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Abstract

We present the first nontrivial algorithm for approximate pattern matching on compressed
text. The format we choose is the Ziv-Lempel family. Given a text of length u compressed into
length n, and a pattern of length m, we report all the R occurrences of the pattern in the text
allowing up to k insertions, deletions and substitutions. On LZ78/LZW we need O(mkn + R)
time in the worst case and O(k*n + mk min(n, (mo)*) + R) on average where o is the alphabet
size. The experimental results show a practical speedup over the basic approach of up to 2X
for moderate m and small k. We extend the algorithms to more general compression formats
and approximate matching models.

1 Introduction

The string matching problem is defined as follows: given a pattern P = p;...p,, and a text
T =ty...1,, find all the occurrences of P in T, i.e. return the set {|x|, T'= xPy}. The complexity
of this problem is O(u) in the worst case and O(ulog,(m)/m) on average (where the characters
are independent and uniformly distributed over an alphabet of size o), and there exist algorithms
achieving both time complexities using O(m) extra space [CR94, AG97].

A generalization of the basic string matching problem is approzimate string matching: an error
threshold k is also given as input, and we want to report all the ending positions of text substrings
which match the pattern after performing a number of operations on them whose total cost cannot
exceed k. Formally, we have to return the set {|xP’|, T = xP'y and ed(P, P') < k}, where ed(P, P’)
is the “edit distance” between both strings.

Different models for edit distance fit different applications. We deal in this paper with a rather
general one: the operations permitted are character insertions, deletions and substitutions. A
different nonnegative cost can be assigned to the operations depending on the involved characters.
Two popular specializations of this model are the Levenshtein distance (where each insertion,
deletion and substitution costs 1) and the Hamming distance (where each substitution costs 1 and
insertions and deletions cost co, i.e. they are not allowed). In these two cases the problem makes
sense for k < m.

A lot of study has been carried out on the Levenshtein distance. The complexity of the search
problem is for this case O(u) in the worst case and O(u(k + log,(m))/m) on average. Both
complexities have been achieved, despite that the space and preprocessing cost is exponential in m
or k in the first case and (high-degree) polynomial in m in the second case. The best known worst
case time complexity is O(ku) if the space has to be polynomial in m (see [Nav01] for a survey).

A particularly interesting case of string matching is related to text compression. Text compres-
sion [BCWY0] tries to exploit the redundancies of the text to represent it using less space. There

“Dept. of Computer Science, University of Helsinki. {tpkarkka,ukkonen}@cs.helsinki.fi.
TDept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl. Supported in part by Fondecyt grant
1-020831.



are many different compression schemes, among which the Ziv-Lempel family [ZL77, ZL78] is one
of the most popular in practice because of its good compression ratios combined with efficient
compression and decompression time.

The compressed matching problem was first defined in [AB92] as the task of performing string
matching in a compressed text without decompressing it. Given a text T' =t ... t,, a corresponding
compressed string Z = z;1...z,, and a pattern P = p;...p,,, the compressed matching problem
consists in finding all occurrences of P in T, using only P and Z. A naive algorithm, which first
decompresses the string Z and then performs standard string matching, takes time O(m + u). An
optimal algorithm takes worst-case time O(m + n + R), where R is the number of matches (note
that it could be that R = u > n).

The compressed matching problem is important in practice. Today’s textual databases are
an excellent example of applications where both problems are crucial: the texts should be kept
compressed to save space, I/O and network time, and they should be efficiently searched. However,
these two combined requirements are not easy to achieve together, as the only solution before the
90s was to process queries by uncompressing the texts and then searching them. In particular,
approzimate searching on compressed text was advocated in [AB92] as an open problem.

This is our focus in this paper. We present the first solution to the problem of compressed
approximate string matching. The format we choose is the Ziv-Lempel family, first focusing on
the LZ78 and LZW variants and on the Levenshtein distance, and later extending the results to
more general scenarios, such as a more general Ziv-Lempel format proposed in [NR99] which we call
“LZ-Blocks” in this paper, collage systems [KST199], and general edit distance with different costs.
Table 1 summarizes our contribution on the different formats and cost models. The value k;4, is
defined as k divided by the minimum cost of an edit operation (hence k;qs = k on the Levenshtein
and Hamming models), while k;4 is defined as 1 4 2k/(minimum cost of an insertion or a deletion)
(hence k;y = 1 + 2k on the Levenshtein distance and k;y = 1 for Hamming). The table gives the
complexities for these two cases separately anyway. For more details about the meaning of the
results we refer the reader to the body of the paper.

To assess the practical impact of our methods, we implemented the Levenshtein search over the
LZ78 format. We wrote our own compressor, which in exchange of about 10% increase in the size
of the compressed file permits faster searching. The experimental results show that this technique
can take less than half of the time needed by the basic approach, for moderate m and small k
values. This paper is an extended and updated version of [KNUO0O].

2 Related Work

Two classes of techniques exist to compress text. The first ones, called static (or semi-static)
methods, choose a fixed mapping from symbols or sequences in 7' to symbols or sequences in Z,
and apply the same mapping across all the compression process. The second ones, called adaptive
methods, modify the mapping as the compression goes on.

Some compressed text search techniques focus on static methods. Efficient solutions based on
Huffman coding [Huf52] on words have been presented in [MNZBYO00], but they need that the
text contains natural language and be large (say, 10 Mb or more). Moreover, they allow only
searching for whole words and phrases. For general texts, diverse techniques related to byte-pair



Distance LZ78/LZW LZ-Blocks Collage systems

General
w.cC. mkign mkina(n) | mkZ|D| + mk;q| S|
a.c. | kigskign + mk;q min(n, (mo)kias)
Levenshtein
W.C. mkn mk2na(n) mk2|D\ + mk|S]
a.c. E2n + mk min(n, (ma)k)
Hamming
w.C. mn mna(n) m(|D| +19|)
a.c. kn 4+ mmin(n, (mo)k)

Table 1: The search complexities (worst and average case) obtained for different models. We
excluded “4+R” from all the complexities and «(n) denotes the inverse of A(2n,n) (Ackermann’s
function).

encoding (i.e. replacing frequent bigrams by unused characters) have been shown to be efficient
[Man97, SMT00]. However, in general the compression ratios obtained are poor, i.e. inferior
or similar to a classical Huffman coding of the text. Moreover, in all these compression formats
n = O(u), so the speedups can only be measured in practical terms.

A second line of research considers adaptive schemes such as Ziv-Lempel compression, which
is based on finding repetitions in the text and replacing them with references to similar strings
previously appeared. LZ77 [ZL77] is able to reference any substring of the text already processed
and has a best case of n = O(logu), while LZ78 [ZL78] and LZW [Wel84] reference only a single
previous reference plus a new letter that is added, with a best case of n = O(y/u). A hybrid
among these is LZ-Blocks, which was proposed in [NR99] to achieve the search time of LZ78 and
the compression ratio of LZ77.

The LZ family is extremely popular because of its general applicability, good compression
ratios, and fast compression/decompression time. String matching in Ziv-Lempel compressed texts
is, however, much more complex than on many static schemes, because the pattern can appear in
different forms across the compressed text.

