine theranges in the arrays of blok identi�ers where the relevant bloks lie. Then we have two hoies:(a) For eah blok k + 1 in the blok identi�ers orresponding to LZTrie, ask whether ir is ananestor of RNode(k) in RevTrie (this operation is easily implemented in a parenthesesrepresentation). If so, report blok k.(b) For eah blok k in the blok identi�ers orresponding to RevTrie, ask whether it is an anestorof Node(k + 1) in LZTrie. If so, report blok k.Sine it is easy to determine whih will require less work, we hoose the best among both hoies.We found that the version based on RNode took 1=2 to 2=3 of the time of Range for all patternlengths. Moreover, RNode is useful in other points of the searh, as we see soon.6.5 SearhingWe searh for every pattern substring Pi:::j using LZTrie, and obtain the matrix Ci;j of the nodesorresponding to eah substring, if any. We also obtain a matrix of blok identi�ers Cidi;j orre-sponding to eah node Ci;j. Matrix Cidi;j is neessary at several points, most evidently to reportourrenes of type 3.In a seond step we searh for every reversed pattern pre�x, P r1:::j, in RevTrie, and store it inan array Bj . This is neessary to report ourrenes of type 1 and 2. Sine searhing in RevTrieis muh slower than on LZTrie, we seek to redue this work as muh as possible. The resultsalready obtained in Cid are useful. If we look for P r1:::j and P1:::j exists in LZTrie (that is, C1;jis not null), then RNode(Cid1;j) diretly gives us the orresponding node in RevTrie. Otherwise,P r1:::j orresponds to an empty node or to a position in a string between two nodes, and annotbe diretly found with LZTrie. Still, we an redue the searh ost as follows. Let i be theminimum value suh that Ci;j is de�ned. Then RNode(Cidi;j) is the lowest nonempty anestor ofthe node we are looking for. We an redue the work to that of searhing for P r1:::i�1 starting fromnode RNode(Cidi;j). This �nal partial searh has to be done using the hildr(node; a) operationrepeatedly (one per node arrived at).Ourrenes of type 1 and 2 are found as explained. For type 3, instead of the arrays A proposedin the theoretial part, we opt for a hash table where all the triples (i; j; Cidi;j) are stored withkey (i; Cidi;j). Then we try to extend eah math Ci;j by looking for (j + 1; j0; Cidi;j + 1) in thehash table, marking entries (i; j) already used by a sequene that starts before, until we annotextend the urrent entry. At this point, if the pattern spans 3 bloks or more, the sequene of2If, in RevTrie, we are in the middle of an edge, we an safely traverse the edge and onsider the hild as theorret solution. 21



involved bloks is k : : : k0, and the pattern area is i : : : j0, then we hek that Cj0+1;m is an anestorof Node(k0 + 1) in LZTrie and that Bi�1 is an anestor of RNode(k � 1) in RevTrie. If all thesetests pass, we report blok k � 1.7 Experimental ResultsTo demonstrate the results in pratie, we have hosen two di�erent text olletions. The�rst, ziff, ontains 83.37 megabytes (Mb) obtained from the \ZIFF-2" disk of the TREC-3 olletion [10℄. The seond, dna, ontains 51.48 Mb from GenBank (Homo Sapiens DNA,http://www.nbi.nlm.nih.gov), with lines ut every 60 haraters.Our tests have been run on a Pentium IV proessor at 2 GHz, 512 Mb of RAM and 512kilobytes (Kb) of ahe, running Linux SuSE 7.3. We ompiled the ode with g 2.95.3 usingoptimization option -O9. Times were obtained using 10 repetitions for indexing and 10,000 forsearhing, obtaining perentual errors below 1% with 95% on�dene. As we work only in mainmemory, we only onsider CPU times.Our LZ-index takes 1.49 times the text size on ziff and 1.19 on dna. This is 4{5 times thesize of the �le ompressed with Ziv-Lempel, whih orroborates our spae analysis. We ould storethe index on disk using less spae and quikly reonstrut some parts at load time, but we opt byounting the spae the index needs to operate.We have ompared our LZ-index prototype against two of the most prominent alternativeproposals. We have onsidered onstrution time and spae, but our highest interest is in querytimes, both for ounting and for reporting the ourrenes.7.1 Other Indexes ComparedAlthough our index does not have any relevant spae-time tuning parameter, the others do. Hene,we tune the other indexes so as to make them take the same spae of our index. The indexes hosenare:Ferragina and Manzini's FM-index. This index is proposed in [6, 7℄. We ould not obtainthe soures of the implementation of this index from the authors. There is an exeutable at theirWeb page, http://butirro.di.unipi.it/ ferrax/fmindex/index.html, but the interfae doesnot permit running massive and trustable tests, as it an searh for one pattern per run. Hene,we implemented the index ourselves. We followed rather losely the desriptions in [7℄ and did ourbest to implement this index as eÆiently as possible. Later we will give some ontrol values toshow that our implementation is ompetitive against the exeutables given by the authors. Themain tuning parameter of this index is the sampling step for the suÆx array.Sadakane's CSArray. We obtained from K. Sadakane his implementation of the CompressedSuÆx Array index proposed in [27℄. We tried di�erent parameter options that gave the same extraspae of our index and used those that gave best results.
