
Regular Expression Searhing on Compressed Text �Gonzalo NavarroDept. of Computer Siene, University of Chile.Blano Enalada 2120, Santiago, Chile.gnavarro�d.uhile.lAbstratWe present a solution to the problem of regular expression searhing on ompressed text.The format we hoose is the Ziv-Lempel family, spei�ally the LZ78 and LZW variants. Givena text of length u ompressed into length n, and a pattern of length m, we report all the Rourrenes of the pattern in the text in O(2m +mn+Rm logm) worst ase time. On averagethis drops to O(m2 + (n + Rm) logm) or O(m2 + n + Ru=n) for most regular expressions.This is the �rst nontrivial result for this problem. The experimental results show that ourompressed searh algorithm needs half the time neessary for deompression plus searhing,whih is urrently the only alternative.1 IntrodutionThe need to searh for regular expressions arises in many text-based appliations, suh as textretrieval, text editing and omputational biology, to name a few. A regular expression is a gener-alized pattern omposed of (i) basi strings, (ii) union, onatenation and Kleene losure of otherregular expressions [1℄. The problem of regular expression searhing is quite old and has reeivedontinuous attention sine the sixties.A partiularly interesting ase of text searhing arises when the text is ompressed. Textompression [5℄ exploits the redundanies of the text to represent it using less spae. There aremany di�erent ompression shemes, among whih the Ziv-Lempel family [35, 36℄ is one of thebest in pratie beause of its good ompression ratios ombined with eÆient ompression anddeompression times. The ompressed mathing problem onsists of searhing for a pattern on aompressed text without deompressing it. Its main goal is to searh the ompressed text fasterthan the trivial approah of deompressing it and then searhing.This problem is important in pratie. Today's textual databases are an exellent exampleof appliations where both problems are ruial: the texts should be kept ompressed to savespae and I/O time, and they should be eÆiently searhed. Surprisingly, these two ombinedrequirements are not easy to ahieve together: The only solution before the 90's was to proessqueries by deompressing the texts and then searhing them.�Partially supported by Fondeyt grant 1-020831. 1

Sine then, a lot of researh has been onduted on the problem. A wealth of solutions havebeen proposed to deal with simple, multiple and, very reently, approximate ompressed patternmathing. Regular expression searhing on ompressed text seems to be the last goal that stillde�es the existene of any nontrivial solution.This is the problem we solve in this paper: we present the �rst solution for ompressed regularexpression searhing. The format we hoose is the Ziv-Lempel family, fousing in the LZ78 andLZW variants [36, 33℄. Given a text of length u ompressed into length n, we are able to �nd the Rourrenes of a regular expression of length m in O(2m+mn+Rm logm) worst ase time, needingO(2m +mn) spae. We also propose two modi�ations that ahieve O(m2 + (n + Rm) logm) orO(m2 + n + Ru=n) average ase time and, respetively, O(m + n logm) or O(m + n) spae, for\admissible" regular expressions, that is, those whose automaton runs out of ative states afterreading O(1) text haraters, on average. These results are ahieved using bit-parallelism and arevalid for short enough patterns, otherwise the searh times have to be multiplied by dm=we, wherew is the number of bits in the omputer word.We have implemented our algorithm on LZW and ompared it against the best existing algo-rithms on unompressed text, showing that we an searh the ompressed text twie as fast as thena��ve approah of deompressing and then searhing.A preliminary version of this paper appeared in [22℄.2 Basi Conepts2.1 Strings, Regular Expressions and AutomataWe give a very basi introdution to the subjet. For more details see, for example, [1℄.Given an alphabet (�nite set of symbols) � of size �, a string is a sequene of elements of �,alled haraters. The length of a string S is denoted jSj, and the unique string of length zero isdenoted ". Given a string S we use Si:::j to denote the string obtained by taking from the i-th tothe j-th haraters of S. The �rst position of a string is 1.A language is a �nite or in�nite set of strings. In partiular, the language �� denotes the set ofall the strings over alphabet �.A regular expression is a string on the set of symbols �[f "; j ; � ; � ; (;) g, whih is reursivelyde�ned as a simple string on ��, (E1), (E1 � E2), (E1 j E2), and (E1�), where E1 and E2 arein turn regular expressions. By the length of a regular expression we mean the total number ofelements of � it ontains, disregarding the other operators.A regular expression E denotes a language L(E) as follows. Simple strings denote a singletonformed by that string; L((E1)) = L(E); L(E1 � E2) = L(E1) � L(E2) (i.e., any string formedby onatenating a string in L(E1) with a string in L(E2)); L(E1 j E2) = L(E1) [L(E2); andL(E1�) = Si�0 L(E1)i, where L0 = f"g and Li+1 = L � Li. This last operation is alled the Kleenelosure.An automaton is a graph where the arrows are labeled with elements of � [f"g. The latterare alled "-transitions. One state is alled initial and zero or more states are alled �nal. Anautomaton reognizes a string x 2 �� if there is a path from the initial to a �nal state suh that theonatenation of the labels of the arrows traversed is x. The language reognized by an automatonis the set of strings it reognizes. 2

Given a string x, we say that a given state i of the automaton is ative after reading x if x labelsa path from the initial state to state i. An automaton is a deterministi �nite automaton (DFA) ifno more than one state an be ative for a given string x. Otherwise it is a nondeterministi �niteautomaton (NFA).There is a standard way to onvert an NFA to a DFA that reognizes the same language.If the NFA has m states, the DFA may have up to 2m states. Basially, every ombination ofative/inative NFA states beomes a single DFA state.Given a regular expression E, there are several tehniques to produe an NFA that reognizesL(E). The most lassial is Thompson's [30℄. Given an expression of length m, this methodprodues an NFA of at most 2m states and 4m edges. A less popular one is Glushkov's [9℄, whihprodues an NFA of exatly m+1 states but O(m2) edges. To �x ideas we will assume in this paperthat we build NFAs using the version of Glushkov's algorithm popularized by Berry and Sethi [6℄.The problem of searhing for a regular expression E in a given text string T is that of �ndingall the text substrings that belong to L(E). These are alled ourrenes. For simpliity, we reportthe text positions where the ourrenes �nish in the text, that is, fjxyj; T = xyz; y 2 L(E)g.Those positions are alled mathes.In order to use an automaton for text searhing, we add a self-loop at the initial state, whihan be followed by any harater. Hene the initial state is always ative. We feed the automatonwith the haraters of the text, and every time it reahes a �nal state we report a math. Sinethe initial state is always ative, it detets ourrenes starting anywhere in the text.2.2 Bit-Parallelism and Bit MasksBit-parallelism is a tehnique to ode many elements in the bits of a single omputer word andmanage to update all them in a single operation.A bit mask is just a sequene of bits stored in one or several ontiguous omputer words. Thenumber of bits of the omputer word is w. Bit masks are used in this paper to represent sets ofNFA states, so they will hold m + 1 bits and hene will need d(m + 1)=we omputer words to berepresented. Several set operations an be done via lassial arithmetial and logial operations, inonstant time when the bit masks �t in a single omputer word (and in time O(m=w) otherwise).Some of them are A [B, A \ B, A (omplement), A = B (equality test), A B (opy), a 2 A.Another operation we will need to perform in onstant time is to selet any element of a set. Thisan be ahieved by \bit magi", whih means preomputing the table storing the position of, say,the highest bit for eah possible bit mask of length m+ 1. This table needs O(2m) spae.For larity we will write the bit masks as sets of states instead of sequenes of bits, and theiroperations as set operations.2.3 The Ziv-Lempel Compression Formats LZ78 and LZWThe general idea of Ziv-Lempel ompression is to replae substrings in the text by a pointer toa previous ourrene of them. If the pointer takes less spae than the string it is replaing,ompression is obtained. Di�erent variants over this type of ompression exist, see for example [5℄.We are partiularly interested in the LZ78/LZW format, whih we desribe in depth.3

