
Approximate String Mat
hing on Ziv-Lempel Compressed TextJuha K�arkk�ainen� Gonzalo Navarroy Esko UkkonenyAbstra
tWe present the �rst nontrivial algorithm for approximate pattern mat
hing on
ompressedtext. The format we
hoose is the Ziv-Lempel family. Given a text of length u
ompressed intolength n, and a pattern of length m, we report all the R o

urren
es of the pattern in the textallowing up to k insertions, deletions and substitutions. On LZ78/LZW we need O(mkn + R)time in the worst
ase and O(k2n+mkmin(n; (m�)k) +R) on average where � is the alphabetsize. The experimental results show a pra
ti
al speedup over the basi
 approa
h of up to 2Xfor moderate m and small k. We extend the algorithms to more general
ompression formatsand approximate mat
hing models.1 Introdu
tionThe string mat
hing problem is de�ned as follows: given a pattern P = p1 : : : pm and a textT = t1 : : : tu, �nd all the o

urren
es of P in T , i.e. return the set fjxj; T = xPyg. The
omplexityof this problem is O(u) in the worst
ase and O(u log�(m)=m) on average (where the
hara
tersare independent and uniformly distributed over an alphabet of size �), and there exist algorithmsa
hieving both time
omplexities using O(m) extra spa
e [CR94, AG97℄.A generalization of the basi
 string mat
hing problem is approximate string mat
hing: an errorthreshold k is also given as input, and we want to report all the ending positions of text substringswhi
h mat
h the pattern after performing a number of operations on them whose total
ost
annotex
eed k. Formally, we have to return the set fjxP 0j; T = xP 0y and ed(P; P 0) � kg, where ed(P; P 0)is the \edit distan
e" between both strings.Di�erent models for edit distan
e �t di�erent appli
ations. We deal in this paper with a rathergeneral one: the operations permitted are
hara
ter insertions, deletions and substitutions. Adi�erent nonnegative
ost
an be assigned to the operations depending on the involved
hara
ters.Two popular spe
ializations of this model are the Levenshtein distan
e (where ea
h insertion,deletion and substitution
osts 1) and the Hamming distan
e (where ea
h substitution
osts 1 andinsertions and deletions
ost 1, i.e. they are not allowed). In these two
ases the problem makessense for k < m.A lot of study has been
arried out on the Levenshtein distan
e. The
omplexity of the sear
hproblem is for this
ase O(u) in the worst
ase and O(u(k + log�(m))=m) on average. Both
omplexities have been a
hieved, despite that the spa
e and prepro
essing
ost is exponential in mor k in the �rst
ase and (high-degree) polynomial in m in the se
ond
ase. The best known worst
ase time
omplexity is O(ku) if the spa
e has to be polynomial in m (see [Nav01℄ for a survey).A parti
ularly interesting
ase of string mat
hing is related to text
ompression. Text
ompres-sion [BCW90℄ tries to exploit the redundan
ies of the text to represent it using less spa
e. There�Dept. of Computer S
ien
e, University of Helsinki. ftpkarkka,ukkoneng�
s.helsinki.fi.yDept. of Computer S
ien
e, University of Chile. gnavarro�d

.u
hile.
l. Supported in part by Fonde
yt grant1-020831. 1

are many di�erent
ompression s
hemes, among whi
h the Ziv-Lempel family [ZL77, ZL78℄ is oneof the most popular in pra
ti
e be
ause of its good
ompression ratios
ombined with eÆ
ient
ompression and de
ompression time.The
ompressed mat
hing problem was �rst de�ned in [AB92℄ as the task of performing stringmat
hing in a
ompressed text without de
ompressing it. Given a text T = t1 : : : tu, a
orresponding
ompressed string Z = z1 : : : zn, and a pattern P = p1 : : : pm, the
ompressed mat
hing problem
onsists in �nding all o

urren
es of P in T , using only P and Z. A naive algorithm, whi
h �rstde
ompresses the string Z and then performs standard string mat
hing, takes time O(m+ u). Anoptimal algorithm takes worst-
ase time O(m + n + R), where R is the number of mat
hes (notethat it
ould be that R = u > n).The
ompressed mat
hing problem is important in pra
ti
e. Today's textual databases arean ex
ellent example of appli
ations where both problems are
ru
ial: the texts should be kept
ompressed to save spa
e, I/O and network time, and they should be eÆ
iently sear
hed. However,these two
ombined requirements are not easy to a
hieve together, as the only solution before the90s was to pro
ess queries by un
ompressing the texts and then sear
hing them. In parti
ular,approximate sear
hing on
ompressed text was advo
ated in [AB92℄ as an open problem.This is our fo
us in this paper. We present the �rst solution to the problem of
ompressedapproximate string mat
hing. The format we
hoose is the Ziv-Lempel family, �rst fo
using onthe LZ78 and LZW variants and on the Levenshtein distan
e, and later extending the results tomore general s
enarios, su
h as a more general Ziv-Lempel format proposed in [NR99℄ whi
h we
all\LZ-Blo
ks" in this paper,
ollage systems [KST+99℄, and general edit distan
e with di�erent
osts.Table 1 summarizes our
ontribution on the di�erent formats and
ost models. The value kids isde�ned as k divided by the minimum
ost of an edit operation (hen
e kids = k on the Levenshteinand Hamming models), while kid is de�ned as 1 + 2k=(minimum
ost of an insertion or a deletion)(hen
e kid = 1 + 2k on the Levenshtein distan
e and kid = 1 for Hamming). The table gives the
omplexities for these two
ases separately anyway. For more details about the meaning of theresults we refer the reader to the body of the paper.To assess the pra
ti
al impa
t of our methods, we implemented the Levenshtein sear
h over theLZ78 format. We wrote our own
ompressor, whi
h in ex
hange of about 10% in
rease in the sizeof the
ompressed �le permits faster sear
hing. The experimental results show that this te
hnique
an take less than half of the time needed by the basi
 approa
h, for moderate m and small kvalues. This paper is an extended and updated version of [KNU00℄.2 Related WorkTwo
lasses of te
hniques exist to
ompress text. The �rst ones,
alled stati
 (or semi-stati
)methods,
hoose a �xed mapping from symbols or sequen
es in T to symbols or sequen
es in Z,and apply the same mapping a
ross all the
ompression pro
ess. The se
ond ones,
alled adaptivemethods, modify the mapping as the
ompression goes on.Some
ompressed text sear
h te
hniques fo
us on stati
 methods. EÆ
ient solutions based onHu�man
oding [Huf52℄ on words have been presented in [MNZBY00℄, but they need that thetext
ontains natural language and be large (say, 10 Mb or more). Moreover, they allow onlysear
hing for whole words and phrases. For general texts, diverse te
hniques related to byte-pair2

Distan
e LZ78/LZW LZ-Blo
ks Collage systemsGeneralw.
. mkidn mk2idn�(n) mk2idjDj+mkidjSja.
. kidskidn+mkidmin(n; (m�)kids)Levenshteinw.
. mkn mk2n�(n) mk2jDj+mkjSja.
. k2n+mkmin(n; (m�)k)Hammingw.
. mn mn�(n) m(jDj+ jSj)a.
. kn+mmin(n; (m�)k)Table 1: The sear
h
omplexities (worst and average
ase) obtained for di�erent models. Weex
luded \+R" from all the
omplexities and �(n) denotes the inverse of A(2n; n) (A
kermann'sfun
tion).en
oding (i.e. repla
ing frequent bigrams by unused
hara
ters) have been shown to be eÆ
ient[Man97, SMT+00℄. However, in general the
ompression ratios obtained are poor, i.e. inferioror similar to a
lassi
al Hu�man
oding of the text. Moreover, in all these
ompression formatsn = �(u), so the speedups
an only be measured in pra
ti
al terms.A se
ond line of resear
h
onsiders adaptive s
hemes su
h as Ziv-Lempel
ompression, whi
his based on �nding repetitions in the text and repla
ing them with referen
es to similar stringspreviously appeared. LZ77 [ZL77℄ is able to referen
e any substring of the text already pro
essedand has a best
ase of n = O(log u), while LZ78 [ZL78℄ and LZW [Wel84℄ referen
e only a singleprevious referen
e plus a new letter that is added, with a best
ase of n = O(pu). A hybridamong these is LZ-Blo
ks, whi
h was proposed in [NR99℄ to a
hieve the sear
h time of LZ78 andthe
ompression ratio of LZ77.The LZ family is extremely popular be
ause of its general appli
ability, good
ompressionratios, and fast
ompression/de
ompression time. String mat
hing in Ziv-Lempel
ompressed textsis, however, mu
h more
omplex than on many stati
 s
hemes, be
ause the pattern
an appear indi�erent forms a
ross the
ompressed text.The �rst algorithm, from 1994 [ABF96℄, presents a
ompressed mat
hing algorithm for LZ78working in time and spa
e O(m2 + n) for the existen
e problem (i.e. determine whether or notP appears in T). The only te
hnique for LZ77 [FT98℄ is a randomized algorithm taking timeO(m+ n log2(u=n)) for the existen
e problem.An extension of [ABF96℄ to multipattern sear
hing was presented in [KTS+98℄, together withthe �rst experimental results in this area. They a
hieve O(m2+n) time and spa
e for the existen
eproblem, although this time m is the total length of all the patterns.New pra
ti
al results appeared in [NR99℄, whi
h presented a general s
heme to sear
h Ziv-Lempel
ompressed texts (for simple and extended patterns) and spe
ialized it for the parti
ular
ases of LZ77, LZ78 and LZ-Blo
ks, proposed there. A similar result, restri
ted to simple patternsand to the LZW format, was independently found and presented in [KTS+99℄. A Boyer-Moore3