The first algorithm, from 1994 [ABF96], presents a compressed matching algorithm for LZ78
working in time and space O(m? + n) for the existence problem (i.e. determine whether or not
P appears in T'). The only technique for LZ77 [FT98] is a randomized algorithm taking time
O(m + nlog?(u/n)) for the existence problem.

An extension of [ABF96] to multipattern searching was presented in [KTS198], together with
the first experimental results in this area. They achieve O(m?+n) time and space for the existence
problem, although this time m is the total length of all the patterns.

New practical results appeared in [NR99], which presented a general scheme to search Ziv-
Lempel compressed texts (for simple and extended patterns) and specialized it for the particular
cases of LZ77, LZ78 and LZ-Blocks, proposed there. A similar result, restricted to simple patterns
and to the LZW format, was independently found and presented in [KTST99]. A Boyer-Moore



type algorithm for LZ78/LZW was presented in [NT00], which is currently the fastest in practice
for moderately long patterns.

An interesting abstraction of the existing algorithms over a general compression format called
collage systems was presented in [KSTT99].

Approximate string matching on compressed text was advocated in [AB92]. It has been solved
for Huffman coding of words [MNZBY00] by searching the uncompressed text vocabulary, but the
solution is limited to search for a whole word and retrieve whole words that are similar, on natural
language texts. The problem has also been solved for the simpler Hamming distance on LZ78 at
O(nmk?*log(k)/w + R) worst case time [NRYS8], where w is the length in bits of the machine word.

The aim of this paper is to present the first general solution to this problem for the Ziv-Lempel
family and the so-called regular collage systems. The specialization of this solution to LZ78/LZW
and Levenshtein distance first appeared in [KNUO0O], of which this work is an extended version.
Shortly after [KNUOO], an alternative solution was presented in [MKT"00]. This alternative so-
lution, based on bit parallelism, is restricted to solve the existence problem for the Levenshtein
distance.

3 Approximate String Matching by Dynamic Programming

We introduce some notation for the rest of the paper. A string S is a sequence of characters over an
alphabet Y. If the alphabet is finite we call o its size. The length of S is denoted as |S|, therefore
S = s1...55 where s; € ¥. A substring of S is denoted as S; ; = s;si41...5;, and if © > j,
S;..j = €, the empty string of length zero. In particular, S; = s;. P and 7', the pattern and the
text, are strings of length m and u, respectively.

We recall that ed(A, B), the edit distance between strings A and B, is the minimum total cost
of the operations necessary to convert A into B or vice versa (the costs are usually symmetric). The
basic algorithm to compute the edit distance between two strings A and B was discovered many
times in the past, e.g. [NW70]. This was converted into a search algorithm much later [Sel80]. We
first show how to compute the edit distance between two strings A and B. Later, we extend that
algorithm to search for the approximate occurrences of a pattern in a text.

3.1 Computing the Edit Distance

Let us call ¢(¢ — a) the cost to insert a character a, ¢c(a — ) that to delete a and ¢(a — b) that
to replace a by b. It is assumed that no character of the strings to convert is operated upon more
than once, so for consistency a triangular inequality has to hold: ¢(a — ¢) < ¢(a — b) + ¢(b — ¢).
It has also to hold that ¢(a — a) = 0.

The algorithm to compute edit distance is based on dynamic programming. To compute
ed(A, B), a matrix Cy_|4)0..p/ is filled, where C; ; represents the minimum cost of the operations
needed to convert A; ; into By ;. This is computed as follows

C(],o =0
ijj = min(C,;,l,j,l + c(a,; — bj), 07;71,]' + c(a,; — 5), prl + C(s — bj))

where at the end C|4 g = ed(A, B). Tt is assumed that C' has the value co when accessed outside
bounds.



The rationale of the above formula is as follows. First, Cy o represents the edit distance between
two empty strings. For two non-empty strings of length ¢ and 7, we assume inductively that all
the edit distances between shorter strings have already been computed, and try to convert A;_;
into By, ;. Three choices exist, according to the three edit operations we are considering. We can
substitute a; by b; and then proceed in the best possible way to convert A; ; 1 into By j 1. We
can also delete a; and convert, in the best way, Ay _;_; into B; ;. Finally, we can insert b; at the
end of A; ; and convert, in the best way, Ay ; into By ;1. In all cases, the cost to convert the
rest is already computed.

The above formula is simplified when we use the Levenshtein distance:

Cio = 14, Coj = ]
Ci,j = if (a,; = bj) then 01'7173',1 else 1 + min(C,;,Lj,l, 071711]', Ci,jfl)

The dynamic programming algorithm must fill the matrix in such a way that the upper, left,
and upper-left neighbors of a cell are computed prior to computing that cell. This is easily achieved
by either a row-wise left-to-right traversal or a column-wise top-to-bottom traversal. Figure 1 (left)
illustrates this algorithm to compute ed("survey", "surgery") under the Levenshtein distance.
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Figure 1: On the left, the dynamic programming algorithm to compute the Levenshtein distance
between "survey" and "surgery". The bold entries show the path to the final result. At the
center, the variation to search for "survey" the text "surgery". All the entries up to the final
active cells for £ = 1 are in boldface. On the right, the dependency scheme between cells.

Therefore, the algorithm is O(]A||B|) time in the worst and average case. However, the space
required is only O(min(|Al,|B]|)). This is because, in the case of a column-wise processing, only
the previous column must be stored in order to compute the new one, and therefore we just keep
one column and update it. We can process the matrix row-wise or column-wise so that the space
requirement is minimized.

On the other hand, the sequences of operations performed to transform A into B can be easily
recovered from the matrix, simply by proceeding from the cell C|4 g, to the cell Cpp following the
path (i.e. sequence of operations) that matches the update formula (multiple paths may exist).
In this case, however, we need to store the complete matrix or at least an area around the main
diagonal. Therefore, for each alignmnent there exists at least one optimal path of edit steps from
cell (0,0) to cell (JA|,|B]).



3.2 Approximate Text Searching

We show now how to adapt this algorithm to search for a short pattern P a long text 7. We recall
that the problem is: given a pattern P of length m, a text T" of length u, and an error level k&, find
all the text positions j such that ed(P,Tj ;) < k for some j'. We will call “matches” the ending
positions of the occurrences (i.e. the j values).

The algorithm is basically the same, with A = P and B = T (proceeding column-wise so that
O(m) space is required). The only difference is that we must allow that any text position is the
potential start of a match. This is achieved by setting Cp j = 0 for all j € 0...u. That is, the empty
pattern matches with zero errors at any text position (because it matches with a text substring of
length zero).

The algorithm then initializes its column Cy._ ., with the values

Co =0, C = Ci1+cpi—e)

and processes the text character by character. At each new text character t;, its column vector is
updated to C{, ,,. The update formula for i > 0 is

C; = min(C;q + c(pi — tj),C,';,l +c(pi = €),Ci +cle = 1))
which for the Levenshtein distance reduces to
C; = if (pz' = tj) then C,_1 else 1 + min(C,;,l, Z’»,l,C,;)

With this formula the invariant that holds after processing text position j is C; = led(Py._ 4, T .. ;).
where

led(A,B) = Z,erlnir‘lB‘ ed(A, B; |p|)

that is, C; is the minimum edit distance between P;_; and a suffix of the text already seen. Hence,
all the text positions where C,,, < k are reported as matches (ending points of occurrences).