The Ziv-Lempel ompression algorithm of 1978 (usually named LZ78 [36℄) is based on a ditio-nary of bloks, to whih we add every new blok omputed. At the beginning of the ompression,the ditionary ontains a single blok b0 of length 0. The urrent step of the ompression is asfollows: If we assume that a pre�x T1:::j of T has been already ompressed in a sequene of bloksZ = b1 : : : br, all them in the ditionary, then we look for the longest pre�x of the rest of the textTj+1:::u that is a blok of the ditionary. One we have found this blok, say bs of length `s, weonstrut a new blok br+1 = (s; Tj+`s+1), we write the pair at the end of the ompressed �le Z, i.eZ = b1 : : : brbr+1, and we add the blok to the ditionary. It is easy to see that this ditionary ispre�x-losed (i.e., any pre�x of an element is also an element of the ditionary) and a natural wayto represent it is a trie. This is alled the Ziv-Lempel trie. Every blok orresponds to a node inthis trie.We give as an example the ompression of the string ananas in Figure 1. The �rst blok is(0; a), and next (0; n). When we read the next a, a is already blok 1 in the ditionary, but an isnot in the ditionary. So we reate a third blok (1; n). We then read the next a, whih is alreadyblok 1 in the ditionary, but as does not appear. So we reate a new blok (1; s).
0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 1: Compression of the string ananas with the algorithm LZ78.So the ompressed text is a sequene of blok desriptions Z = b1b2 : : : bn. Eah blok brrepresents a substring Br of T , suh that B1 : : : Bn = T . Moreover, eah blok br = (bs; a) isformed by the onatenation of a previously seen blok bs and an expliit letter a. We say that brreferenes bs, and will write ref(br) = bs. The referening hain that starts in br is de�ned as thesequene br; ref(br); ref(ref(br); : : : ; b0. In this sequene, the lengths of the bloks derease by1 until they reah zero, whih orresponds to the empty string represented by the blok b0.In terms of the Ziv-Lempel trie, blok b0 orresponds to the root and every node referenes itsparent. Following a referening hain is equivalent to following a path towards the root.The LZ78 ompression algorithm is O(u) time in the worst ase and eÆient in pratie ifthe ditionary is stored as a trie, whih allows rapid searhing for the new text pre�x (for eahharater of T we move one in the trie). The deompression needs to build the same ditionary(the pair that de�nes blok br is read at the r-th step of the algorithm), although this time anarray implementation is preferable to the trie. Compared to LZ77, ompression is rather fast butdeompression is slow.Many variations on LZ78 exist, whih deal basially with the best way to ode the pairs in theompressed �le, or with the best way to ope with limited memory for ompression. A partiularly4

interesting variant is due to Welh, alled LZW [33℄. In this ase, the extra letter (seond elementof the pair) is not oded, but impliitly taken as the �rst letter of the next blok (the ditionary isinitialized with one blok per letter). LZW is used by the Unix program Compress.In this paper we do not onsider LZW separately but just as a oding variant of LZ78. This isbeause the �nal letter of LZ78 an be readily obtained by keeping ount of the �rst letter of eahblok (this is opied diretly from the referened blok) and then looking at the �rst letter of thenext blok.3 Related Work3.1 Regular Expression SearhingThe traditional tehnique [30℄ to searh for a regular expression of length m in a text of length uis to onvert the expression into an NFA with O(m) nodes, add the self-loop at the initial state,and then searh the text using the automaton at O(mu) worst ase time. The ost omes from thefat that O(m) states of the NFA may be ative at eah step, and therefore all may need to beupdated. Thompson [30℄ shows how to perform all the updates in O(m) time.A more eÆient hoie [1℄ is to onvert the NFA into a DFA prior to searhing. Sine the DFAhas only one ative state at a time, it permits searhing the text at O(u) ost, whih is worst-ase optimal. The ost of this approah is that the DFA may have O(2m) states, whih implies apreproessing ost and extra spae of O(�2m) for the table D that, given the urrent DFA stateand text harater, delivers the next DFA state.An easy way to obtain a DFA from an NFA is via bit-parallelism: The vetor of ative andinative states is stored as a bit mask. Instead of (ala Thompson) examining the ative states oneby one, the whole omputer word is used to index a table that, given the urrent text harater,provides the new set of ative states (another omputer word). This an be onsidered either asa bit-parallel simulation of an NFA, or as an implementation of a DFA (where the identi�er ofeah deterministi state is the bit mask as a whole). This idea has been used several times, underThompson's [34℄ and Glushkov's [27℄ onstrutions.By using di�erent properties of the onstrutions, both manage to implement the transitionfuntion D using O(2m) spae (atually, the Thompson-based version [34℄ may need O(22m) states).In both ases, if the table is too big, it an be horizontally split into two or more tables [34℄. Forexample, a table of size 2m an be split into 2 subtables of size 2m=2. We need to aess two tablesfor a transition but need only the square root of the spae.Some tehniques have been proposed to obtain a tradeo� between NFAs and DFAs. In [19℄a four-russians approah is presented that obtains O(mu= log u) worst-ase time and extra spae.The idea is to divide the syntax tree of the regular expression into \modules", whih are subtreesof a reasonable size. Those subtrees are implemented as DFAs and are thereafter onsidered as leafnodes in the syntax tree. The proess ontinues with this redued tree until a single �nal moduleis obtained, so the result is an NFA of DFAs.The ideas presented up to now aim at a good implementation of the automaton, but they mustinspet all the text haraters. Other proposals try to skip some text haraters, as it is usualfor simple pattern mathing. For example, in [32℄ they present an algorithm that determines theminimum length of a string mathing the regular expression and forms a trie with all the pre�xes5