type algorithm for LZ78/LZW was presented in [NT00℄, whi
h is
urrently the fastest in pra
ti
efor moderately long patterns.An interesting abstra
tion of the existing algorithms over a general
ompression format
alled
ollage systems was presented in [KST+99℄.Approximate string mat
hing on
ompressed text was advo
ated in [AB92℄. It has been solvedfor Hu�man
oding of words [MNZBY00℄ by sear
hing the un
ompressed text vo
abulary, but thesolution is limited to sear
h for a whole word and retrieve whole words that are similar, on naturallanguage texts. The problem has also been solved for the simpler Hamming distan
e on LZ78 atO(nmk2 log(k)=w+R) worst
ase time [NR98℄, where w is the length in bits of the ma
hine word.The aim of this paper is to present the �rst general solution to this problem for the Ziv-Lempelfamily and the so-
alled regular
ollage systems. The spe
ialization of this solution to LZ78/LZWand Levenshtein distan
e �rst appeared in [KNU00℄, of whi
h this work is an extended version.Shortly after [KNU00℄, an alternative solution was presented in [MKT+00℄. This alternative so-lution, based on bit parallelism, is restri
ted to solve the existen
e problem for the Levenshteindistan
e.3 Approximate String Mat
hing by Dynami
 ProgrammingWe introdu
e some notation for the rest of the paper. A string S is a sequen
e of
hara
ters over analphabet �. If the alphabet is �nite we
all � its size. The length of S is denoted as jSj, thereforeS = s1 : : : sjSj where si 2 �. A substring of S is denoted as Si:::j = sisi+1 : : : sj, and if i > j,Si:::j = ", the empty string of length zero. In parti
ular, Si = si. P and T , the pattern and thetext, are strings of length m and u, respe
tively.We re
all that ed(A;B), the edit distan
e between strings A and B, is the minimum total
ostof the operations ne
essary to
onvert A into B or vi
e versa (the
osts are usually symmetri
). Thebasi
 algorithm to
ompute the edit distan
e between two strings A and B was dis
overed manytimes in the past, e.g. [NW70℄. This was
onverted into a sear
h algorithm mu
h later [Sel80℄. We�rst show how to
ompute the edit distan
e between two strings A and B. Later, we extend thatalgorithm to sear
h for the approximate o

urren
es of a pattern in a text.3.1 Computing the Edit Distan
eLet us
all
(" ! a) the
ost to insert a
hara
ter a,
(a ! ") that to delete a and
(a ! b) thatto repla
e a by b. It is assumed that no
hara
ter of the strings to
onvert is operated upon morethan on
e, so for
onsisten
y a triangular inequality has to hold:
(a !
) �
(a! b) +
(b !
).It has also to hold that
(a! a) = 0.The algorithm to
ompute edit distan
e is based on dynami
 programming. To
omputeed(A;B), a matrix C0:::jAj;0:::jBj is �lled, where Ci;j represents the minimum
ost of the operationsneeded to
onvert A1:::i into B1:::j . This is
omputed as followsC0;0 = 0Ci;j = min(Ci�1;j�1 +
(ai ! bj); Ci�1;j +
(ai ! "); Ci;j�1 +
("! bj))where at the end CjAj;jBj = ed(A;B). It is assumed that C has the value 1 when a

essed outsidebounds. 4

The rationale of the above formula is as follows. First, C0;0 represents the edit distan
e betweentwo empty strings. For two non-empty strings of length i and j, we assume indu
tively that allthe edit distan
es between shorter strings have already been
omputed, and try to
onvert A1:::iinto B1:::j . Three
hoi
es exist, a

ording to the three edit operations we are
onsidering. We
ansubstitute ai by bj and then pro
eed in the best possible way to
onvert A1:::i�1 into B1:::j�1. We
an also delete ai and
onvert, in the best way, A1:::i�1 into B1:::j. Finally, we
an insert bj at theend of A1:::i and
onvert, in the best way, A1:::i into B1:::j�1. In all
ases, the
ost to
onvert therest is already
omputed.The above formula is simpli�ed when we use the Levenshtein distan
e:Ci;0 = i; C0;j = jCi;j = if (ai = bj) then Ci�1;j�1 else 1 + min(Ci�1;j�1; Ci�1;j ; Ci;j�1)The dynami
 programming algorithm must �ll the matrix in su
h a way that the upper, left,and upper-left neighbors of a
ell are
omputed prior to
omputing that
ell. This is easily a
hievedby either a row-wise left-to-right traversal or a
olumn-wise top-to-bottom traversal. Figure 1 (left)illustrates this algorithm to
ompute ed("survey", "surgery") under the Levenshtein distan
e.s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2
s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2 A

B

Figure 1: On the left, the dynami
 programming algorithm to
ompute the Levenshtein distan
ebetween "survey" and "surgery". The bold entries show the path to the �nal result. At the
enter, the variation to sear
h for "survey" the text "surgery". All the entries up to the �nala
tive
ells for k = 1 are in boldfa
e. On the right, the dependen
y s
heme between
ells.Therefore, the algorithm is O(jAjjBj) time in the worst and average
ase. However, the spa
erequired is only O(min(jAj; jBj)). This is be
ause, in the
ase of a
olumn-wise pro
essing, onlythe previous
olumn must be stored in order to
ompute the new one, and therefore we just keepone
olumn and update it. We
an pro
ess the matrix row-wise or
olumn-wise so that the spa
erequirement is minimized.On the other hand, the sequen
es of operations performed to transform A into B
an be easilyre
overed from the matrix, simply by pro
eeding from the
ell CjAj;jBj to the
ell C0;0 following thepath (i.e. sequen
e of operations) that mat
hes the update formula (multiple paths may exist).In this
ase, however, we need to store the
omplete matrix or at least an area around the maindiagonal. Therefore, for ea
h alignmnent there exists at least one optimal path of edit steps from
ell (0; 0) to
ell (jAj; jBj). 5

3.2 Approximate Text Sear
hingWe show now how to adapt this algorithm to sear
h for a short pattern P a long text T . We re
allthat the problem is: given a pattern P of length m, a text T of length u, and an error level k, �ndall the text positions j su
h that ed(P; Tj0:::j) � k for some j0. We will
all \mat
hes" the endingpositions of the o

urren
es (i.e. the j values).The algorithm is basi
ally the same, with A = P and B = T (pro
eeding
olumn-wise so thatO(m) spa
e is required). The only di�eren
e is that we must allow that any text position is thepotential start of a mat
h. This is a
hieved by setting C0;j = 0 for all j 2 0 : : : u. That is, the emptypattern mat
hes with zero errors at any text position (be
ause it mat
hes with a text substring oflength zero).The algorithm then initializes its
olumn C0:::m with the valuesC0 = 0 ; Ci = Ci�1 +
(pi ! ")and pro
esses the text
hara
ter by
hara
ter. At ea
h new text
hara
ter tj , its
olumn ve
tor isupdated to C00:::m. The update formula for i > 0 isC0i = min(Ci�1 +
(pi ! tj); C0i�1 +
(pi ! "); Ci +
("! tj))whi
h for the Levenshtein distan
e redu
es toC0i = if (pi = tj) then Ci�1 else 1 + min(Ci�1; C0i�1; Ci)With this formula the invariant that holds after pro
essing text position j is Ci = led(P1:::i; T1:::j),where led(A;B) = mini21:::jBj ed(A;Bi:::jBj)that is, Ci is the minimum edit distan
e between P1:::i and a suÆx of the text already seen. Hen
e,all the text positions where Cm � k are reported as mat
hes (ending points of o

urren
es).The sear
h time of this algorithm is O(mu) and its spa
e requirement is O(m). Figure 1 (
enter)exempli�es.3.3 Some Properties and De�nitionsWe make a few de�nitions that are useful to analyze the eÆ
ien
y of the algorithms and to relatedi�erent error models.De�nition 1 Let kids be the maximum number of operations that
an be
arried out to
onvert Ainto B with error threshold k. That iskids = � kminf
(x! y); x 6= y 2 � [f"gg�The de�nition is useful when there are no zero
osts, otherwise we
ould use kids = jAj + jBj.Note that kids = k for Hamming and Levenshtein distan
es.6