The search time of this algorithm is O(mu) and its space requirement is O(m). Figure 1 (center)
exemplifies.

3.3 Some Properties and Definitions

We make a few definitions that are useful to analyze the efficiency of the algorithms and to relate
different error models.

Definition 1 Let k;qs be the maximum number of operations that can be carried out to convert A

into B with error threshold k. That s

k
min{c(z = y), v #y e L U{c}}

kids

The definition is useful when there are no zero costs, otherwise we could use k;qs = |A| + | B|.
Note that k;qs = k for Hamming and Levenshtein distances.



Definition 2 Let k;jq be one plus two times the maximum difference in lengths between two strings
A and B which are at distance k. That is

k
min{c(z — ¢),c(e = x), v € ¥}

k,;d = 1 + 2

Again, k;q = oo if there are zero costs for insertion or deletion. Note that k;q = 1 + 2k for the
Levenshtein distance and k;; = 1 for Hamming. That is, the occurrences of a pattern of length m
have length between m —k and m 4k under the Levenshtein model, and exactly m under Hamming.
This property is important for our complexity results.

On the other hand, the dynamic programming matrix has a number of properties that have
been used to derive better algorithms. We are interested in two of them.

Property 1 Let A and B be two strings such that A = A1 As. Then there exist strings By and Ba
such that B = B1By and ed(A, B) = ed(Ay, By) + ed(As, By).

That is, there must be some point inside B where its optimal comparison against A can be
divided at any arbitrary point in A. This is easily seen by considering an optimal path that
converts A into B. The path must have at least one node in each row (and column), and therefore
it can be split into a path leading to the cell (|A;[,r), for some r, and a path leading from that
cell to (JA|,|B]|). Thus, r = |By|, which determines B;. For example ed("survey","surgery") =
ed("surv","surg") + ed("ey","ery").

Note that this property depends on our choice of operations. For example, it is not true anymore
if we introduce the transposition, which allows us to switch adjacent characters in just one step.
If transpositions cost 1, then ed("survey","suvrey") = 1, yet we cannot split the first string into

"sur" and "vey" and obtain the same result as before.

The second property refers to the so-called active cells of the C vector when searching for P
allowing k errors. All the cells with value < k are called “active”. As noted in [Ukk85]:

Property 2 The output of the search depends only on the active cells, and the rest can be assumed
to have any value larger than k.

Under the Levenshtein distance it holds that, from an iteration of the dynamic programming
algorithm to the next, the last active cell can be incremented at most by 1, because neighboring
cells of the matrix differ at most by 1. Hence the position of the last active cell can be maintained
at O(1) amortized time per iteration. That is, for each new column computed we have to check
whether it has grown by 1 or whether it has decreased arbitrarily.

The search algorithm needs to work only on the active cells. As conjectured in [Ukk85] and
proved in [CL92, BYN99], there are O(k) active cells on average and therefore the dynamic pro-
gramming takes O(ku) time on average. Figure 1 (center) illustrates. This can be generalized to
arbitrary costs, to obtain O(k;4su) search time on average.

Considering Property 2, we use a modified version of ed in this paper. When we use ed(A, B)
we mean the exact edit distance between A and B if it is < k, otherwise any number larger than
k can be returned. It is clear that the output of an algorithm using this definition is the same as
with the original one.



4 The Ziv-Lempel Compression Format

The general idea of Ziv-Lempel compression is to replace substrings in the text by a pointer to
a previous occurrence of them. If the pointer takes less space than the string it is replacing,
compression is obtained. Different variants over this type of compression exist, see for example
[BCW90]. We are particularly interested in two formats, which we describe more in depth.

4.1 LZ78 and LZW Compression

The Ziv-Lempel compression algorithm named LZ78 [ZL78] is based on a dictionary of blocks, in
which we add every new block computed. At the beginning of the compression, the dictionary
contains a single block by of length (0. The current step of the compression is as follows: if we
assume that a prefix 77 ; of T" has been already compressed into a sequence of blocks Z = by ... b;,
all them in the dictionary, then we look for the longest prefix of the rest of the text T, , which
is a block of the dictionary. Once we found this block, say by of length ¢, we construct a new block
bry1 = (8, Tjye,41), we write the pair at the end of the compressed file Z, i.e Z = by ...b,b, 11, and
we add the block to the dictionary. It is easy to see that this dictionary is prefix-closed (i.e. any
prefix of an element is also an element of the dictionary) and a natural way to represent it is a trie.

We give as an example the compression of the word ananas in Figure 2. The first block is (0, a),
and next (0,n). When we read the next a, a is already the block 1 in the dictionary, but an is not
in the dictionary. So we create a third block (1,n). We then read the next a, a is already the block
1 in the dictionary, but as do not appear. So we create a new block (1, s).

Prefix encoded a an anan ananas
0 0
a / a n a / \” a / \n
Dictionary 1 1/ \ 2 1 2 1 2
N 7\
3 4 3
Compressed file  (0,a) (0,8(0,n) (0,8(On)(1,n) (0,3(On)(1,n)(L,9)

Figure 2: Compression of the word ananas with the algorithm LZ78.

The compression algorithm is O(u) time in the worst case and efficient in practice if the dic-
tionary is stored as a trie, which allows rapid searching of the new text prefix (for each character
of T" we move once in the trie). The decompression needs to build the same dictionary (the pair
that defines the block r is read at the r-th step of the algorithm), although this time an array
implementation is preferable over a trie based one. Compared to LZ77, the compression is rather
fast but decompression is slow.

Many variations on LZ78 exist, which deal basically with the best way to code the pairs in the
compressed file, or with the best way to compress using limited memory. A particularly interesting
variant is from Welch, called LZW [Wel84]. In this case, the extra letter (second element of the



pair) is not coded, but it is taken as the first letter of the next block (the dictionary is started with
one block per letter). LZW is used by Unix’s Compress program.

In this paper we do not consider LZW separately but just as a coding variant of LZ78. This is
because the final letter of LZ78 can be readily obtained by keeping count of the first letter of each
block (this is copied directly from the referenced block) and then looking at the first letter of the
next block.

4.2 LZ-Blocks Format

LZ78 does not achieve as good performance as the LZ77 compression format. As noted in [NR99,
KST*99], searching in LZ77 compressed text is very difficult. In [NR99] they propose a format
which is a hybrid, achieving a compression ratio better than LZ78 and keeping the same search
efficiency. We describe that format now.

Assume that a prefix 77 ; of T has been already compressed into a sequence of blocks Z =
by ...b,. We look now for the longest prefix v of T, which is represented by a sequence by ... bs4p
already present in the compressed file. If there are many alternative choices for the same v, the
one with the minimum of blocks is used (to reduce the cost of concatenations). And if still several
possibilities occur, the first occurrence is selected, to code smaller numbers. This new block is coded
as (s,h). If v is empty (i.e the letter #;,1 is new), a special block (0,%;41) is coded. With the same
example ananas, we obtain: (0, a) nanas; (0,a)(0,n) anas; (0,a)(0,n)(1,1) as; (0,a)(0,n)(1,1)(1,0)
s; (0,a)(0,n)(1,1)(1,0)(0, s).