of that length of strings mathing the regular expression. A multipattern searh algorithm likeCommentz-Walter [7℄ is run over those pre�xes as a �lter to detet text areas where a ompleteourrene may start. Those areas are then veri�ed with a lassial algorithm. Another tehniqueof this kind is used in Gnu Grep, whih extrats a set of strings that must appear in any ourrene.These strings are searhed for and the areas where they appear are heked for omplete ourrenesusing a lazy deterministi automaton (i.e., built on the y).The most reent development, also in this line, is [24℄. They invert the arrows of the DFA andmake all states initial and the initial state �nal. The result is an automaton that reognizes all thereverse pre�xes of strings mathing the regular expression. The idea is in this sense similar to thatof [32℄, but takes less spae. The searh method is also di�erent: instead of a Boyer-Moore likealgorithm, it is based on BNDM [26℄.3.2 Compressed Pattern MathingThe ompressed mathing problem was �rst de�ned in the work of Amir and Benson [2℄ as the taskof performing string mathing in a ompressed text without deompressing it. Given a text T , aorresponding ompressed string Z = z1 : : : zn, and a pattern P , the ompressed mathing problemonsists in �nding all ourrenes of P in T , using only P and Z. A na��ve algorithm, whih �rstdeompresses the string Z and then performs standard string mathing, takes time O(m+ u). Anoptimal algorithm takes worst-ase time O(m + n + R), where R is the number of mathes (notethat it ould be that R = u > n).Two di�erent approahes exist to searh ompressed text. The �rst one is rather pratial.EÆient solutions based on Hu�man oding [10℄ on words have been presented by Moura et al.[18℄, but they need the text to ontain natural language and be large (say, 10 Mb or more).Moreover, they allow only searhing for whole words and phrases. There are also other pratialad-ho methods [15℄, but the ompression they obtain is poor. Moreover, in these ompressionformats n = �(u), so the speedups an only be measured in pratial terms.The seond line of researh onsiders Ziv-Lempel ompression, whih is based on �nding repe-titions in the text and replaing them with referenes to similar strings previously appeared. LZ77[35℄ is able to referene any substring of the text already proessed, while LZ78 [36℄ and LZW [33℄referene only a single previous referene plus a new letter that is added.String mathing in Ziv-Lempel ompressed texts is muh more omplex, sine the pattern anappear in di�erent forms aross the ompressed text. The �rst algorithm for exat searhing isfrom 1994, by Amir, Benson and Farah [3℄, who searh LZ78 ompressed texts needing time andspae O(m2 + n).The only searh tehnique for LZ77 is by Farah and Thorup [8℄, a randomized algorithm todetermine in time O(m+ n log2(u=n)) whether a pattern is present or not in the text.An extension of the �rst work [3℄ to multipattern searhing was presented by Kida et al. [13℄,together with the �rst experimental results in this area. They ahieve O(m2 + n) time and spae,although this time m is the total length of all the patterns.New pratial results were presented by Navarro and RaÆnot [25℄, who proposed a generalsheme to searh Ziv-Lempel ompressed texts (simple and extended patterns) and speializedit for the partiular ases of LZ77, LZ78 and a new variant proposed that was ompetitive andonvenient for searh purposes. A similar result, restrited to the LZW format, was independently6

found and presented by Kida et al. [14℄. The same group generalized the existing algorithms andniely uni�ed the onepts in a general framework [12℄. Reently, Navarro and Tarhio [28℄ presenteda new, faster, algorithm based on Boyer-Moore.Approximate string mathing on ompressed text aims at �nding the pattern where a limitednumber of di�erenes between the pattern and its ourrenes are permitted. The problem, advo-ated in 1992 [2℄, was solved for Hu�man oding of words [18℄, but the solution is limited to searhfor a whole word and retrieve whole words that are similar. The �rst true solutions appeared veryreently, by K�arkk�ainen et al. [11℄, Matsumoto et al. [16℄ and Navarro et al. [23℄.4 A Searh AlgorithmWe present now our approah for regular expression searhing on a text Z = b1 : : : bn, whih isexpressed by the LZ78 algorithm as a sequene of n bloks. Our goal is to �nd the last positions inT of the regular expression ourrenes, using Z instead of T .Our approah is to modify the DFA algorithm based on bit-parallelism [27℄, whih is designedto proess T harater by harater, so that it proesses T blok by blok using the fat thatbloks are built from previous bloks and expliit haraters. Sine we assume that Glushkov'sonstrution is used, the NFA has m + 1 states. So we start by building the DFA in O(2m) timeand spae. Reall that the state identi�ers of the DFA are exatly the bit masks that represent theorresponding sets of ative NFA states.We assume that the states of our automaton are numbered 0 : : : m, being 0 the initial state. Weall F the bit mask of �nal states and the transition funtion is D : bitmasks � � ! bitmasks(whih, as explained, it is implemented using O(2m) spae).The general mehanism of the searh is as follows: we read the bloks br one by one. For eahnew blok b read, representing a string B, and where we have already proessed T1:::j, we updatethe state of the searh so that after working on the blok we have proessed T1:::j+jBj = T1:::jB. Toproess eah blok, three steps are arried out: (1) its desription is omputed and stored, (2) theourrenes ending inside the blok B are reported, and (3) the state of the searh is updated.Say that blok b represents the text substring B. Then the desription of b is formed by� a number len(b) = jBj, its length;� a blok number ref(b), the referened blok;� a vetor tr0:::m(b) of bit masks, where tri gives the states of the NFA that beome ative afterreading B if only the i-th state of the NFA is ative at the beginning;� a vetor mat0:::m(b) of blok numbers, where mati(b) gives the �rst (i.e., longest) blok b0 inthe referening hain of b suh that tri(b0)\F 6= ;, or ? if there is no suh blok. This is, the�rst blok in the referening hain where state i produes a math at the end of the blok.The state of the searh, in turn, onsists of two elements:� the last text position onsidered, j (initially 0);� a bit mask S of m + 1 bits, that indiates whih states are ative after proessing T1:::j .Initially, S has only its initial state ative, S = f0g.7

As we show next, the total ost to �nd all the mathes with this sheme is O(2m+mn+Rm logm)in the worst ase. The �rst term orresponds to building the DFA from the NFA, the seond toomputing blok desriptions and updating the searh state, and the last to report the ourrenes.The existene problem is solved in time O(2m +mn). The spae requirement is O(2m +mn). Forexpressions longer than w, the time is O((2m +mn)dm=we+Rm logm).4.1 Computing Blok DesriptionsWe show how to ompute the desription of a new blok b0 = (b; a) that represents B0 = Ba, whereB is the string represented by the referened blok b and a is an expliit harater. An initial blokb0 represents the string ", and its desription is: len(b0) = 0; tri(b0) = fig; mati(b0) =?. We givenow the update formulas for B0 = Ba.� len(b0) len(b) + 1.� ref(b0) b.� tri(b0) D(tri(b); a).� mati(b0) if tri(b0) \ F 6= ; then b0 else mati(b).For eah blok, we have to update all the ells of tr and mat, so we pay O(mn) time (reallthat bit-parallelism permits performing set operations in onstant time). The spae required forthe blok desriptions is O(mn) as well.4.2 Reporting Mathes and Updating the Searh StateIfmati(b) 6= 0 for some i 2 S, then there are mathes to report inside the new blok B0. In fat, theremay be more than one math, and mati(b) gives us only the last math in the blok. The previousone an be obtained by onsidering mati(ref(mati(b0))), and so on. All the mathes produed bystate i in B0 are obtained in reverse order by onsidering the sequenemati(b); mati(ref(mati(b0)));: : : until it gives ?. If B0 starts at text position j, then we have to report the text positionsj + len(mati(b0))� 1; j + len(mati(ref(mati(b0)))) � 1; : : :However, there may be more than one state in S that produes mathes inside B0. For eahsuh i we an retrieve the mathes in reverse order, but we have to merge the positions reported bythe di�erent states in S. Moreover, the same math may be reported by several states in S. EvenO(m) states an partiipate. A priority queue an be used to obtain eah position in O(logm)time. If there are R ourrenes overall, then in the worst ase eah ourrene an be reported mtimes (reahed from eah state), whih gives a total ost of O(Rm logm).Finally, we update S in O(m) time per blok using S [i2S tri(b0).5 A Faster Algorithm on AverageAlthough we have presented the best worst-ase algorithm we ould devise, several improvementsan be made to its average ase performane. 8