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Index Constrution time Main memory spaeziff dna ziff dnaFM-index 4.990 5.260 5.00 5.00CSArray 19.28 6.890 11.18 10.20LZ-index 0.968 0.605 4.95 3.46Table 1: Index onstrution requirements. Times are in seonds per Mb and spae in number oftimes the text size.7.2 ComparisonReall that we ompare the three indexes suh that they take the same amount of main memory tofuntion. Table 1 shows the time and memory requirements to build the di�erent indexes (althoughthe �nal index spae is the same, they need di�erent spae to build). As it an be seen, our indexbuilds muh faster than the others (whose onstrution time involve at least the onstrution of asuÆx array). It also needs less memory to build.Let us now onsider searh times. Figure 16 shows the overall query times under the di�erent\reporting levels" (just ounting the ourrenes, reporting their text positions, or showing theirtext line). Note that we use a logarithmi sale on y.For ounting queries, the FM-index is unparalleled, taking around 1:7m �ses. The CSArray,although slower, is still muh faster than our LZ-index, taking around 5m �ses. It is lear that wedo not have a ase for ounting queries: our LZ-index took 112m �ses on ziff and 38m �ses ondna, 10{20 times slower than the CSArray and 20{60 times slower than the FM-index.The FM-index, however, beomes muh slower to report the positions of the ourrenes found,ahieving a rate of 10{20 ourrenes per mse. Our rate is lose to 900{1,400 per mse. TheCSArray is faster than the FM-index at this step, reporting 100{160 ourrenes per mse. In anyase, it is lear that �nding the atual positions of the ourrenes is ostly under their shemes,70{90 times slower for the FM-index and 9 times slower for the CSArray.The di�erenes favor the LZ-index even more if we ask to reprodue the lines where the o-urrenes were found. Remind that this is an essential feature, sine all these indexes replae thetext and hene our only way to see the text is asking them to reprodue it. While our LZ-index isable to show around 14 lines per mse, the FM-index and the CSArray an show only 4{6 lines permse.As a onlusion, we have that our index is rather slow to ount the number of ourrenes, butmuh faster to show their positions or their text ontexts. This is rather intrinsi, beause in ourindex the ourrenes of P are sattered all around the index, while these are all together in a suÆxarray. Giving the ourrene positions and text ontexts, however, is rather fast beause we didmost of the work in the ounting phase. We require only a fast tree traversal step per harateroutput. Compressed suÆx arrays, on the other hand, rely on a sampled suÆx array and they mustperform expensive traversals until they determine the atual suÆx array values.We laim that, for most text retrieval needs, knowing just the amount of ourrenes is notenough. Although it may be useful at the internal mahinery of other more omplex tasks, the23
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Figure 16: Overall query times when ounting ourrenes (top), reporting positions (middle),and to output mathing lines (bottom). We ompare our LZ-index against the most relevantalternatives.
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bottom line is that the user wants to know where the ourrenes are and most probably to seetheir text ontext (not to speak of retrieving the whole doument, not the line, ontaining theourrene).Let us be pessimisti against the LZ-index and assume that one an build an alternative asfast as the FM-index to searh for the pattern and as fast as the CSArray to show the ourrenes(this senario is rather realisti). It turns out that, to report the ourrenes, the LZ-index wouldbeome faster after we report 1,400 ourrenes on ziff or 300 on dna. If we would like to see thelines ontaining the ourrenes, these numbers drop to 65 on ziff and 13 on dna. This showsthat our index beomes superior as soon as we have to show a few ourrenes.To onlude, we give some data on our tests over the exeutables of the FM-index providedby the authors. These permit a oarse ontrol over the index spae by speifying the frequeny ofa harater whose positions will be sampled. Although we tried the highest possible frequenies,we ould not obtain indexes larger than 75.02% of the ziff �le and 109.81% of the dna �le. Theformer is half the spae we permit, while the latter is rather lose to the orret value. The timeto ount ourrenes is negligible, as expeted. Ourrene positions were reported at a rate thatvaried a lot, but was always between 0.5 and 10 ourrenes per mse. When we asked the index toshow a text ontext of length equivalent to an average line (43 haraters on ziff and 61 on dna),it showed them at a rate of 10 to 20 per seond. Even if we assume that the index on ziff oulddouble its performane by using twie the spae, the �gures still show that our implementation ofthe FM-index is ompetitive against that of the original authors, when not superior by far3. Theresults did not vary when we tried di�erent memory poliies o�ered by the index (on disk, mmaped,in main memory).8 ConlusionsWe have presented an index for text searhing based on the LZ78/LZW ompression, alled theLZ-index. At the prie of 4n log2 n(1+o(1)) bits, we are able to �nd the R ourrenes of a patternof length m in a text of n bloks in O(m3 log � + (m+R) log n) time.We have implemented the LZ-index and ompared our prototype against existing alternatives.The results show that the LZ-index is ompetitive in pratie. Although it is muh slower to ounthow many ourrenes are there, it is muh faster to report their position or their text ontext.Indeed, we show that if there are more than 1,400 (ziff) or 300 (dna) ourrene positions toreport, or more than 65 (ziff) or 13 (dna) text lines to show, the LZ-index beomes superior. Inour experiments this happened up to m � 10 (ziff) or m � 5 (dna) to report ourrene positionsand up to m � 20 (ziff and dna) to report mathing lines. This inludes most of the interestingases on natural language and several ones on geneti sequenes.Altough the slowness for ounting queries is intrinsi of our index, we believe that times an be atleast improved. One lear slowdown fator is the linear searh of nodes when exeuting hild(i; a),as the time to �ll matrix Ci;j dominates the overall time one we exlude reporting. One hoiewould be to replae it by a two-level struture, where hildren are grouped into p� ontiguousgroups of p� nodes eah, hene permitting faster aess to the desired hild. Another operation3We believe that the authors have optimized their implementation for a spae onsumption muh inferior thanthat of our omparison. 25
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