De�nition 2 Let kid be one plus two times the maximum di�eren
e in lengths between two stringsA and B whi
h are at distan
e k. That iskid = 1 + 2 � kminf
(x! ");
("! x); x 2 �g�Again, kid =1 if there are zero
osts for insertion or deletion. Note that kid = 1 + 2k for theLevenshtein distan
e and kid = 1 for Hamming. That is, the o

urren
es of a pattern of length mhave length between m�k andm+k under the Levenshtein model, and exa
tly m under Hamming.This property is important for our
omplexity results.On the other hand, the dynami
 programming matrix has a number of properties that havebeen used to derive better algorithms. We are interested in two of them.Property 1 Let A and B be two strings su
h that A = A1A2. Then there exist strings B1 and B2su
h that B = B1B2 and ed(A;B) = ed(A1; B1) + ed(A2; B2).That is, there must be some point inside B where its optimal
omparison against A
an bedivided at any arbitrary point in A. This is easily seen by
onsidering an optimal path that
onverts A into B. The path must have at least one node in ea
h row (and
olumn), and thereforeit
an be split into a path leading to the
ell (jA1j; r), for some r, and a path leading from that
ell to (jAj; jBj). Thus, r = jB1j, whi
h determines B1. For example ed("survey";"surgery") =ed("surv";"surg") + ed("ey";"ery").Note that this property depends on our
hoi
e of operations. For example, it is not true anymoreif we introdu
e the transposition, whi
h allows us to swit
h adja
ent
hara
ters in just one step.If transpositions
ost 1, then ed("survey";"suvrey") = 1, yet we
annot split the �rst string into"sur" and "vey" and obtain the same result as before.The se
ond property refers to the so-
alled a
tive
ells of the C ve
tor when sear
hing for Pallowing k errors. All the
ells with value � k are
alled \a
tive". As noted in [Ukk85℄:Property 2 The output of the sear
h depends only on the a
tive
ells, and the rest
an be assumedto have any value larger than k.Under the Levenshtein distan
e it holds that, from an iteration of the dynami
 programmingalgorithm to the next, the last a
tive
ell
an be in
remented at most by 1, be
ause neighboring
ells of the matrix di�er at most by 1. Hen
e the position of the last a
tive
ell
an be maintainedat O(1) amortized time per iteration. That is, for ea
h new
olumn
omputed we have to
he
kwhether it has grown by 1 or whether it has de
reased arbitrarily.The sear
h algorithm needs to work only on the a
tive
ells. As
onje
tured in [Ukk85℄ andproved in [CL92, BYN99℄, there are O(k) a
tive
ells on average and therefore the dynami
 pro-gramming takes O(ku) time on average. Figure 1 (
enter) illustrates. This
an be generalized toarbitrary
osts, to obtain O(kidsu) sear
h time on average.Considering Property 2, we use a modi�ed version of ed in this paper. When we use ed(A;B)we mean the exa
t edit distan
e between A and B if it is � k, otherwise any number larger thank
an be returned. It is
lear that the output of an algorithm using this de�nition is the same aswith the original one. 7

4 The Ziv-Lempel Compression FormatThe general idea of Ziv-Lempel
ompression is to repla
e substrings in the text by a pointer toa previous o

urren
e of them. If the pointer takes less spa
e than the string it is repla
ing,
ompression is obtained. Di�erent variants over this type of
ompression exist, see for example[BCW90℄. We are parti
ularly interested in two formats, whi
h we des
ribe more in depth.4.1 LZ78 and LZW CompressionThe Ziv-Lempel
ompression algorithm named LZ78 [ZL78℄ is based on a di
tionary of blo
ks, inwhi
h we add every new blo
k
omputed. At the beginning of the
ompression, the di
tionary
ontains a single blo
k b0 of length 0. The
urrent step of the
ompression is as follows: if weassume that a pre�x T1:::j of T has been already
ompressed into a sequen
e of blo
ks Z = b1 : : : br,all them in the di
tionary, then we look for the longest pre�x of the rest of the text Tj+1:::u whi
his a blo
k of the di
tionary. On
e we found this blo
k, say bs of length `s, we
onstru
t a new blo
kbr+1 = (s; Tj+`s+1), we write the pair at the end of the
ompressed �le Z, i.e Z = b1 : : : brbr+1, andwe add the blo
k to the di
tionary. It is easy to see that this di
tionary is pre�x-
losed (i.e. anypre�x of an element is also an element of the di
tionary) and a natural way to represent it is a trie.We give as an example the
ompression of the word ananas in Figure 2. The �rst blo
k is (0; a),and next (0; n). When we read the next a, a is already the blo
k 1 in the di
tionary, but an is notin the di
tionary. So we
reate a third blo
k (1; n). We then read the next a, a is already the blo
k1 in the di
tionary, but as do not appear. So we
reate a new blo
k (1; s).
0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 2: Compression of the word ananas with the algorithm LZ78.The
ompression algorithm is O(u) time in the worst
ase and eÆ
ient in pra
ti
e if the di
-tionary is stored as a trie, whi
h allows rapid sear
hing of the new text pre�x (for ea
h
hara
terof T we move on
e in the trie). The de
ompression needs to build the same di
tionary (the pairthat de�nes the blo
k r is read at the r-th step of the algorithm), although this time an arrayimplementation is preferable over a trie based one. Compared to LZ77, the
ompression is ratherfast but de
ompression is slow.Many variations on LZ78 exist, whi
h deal basi
ally with the best way to
ode the pairs in the
ompressed �le, or with the best way to
ompress using limited memory. A parti
ularly interestingvariant is from Wel
h,
alled LZW [Wel84℄. In this
ase, the extra letter (se
ond element of the8

pair) is not
oded, but it is taken as the �rst letter of the next blo
k (the di
tionary is started withone blo
k per letter). LZW is used by Unix's Compress program.In this paper we do not
onsider LZW separately but just as a
oding variant of LZ78. This isbe
ause the �nal letter of LZ78
an be readily obtained by keeping
ount of the �rst letter of ea
hblo
k (this is
opied dire
tly from the referen
ed blo
k) and then looking at the �rst letter of thenext blo
k.4.2 LZ-Blo
ks FormatLZ78 does not a
hieve as good performan
e as the LZ77
ompression format. As noted in [NR99,KST+99℄, sear
hing in LZ77
ompressed text is very diÆ
ult. In [NR99℄ they propose a formatwhi
h is a hybrid, a
hieving a
ompression ratio better than LZ78 and keeping the same sear
heÆ
ien
y. We des
ribe that format now.Assume that a pre�x T1:::j of T has been already
ompressed into a sequen
e of blo
ks Z =b1 : : : br. We look now for the longest pre�x v of Tj+1:::u whi
h is represented by a sequen
e bs : : : bs+halready present in the
ompressed �le. If there are many alternative
hoi
es for the same v, theone with the minimum of blo
ks is used (to redu
e the
ost of
on
atenations). And if still severalpossibilities o

ur, the �rst o

urren
e is sele
ted, to
ode smaller numbers. This new blo
k is
odedas (s; h). If v is empty (i.e the letter tj+1 is new), a spe
ial blo
k (0; tj+1) is
oded. With the sameexample ananas, we obtain: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 1) as; (0; a)(0; n)(1; 1)(1; 0)s; (0; a)(0; n)(1; 1)(1; 0)(0; s).The
ompression
an still be performed in O(u) time by using a sparse suÆx tree [KU96℄ whereonly the blo
k beginnings are inserted and when we fall out of the trie we take the last node visitedwhi
h
orresponds to a blo
k ending. De
ompression needs to keep tra
k of the blo
ks already seento be able to retrieve the appropriate text. The
ompression ratio is between those of LZ77 andLZ78.A parti
ular
ase of this format is presented by Miller and Wegman [MW85℄, where the newblo
k is not the previous one plus the �rst letter of the new one, but simply the
on
atenation ofthe previous and the new one.4.3 Collage SystemsMany
ompression formats have been uni�ed in [KST+99℄ under the
on
ept of
ollage system.This model divides the
ompression format into two parts: a di
tionary D whi
h stores the setof symbols that
an be used in the
ompressed text, and the
ompressed text S itself, whi
h isa sequen
e of elements in D. The Ziv-Lempel format interleaves the representations of D and S,sin
e a new element of D is
reated after ea
h symbol of S is output. In simpler formats, su
h asHu�man, the di
tionary is the set of bit streams that represent ea
h text
hara
ter.Collage systems are
lassi�ed a

ording to the type of operations that
an be applied to buildD. Atomi
 elements,
on
atenation of other elements in D, repetition and trun
ation of an elementin D are the operations
onsidered in [KST+99℄. In parti
ular, atomi
 elements and
on
atenation(whi
h are the allowed operations in the so-
alled regular
ollage systems) are enough to en
om-pass LZ78/LZW and LZ-Blo
ks, while LZ77 requires trun
ation and this
ompli
ates the work of
ompressed pattern mat
hing algorithms. 9