5.1 Ative StatesLet us de�ne at(b) as the set of NFA states that, if ative at the beginning of blok b, yield anative state after proessing b. This set will turn out to be helpful in reduing unneessary work.To the blok desription of Setion 4 we add a new bit mask:� a bit mask at(b) = [fi; tri(b) 6= ;g, whih indiates the states of the NFA that may yieldany ative state after proessing b.For the initial blok, this is de�ned as at(b0) = f0 : : : mg. For subsequent bloks b0 = (b; a),at(b0) is omputed as follows:� at(b0) fi 2 at(b); tri(b0) 6= ;g.Note that we need to onsider only the states already in at(b) in order to de�ne at(b0). Thise�et extends over other elements that require updating: (i) tri(b0) needs to be omputed only forthose i 2 at(b0), sine otherwise we know it is empty; and the set of ative states S an be updatedusing the formula S [i2S\at(b0) tri(b0) sine, again, the other tri(b0) values are empty sets.Exept for mat, all the omputation of the blok desription is proportional to the size of at:tri(b0), at(b0) need only work on the states of at(b), and S only on the states of at(b0). In orderto extrat the ative bits of at in onstant time we resort to bit magi.The main point is that, on average, jat(b)j = O(1), that is, the number of states of theautomaton that an survive after proessing a blok is onstant. We prove in the Appendix thatthis holds under very general assumptions and for \admissible" regular expressions (i.e., those whoseautomata run out of ative states after proessing O(1) text haraters, on average). Admissibleregular expressions are those of most interest for searhing, as unadmissible ones report too manymathes.Therefore, the average time to ompute the blok desriptions is O(n) for admissible regularexpressions. The exeption is the mat vetor, whih we onsider in the next setions.5.2 Updating the mat VetorWe need a mehanism to update mat fast. Note that the number of bloks where mati(b) 6=? isnot neessarily o(n), sine one a blok b has mati(b) 6=?, the same is true for all its desendantsin the Ziv-Lempel trie.However, it is still true that just O(1) values of mat(b) hange in mat(b0), where ref(b0) = b,sine mat hanges only on those fi; tri(b0) \ F 6= ;g � at(b0), and jat(b0)j = O(1).Hene, we do not represent a newmat vetor for eah blok, but only its di�erenes with respetto the referened blok. This must be done suh that (i) the mat vetor of the referened blok isnot altered, as it may have to be used for other trie desendants; and (ii) we are able to �nd matifast for any i.A solution is to represent mat as a omplete tree (i.e., perfetly balaned) that will alwayshave m + 1 nodes and assoiate the keys f0 : : : mg to their value mati. This permits obtaining inO(logm) time the value mati. We start with a omplete tree, and later need only to modify thevalues assoiated to tree keys, but never add or remove keys (otherwise an AVL would have been9

a good hoie). When a new value has to be assoiated to a key in the tree of the referened blokin order to obtain the tree of the referening blok, we �nd the key in the old tree and reate ofopy of the path from the root to the key. Then we hange the value assoiated to the new nodeholding the key. Exept when the new nodes are involved, the reated path points to the samenodes where the old paths points, hene sharing part of the tree. The new root orresponds tothe modi�ed tree of the new blok. The ost of eah suh modi�ation is O(logm). We have toperform this operation O(1) times on average per blok, yielding O(n logm) time.Figure 2 illustrates the idea. This kind of tehnique is usual when implementing the logialstruture of WORM (write one read many) devies, in order to reet the modi�ations of theuser on a medium that does not permit alterations.

1

5 7 9

8

6

4

2

3

6

5’

4

old tree

new tree

Figure 2: Changing node 5 to 5' in a read-only tree.5.3 An Alternative for Small RIn most interesting ases the size R of the result is extremely small. This enables us to use a muhlighter mehanism to keep trak of the mathes in exhange for a more ostly math reportingproedure.Instead of representing mat, we store for eah blok two bit masks ffin and fin. The �rstindiates whih states, if ative before proessing b, produe a math exatly at the end of theblok. The seond does the same but permits the math anywhere inside the blok. In both asesit is neessary to have read at least one harater of the blok before looking for mathes.In the beginning we have ffin(b0) = fin(b0) = ;. Given b0 = (b; a), we ompute ffin(b0) andfin(b0) as follows:� ffin(b0) fi 2 at(b0); tri(b0) \ F 6= ;g.� fin(b0) fin(b) [ffin(b0).Reporting the ourrenes is now done as follows. The mask fin(b0) tells us whether there areany ourrenes to report depending on the ative states at the beginning of the blok. Therefore,10