The compression can still be performed in O(u) time by using a sparse suffix tree [KU96] where
only the block beginnings are inserted and when we fall out of the trie we take the last node visited
which corresponds to a block ending. Decompression needs to keep track of the blocks already seen
to be able to retrieve the appropriate text. The compression ratio is between those of LZ77 and
LZ78.

A particular case of this format is presented by Miller and Wegman [MW85], where the new
block is not the previous one plus the first letter of the new one, but simply the concatenation of
the previous and the new one.

4.3 Collage Systems

Many compression formats have been unified in [KSTT99] under the concept of collage system.
This model divides the compression format into two parts: a dictionary D which stores the set
of symbols that can be used in the compressed text, and the compressed text S itself, which is
a sequence of elements in D. The Ziv-Lempel format interleaves the representations of D and S,
since a new element of D is created after each symbol of S is output. In simpler formats, such as
Huffman, the dictionary is the set of bit streams that represent each text character.

Collage systems are classified according to the type of operations that can be applied to build
D. Atomic elements, concatenation of other elements in D, repetition and truncation of an element
in D are the operations considered in [KSTT99]. In particular, atomic elements and concatenation
(which are the allowed operations in the so-called regular collage systems) are enough to encom-
pass LZ78/LZW and LZ-Blocks, while LZ77 requires truncation and this complicates the work of
compressed pattern matching algorithms.



5 A General Search Approach

We present now a general approach for approximate pattern matching over a text Z = by ...b,,
that is expressed as a sequence of n blocks. Each block b, represents a substring B, of T', such that
Bi...B, = T. Moreover, each block B, is formed by a concatenation of previously seen blocks
and/or explicit letters. Our goal is to find the positions in 7" where occurrences of P with at most
k errors end, using 7.

For simplicity of the exposition we concentrate on the Levenshtein model. Later we show how
the algorithm can be extended.

Our approach is to adapt an algorithm designed to process T' character by character so that it
processes T block by block, using the fact that blocks are built from previous blocks and explicit
letters. In this section we show how we have adapted the classical dynamic programming algorithm.
Part of the algorithm depends on the specific compression format used, and this is covered in the
following sections. We also show later that the O(ku) algorithm based on active cells can be adapted
as well.

We need a little more notation before explaining the algorithm. Each match is defined either
as overlapping or internal. A match j is internal if there is an occurrence of P ending at j totally
contained in some block B, (i.e. if the block repeats the occurrence surely repeats). Otherwise it
is an overlapping match.

The general mechanism of the search is as follows: we read the blocks b, one by one. For each
new block b read, representing a string B, and where we have already processed T}, ;, we update
the state of the search so that after working on the block we have processed Ty ;g = T1. ;B.
To process each block, three steps are carried out: (1) its description (to be specified shortly) is
computed, (2) the occurrences ending inside the block B are reported, and (3) the state of the
search is updated.

The state of the search consists of two elements

e The last text position considered, j (initially 0).

e A vector C;, for i € 0...m, where C; = led(Py_;, Ty ;). Initially, C; = i. This vector is the
same as for plain dynamic programming, except that all cells whose value is larger than k
can have any value larger than k (recall Property 2).

The description of all the blocks already seen is maintained. Say that block b represents the
text substring B. Then the description of b is formed by the length |B| and some vectors indexed
by i € 1...m (their values are assumed to be k + 1 if accessed outside bounds).

o Z;y(b) =ed(P;_y,B),fori € 1...m, i' € max(i+|B|-k—1,i—1)...min(i+ |B|+k—1,m),
which at each point gives the edit distance between B and P; ;. Note that Z has O(mk)
entries per block. In particular, the set of possible i’ values is empty if i > m +k +1— |B|,
in which case Z; (b) = k + 1.

e Pi(b) =led(Py. ;,B), for i € 1...m, gives the minimum edit distance between the prefix of
length i of P and a suffix of B. Note that P has O(m) entries per block.
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o Sii(b) =ed(P; By i), foriel...m, i € max(m—i+1—£k,0)...min(m—i+1+k,|B|),
gives the edit distance between the suffix starting at 7 in P and the prefix ending at ¢’ in B.
Note that & has O(mk) entries per block. Again, the set of possible i’ values is empty (and
S“/(B) =k+1) fi<m+1-—Fk-— |B‘

e M(B), which is an array storing the internal matches of B (its size ranges from zero to |B|).
The offsets with respect to the beginning of B are stored, in increasing order. The total
number of entries over all the blocks is the number of internal matches found, which cannot
exceed R.

Figure 3 illustrates the matrices Z and § and how are they filled under different situations. The
P and M vectors are simpler and hence excluded from the figure.

2k+1 |B|+k+1
| 1 1
I I
m m
1 i m 1 i m
Bl >=k 1B < k
m 2k+1

1 i B 1 i |B|

[B] >= m+k |B] < m+k
Figure 3: The Z and S matrices that comprise the description of a block b representing a string B.

The way to compute the description of the blocks is format-dependent and is covered later. We
specify now how to report the matches and update the state of the search once the description of
a new block b has been computed. Three actions are carried out, in this order.

11



Reporting the overlapping matches. An overlapping match ending inside the new block B
corresponds to an occurrence that spans a suffix of the text already seen Tj_ ; and a prefix of B.
From Property 1, we know that if such an occurrence matches P with & errors (or less) then it
must be possible to split P into P;_; and Pj;. ., such that the text suffix matches the first half
and the prefix of B matches the second half. Figure 4 illustrates.

Ci + Sugp
Figure 4: Splitting of an overlapping match (grayed).

Therefore, all the possible overlapping matches are found by considering all the possible positions
i in the pattern. The check for a match ending at text position j + i’ is then split into two parts. A
first condition states that P ; matches a suffix of 77 ; with ki errors, which can be checked using
the C vector. A second condition states that P, matches By ;s with ks errors, which can be
checked using §. Finally, we require that ki 4+ ko < k.
Summarizing, the text position j+4' (i’ € 1...min(m + k — 1,|B])) is reported if
max(m—1,m—1i'+k)
 omin (G + S (D) <k (1)
t=min(1,m—i'—k)
and we also have to report the positions j + i’ such that Cp,, +1i < k (for i' € 1...k). This
corresponds to S,414(b) = 4', which is not stored in that matrix.
The total cost for this check is O(mk). The occurrences are not immediately reported but
stored in increasing order in an auxiliary array (of size at most m + k), because they can mix and
collide with internal matches.

Reporting the internal matches. These are matches totally contained inside B. Their offsets
have already been stored in M(b) when the description of b was computed. These matches may
collide and intermingle with the overlapping matches. We merge both chains of matches and report
them in increasing order and without repetitions. This can be done in time proportional to the
number of matches reported (which adds up O(R) across all the search).

Updating the C vector and j. To update C we need to determine the best edit distance between
P, ; and a suffix of the new text T1...j+\B\ = Ty ;B. Two choices exist for such a suffix: either
it is totally inside B or it spans a suffix of 77 ; and the whole B. Figure 5 illustrates the two
alternatives. The first case corresponds to a match of P, _; against a suffix of B, which is computed
in P. For the second case we can use Property 1 again to see that such an occurrence is formed by
matching Py ; against some suffix of T ; and Py, _; against the whole B. This can be solved
by combining C and Z.
The formula to update C to a new C’ is therefore

, min(i—1,i—|B|+k)
C; « min(P;(b) min (Cit + Zyr41,:(D))) (2)

" i =max(1,i—|B|—k)

12



P Ci + |

"+,

Figure 5: Two choices to update the C vector.

which finds the correct value if it is not larger than k, and gives something larger than k otherwise
(this is in accordance to our modified definition of ed). Since there are m cells to compute and each
one searches over at most 2k + 1 values, the total cost to update C is O(mk).