5 A General Sear
h Approa
hWe present now a general approa
h for approximate pattern mat
hing over a text Z = b1 : : : bn,that is expressed as a sequen
e of n blo
ks. Ea
h blo
k br represents a substring Br of T , su
h thatB1 : : : Bn = T . Moreover, ea
h blo
k Br is formed by a
on
atenation of previously seen blo
ksand/or expli
it letters. Our goal is to �nd the positions in T where o

urren
es of P with at mostk errors end, using Z.For simpli
ity of the exposition we
on
entrate on the Levenshtein model. Later we show howthe algorithm
an be extended.Our approa
h is to adapt an algorithm designed to pro
ess T
hara
ter by
hara
ter so that itpro
esses T blo
k by blo
k, using the fa
t that blo
ks are built from previous blo
ks and expli
itletters. In this se
tion we show how we have adapted the
lassi
al dynami
 programming algorithm.Part of the algorithm depends on the spe
i�

ompression format used, and this is
overed in thefollowing se
tions. We also show later that the O(ku) algorithm based on a
tive
ells
an be adaptedas well.We need a little more notation before explaining the algorithm. Ea
h mat
h is de�ned eitheras overlapping or internal. A mat
h j is internal if there is an o

urren
e of P ending at j totally
ontained in some blo
k Br (i.e. if the blo
k repeats the o

urren
e surely repeats). Otherwise itis an overlapping mat
h.The general me
hanism of the sear
h is as follows: we read the blo
ks br one by one. For ea
hnew blo
k b read, representing a string B, and where we have already pro
essed T1:::j, we updatethe state of the sear
h so that after working on the blo
k we have pro
essed T1:::j+jBj = T1:::jB.To pro
ess ea
h blo
k, three steps are
arried out: (1) its des
ription (to be spe
i�ed shortly) is
omputed, (2) the o

urren
es ending inside the blo
k B are reported, and (3) the state of thesear
h is updated.The state of the sear
h
onsists of two elements� The last text position
onsidered, j (initially 0).� A ve
tor Ci, for i 2 0 : : : m, where Ci = led(P1:::i; T1:::j). Initially, Ci = i. This ve
tor is thesame as for plain dynami
 programming, ex
ept that all
ells whose value is larger than k
an have any value larger than k (re
all Property 2).The des
ription of all the blo
ks already seen is maintained. Say that blo
k b represents thetext substring B. Then the des
ription of b is formed by the length jBj and some ve
tors indexedby i 2 1 : : : m (their values are assumed to be k + 1 if a

essed outside bounds).� Ii;i0(b) = ed(Pi:::i0 ; B), for i 2 1 : : : m; i0 2 max(i+ jBj�k�1; i�1) : : :min(i+ jBj+k�1;m),whi
h at ea
h point gives the edit distan
e between B and Pi:::i0 . Note that I has O(mk)entries per blo
k. In parti
ular, the set of possible i0 values is empty if i > m+ k + 1� jBj,in whi
h
ase Ii;i0(b) = k + 1.� Pi(b) = led(P1:::i; B), for i 2 1 : : : m, gives the minimum edit distan
e between the pre�x oflength i of P and a suÆx of B. Note that P has O(m) entries per blo
k.10

� Si;i0(b) = ed(Pi:::m; B1:::i0), for i 2 1 : : : m; i0 2 max(m� i+1�k; 0) : : :min(m� i+1+k; jBj),gives the edit distan
e between the suÆx starting at i in P and the pre�x ending at i0 in B.Note that S has O(mk) entries per blo
k. Again, the set of possible i0 values is empty (andSi;i0(B) = k + 1) if i < m+ 1� k � jBj.� M(B), whi
h is an array storing the internal mat
hes of B (its size ranges from zero to jBj).The o�sets with respe
t to the beginning of B are stored, in in
reasing order. The totalnumber of entries over all the blo
ks is the number of internal mat
hes found, whi
h
annotex
eed R.Figure 3 illustrates the matri
es I and S and how are they �lled under di�erent situations. TheP andM ve
tors are simpler and hen
e ex
luded from the �gure.

m

1

i

1 |B| 1 |B|

1

m

i

|B| >= m+k |B| < m+k

S
m 2k+1

i’ i’

i

m

1 1

m

i

i’ i’1 m m1

|B| 2k+1

|B| >= k |B| < k

|B|+k+1

I

Figure 3: The I and S matri
es that
omprise the des
ription of a blo
k b representing a string B.The way to
ompute the des
ription of the blo
ks is format-dependent and is
overed later. Wespe
ify now how to report the mat
hes and update the state of the sear
h on
e the des
ription ofa new blo
k b has been
omputed. Three a
tions are
arried out, in this order.11

Reporting the overlapping mat
hes. An overlapping mat
h ending inside the new blo
k B
orresponds to an o

urren
e that spans a suÆx of the text already seen T1:::j and a pre�x of B.From Property 1, we know that if su
h an o

urren
e mat
hes P with k errors (or less) then itmust be possible to split P into P1:::i and Pi+1:::m, su
h that the text suÆx mat
hes the �rst halfand the pre�x of B mat
hes the se
ond half. Figure 4 illustrates.
Pi

C i+1,i’Si +

T Bj

Figure 4: Splitting of an overlapping mat
h (grayed).Therefore, all the possible overlapping mat
hes are found by
onsidering all the possible positionsi in the pattern. The
he
k for a mat
h ending at text position j+ i0 is then split into two parts. A�rst
ondition states that P1:::i mat
hes a suÆx of T1:::j with k1 errors, whi
h
an be
he
ked usingthe C ve
tor. A se
ond
ondition states that Pi+1:::m mat
hes B1:::i0 with k2 errors, whi
h
an be
he
ked using S. Finally, we require that k1 + k2 � k.Summarizing, the text position j + i0 (i0 2 1 : : :min(m+ k � 1; jBj)) is reported ifmax(m�1;m�i0+k)mini=min(1;m�i0�k) (Ci + Si+1;i0(b)) � k (1)and we also have to report the positions j + i0 su
h that Cm + i0 � k (for i0 2 1 : : : k). This
orresponds to Sm+1;i0(b) = i0, whi
h is not stored in that matrix.The total
ost for this
he
k is O(mk). The o

urren
es are not immediately reported butstored in in
reasing order in an auxiliary array (of size at most m+ k), be
ause they
an mix and
ollide with internal mat
hes.Reporting the internal mat
hes. These are mat
hes totally
ontained inside B. Their o�setshave already been stored in M(b) when the des
ription of b was
omputed. These mat
hes may
ollide and intermingle with the overlapping mat
hes. We merge both
hains of mat
hes and reportthem in in
reasing order and without repetitions. This
an be done in time proportional to thenumber of mat
hes reported (whi
h adds up O(R) a
ross all the sear
h).Updating the C ve
tor and j. To update C we need to determine the best edit distan
e betweenP1:::i and a suÆx of the new text T1:::j+jBj = T1:::jB. Two
hoi
es exist for su
h a suÆx: eitherit is totally inside B or it spans a suÆx of T1:::j and the whole B. Figure 5 illustrates the twoalternatives. The �rst
ase
orresponds to a mat
h of P1:::i against a suÆx of B, whi
h is
omputedin P. For the se
ond
ase we
an use Property 1 again to see that su
h an o

urren
e is formed bymat
hing P1:::i0 against some suÆx of T1:::j and Pi0+1:::i against the whole B. This
an be solvedby
ombining C and I.The formula to update C to a new C0 is thereforeC0i min(Pi(b); min(i�1;i�jBj+k)mini0=max(1;i�jBj�k)(Ci0 + Ii0+1;i(b))) (2)12