our �rst ation is to ompute S \ fin(b0), whih tells us whih of the urrently ative states willprodue ourrenes inside B0. If this set turns out to be empty, we an skip the proess of reportingmathes.If S \ fin(b0) 6= ;, then we will have to report mathes inside the blok. We onsider the bloksb in the referening hain of b0. As long as fin(b) \ S 6= ;, we report blok the �nal position ofblok b if ffin(b) \ S 6= ; and go to the referened blok, b ref(b). The �nal position of blokb is j + len(b)� 1 if b0 starts at text position j.The mehanism is similar to the one used with mat, but this time we do not have a diret linkto the previous blok that has a math at the end. We just know that, if fin(b)\S 6= ;, then thereare still more mathes to report, and that, in partiular, if ffin(b) \ S 6= ;, we have to report b.We have to traverse the referening hain one blok by one.On average, we an onsider that every math reported makes us traverse harater by haratera onstant fration of its blok. In exhange, we need O(1) time per blok to ompute ffin. Thisgives O(n + Ru=n) searh time, instead of the previous O((n + Rm) logm) (preproessing ostsexluded).5.4 Lowering Spae and Preproessing CostsIn the Appendix we also show that jtri(b)j = O(1) on average for admissible regular expressions.This shows another possible improvement.We have hosen a DFA representation of our automaton that needs O(2m) spae and prepro-essing time. Instead, an NFA representation would require O(m2). The problem with the NFA isthat, in order to build tri(b0) for b0 = (b; a), we need to make the union of the NFA states reahablevia harater a from eah state in tr(b). This has a worst ase of O(m), yielding O(m2) worst asesearh time to update a blok. However, on average this drops to O(1) sine only O(1) states ihave tri(b) 6= ; (beause jat(b)j = O(1)) and eah suh tri(b) has onstant size.In partiular, we do not need to represent at as a bit mask but an simply enumerate its states.This removes the need of the exponential spae for the bit magi.Therefore, we have obtained average omplexity O(m2+(n+Rm) logm) or O(m2+n+Ru=n),depending on whether we use mat or ffin=fin to handle the mathes. The spae requirementsare lowered as well. The NFA requires only O(m) spae. The blok desriptions take O(n) spaebeause there are only O(1) nonempty tri masks. With respet to the mat trees, we have thatthere are on average O(1) modi�ations per blok and eah reates O(logm) new nodes, so thespae required for mat is on average O(n logm). Hene the total spae is O(m+n logm) if we usemat, and O(m+ n) if we use ffin=fin.6 An ExampleIn this setion we show a toy example to illustrate how the algorithm works. We searh for aregular expression in the text "ananas and". Figure 3 shows the NFA with the orrespondingstate numbers, the LZ78 bloks of the text, the LZ78 trie, and the evolution of the variables alongthe searh proess. We show all the variables mentioned, although in no version of the algorithmall them are used simultaneously. 11

2

da n a

5

a
n

s
’ ’

Σ

0 1 n

3

aa s n

60 1 2 3 4

(0,a) (0,n) (1,n) (1,s) (0,’ ’) (3,d)

0

1 2 5

3 4

6

a n ’ ’

n s

d0 = " 1 = (0; a) = a 2 = (0; n) = n 3 = (1; n) = an 4 = (1; s) = as 5 = (0;' ') =' ' 6 = (3; d) = andlen(") = 0 len(a) = 1 len(n) = 1 len(an) = 2 len(as) = 2 len(' ') = 0 len(and) = 3ref(") =? ref(a) = 0 ref(n) = 0 ref(an) = 1 ref(as) = 1 ref(' ') = 1 ref(and) = 3tr0(") = f0g tr0(a) = f0; 1g tr0(n) = f0g tr0(an) = f0; 2g tr0(as) = f0; 3g tr0(' ') = f0g tr0(and) = f0gtr1(") = f1g tr1(a) = ; tr1(n) = f2g tr1(an) = ; tr1(as) = ; tr1(' ') = ; tr1(and) = ;tr2(") = f2g tr2(a) = ; tr2(n) = ; tr2(an) = ; tr2(as) = ; tr2(' ') = ; tr2(and) = ;tr3(") = f3g tr3(a) = ; tr3(n) = ; tr3(an) = ; tr3(as) = ; tr3(' ') = f0g tr3(and) = ;mat0(") =? mat0(a) =? mat0(n) =? mat0(an) = 3 mat0(as) =? mat0(' ') =? mat0(and) = 3mat1(") =? mat1(a) =? mat1(n) = 2 mat1(an) =? mat1(as) =? mat1(' ') =? mat1(and) =?mat2(") =? mat2(a) =? mat2(n) =? mat2(an) =? mat2(as) =? mat2(' ') =? mat2(and) =?mat3(") =? mat3(a) =? mat3(n) =? mat3(an) =? mat3(as) =? mat3(' ') =? mat3(and) =?act(") = f0; 1; 2; 3g act(a) = f0g act(n) = f0; 1g act(an) = f0g act(as) = f0g act(' ') = f0; 3g act(and) = f0gfin(") = ; fin(a) = ; fin(n) = f1g fin(an) = f0g fin(as) = ; fin(' ') = ; fin(and) = f0gffin(") = ; ffin(a) = ; ffin(n) = f1g ffin(an) = f0g ffin(as) = ; ffin(' ') = ; ffin(and) = ;j = 0 j = 1 j = 2 j = 4 j = 6 j = 7 j = 10S = f0g S = f0; 1g S = f0; 2g S = f0; 2g S = f0; 3g S = f0g S = f0gReport at 1 Report at 3 Report at 9

Figure3:Anexampleofthesearhproess.
12

7 Approximate String MathingApproximate string mathing on ompressed text aims at �nding a pattern string of length m inthe text where a limited number, 0 < k < m, of di�erenes between the pattern and its ourrenesare permitted. A \di�erene" is a harater insertion, deletion, or substitution.The �rst true solutions to ompressed approximate string mathing appeared very reently[11, 16, 23℄. We disregard the latter beause it is an engineering solution without a omplexityanalysis. The �rst solution [11℄ gives worst-ase time O(mkn+R) and average ase time O(k2n+min(mkn;m2(m�)k)+R), where � is the alphabet size. The seond solution [16℄ gives O(mk3n=w)worst ase time for the existene problem.It is interesting to notie that any solution for ompressed regular expression searhing implies asolution for ompressed approximate string mathing, as the latter an be expressed as the outputof an automaton [20℄. Consider the NFA for k = 2 di�erenes shown in Figure 4. Every rowdenotes the number of di�erenes seen (the �rst row zero, the seond row one, et.). Every olumnrepresents mathing a pattern pre�x. Horizontal arrows represent mathing a harater (i.e., ifthe pattern and text haraters math, we advane in the pattern and in the text). All the othersinrement the number of di�erenes (move to the next row): vertial arrows insert a harater inthe pattern (we advane in the text but not in the pattern), solid diagonal arrows substitute aharater (we advane in the text and pattern), and dashed diagonal arrows delete a harater ofthe pattern (they are "-transitions, sine we advane in the pattern without advaning in the text).The initial self-loop allows a math to start anywhere in the text. The automaton signals (the endof) a math whenever a rightmost state is ative.
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

a n

a

a n

n

n

n

n

a

a

a

a

a

no differences

2 differences

1 difference

s

s

s

a

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure 4: An NFA for approximate string mathing of the pattern "ananas" with two di�erenes.We now onsider whih would be the behavior of our present algorithm over the automaton forapproximate string mathing.Let us forget for a seond that the top left state has a self-loop. Exept for this arrow, theautomaton is yle-free. Take any state (i; j), at row i 2 0 : : : k and olumn j 2 0 : : : m. It annotativate any state after proessing a string longer than (k � i) + (m � j). Let us pessimistiallyassume that it will ativate states after proessing every string of up to that length. This meansthat state (i; j) will be part of at for O(�(k�i)+(m�j)) di�erent bloks. Adding up over every (i; j)13