Finally, j is easily updated by adding |B| to it.

Complexity. All the processes described up to now take O(mkn) time for the existence problem
and O(mkn 4+ R) time to report the R matches of P. We have to add the time to compute the
block descriptions, a process that is detailed in the next sections.

The space requirement for this algorithm is basically that to store the block descriptions: the
lengths, matrices and matches. The lengths can be stored using nlog(u) bits'. For the matrices,
we observe that each element of those arrays differs from the previous one by at most 1, that is
Ziig1(b) =Z; (b)) £1, Pip1(b) = Pi(b) £1, and S; j711(b) = S;7(b) £ 1. Their first value is trivial
and does not need to be stored. Therefore, each such cell can be represented only with 2 bits, for
a total space requirement of (8mk + 2m)n bits at most.

The internal matches, on the other hand, are at most R numbers that need Rlogu bits. We
also need n log u bits to point directly into the array of internal matches. Therefore the total space
requirement in bits is 2m(4k + 1)n + 2nlogu + Rlogu.

6 Computing Block Descriptions for the LZ78 and LZW Formats

We show now how to do the rest of the updates in the LZ78 format, where each block V' represents
B’ = Ba, where B is the string represented by a previous block b and a is an explicit letter. The
procedure is almost the same as for LZW so we omit it here and concentrate on LZ78 only. An
initial block bg represents the string e, and its description is as follows.

e |c| =0.

o i,if(bg):i'—i—l-l,iel...m, i"ei—1...min(i+k—1,m).
o Pi(by) =i, i€l...m.

o Siolbp)=m—i+1l.iem—-k+1...m.

We give now the update formulas for the case when a new letter a is added to B in order to
form B’. These can be visualized as special cases of dynamic programming matrices between B
and parts of P.

'We give all the space requirements in exact number of bits, disregarding lower order terms. The logarithms are
base 2 unless otherwise indicated.
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o B =B +1.

o T (V') = Z;y_1(b) if a = py, and 1 4+ min(Z; 5#(b), Z; iy —1 (V). Z; i1 (b)) otherwise. We start
with? Z; max(i—1,i+|B'|-k—2)(0") = min(|B’|,k 4+ 1), and compute the values for increasing i'.
This corresponds to filling a dynamic programming matrix where the characters of P;  are
the columns and the characters of B are the rows. Adding a to B is equivalent to adding a
new row to the matrix, and we store at each block only the row of the matrix corresponding
to its last letter (the rest can be retrieved by going back in the references). For each i, there
are 2k + 1 such columns stored at each block B, corresponding to the interesting i’ values.

Figure 6 illustrates. To relate this to the matrix of Z in Figure 3 one needs to consider that
there is a three dimensional matrix indexed by i, i’ and |B|. Figure 3 shows the plane stored
at each block B, corresponding to its last letter. Figure 6 shows a plane obtained by fixing i.

: Pi.. : P

12 3 - 0

B’ B’

|BI
1B']

I+ (b) 151
e (0) B

<0

o
o

Figure 6: The virtual dynamic programming matrices. On the left, between B and P;,_, to compute
Z. On the right, between B and P, to compute P.

o Pi(b') = Pi_1(b) if a = p; and 1 4+ min(P;(b), P;_1(b’), P;—1(b)) otherwise. We assume that
Po(b') = 0 and compute the values for increasing i. This corresponds again to filling a dynamic
programming matrix where the characters of P are the columns, while the characters of B
are the rows. The (virtual) matrix has i at the i-th column of the first row and zeros in the
first column. Figure 6 illustrates.

o S;i(t) =S8, (b) it i <|B|, and Z; (') otherwise. This is a simpler formula because if we
have a prefix of B matching a suffix of P the fact stays true after adding more characters
at the end of B. Only the matches comprising the whole B’ are new, and those are easily
retrieved using Z. That is, S;(b) = Z;,, (b1 +1)) where b(") denotes the block reached
after following r times the backward chain of referenced blocks. Formally, b(®) = b and p("+1)
is the block referenced by b(").

This shows that we do not need in practice to store S, since we can retrieve it by following
the back chain of pointers. Moreover, § is used only to report the overlapping matches and

2Note that it may be that this initial value cannot be placed in the matrix because its position would be outside
bounds.
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it is not hard to use the values in the same order given by the backward chain. Instead of S

we need to store
ref(b) — b(max(l,\BF(m«kkfl)))

which allows us to recover the values S; k-1, Simyk—2, --.,Si1, in that order. This does
not alter the time complexity.

o M(b') = M(b), where the position |B’| is added if P,,(b') < k. That is, all the matches
internal to B are also internal to B’. Then, a new internal match at the last position of the
block may be added if an occurrence of P inside B’ ends there.

This is so simple in LZ78 that we can even not store M explicitly. Instead, each block can store
the number of the last block in the referencing chain which holds a match in its last position,
let us call it Match(b). Hence, Match(b') = Match(b) if P,,(b) > k, and b otherwise. The
original value of M(b) can be obtained by following the chain, in reverse order, in O(|M(b)|)
time. Again, this does not alter the complexity. Moreover, it can be easily combined to the
removal of S since both sets of matches that have to be merged (internal and external) will
be obtained in reverse order.

Complexity. As can be seen, the updates of P cost O(m) per block, but those of Z and S
take O(mk). The updates to M add up O(R) along the total process. In any case, the general
complexity O(mkn + R) is maintained.

This complexity is the same if we replace § and M by ref and Match. Each of the new vectors
needs n log n bits. Therefore the number of bits required in this case becomes 2m(3k+1)n + 3nlog u.

7 Computing Block Descriptions for More General Formats

In the format proposed in Section 4.2, each block is a concatenation of many previous blocks. In
this case the search cost rises to O(mk?na(n) + R), where a(n) is the inverse of Ackermann’s
A(2n,n). We describe the case of concatenating two previous blocks in O(mk?) time, and later
consider how to generalize for several blocks.

7.1 Concatenating Two Variable-Size Blocks

Assume now that 0’ is formed by concatenating by and by, i.e. B’ = By Bs. The formulas to compute
the block description make heavy use of Property 1. The descriptions are computed as follows (see
Figure 7).

o Ty (V') = mingeip gy~ it|B|+k(Ziin(b1) + Ziny1,9(b2)). This accounts for the fact that
pattern substrings matching BB, are formed by a substring matching B; followed by a
substring matching Bs. In this case filling each of the O(mk) cells costs O(k), for a total
update cost of O(mk?) per block.

o Pi(b') = min(P;(ba), ming c; | py|—k..i—|By|+k(Pir (b1) + Liry1,i(b2)). This accounts for the fact
that pattern prefixes matching a suffix of BBy are either those matching a suffix of By or
those matching a suffix of B; followed by an occurrence of By. This costs O(mk).
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Figure 7: Computing block descriptions under the block format.

o Sii(b') = Sii(br) if @' < |Bi|, else mingreiy gy g iv|By|+k(Ziiw (b1) + Sing10(b2)). This is
because suffixes of P matching a prefix of By By match either a prefix of By (if the prefix is
shorter than By) or are formed by a pattern substring matching the whole By followed by the
rest of P matching a prefix of Bs. The cost for this is also O(mk?).

e For M(V') we copy M(by), then add the matches that appear when concatenating B; and
By and then copy M(bs). The matches that appear in the concatenation ending at i’ €
1...m+k —1in By satisfy miniemfi’fk...mfi’—kk(?)i(bl) + SH_LZ'I([)Q)) < k. For each such ¢,
|B1| + 1" is added as a match. Now, those matches must be merged with those internal to Bs.
The complexity is O(mk) per block plus O(R) in total.