T Bj

P
i

Pi

T Bj

C i’ + I i’+1,i

Pii’Figure 5: Two
hoi
es to update the C ve
tor.whi
h �nds the
orre
t value if it is not larger than k, and gives something larger than k otherwise(this is in a

ordan
e to our modi�ed de�nition of ed). Sin
e there are m
ells to
ompute and ea
hone sear
hes over at most 2k + 1 values, the total
ost to update C is O(mk).Finally, j is easily updated by adding jBj to it.Complexity. All the pro
esses des
ribed up to now take O(mkn) time for the existen
e problemand O(mkn + R) time to report the R mat
hes of P . We have to add the time to
ompute theblo
k des
riptions, a pro
ess that is detailed in the next se
tions.The spa
e requirement for this algorithm is basi
ally that to store the blo
k des
riptions: thelengths, matri
es and mat
hes. The lengths
an be stored using n log(u) bits1. For the matri
es,we observe that ea
h element of those arrays di�ers from the previous one by at most 1, that isIi;i0+1(b) = Ii;i0(b) � 1, Pi+1(b) = Pi(b) � 1, and Si;i0+1(b) = Si;i0(b)� 1. Their �rst value is trivialand does not need to be stored. Therefore, ea
h su
h
ell
an be represented only with 2 bits, fora total spa
e requirement of (8mk + 2m)n bits at most.The internal mat
hes, on the other hand, are at most R numbers that need R log u bits. Wealso need n log u bits to point dire
tly into the array of internal mat
hes. Therefore the total spa
erequirement in bits is 2m(4k + 1)n + 2n log u + R log u.6 Computing Blo
k Des
riptions for the LZ78 and LZW FormatsWe show now how to do the rest of the updates in the LZ78 format, where ea
h blo
k b0 representsB0 = Ba, where B is the string represented by a previous blo
k b and a is an expli
it letter. Thepro
edure is almost the same as for LZW so we omit it here and
on
entrate on LZ78 only. Aninitial blo
k b0 represents the string ", and its des
ription is as follows.� j"j = 0.� Ii;i0(b0) = i0 � i+ 1, i 2 1 : : : m; i0 2 i� 1 : : :min(i+ k � 1;m).� Pi(b0) = i, i 2 1 : : : m.� Si;0(b0) = m� i+ 1, i 2 m� k + 1 : : : m.We give now the update formulas for the
ase when a new letter a is added to B in order toform B0. These
an be visualized as spe
ial
ases of dynami
 programming matri
es between Band parts of P .1We give all the spa
e requirements in exa
t number of bits, disregarding lower order terms. The logarithms arebase 2 unless otherwise indi
ated. 13

� jB0j = jBj+ 1.� Ii;i0(b0) = Ii;i0�1(b) if a = pi0 , and 1 + min(Ii;i0(b);Ii;i0�1(b0);Ii;i0�1(b)) otherwise. We startwith2 Ii;max(i�1;i+jB0j�k�2)(b0) = min(jB0j; k + 1), and
ompute the values for in
reasing i0.This
orresponds to �lling a dynami
 programming matrix where the
hara
ters of Pi::: arethe
olumns and the
hara
ters of B are the rows. Adding a to B is equivalent to adding anew row to the matrix, and we store at ea
h blo
k only the row of the matrix
orrespondingto its last letter (the rest
an be retrieved by going ba
k in the referen
es). For ea
h i, thereare 2k + 1 su
h
olumns stored at ea
h blo
k B,
orresponding to the interesting i0 values.Figure 6 illustrates. To relate this to the matrix of I in Figure 3 one needs to
onsider thatthere is a three dimensional matrix indexed by i, i0 and jBj. Figure 3 shows the plane storedat ea
h blo
k B,
orresponding to its last letter. Figure 6 shows a plane obtained by �xing i.
0 1 2

0

0

3 ...

0

0
...

0
i

B’

P
PI

i...
i-1

i’

B’

P

0 1 2

1

2

3 ...

3

4
...

|B’|

|B|

P

P*

* (b’)

(b)

|B’|

|B|

I

Ii,*

i,*

(b)

(b’)

00

Figure 6: The virtual dynami
 programming matri
es. On the left, between B and Pi:::, to
omputeI. On the right, between B and P , to
ompute P.� Pi(b0) = Pi�1(b) if a = pi and 1 + min(Pi(b);Pi�1(b0);Pi�1(b)) otherwise. We assume thatP0(b0) = 0 and
ompute the values for in
reasing i. This
orresponds again to �lling a dynami
programming matrix where the
hara
ters of P are the
olumns, while the
hara
ters of Bare the rows. The (virtual) matrix has i at the i-th
olumn of the �rst row and zeros in the�rst
olumn. Figure 6 illustrates.� Si;i0(b0) = Si;i0(b) if i0 � jBj, and Ii;m(b0) otherwise. This is a simpler formula be
ause if wehave a pre�x of B mat
hing a suÆx of P the fa
t stays true after adding more
hara
tersat the end of B. Only the mat
hes
omprising the whole B0 are new, and those are easilyretrieved using I. That is, Si;i0(b) = Ii;m(b(jBj�i0+1)), where b(r) denotes the blo
k rea
hedafter following r times the ba
kward
hain of referen
ed blo
ks. Formally, b(0) = b and b(r+1)is the blo
k referen
ed by b(r).This shows that we do not need in pra
ti
e to store S, sin
e we
an retrieve it by followingthe ba
k
hain of pointers. Moreover, S is used only to report the overlapping mat
hes and2Note that it may be that this initial value
annot be pla
ed in the matrix be
ause its position would be outsidebounds. 14

it is not hard to use the values in the same order given by the ba
kward
hain. Instead of Swe need to store ref(b) = b(max(1;jBj�(m+k�1)))whi
h allows us to re
over the values Si;m+k�1; Si;m+k�2; : : : ;Si;1, in that order. This doesnot alter the time
omplexity.� M(b0) = M(b), where the position jB0j is added if Pm(b0) � k. That is, all the mat
hesinternal to B are also internal to B0. Then, a new internal mat
h at the last position of theblo
k may be added if an o

urren
e of P inside B0 ends there.This is so simple in LZ78 that we
an even not storeM expli
itly. Instead, ea
h blo
k
an storethe number of the last blo
k in the referen
ing
hain whi
h holds a mat
h in its last position,let us
all it Mat
h(b). Hen
e, Mat
h(b0) = Mat
h(b) if Pm(b) > k, and b otherwise. Theoriginal value ofM(b)
an be obtained by following the
hain, in reverse order, in O(jM(b)j)time. Again, this does not alter the
omplexity. Moreover, it
an be easily
ombined to theremoval of S sin
e both sets of mat
hes that have to be merged (internal and external) willbe obtained in reverse order.Complexity. As
an be seen, the updates of P
ost O(m) per blo
k, but those of I and Stake O(mk). The updates to M add up O(R) along the total pro
ess. In any
ase, the general
omplexity O(mkn+R) is maintained.This
omplexity is the same if we repla
e S andM by ref andMat
h. Ea
h of the new ve
torsneeds n log n bits. Therefore the number of bits required in this
ase be
omes 2m(3k+1)n + 3n log u.7 Computing Blo
k Des
riptions for More General FormatsIn the format proposed in Se
tion 4.2, ea
h blo
k is a
on
atenation of many previous blo
ks. Inthis
ase the sear
h
ost rises to O(mk2n�(n) + R), where �(n) is the inverse of A
kermann'sA(2n; n). We des
ribe the
ase of
on
atenating two previous blo
ks in O(mk2) time, and later
onsider how to generalize for several blo
ks.7.1 Con
atenating Two Variable-Size Blo
ksAssume now that b0 is formed by
on
atenating b1 and b2, i.e. B0 = B1B2. The formulas to
omputethe blo
k des
ription make heavy use of Property 1. The des
riptions are
omputed as follows (seeFigure 7).� Ii;i0(b0) = mini002i+jB1j�k:::i+jB1j+k(Ii;i00(b1) + Ii00+1;i0(b2)). This a

ounts for the fa
t thatpattern substrings mat
hing B1B2 are formed by a substring mat
hing B1 followed by asubstring mat
hing B2. In this
ase �lling ea
h of the O(mk)
ells
osts O(k), for a totalupdate
ost of O(mk2) per blo
k.� Pi(b0) = min(Pi(b2);mini02i�jB2j�k:::i�jB2j+k(Pi0(b1) + Ii0+1;i(b2)). This a

ounts for the fa
tthat pattern pre�xes mat
hing a suÆx of B1B2 are either those mat
hing a suÆx of B2 orthose mat
hing a suÆx of B1 followed by an o

urren
e of B2. This
osts O(mk).15

B2B1

P

i’’

I
i,i’’

I
i’’+1,i’

i i’

B1 B2

i P

S
i+1,i’

Pi

P

P
i’

I
i’+1,i

ii’

B1 B2

PI

M

I
i,i’’

S

B2B1

iP

i’

i’

i’’iP

i’’+1,i’

Si,i’

S

i’