gives us O(�m+k), whih is the total size of at over all the possible bloks.State (0; 0), on the other hand, is part of at in every blok. Therefore, the total size of the setat over all the n bloks is upper bounded by O(�m+k + n).To determine the ost of an update operation we must onsider how we implement the D()funtion. A na��ve deterministi table implementation requires O(2mk) spae. We prefer a bit-parallel tehnique that omputes D(), in O(mk=w) time [34℄. No exponential preproessing orstorage are involved.Therefore the existene problem an be solved using at in worst ase timeO((�m+k+n)(mk=w)).This ompares favorably against the O(mk3n=w) omplexity of [16℄ for m + k � log� n, that is,when the text is long enough ompared to the pattern.Let us now fous on how to report all the mathes. Every ourrene an be reported mk times.However, many of those are redundant: It is not hard to show that, if a given state (i; j) is ative,then all the states (i + r; j) are ative too, and any ourrene produed by state (i + r; j) is alsoprodued by state (i; j), for all r > 0. So we an onsider only the highest ative states of eaholumn and we will have all the relevant mathes. This gives us only O(m) states to onsider, andhene the worst ase time to report the ourrenes is O(Rm logm).The problem, however, is how to maintain mat. Using the same analysis as for at, the totalnumber of mat ells that hange is O(�m+k+n). On bloks shorter than m+k we use the balanedtree mehanism of Setion 5.2 and obtain O(�m+k logm) time. On longer bloks, only state (0; 0)an hange in mat, what an be traked in O(1) time and spae.Therefore the total searh time is in the worst ase O(�m+k(mk=w+logm)+nmk=w+Rm logm)if we want to report all the mathes. This ompares favorably against the O(mkn + R) time of[11℄: we are better for m + k � log� n. (We are disregarding the uninteresting ase of very largeR =
(kn= logm)).Hene, we are always better when m + k � log� n in the worst ase. Let us now onsider theaverage ase.It is well known [20℄, that if we ativate state (i; j), the e�et will last on average for O(k � i)text positions, instead of the worst ase of (k � i) + (m � j). If we add up over every (i; j),we get that the total size of at is O(m�O(k) + n). Using ffin, this gives an average searhtime of O((m�k + n)(mk=w) + Ru=n) for some > 1, whih ompares favorably against theO(k2n+min(mkn;m2(m�)k) + R) time of [11℄ roughly for the ase k � log� n and k=m > 1=w.This means large enough n (although muh less than that required for the worst ase) and not verysmall k=m ratio.8 Experimental ResultsWe have implemented our algorithm in order to determine its pratial value. We hose to usethe LZW format by modifying the ode of Unix's unompress, so our ode is able to searh �lesompressed with ompress (.Z). This implies some small hanges in the design, but the algorithmis essentially the same. We have used bit-parallelism [27℄ with a single table (no horizontal parti-tioning). Finally, we have hosen to use the ffin=fin masks instead of representing mat.We ran our experiments on an Intel Pentium III mahine of 550 MHz and 64 Mb of RAM.We have ompressed 10 Mb of Wall Street Journal artiles, whih gets ompressed to 42% of its14

original size with ompress. We measure user time, as system time was negligible. Eah data pointhas been obtained by repeating the experiment 10 times, whih yielded a relative error below 2%with 95% on�dene.In the absene of other algorithms for ompressed regular expression searhing, we have om-pared our algorithm against the na��ve approah of deompressing and searhing. The text needed3.58 seonds to be deompressed with unompress. After deompression, we run two di�erentsearh algorithms. A �rst one, DFA, uses a bit-parallel DFA to proess the text [27℄. This isinteresting beause it is the algorithm we are modifying to work on ompressed text. A seond one,the software nrgrep [21℄, uses a harater skipping tehnique for searhing [24, 27℄, whih is muhfaster. In any ase, the time to deompress is an order of magnitude higher than that to searh theunompressed text, so the searh algorithm used does not signi�antly a�et the results.A major problem when presenting experiments on regular expressions is that there is not aonept of a \random" regular expression, so it is not possible to searh for, say, 1,000 randompatterns. Laking suh a good hoie, we seleted a set of 7 patterns to illustrate di�erent interestingases. The patterns are given in Table 1, together with some parameters and the obtained searhtimes. We use the normal operators to denote regular expressions plus some extensions, suh as"[a-z℄" = (ajbjj:::jz) and "." = all the haraters. Note that the 7th pattern is not \admissible"and the searh time gets a�eted (we show the average number of ative bits to stress that fat).No. Pattern m R jatj Ours Unompress Unompress+ Nrgrep + DFA1 Amerian|Canadian 17 1801 1.011 1.81 3.75 3.852 Amer[a-z℄*an 9 1500 1.612 1.79 3.67 3.743 Amer[a-z℄*an|Can[a-z℄*ian 16 1801 2.213 2.23 3.73 3.874 Ame(i|(r|i)*)an 10 1500 1.010 1.62 3.70 3.725 Am[a-z℄*ri[a-z℄*an 9 1504 2.196 1.88 3.68 3.726 (Am|Ca)(er|na)(i|di)an 15 1801 1.014 1.70 3.70 3.757 Am.*er.*i.*an 12 92945 7.091 2.74 3.68 3.74Table 1: The patterns used on Wall Street Journal artiles and the searh times in seonds.As the table shows, we an atually improve over the deompression of the text followed bythe appliation of any searh algorithm (indeed, just the deompression takes muh more time). Inpratial terms, we an searh the original �le at about 4{5 Mb/se. This is about half the timeneessary for deompression plus searhing with the best algorithm.We have used ompress beause it is the format we are dealing with. In some senarios, LZWis the preferred format beause it maximizes ompression (e.g., it ompresses DNA better thanLZ77). However, we may prefer a deompress plus searh approah under the LZ77 format, whihdeompresses faster. For example, Gnu gzip needs 2.07 seonds for deompression in our mahine.If we ompare our searh algorithm on LZW against deompressing on LZ77 plus searhing, we arestill 20% faster.
15