7.2 Concatenating Many Variable-Size Blocks

The method above can be trivially extended by composition to concatenate h blocks in O(h)
concatenation operations. This gives a total time complexity of O(mk?H) for compressed pattern
matching in the LZ-Blocks format, where H is the total number of blocks in the concatenations.
In the worst case, H = (n?). We next show how the time is lowered to O(mk?na(n)), where a(n)
is the inverse of A(2n,n) (the Ackermann function).

We will use an algorithm by Tarjan [Tar79] based on the path compression technique. The
algorithm operates on a semigroup (D, ®) with associative operation . In our case, D is the set
of possible block descriptions and ® is the concatenation operation. The algorithm carries out a

sequence of instructions that build and manipulate a forest with vertices labeled by elements of D.
There are three kinds of instructions:

e LABEL(r, x): Label the root r with .
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e LINK(v,w): Combine the trees with roots v and w into a single tree by making v the parent
of w.

e EVAL(v): Find the root of the tree currently containing v, say r, and return the product of
all labels on the path from v to r.

A LABEL-instruction takes the time needed to make a copy of the label x and a LINK-instruction
executes in constant time. For N EVAL-instructions in a forest of n nodes Tarjan gives an amor-
tized time complexity of O((N + n)a(N + n,n)Ts), where Ty is the time taken by a ®-operation
and «(N,n) is the inverse Ackermann’s function. The algorithm requires that the sequence of
instructions is given off-line except for the labels in the LABEL-instructions.

The block descriptions for the LZ-Blocks format can be produced with a suitable sequence of
instructions. The sequence of instructions builds a linear tree by adding one vertex at a time as
the root of the tree. Let vy, v9,... be the sequence of vertices added to the tree. After v; is added
to the tree, it is labeled by the description of the basic block b; and then all block concatenations
(requested by later blocks) that end at b; are computed and saved for later. The description of a
block concatenation b; - - - b; is computed by executing EVAL(v;). Thus the sequence of instructions
consists of n instructions of each kind. The sequence can be computed with linear time scan of
the compressed text satisfying the off-line requirement. This gives the total time complexity of
O(mk*na(n)), where a(n) is short for a(2n,n).

7.3 Collage Systems

Under the model of a collage system, a compressed pattern matching algorithm has conceptually
two parts: first precompute any required information on the dictionary D, and second process the
symbols of S.

The algorithm we have presented in this section can be directly applied to any regular collage
system (i.e. the dictionary is formed by basic symbols and concatenations of previously formed
symbols). The description of every block in the dictionary D is computed first, and then we go
over the elements of S updating the search state and reporting the matches.

The worst case time complexity of this scheme is O(mk?|D| + mk|S| + R).

8 A Faster Algorithm on Average for LZ78/LZW

A simple form to speed up the dynamic programming algorithm on compressed text is based on
Property 2. That is, we try to work only on the active cells of C, Z and P.

We are interested in showing that the property that says that there are on average O(k) active
cells in C at a random text position holds also when those text positions are the endpoints of Ziv-
Lempel blocks in the text. Moreover, we would like to consider more general random models, since
uniform distribution of characters does not marry well with text compression.

First assume that the text is arbitrary but fixed and that the pattern P is generated by a Markov
process such that no string has probability 1 (i.e. the Markov process is not degenerated). The
number of active cells at the end of the blocks depends on the probability of common characters
between P and the last m + k text characters at the end of each block. Even if we consider that all
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such text substrings match with the most probable patterns, still the combinatorial argument used
in [BYN99] to prove the O(k) bound stays valid. Just the constant 1/0, which represents probability
of matching between two random characters, has to be replaced by the highest probability of a
pattern substring in the Markov process. This only changes the constant of the O(k) bound.

The same happens if we consider a text generated by a Markovian source and a fixed arbitrary
pattern: despite that the distribution of the text at the end of the blocks needs not be the same
as for random text positions, still each substring has a probability of occurring smaller than 1, and
therefore even if the pattern is formed by the most common text substrings the argument leading to
the O(k) result stays valid. Finally, this also holds obviously if both pattern and text are generated
by a Markovian source.

Our conjecture is in fact that the suffixes of Ziv-Lempel blocks have a distribution which is
more uniform than that of the text, but we cannot prove it and it is not necessary for our results.

If the last active cell is at position O(k) in C, then the same happens to the P values, since
P;(b) > C; after processing block b.

We update C and P up to their last active cells only. We recall the minimization formula (2)
to update C, and note that the Cy are on average active only for i/ = O(k). Therefore only the
values i € |B|£O(k) have a chance of being < k. The minimization with P; does not change things
because this vector has also O(k) active values on average.

Therefore, updating C costs O(k?) per block on average. Computing P takes O(k) time since
only the active part of the vector needs to be traversed.

A more challenging problem appears when trying to apply the technique to Z; #(b). The key
idea in this case comes from considering that ed(P; s, B) > k if |B| — (i’ —i+1) > k, and therefore
any block B such that |B| > m + k cannot have any active value in Z. Since there are at most
O(o™**) different blocks of length at most m + k (recall that o is the alphabet size of the text),
we can work O(mko™tk) in total in computing Z values. This is obtained by marking the blocks
that do not have any active value in their Z matrix, so that the Z matrix of the blocks referencing
them do not need to be computed either (moreover, the computation of C and overlapping matches
can be simplified).

However, this bound can be improved. The set of different strings matching a pattern P with
at most k errors, called

U(P) = {P', ed(P,P') < k}

is finite. More specifically, it is shown in [Ukk85] that if |P| = m, then |Ugx(P)| = O((mo)*¥). This
limits the total number of different blocks B that can be preprocessed for a given pattern substring
P; ;. Summing over all the possible substrings P; ;/, considering that computing each such entry
for each block takes O(1) time, we have a total cost of O(mk(mo)¥). Note that this is a worst case
result, not only average case. Another limit for the total amount of work is still O(m#kn), so the
cost is O(mk min(n, (mo)F)).

Finally, we have to consider the cost of reporting the matches. This is O(R) plus the cost to
search for the overlapping matches. We use Formula (1) to find them, which can be seen to cost
O(k?) only, since there are O(k) active values in C on average and therefore i’ € m + O(k) is also
limited to O(k) different values.

Summarizing, we can solve the problem on LZ78 and LZW in O(k?n + mk min(n, (mo)¥) + R)
average time. Note in particular that the middle term is asymptotically independent on n, leading
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to O(k?n + R) for large enough n. Moreover, the space required is reduced as well, because only
the relevant parts of the matrices need to be stored.