P

Figure 7: Computing blo
k des
riptions under the blo
k format.� Si;i0(b0) = Si;i0(b1) if i0 � jB1j, else mini002i+jB1j�k:::i+jB1j+k(Ii;i00(b1) + Si00+1;i0(b2)). This isbe
ause suÆxes of P mat
hing a pre�x of B1B2 mat
h either a pre�x of B1 (if the pre�x isshorter than B1) or are formed by a pattern substring mat
hing the whole B1 followed by therest of P mat
hing a pre�x of B2. The
ost for this is also O(mk2).� For M(b0) we
opy M(b1), then add the mat
hes that appear when
on
atenating B1 andB2 and then
opy M(b2). The mat
hes that appear in the
on
atenation ending at i0 21 : : : m+ k � 1 in B2 satisfy mini2m�i0�k:::m�i0+k(Pi(b1) + Si+1;i0(b2)) � k. For ea
h su
h i0,jB1j+ i0 is added as a mat
h. Now, those mat
hes must be merged with those internal to B2.The
omplexity is O(mk) per blo
k plus O(R) in total.7.2 Con
atenating Many Variable-Size Blo
ksThe method above
an be trivially extended by
omposition to
on
atenate h blo
ks in O(h)
on
atenation operations. This gives a total time
omplexity of O(mk2H) for
ompressed patternmat
hing in the LZ-Blo
ks format, where H is the total number of blo
ks in the
on
atenations.In the worst
ase, H =
(n2). We next show how the time is lowered to O(mk2n�(n)), where �(n)is the inverse of A(2n; n) (the A
kermann fun
tion).We will use an algorithm by Tarjan [Tar79℄ based on the path
ompression te
hnique. Thealgorithm operates on a semigroup (D;�) with asso
iative operation �. In our
ase, D is the setof possible blo
k des
riptions and � is the
on
atenation operation. The algorithm
arries out asequen
e of instru
tions that build and manipulate a forest with verti
es labeled by elements of D.There are three kinds of instru
tions:� LABEL(r; x): Label the root r with x. 16

� LINK(v; w): Combine the trees with roots v and w into a single tree by making v the parentof w.� EVAL(v): Find the root of the tree
urrently
ontaining v, say r, and return the produ
t ofall labels on the path from v to r.A LABEL-instru
tion takes the time needed to make a
opy of the label x and a LINK-instru
tionexe
utes in
onstant time. For N EVAL-instru
tions in a forest of n nodes Tarjan gives an amor-tized time
omplexity of O((N + n)�(N + n; n)T�), where T� is the time taken by a �-operationand �(N;n) is the inverse A
kermann's fun
tion. The algorithm requires that the sequen
e ofinstru
tions is given o�-line ex
ept for the labels in the LABEL-instru
tions.The blo
k des
riptions for the LZ-Blo
ks format
an be produ
ed with a suitable sequen
e ofinstru
tions. The sequen
e of instru
tions builds a linear tree by adding one vertex at a time asthe root of the tree. Let v1; v2; : : : be the sequen
e of verti
es added to the tree. After vi is addedto the tree, it is labeled by the des
ription of the basi
 blo
k bi and then all blo
k
on
atenations(requested by later blo
ks) that end at bi are
omputed and saved for later. The des
ription of ablo
k
on
atenation bj � � � bi is
omputed by exe
uting EVAL(vj). Thus the sequen
e of instru
tions
onsists of n instru
tions of ea
h kind. The sequen
e
an be
omputed with linear time s
an ofthe
ompressed text satisfying the o�-line requirement. This gives the total time
omplexity ofO(mk2n�(n)), where �(n) is short for �(2n; n).7.3 Collage SystemsUnder the model of a
ollage system, a
ompressed pattern mat
hing algorithm has
on
eptuallytwo parts: �rst pre
ompute any required information on the di
tionary D, and se
ond pro
ess thesymbols of S.The algorithm we have presented in this se
tion
an be dire
tly applied to any regular
ollagesystem (i.e. the di
tionary is formed by basi
 symbols and
on
atenations of previously formedsymbols). The des
ription of every blo
k in the di
tionary D is
omputed �rst, and then we goover the elements of S updating the sear
h state and reporting the mat
hes.The worst
ase time
omplexity of this s
heme is O(mk2jDj + mkjSj + R).8 A Faster Algorithm on Average for LZ78/LZWA simple form to speed up the dynami
 programming algorithm on
ompressed text is based onProperty 2. That is, we try to work only on the a
tive
ells of C, I and P.We are interested in showing that the property that says that there are on average O(k) a
tive
ells in C at a random text position holds also when those text positions are the endpoints of Ziv-Lempel blo
ks in the text. Moreover, we would like to
onsider more general random models, sin
euniform distribution of
hara
ters does not marry well with text
ompression.First assume that the text is arbitrary but �xed and that the pattern P is generated by a Markovpro
ess su
h that no string has probability 1 (i.e. the Markov pro
ess is not degenerated). Thenumber of a
tive
ells at the end of the blo
ks depends on the probability of
ommon
hara
tersbetween P and the last m+k text
hara
ters at the end of ea
h blo
k. Even if we
onsider that all17

su
h text substrings mat
h with the most probable patterns, still the
ombinatorial argument usedin [BYN99℄ to prove the O(k) bound stays valid. Just the
onstant 1=�, whi
h represents probabilityof mat
hing between two random
hara
ters, has to be repla
ed by the highest probability of apattern substring in the Markov pro
ess. This only
hanges the
onstant of the O(k) bound.The same happens if we
onsider a text generated by a Markovian sour
e and a �xed arbitrarypattern: despite that the distribution of the text at the end of the blo
ks needs not be the sameas for random text positions, still ea
h substring has a probability of o

urring smaller than 1, andtherefore even if the pattern is formed by the most
ommon text substrings the argument leading tothe O(k) result stays valid. Finally, this also holds obviously if both pattern and text are generatedby a Markovian sour
e.Our
onje
ture is in fa
t that the suÆxes of Ziv-Lempel blo
ks have a distribution whi
h ismore uniform than that of the text, but we
annot prove it and it is not ne
essary for our results.If the last a
tive
ell is at position O(k) in C, then the same happens to the P values, sin
ePi(b) � Ci after pro
essing blo
k b.We update C and P up to their last a
tive
ells only. We re
all the minimization formula (2)to update C, and note that the Ci0 are on average a
tive only for i0 = O(k). Therefore only thevalues i 2 jBj�O(k) have a
han
e of being � k. The minimization with Pi does not
hange thingsbe
ause this ve
tor has also O(k) a
tive values on average.Therefore, updating C
osts O(k2) per blo
k on average. Computing P takes O(k) time sin
eonly the a
tive part of the ve
tor needs to be traversed.A more
hallenging problem appears when trying to apply the te
hnique to Ii;i0(b). The keyidea in this
ase
omes from
onsidering that ed(Pi:::i0 ; B) > k if jBj� (i0� i+1) > k, and thereforeany blo
k B su
h that jBj > m + k
annot have any a
tive value in I. Sin
e there are at mostO(�m+k) di�erent blo
ks of length at most m + k (re
all that � is the alphabet size of the text),we
an work O(mk�m+k) in total in
omputing I values. This is obtained by marking the blo
ksthat do not have any a
tive value in their I matrix, so that the I matrix of the blo
ks referen
ingthem do not need to be
omputed either (moreover, the
omputation of C and overlapping mat
hes
an be simpli�ed).However, this bound
an be improved. The set of di�erent strings mat
hing a pattern P withat most k errors,
alled Uk(P) = fP 0; ed(P; P 0) � kgis �nite. More spe
i�
ally, it is shown in [Ukk85℄ that if jP j = m, then jUk(P)j = O((m�)k). Thislimits the total number of di�erent blo
ks B that
an be prepro
essed for a given pattern substringPi:::i0 . Summing over all the possible substrings Pi:::i0 ,
onsidering that
omputing ea
h su
h entryfor ea
h blo
k takes O(1) time, we have a total
ost of O(mk(m�)k). Note that this is a worst
aseresult, not only average
ase. Another limit for the total amount of work is still O(mkn), so the
ost is O(mkmin(n; (m�)k)).Finally, we have to
onsider the
ost of reporting the mat
hes. This is O(R) plus the
ost tosear
h for the overlapping mat
hes. We use Formula (1) to �nd them, whi
h
an be seen to
ostO(k2) only, sin
e there are O(k) a
tive values in C on average and therefore i0 2 m� O(k) is alsolimited to O(k) di�erent values.Summarizing, we
an solve the problem on LZ78 and LZW in O(k2n+mkmin(n; (m�)k) +R)average time. Note in parti
ular that the middle term is asymptoti
ally independent on n, leading18