9 ConlusionsWe have presented the �rst solution to the open problem of regular expression searhing on Ziv-Lempel ompressed text. Our algorithm an �nd the R ourrenes of a regular expression oflength m over a text of size u ompressed by LZ78 or LZW into size n in O(2m +mn+Rm logm)worst-ase time and, for most regular expressions, O(m2 + (n+Rm) logm) or O(m2 + n+Ru=n)average ase time. This gives also a new ompetitive algorithm for ompressed approximate stringmathing. We have shown that the algorithm is of pratial interest, as we are able to searhompressed text twie as fast as deompressing plus searhing.An interesting question is whether we an improve the searh time using harater skippingtehniques [32, 24℄. The �rst would have to be ombined with multipattern searh tehniques onLZ78/LZW [13℄. For the seond type of searh (BNDM [24℄), there is no existing algorithm onompressed text yet. We are also pursuing on extending these ideas to other ompression formats,suh as a Ziv-Lempel variant where the new blok is the onatenation of the previous and theurrent one [17℄. The existene problem seems to require O(m2n) time for this format.Referenes[1℄ A. Aho, R. Sethi, and J. Ullman. Compilers: Priniples, Tehniques and Tools. Addison-Wesley, 1986.[2℄ A. Amir and G. Benson. EÆient two-dimensional ompressed mathing. In Pro. 2nd DataCompression Conferene (DCC'92), pages 279{288, 1992.[3℄ A. Amir, G. Benson, and M. Farah. Let sleeping �les lie: Pattern mathing in Z-ompressed�les. J. of Computer and Systems Sienes, 52(2):299{307, 1996. Earlier version in Pro.SODA'94.[4℄ R. Baeza-Yates and G. Gonnet. Fast text searhing for regular expressions or automatonsearhing on a trie. J. of the ACM, 43(6):915{936, 1996.[5℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prentie Hall, 1990.[6℄ G. Berry and R. Sethi. From regular expression to deterministi automata. Theoretial Com-puter Siene, 48(1):117{126, 1986.[7℄ B. Commentz-Walter. A string mathing algorithm fast on the average. In Pro. Int. Col-loquium on Automata, Languages and Programming (ICALP'79), LNCS 6, pages 118{132,1979.[8℄ M. Farah and M. Thorup. String mathing in Lempel-Ziv ompressed strings. Algorithmia,20:388{404, 1998.[9℄ V-M. Glushkov. The abstrat theory of automata. Russian Mathematial Surveys, 16:1{53,1961. 16

[10℄ D. Hu�man. A method for the onstrution of minimum-redundany odes. Pro. I.R.E.,40(9):1090{1101, 1952.[11℄ J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string mathing over Ziv-Lempelompressed text. In Pro. 11th Annual Symposium on Combinatorial Pattern Mathing(CPM'2000), LNCS 1848, pages 195{209, 2000.[12℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying framework for om-pressed pattern mathing. In Pro. 6th Intl. Symposium on String Proessing and InformationRetrieval (SPIRE'99), pages 89{96. IEEE CS Press, 1999.[13℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern mathing inLZW ompressed text. In Pro. 9th Data Compression Conferene (DCC'98), pages 103{112,1998.[14℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Shift-And approah topattern mathing in LZW ompressed text. In Pro. 10th Annual Symposium on CombinatorialPattern Mathing (CPM'99), LNCS 1645, pages 1{13, 1999.[15℄ U. Manber. A text ompression sheme that allows fast searhing diretly in the ompressed�le. ACM Trans. on Information Systems, 15(2):124{136, 1997.[16℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallel approah toapproximate string mathing in ompressed texts. In Pro. 7th Intl. Symposium on StringProessing and Information Retrieval (SPIRE'2000), pages 221{228. IEEE CS Press, 2000.[17℄ V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In CombinatorialAlgorithms on Words, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag,1985.[18℄ E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exible word searhing onompressed text. ACM Trans. on Information Systems, 18(2):113{139, 2000.[19℄ G. Myers. A Four-Russian algorithm for regular expression pattern mathing. J. of the ACM,39(2):430{448, 1992.[20℄ G. Navarro. A guided tour to approximate string mathing. ACM Computing Surveys,33(1):31{88, 2001.[21℄ G. Navarro. NR-grep: a fast and exible pattern mathing tool. Software Pratie and Expe-riene (SPE), 31:1265{1312, 2001.[22℄ G. Navarro. Regular expression searhing over Ziv-Lempel ompressed text. In Pro. 12thAnnual Symposium on Combinatorial Pattern Mathing (CPM'2001), LNCS 2089, pages 1{17, 2001.[23℄ G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approximate stringmathing over ompressed text. In Pro. 11th IEEE Data Compression Conferene (DCC'01),pages 459{468, 2001. 17

[24℄ G. Navarro and M. RaÆnot. Fast regular expression searh. In Pro. 3rd Workshop onAlgorithm Engineering (WAE'99), LNCS 1668, pages 198{212, 1999.[25℄ G. Navarro and M. RaÆnot. A general pratial approah to pattern mathing over Ziv-Lempel ompressed text. In Pro. 10th Annual Symposium on Combinatorial Pattern Mathing(CPM'99), LNCS 1645, pages 14{36, 1999.[26℄ G. Navarro and M. RaÆnot. Fast and exible string mathing by ombining bit-parallelismand suÆx automata. ACM Journal of Experimental Algorithmis (JEA), 5(4), 2000.http://www.jea.am.org/2000/NavarroString.[27℄ G. Navarro and M. RaÆnot. Compat DFA representation for fast regular expression searh.In Pro. 5th Workshop on Algorithm Engineering (WAE'01), LNCS 2141, pages 1{12, 2001.[28℄ G. Navarro and J. Tarhio. Boyer-Moore string mathing over Ziv-Lempel ompressed text. InPro. 11th Annual Symposium on Combinatorial Pattern Mathing (CPM'2000), LNCS 1848,pages 166{180, 2000.[29℄ R. Sedgewik and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 1996.[30℄ K. Thompson. Regular expression searh algorithm. Comm. of the ACM, 11(6):419{422, 1968.[31℄ J. Vitter and P. Flajolet. Average-ase analysis of algorithms and data strutures. In Handbookof Theoretial Computer Siene, hapter 9. Elsevier Siene, 1990.[32℄ B. Watson. A new regular grammar pattern mathing algorithm. In Pro. 4th Annual EuropeanSymposium on Algorithms (ESA'96), pages 364{377, 1996.[33℄ T. Welh. A tehnique for high performane data ompression. IEEE Computer, 17(6):8{19,June 1984.[34℄ S. Wu and U. Manber. Fast text searhing allowing errors. Comm. of the ACM, 35(10):83{91,1992.[35℄ J. Ziv and A. Lempel. A universal algorithm for sequential data ompression. IEEE Trans.on Information Theory, 23:337{343, 1977.[36℄ J. Ziv and A. Lempel. Compression of individual sequenes via variable length oding. IEEETrans. on Information Theory, 24:530{536, 1978.Appendix: Average Number of Ative BitsThe goal of this Appendix is to show that, on average and under ertain onditions, jat(b)j andjtri(b)j are O(1).Let us onsider the proess of generating the LZ78/LZW trie. A string from the text is readand the urrent trie is followed, until the new string read \falls out" of the trie. At that pointwe add a new node to the trie and restart reading the text. It is lear that, at least for Bernoullisoures, the resulting trie is the same as the result of inserting n random strings of in�nite length.18