9 Searching Under General Cost Models

We consider now how to modify our previous algorithms in order to adapt them to varying search
costs. The general mechanism is very similar and the information we store does not change. The
only difference at this respect is that it is not true anymore that adjacent cells differ by at most
one, so we cannot store the Z, P and § matrices anymore using 2 bits per cell. Instead, we need
log(k + 2) bits.

The main operational change corresponds to the places where k plays a role in the algorithm.
As explained in Section 3.3, k;q is the width of the range of differences in length between two strings
that match with error threshold k. The two dimensional matrices Z and S will store only O(mk;q)
entries. Moreover, all the places where O(mk) or O(mk?) complexities have appeared to deal
with overlapping matches, compute block descriptions or update the search state, the k (actually
1 + 2k) comes in fact from the maximum difference in length between two matching strings, so it
has to be replaced by k;;. Another operational change appears in the LZ78/LZW format, where
we explicitly fill cells of dynamic programming matrices when we compute new block descriptions.
The generalized formulas of edit distance have to be used in this case.

This means that in the worst case we can search in O(mk;gn+ R) on LZT8/LZW, O(mk}na(n)+
R) on LZ-Blocks and O(mk%|D| + mk;q|S| + R) on regular collage systems. For example, for
Hamming distance this reduces to O(mn + R) in LZ87/LZW, O(mna(n) + R) on LZ-Blocks and
O(m(|D|+]S|+ R) on regular collage systems. This side result becomes the best existing complexity
for this problem (the only one was from [NR98], O(k%n[mlog(k)/w]) on LZ78/LZW).

When it comes to the average case improvement for LZ78/LZW, the result of [Ukk85] that
\Ux(P)| = O((mo)*) remains valid if we replace k by k;z;. The rationale is that in the worst
case we can perform k;q; operations on P before surpassing the error threshold &, and each such
operation can alter one character in P (hence the m choices) and replace/insert any other character
(hence the o choices). On the other hand, it is not hard to show that the number of active cells
per column is on average O(k;qs). Therefore the average case time can be made O(k;gskiqn +
mk;q min(n, (om)¥ids) + R). For Hamming, this is O(kn + m min(n, (om)*) + R).

Despite the generality of this cost function, we have left aside some operations that violate Prop-
erty 1, such as transposition of adjacent characters. This has been mainly for technical convenience,
as in fact many extensions of this kind can be included in our approach by laboriously considering
and patching the exceptions they trigger. For example, transpositions could be arranged for by
explicitly trying a transposition in the limit of two blocks each time we apply Property 1. General
substring replacement (i.e. arbitrary substrings can be replaced at arbitrary costs) is also possi-
ble at the expense of checking the limits between blocks for the presence of those strings, which
certainly complicates the approach.
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10 Significance of the Results

We consider now the theoretical and practical significance of the results obtained. We concentrate
on the results for LZ78/LZW, where more competing options exist.

10.1 Memory Requirements

First consider the space requirements. In the worst case, when we remove the § and M tables, we
need 2m(3k + 1)n 4+ 3nlogn bits. Despite that this may seem impractical, this is not so. A first
consideration is that normal compressors use only a suffix (“window”) of the text already seen, in
order to use bounded memory independent of n. The normal mechanism is that when the number
of nodes in the LZ78 trie reaches a given amount N, the trie is deleted and the compression starts
again from scratch for the rest of the file.

Our search mechanism can use the same mark to start reusing its allocated memory from scratch
as well, since no node seen in the past will be referenced again (only the state of the search (C, j) has
to be remembered). This technique can be adapted to more complex ways of reusing the memory
under various LZ compression schemes [BCW90].

If a compressor is limited to use N nodes, then the decompression needs at the very least
O(Nlog(No)) bits of memory®. Since the search algorithm can be restarted after reading N
blocks, it requires only 2m(3k + 1)N + 3N log N bits. Hence the amount of memory required to
search is never more than

<3 N 2m(3k + 1)

) x memory for decompression
log N

and we recall that this can be lowered in the average case.

10.2 Time Complexity

Despite that ours is the first algorithm for approximate searching allowing errors, there exist also
alternative approaches, some of them trivial and others not specifically designed for approximate
searching. Moreover, an alternative algorithm truly designed for approximate searching appeared
in the while [MKT*00].

The first alternative approach is DS, a trivial decompress-then-search algorithm. This yields,
for the worst case, O(ku) [GP90] or O(m|Uy(P)| 4+ u) [Ukk85] time, where we recall that |Uy(P)] is
O((mo)*). For the average case, the best result in theory is O(u+ (k+log, m)u/m) = O(u) [CM94].
This is competitive when u/n is not large, and it needs much memory for fast decompression.

A second alternative approach, OM, considers that all the overlapping matches can be obtained
by decompressing the first and last m + k characters of each block, and using any search algorithm
on that decompressed text. The internal matches are obtained by copying previous results. The
total amount of text to process is O(mn). Using the previous algorithms, this yields worst case
times of O(kmn + R) and O(m|Uy(P)| + mn+ R), and O((k + log, m)n +mn + R) = O(mn + R)

3In fact, reasonably fast decompression needs to store the text already decompressed, which requires Ulogo +
N log U bits, where U is the text size that was compressed to N symbols.
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Algorithm Worst case time Average case time
DS ku u
m|Ug(P)| + u
OM kmn + R mn + R
m|Ug(P)| +mn + R

MP m?|Up(P)* +n+ R m?|Up(P)? +n+R

BP mk?/w n mk3/w n
Ours mkn + R k*n + mk min(n, |[Ux(P)|) + R

Table 2: Worst and average case time for different approaches on LZ78/LZW.

on average. Except for large u/n, it is normally impractical to decompress the first and last m + k
characters of each block.

Yet a third alternative, MP, is to reduce the problem to multipattern searching of all the strings
in Uy, (P). Asshown in [KTS*98], a set of strings of total length M can be searched for in O(M?+n)
time and space in LZ78 and LZW compressed text. This yields an O(m?|U(P)|? + n + R) worst
case time algorithm, which for our case is normally impractical due to the huge number of patterns
to search for.

Table 2 compares the complexities for LZ78/LZW. As can be seen, our algorithm yields the
best average case complexity for

log, n §k+l+0< 1 > < log, n
2(1 4 log, m) 2 log, m 1+ log, m

where essentially the first condition states that the compressed text should be reasonably small
compared to the uncompressed text (this excludes DS), the second condition states that the number
of errors should be small compared to the pattern length (this excludes OM) and the third condition
states that n should be large enough to make |Uy(P)| not significant but small enough to make
\Ug(P)|? significant (this excludes MP and OM). This means in practice that our approach is the
fastest for short and medium patterns and low error levels.

We consider now the alternative approach BP [MKT*00], which can solve only the existence
problem in O(mk®n/w) worst case time, where w is the number of bits in the computer word. We
are better in the worst case for & = Q(y/w). On average, we are also better when k + O(1) <

log, (n/w)/(1 + log, m).
10.3 Experimental Results

We have implemented our algorithm on LZ78 in order to determine its practical value. Our im-
plementation is based on the version that does not store & and M. It does not store the matrix
values using 2 bit deltas, but their full values are stored in whole bytes (this works for k£ < 255).
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The space is further reduced by not storing the information on blocks that are not to be
referenced later. In LZ78 this discards all the leaves of the trie. Of course a second compression
pass is necessary to add this bit to each compressed code. Now, if this is done then we can even
not assign a number to those nodes (i.e. the original nodes are renumbered) and thus reduce the
number of bits of the backward pointers. This can reduce the effect of the extra bit and reduces
the memory necessary for decompression as well.