to O(k2n + R) for large enough n. Moreover, the spa
e required is redu
ed as well, be
ause onlythe relevant parts of the matri
es need to be stored.9 Sear
hing Under General Cost ModelsWe
onsider now how to modify our previous algorithms in order to adapt them to varying sear
h
osts. The general me
hanism is very similar and the information we store does not
hange. Theonly di�eren
e at this respe
t is that it is not true anymore that adja
ent
ells di�er by at mostone, so we
annot store the I, P and S matri
es anymore using 2 bits per
ell. Instead, we needlog(k + 2) bits.The main operational
hange
orresponds to the pla
es where k plays a role in the algorithm.As explained in Se
tion 3.3, kid is the width of the range of di�eren
es in length between two stringsthat mat
h with error threshold k. The two dimensional matri
es I and S will store only O(mkid)entries. Moreover, all the pla
es where O(mk) or O(mk2)
omplexities have appeared to dealwith overlapping mat
hes,
ompute blo
k des
riptions or update the sear
h state, the k (a
tually1 + 2k)
omes in fa
t from the maximum di�eren
e in length between two mat
hing strings, so ithas to be repla
ed by kid. Another operational
hange appears in the LZ78/LZW format, wherewe expli
itly �ll
ells of dynami
 programming matri
es when we
ompute new blo
k des
riptions.The generalized formulas of edit distan
e have to be used in this
ase.This means that in the worst
ase we
an sear
h in O(mkidn+R) on LZ78/LZW, O(mk2idn�(n)+R) on LZ-Blo
ks and O(mk2idjDj + mkidjSj + R) on regular
ollage systems. For example, forHamming distan
e this redu
es to O(mn + R) in LZ87/LZW, O(mn�(n) + R) on LZ-Blo
ks andO(m(jDj+jSj+R) on regular
ollage systems. This side result be
omes the best existing
omplexityfor this problem (the only one was from [NR98℄, O(k2ndm log(k)=we) on LZ78/LZW).When it
omes to the average
ase improvement for LZ78/LZW, the result of [Ukk85℄ thatjUk(P)j = O((m�)k) remains valid if we repla
e k by kids. The rationale is that in the worst
ase we
an perform kids operations on P before surpassing the error threshold k, and ea
h su
hoperation
an alter one
hara
ter in P (hen
e the m
hoi
es) and repla
e/insert any other
hara
ter(hen
e the �
hoi
es). On the other hand, it is not hard to show that the number of a
tive
ellsper
olumn is on average O(kids). Therefore the average
ase time
an be made O(kidskidn +mkidmin(n; (�m)kids) +R). For Hamming, this is O(kn+mmin(n; (�m)k) +R).Despite the generality of this
ost fun
tion, we have left aside some operations that violate Prop-erty 1, su
h as transposition of adja
ent
hara
ters. This has been mainly for te
hni
al
onvenien
e,as in fa
t many extensions of this kind
an be in
luded in our approa
h by laboriously
onsideringand pat
hing the ex
eptions they trigger. For example, transpositions
ould be arranged for byexpli
itly trying a transposition in the limit of two blo
ks ea
h time we apply Property 1. Generalsubstring repla
ement (i.e. arbitrary substrings
an be repla
ed at arbitrary
osts) is also possi-ble at the expense of
he
king the limits between blo
ks for the presen
e of those strings, whi
h
ertainly
ompli
ates the approa
h.
19

10 Signi�
an
e of the ResultsWe
onsider now the theoreti
al and pra
ti
al signi�
an
e of the results obtained. We
on
entrateon the results for LZ78/LZW, where more
ompeting options exist.10.1 Memory RequirementsFirst
onsider the spa
e requirements. In the worst
ase, when we remove the S andM tables, weneed 2m(3k + 1)n + 3n log n bits. Despite that this may seem impra
ti
al, this is not so. A �rst
onsideration is that normal
ompressors use only a suÆx (\window") of the text already seen, inorder to use bounded memory independent of n. The normal me
hanism is that when the numberof nodes in the LZ78 trie rea
hes a given amount N , the trie is deleted and the
ompression startsagain from s
rat
h for the rest of the �le.Our sear
h me
hanism
an use the same mark to start reusing its allo
ated memory from s
rat
has well, sin
e no node seen in the past will be referen
ed again (only the state of the sear
h (C; j) hasto be remembered). This te
hnique
an be adapted to more
omplex ways of reusing the memoryunder various LZ
ompression s
hemes [BCW90℄.If a
ompressor is limited to use N nodes, then the de
ompression needs at the very leastO(N log(N�)) bits of memory3. Sin
e the sear
h algorithm
an be restarted after reading Nblo
ks, it requires only 2m(3k + 1)N + 3N logN bits. Hen
e the amount of memory required tosear
h is never more than�3 + 2m(3k + 1)logN � � memory for de
ompressionand we re
all that this
an be lowered in the average
ase.10.2 Time ComplexityDespite that ours is the �rst algorithm for approximate sear
hing allowing errors, there exist alsoalternative approa
hes, some of them trivial and others not spe
i�
ally designed for approximatesear
hing. Moreover, an alternative algorithm truly designed for approximate sear
hing appearedin the while [MKT+00℄.The �rst alternative approa
h is DS, a trivial de
ompress-then-sear
h algorithm. This yields,for the worst
ase, O(ku) [GP90℄ or O(mjUk(P)j+u) [Ukk85℄ time, where we re
all that jUk(P)j isO((m�)k). For the average
ase, the best result in theory is O(u+(k+log�m)u=m) = O(u) [CM94℄.This is
ompetitive when u=n is not large, and it needs mu
h memory for fast de
ompression.A se
ond alternative approa
h, OM,
onsiders that all the overlapping mat
hes
an be obtainedby de
ompressing the �rst and last m+ k
hara
ters of ea
h blo
k, and using any sear
h algorithmon that de
ompressed text. The internal mat
hes are obtained by
opying previous results. Thetotal amount of text to pro
ess is O(mn). Using the previous algorithms, this yields worst
asetimes of O(kmn+R) and O(mjUk(P)j+mn+R), and O((k + log�m)n+mn+R) = O(mn+R)3In fa
t, reasonably fast de
ompression needs to store the text already de
ompressed, whi
h requires U log � +N logU bits, where U is the text size that was
ompressed to N symbols.20

Algorithm Worst
ase time Average
ase timeDS ku umjUk(P)j+ uOM kmn+R mn+RmjUk(P)j+mn+RMP m2jUk(P)j2 + n+R m2jUk(P)j2 + n+RBP mk3=w n mk3=w nOurs mkn+R k2n+mkmin(n; jUk(P)j) +RTable 2: Worst and average
ase time for di�erent approa
hes on LZ78/LZW.on average. Ex
ept for large u=n, it is normally impra
ti
al to de
ompress the �rst and last m+ k
hara
ters of ea
h blo
k.Yet a third alternative, MP, is to redu
e the problem to multipattern sear
hing of all the stringsin Uk(P). As shown in [KTS+98℄, a set of strings of total lengthM
an be sear
hed for in O(M2+n)time and spa
e in LZ78 and LZW
ompressed text. This yields an O(m2jUk(P)j2 + n+ R) worst
ase time algorithm, whi
h for our
ase is normally impra
ti
al due to the huge number of patternsto sear
h for.Table 2
ompares the
omplexities for LZ78/LZW. As
an be seen, our algorithm yields thebest average
ase
omplexity fork = O(qu=n) ^ k = O(pm) ^log� n2(1 + log�m) � k + 12 +O� 1log�m� � log� n1 + log�mwhere essentially the �rst
ondition states that the
ompressed text should be reasonably small
ompared to the un
ompressed text (this ex
ludes DS), the se
ond
ondition states that the numberof errors should be small
ompared to the pattern length (this ex
ludes OM) and the third
onditionstates that n should be large enough to make jUk(P)j not signi�
ant but small enough to makejUk(P)j2 signi�
ant (this ex
ludes MP and OM). This means in pra
ti
e that our approa
h is thefastest for short and medium patterns and low error levels.We
onsider now the alternative approa
h BP [MKT+00℄, whi
h
an solve only the existen
eproblem in O(mk3n=w) worst
ase time, where w is the number of bits in the
omputer word. Weare better in the worst
ase for k =
(pw). On average, we are also better when k + O(1) �log�(n=w)=(1 + log�m).10.3 Experimental ResultsWe have implemented our algorithm on LZ78 in order to determine its pra
ti
al value. Our im-plementation is based on the version that does not store S and M. It does not store the matrixvalues using 2 bit deltas, but their full values are stored in whole bytes (this works for k < 255).21