Let us now onsider that we initialize our NFA with just state i ative and that we baktrak onthe LZ78 trie, entering into all possible branhes and feeding the automaton with the orrespondingharater. We stop when the automaton runs out of ative states.The total amount of trie nodes reahed in this proess is exatly the amount of text bloks bwhose i-th bit in at(b) is ative, that is, the bloks suh that, if we start with state i ative, we�nish the blok with some ative state. Hene the total amount of states in at over all the bloksof the text orresponds to the sum of trie nodes reahed when starting the NFA initialized withevery possible state i.As shown by Baeza-Yates and Gonnet [4℄, the ost of baktraking on a trie of n nodes witha regular expression is O(polylog(n)n�), where 0 � � < 1 depends on the struture of the regularexpression. This result applies only to random tries over a uniformly distributed alphabet and foran arbitrary regular expression that has no outgoing edges from �nal states. We remark that theharater probabilities on the LZ78 trie are more uniform than on the text, so even on biased textthe uniform model is not so bad an approximation. In any ase the result an probably be extendedto biased ases.Despite being suggestive, the previous result annot be immediately applied to our ase. First,it is not meaningful to onsider suh a random text in a ompression senario, sine in this aseompression would be impossible. Even a senario where the text follows a biased Bernoulli orMarkov model an be restritive. Seond, our DFAs an perfetly have outgoing transitions fromthe �nal states. On the other hand, we annot a�ord an arbitrary text and pattern simultaneouslybeause it will be always possible to design a text tailored to the pattern that reahes the worstase. Hene, we onsider the most general senario that we onsider reasonable to fae:De�nition. Our arbitrariness assumption states that text and pattern are arbitrary but indepen-dent, in the sense that there is zero orrelation between text substrings and substrings of stringsgenerated by the regular expression. Formally, if T is the text and E the regular expression, thenfor any string x,Pr(x = Ti:::i+jxj�1 = 9y; z; yxz 2 L(E)) = Pr(x = Ti:::i+jxj�1) 2The arbitrariness assumption permits us extending our analysis to any text and pattern, underthe ondition that the text annot be espeially designed for the pattern. Our seond step is toset a reasonable ondition over the pattern. The number of strings of length ` aepted by anautomaton is [31℄ N(`) = Xj �j!j̀ = O(`)where the sum is �nitary and �j and !j are onstants. The result is simple to obtain with generatingfuntions [29℄: For eah state i the funtion fi(z) ounts the number of strings of eah length thatan be generated from state i of the DFA, so if edges labeled a1 : : : ak reah states i1 : : : ik from iwe have fi(z) = z(fi1(z)+ : : :+fik(z)+1 � [i �nal℄), whih leads to a system of equations formed bypolynomials and possibly frations of the form 1=(1 � z). The solution to the system is a rationalfuntion, that is, a quotient between polynomials P (z)=Q(z), whih orresponds to a sequene ofthe form Pj �j!j̀. This gives us a tool to de�ne what are admissible states.19

De�nition. An NFA state i is admissible if the number of strings of length ` reognized from statei is at most `, for some < �, for any ` � 1. 2If a state i is admissible and the arbitrariness assumption holds then, if we initialize the NFAwith only state i ative and feed the NFA with haraters from a random text substring, thenthe automaton runs out of ative states after reading O(1) haraters. The reason is that theautomaton reognizes ` strings of length `, out of the �` possibilities. Sine text and patternare unorrelated, the probability that the automaton reognizes the seleted text substring after `iterations is O((=�)`) = O(�`), where we have de�ned � = =� < 1. Hene the expeted amountof steps until the automaton runs out of ative states is P`>=0 �` = 1=(1 � �) = O(1).Let us onsider a perfetly balaned trie of n nodes obtained from the text, of height h = log� n.If we start an automaton at the root of the trie, it will reah O(`) nodes at the trie level `. Thismeans that the total number of nodes traversed isO �h� = O �log� n� = O �nlog� � = O �n��for � < 1. So in this partiular ase we repeat the result that exists for random tries, whih is notsurprising. Let us now onsider the LZ78 trie of an arbitrary text, whih has f(`) nodes at depth`, where hX̀=0 f(`) = n and f(0) = 1; f(`� 1) � f(`) � �`By the arbitrariness assumption, those f(`) strings annot have orrelation with the pattern, sothe traversal of the trie touhes �`f(`) of those nodes at level `. Therefore the total number ofnodes traversed is C = hX̀=0�`f(`)Let us now start with an arbitrary trie and try to modify it in order to inrease the number oftraversed nodes while keeping the same total number of nodes n. Let us move a node from leveli to level j. The new ost is C 0 = C � �i + �j . Clearly we inrease the ost by moving nodesupward. This means that the worst possible trie is the perfetly balaned one, where all nodesare as lose to the root as possible. On the other hand, LZ78 tries obtained from texts tend to bequite balaned, so the worst and average ase are quite lose anyway. As an example of the otherextreme, onsider a LZ78 trie with maximum unbalaning (e.g., for the text au). In this ase thetotal number of nodes traversed is O(1).So we have that, under the arbitrariness assumption, the total number of trie nodes traversedby an NFA initialized at an admissible state i is O(n�i) for some �i < 1. Unadmissible states, onthe other hand, reah all the O(n) nodes.The total number of ative states in at is the sum, over all the states i of the NFA, of the trienodes reahed when baktraking with the NFA initialized with state i ative. This isO �n�0 + n�1 + : : : + n�m�Note that, given the self-loop at state 0, we have �0 = 1, that is, state 0 is unadmissible. Onlynow we are in position to de�ne whih are the regular expressions to whih our result applies.20

De�nition: A regular expression is admissible if its Glushkov's NFA has O(1) unadmissiblestates. 2If a regular expression is admissible, then only O(1) NFA nodes reah all the trie nodes, whilethe rest reah only O(n�), where � = maxf�i; �i < 1gTherefore, in an admissible regular expression the total number of elements in at aross all thebloks is O �n + mn�� = O(n)where we made the last simpli�ation onsidering that m = O(n1��), whih is weaker than usualassumptions and true in pratie. Therefore, we have proved that, under mild restritions (muhmore general than the usual randomness assumption), the amortized number of ative states in theat masks is O(1).Unadmissible regular expressions are those that basially math all the strings of every length,for example, a(ajb)�a over the alphabet fa; bgmathes 2`=4 = �(2`) strings of length `. Although wehave used Glushkov onstrution to �x ideas when de�ning what an admissible regular expressionis, being admissible is likely to be independent on how the NFA is produed.We fous now on the size of the tri(b) sets for admissible regular expressions. Let us onsiderthe text substring B orresponding to a blok b.We �rst onsider the O(1) unadmissible states, whih are always ative, and ompute how manyadmissible states an they ativate. At eah step, those states may ativate O(�) admissible states,but given the arbitrariness assumption, the probability of eah suh admissible state being ative `steps later is O(�`). While proessing B1::jBj, the unadmissible states are always ative, so at theend of the proessing we have PjBj`=0 ��` = O(1) ative states overall (the term �` orresponds tothe point where we were proessing Bk�`).We onsider now that the O(m) admissible states ould have been ative in the beginning.In this ase the probability of yielding an ative state after proessing B is O(�jBj). Hene theytotalize O(m�jBj) ative states. As before, the worst trie is the most balaned one, in whih asethere are �jBj bloks of lengths 0 to h = log� n. The total number of ative states adds uphX̀=0�`m�` = O(mh) = O �mn��Hene, we have in total O(n+mn�) = O(n) ative bits in the tri sets, where the n omes fromthe O(1) states ativated from the unadmissible state and the mn� from the admissible states.
21