We run our experiments on a Sun UltraSparc-1 of 167 MHz and 64 Mb of RAM. We have
compressed 10 Mb of Wall Street Journal articles (WSJ) and 10 Mb of DNA text with lines cut
every 60 characters. We use an ad-hoc LZ78 compressor which stores the pair (s, a) corresponding
to the backward reference and new character in the following form: s is stored as a sequence of
bytes where the last bit is used to signal the end of the code; and a is coded as a whole byte.
Compression could be further reduced by better coding but this would require more time to read
the compressed file. The extra bit indicating whether each node is going to be used again or not is
added to s, i.e. we code 2s or 25 + 1 to distinguish among the two possibilities.

Using the plain LZ78 format, WSJ was reduced to 45.02% of its original size, while adding
the extra bit to mark the leaves of the trie raised this percentage to 45.46%, i.e. less than 1%
of increment. The figures for DNA were 39.69% with plain compression and 40.02% adding the
extra bit. As a comparison, Unix Compress program, an LZW compressor that uses bit coding,
obtained 38.75% for WSJ and 27.91% for DNA. Compression took about 20 seconds of user time,
while decompression took 2.09 seconds for WSJ and 1.80 for DNA. In our complexity analysis n is
measured in blocks and u in bytes. In this case we have u/n = 8.6 for WSJ and 9.9 for DNA.

We have compared our algorithm against a more practical version of DS, which decompresses
the text on the fly and searches it, instead of writing it to a new decompressed file and then reading
it again to search. The search algorithm is the O(ku) average time algorithm described in [Ukk85],
that is, a modified dynamic programming that works on the active cells only. We use this algorithm
because it is the one that we adapted to obtain our new algorithm (this gives a measure of the
improvement obtained) and because it is the only one able to cope with the general version of
the problem with arbitrary edition costs. It would also be possible to use the same DS approach
with a faster algorithm, but this would work only on specific instances of the problem. The O(ku)
algorithm is unbeaten in flexibility to cope with all the variants of the approximate search problem,
and our algorithms share this flexibility.

On the other hand, the OM-type algorithms are unpractical for typical compression ratios (i.e.
u/n at most 10) because of their need to keep count of the m + k first and last characters of each
block. The MP approach does not seem practical either, since for m = 10 and k£ = 1 it has to
generate an automaton of more than one million states at the very least. We tested the code of
[KTST98] on our texts and it took 5.50 seconds for just one pattern of m = 10. This outrules it in
our cases of interest.

We have tested m = 10, 20 and 30, and £ = 1, 2 and 3. These are the most interesting values
in text searching applications. For each pattern length, we selected 100 random patterns from the
text and used the same patterns for both algorithms. Table 3 shows the results.

As the table shows, we can actually improve upon the decompression of the text and the
application of the same search algorithm. In practical terms, we can search the original file at
about 2.5...3.2 Mb/sec when k = 1, while the time stays reasonable and competitive for k = 2 as
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WSJ
Ours DS Ours DS Ours DS
m=10| m=10| m=20 | m=20 | m=30 | m =30
3.77 4.72 3.28 4.64 3.13 4.62
5.63 5.62 4.77 5.46 6.10 5.42
11.60 6.43 9.22 6.29 13.61 6.22
DNA
Ours DS Ours DS Ours DS
m=10| m=10| m=20 | m=20 | m=30 | m =30
3.91 5.21 2.49 5.08 2.57 5.06
6.98 6.49 3.81 6.31 5.02 6.28
11.51 8.91 9.28 7.51 15.35 7.50

Table 3: CPU times to search compressed files WS.J and DNA of u = 10 Mb.

k 7 P Others Total

11 0.05Mb | 1.23 Mb | 5.59 Mb | 6.87 Mb
2 || 0.78 Mb | 1.91 Mb | 5.59 Mb | 8.28 Mb
3 || 4.50 Mb | 2.60 Mb | 5.59 Mb | 12.69 Mb

Table 4: Space requirement to search for a pattern with m = 10 over WSJ, of « = 10 Mb.

well.

Our implementation is not memory-efficient. However, it may be interesting to measure the
number of bytes required by the Z and P vectors as k grows. Table 4 shows the results for m = 10
and k£ =1 to 3. It can be seen how Z grows sharply as k increases, while P grows linearly. In our
implementation there is also an overhead of 10 bytes per block, which adds about 5.6 Mb to the
space. As a comparison, a fast DS approach needs at least 12.23 Mb.

11 Conclusions

We have presented the first solution to the open problem of approximate pattern matching over
Ziv-Lempel compressed text. Our algorithm can find the R occurrences of a pattern of length m
allowing k errors over a text compressed by LZ78 or LZW into n blocks in O(kmn + R) worst-case
time and O(k?n + R) average case time. We have shown that this is of theoretical and practical
interest for small £ and moderate m values. We can also deal with more general LZ formats at
O(mk?na(n)+ R) worst case time and with regular collage systems in O(mk?|D|+mk|S|+ R) time.
We have also shown that more complex distances can be dealt with, as well as simpler cases such as
Hamming distance, where O(mn+ R) worst case time and O(kn+ R) average time can be obtained.
Our experiments show that in LZ78/LZW we can search at twice the speed of decompressing and
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searching with the basic technique.

Many theoretical and practical questions remain open. A first one is whether we can adapt
an O(ku) worst case time algorithm (where u is the size of the uncompressed text) instead of
the dynamic programming algorithm we have selected, which is O(mu) time. This could yield an
O(k*n+ R) worst-case time algorithm. Our efforts to adapt one of these algorithms [GP90] yielded
the same O(mkn + R) time we already have.

A second open question is how can we improve the search time in practice. For instance, for
the Levenshtein distance we can store 2 bits per cell and adapt [Mye99] to update P and Z using
bit-parallelism. We believe that this could yield improvements for larger k£ values. On the other
hand, we have not devised a bit-parallel technique to update C and to detect overlapping matches,
but perhaps some clues can be found in [MKT"00] (which however reports very bad experimental
results). Another idea is to map all the characters not belonging to the pattern to a unique symbol
at search time, to avoid recomputing similar states. This, however, requires a finer tracking of the
trie of blocks to detect also descendants of similar states. This yields more work and higher space
requirement.

A third question is whether faster filtration algorithms can be adapted to this problem with-
out decompressing all the text. For example, the filter based in splitting the pattern in k£ 4 1
pieces, searching the pieces without errors and running dynamic programming on the text sur-
rounding the occurrences [WM92] could be applied by using the multipattern search algorithm of
[KTS*98]. In theory the complexity is O(m? + n + ukm?/ol™/(E+D]) which is competitive for
k < m/O(log,(u/n) + log, m). Some progress in this respect has already been made [NKT*01].

Finally, it would be interesting to consider other more general compression models, such as
LZ77. LZ77 is more popular than LZ78 because of its generally higher compression ratio and faster
decompression, but searching on it seems to be extremely difficult.
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