The spa
e is further redu
ed by not storing the information on blo
ks that are not to bereferen
ed later. In LZ78 this dis
ards all the leaves of the trie. Of
ourse a se
ond
ompressionpass is ne
essary to add this bit to ea
h
ompressed
ode. Now, if this is done then we
an evennot assign a number to those nodes (i.e. the original nodes are renumbered) and thus redu
e thenumber of bits of the ba
kward pointers. This
an redu
e the e�e
t of the extra bit and redu
esthe memory ne
essary for de
ompression as well.We run our experiments on a Sun UltraSpar
-1 of 167 MHz and 64 Mb of RAM. We have
ompressed 10 Mb of Wall Street Journal arti
les (WSJ) and 10 Mb of DNA text with lines
utevery 60
hara
ters. We use an ad-ho
 LZ78
ompressor whi
h stores the pair (s; a)
orrespondingto the ba
kward referen
e and new
hara
ter in the following form: s is stored as a sequen
e ofbytes where the last bit is used to signal the end of the
ode; and a is
oded as a whole byte.Compression
ould be further redu
ed by better
oding but this would require more time to readthe
ompressed �le. The extra bit indi
ating whether ea
h node is going to be used again or not isadded to s, i.e. we
ode 2s or 2s+ 1 to distinguish among the two possibilities.Using the plain LZ78 format, WSJ was redu
ed to 45.02% of its original size, while addingthe extra bit to mark the leaves of the trie raised this per
entage to 45.46%, i.e. less than 1%of in
rement. The �gures for DNA were 39.69% with plain
ompression and 40.02% adding theextra bit. As a
omparison, Unix Compress program, an LZW
ompressor that uses bit
oding,obtained 38.75% for WSJ and 27.91% for DNA. Compression took about 20 se
onds of user time,while de
ompression took 2.09 se
onds for WSJ and 1.80 for DNA. In our
omplexity analysis n ismeasured in blo
ks and u in bytes. In this
ase we have u=n = 8:6 for WSJ and 9.9 for DNA.We have
ompared our algorithm against a more pra
ti
al version of DS, whi
h de
ompressesthe text on the
y and sear
hes it, instead of writing it to a new de
ompressed �le and then readingit again to sear
h. The sear
h algorithm is the O(ku) average time algorithm des
ribed in [Ukk85℄,that is, a modi�ed dynami
 programming that works on the a
tive
ells only. We use this algorithmbe
ause it is the one that we adapted to obtain our new algorithm (this gives a measure of theimprovement obtained) and be
ause it is the only one able to
ope with the general version ofthe problem with arbitrary edition
osts. It would also be possible to use the same DS approa
hwith a faster algorithm, but this would work only on spe
i�
 instan
es of the problem. The O(ku)algorithm is unbeaten in
exibility to
ope with all the variants of the approximate sear
h problem,and our algorithms share this
exibility.On the other hand, the OM-type algorithms are unpra
ti
al for typi
al
ompression ratios (i.e.u=n at most 10) be
ause of their need to keep
ount of the m+ k �rst and last
hara
ters of ea
hblo
k. The MP approa
h does not seem pra
ti
al either, sin
e for m = 10 and k = 1 it has togenerate an automaton of more than one million states at the very least. We tested the
ode of[KTS+98℄ on our texts and it took 5.50 se
onds for just one pattern of m = 10. This outrules it inour
ases of interest.We have tested m = 10, 20 and 30, and k = 1, 2 and 3. These are the most interesting valuesin text sear
hing appli
ations. For ea
h pattern length, we sele
ted 100 random patterns from thetext and used the same patterns for both algorithms. Table 3 shows the results.As the table shows, we
an a
tually improve upon the de
ompression of the text and theappli
ation of the same sear
h algorithm. In pra
ti
al terms, we
an sear
h the original �le atabout 2:5 : : : 3:2 Mb/se
 when k = 1, while the time stays reasonable and
ompetitive for k = 2 as22

WSJk Ours DS Ours DS Ours DSm = 10 m = 10 m = 20 m = 20 m = 30 m = 301 3.77 4.72 3.28 4.64 3.13 4.622 5.63 5.62 4.77 5.46 6.10 5.423 11.60 6.43 9.22 6.29 13.61 6.22DNAk Ours DS Ours DS Ours DSm = 10 m = 10 m = 20 m = 20 m = 30 m = 301 3.91 5.21 2.49 5.08 2.57 5.062 6.98 6.49 3.81 6.31 5.02 6.283 11.51 8.91 9.28 7.51 15.35 7.50Table 3: CPU times to sear
h
ompressed �les WSJ and DNA of u = 10 Mb.k I P Others Total1 0.05 Mb 1.23 Mb 5.59 Mb 6.87 Mb2 0.78 Mb 1.91 Mb 5.59 Mb 8.28 Mb3 4.50 Mb 2.60 Mb 5.59 Mb 12.69 MbTable 4: Spa
e requirement to sear
h for a pattern with m = 10 over WSJ, of u = 10 Mb.well.Our implementation is not memory-eÆ
ient. However, it may be interesting to measure thenumber of bytes required by the I and P ve
tors as k grows. Table 4 shows the results for m = 10and k = 1 to 3. It
an be seen how I grows sharply as k in
reases, while P grows linearly. In ourimplementation there is also an overhead of 10 bytes per blo
k, whi
h adds about 5.6 Mb to thespa
e. As a
omparison, a fast DS approa
h needs at least 12.23 Mb.11 Con
lusionsWe have presented the �rst solution to the open problem of approximate pattern mat
hing overZiv-Lempel
ompressed text. Our algorithm
an �nd the R o

urren
es of a pattern of length mallowing k errors over a text
ompressed by LZ78 or LZW into n blo
ks in O(kmn+R) worst-
asetime and O(k2n + R) average
ase time. We have shown that this is of theoreti
al and pra
ti
alinterest for small k and moderate m values. We
an also deal with more general LZ formats atO(mk2n�(n)+R) worst
ase time and with regular
ollage systems in O(mk2jDj+mkjSj+R) time.We have also shown that more
omplex distan
es
an be dealt with, as well as simpler
ases su
h asHamming distan
e, where O(mn+R) worst
ase time and O(kn+R) average time
an be obtained.Our experiments show that in LZ78/LZW we
an sear
h at twi
e the speed of de
ompressing and23

sear
hing with the basi
 te
hnique.Many theoreti
al and pra
ti
al questions remain open. A �rst one is whether we
an adaptan O(ku) worst
ase time algorithm (where u is the size of the un
ompressed text) instead ofthe dynami
 programming algorithm we have sele
ted, whi
h is O(mu) time. This
ould yield anO(k2n+R) worst-
ase time algorithm. Our e�orts to adapt one of these algorithms [GP90℄ yieldedthe same O(mkn+R) time we already have.A se
ond open question is how
an we improve the sear
h time in pra
ti
e. For instan
e, forthe Levenshtein distan
e we
an store 2 bits per
ell and adapt [Mye99℄ to update P and I usingbit-parallelism. We believe that this
ould yield improvements for larger k values. On the otherhand, we have not devised a bit-parallel te
hnique to update C and to dete
t overlapping mat
hes,but perhaps some
lues
an be found in [MKT+00℄ (whi
h however reports very bad experimentalresults). Another idea is to map all the
hara
ters not belonging to the pattern to a unique symbolat sear
h time, to avoid re
omputing similar states. This, however, requires a �ner tra
king of thetrie of blo
ks to dete
t also des
endants of similar states. This yields more work and higher spa
erequirement.A third question is whether faster �ltration algorithms
an be adapted to this problem with-out de
ompressing all the text. For example, the �lter based in splitting the pattern in k + 1pie
es, sear
hing the pie
es without errors and running dynami
 programming on the text sur-rounding the o

urren
es [WM92℄
ould be applied by using the multipattern sear
h algorithm of[KTS+98℄. In theory the
omplexity is O(m2 + n + ukm2=�bm=(k+1)
), whi
h is
ompetitive fork < m=�(log�(u=n) + log�m). Some progress in this respe
t has already been made [NKT+01℄.Finally, it would be interesting to
onsider other more general
ompression models, su
h asLZ77. LZ77 is more popular than LZ78 be
ause of its generally higher
ompression ratio and fasterde
ompression, but sear
hing on it seems to be extremely diÆ
ult.Referen
es[AB92℄ A. Amir and G. Benson. EÆ
ient two-dimensional
ompressed mat
hing. In Pro
.DCC'92, pages 279{288, 1992.[ABF96℄ A. Amir, G. Benson, and M. Fara
h. Let sleeping �les lie: Pattern mat
hing in Z-
ompressed �les. J. of Comp. and Sys. S
ien
es, 52(2):299{307, 1996. Earlier versionin Pro
. SODA'94.[AG97℄ A. Apostoli
o and Z. Galil. Pattern Mat
hing Algorithms. Oxford University Press,Oxford, UK, 1997.[BCW90℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prenti
e Hall, 1990.[BYN99℄ R. Baeza-Yates and G. Navarro. Faster approximate string mat
hing. Algorithmi
a,23(2):127{158, 1999.[CL92℄ W. Chang and J. Lampe. Theoreti
al and empiri
al
omparisons of approximatestring mat
hing algorithms. In Pro
. CPM'92, LNCS 644, pages 172{181, 1992.24

[CM94℄ W. Chang and T. Marr. Approximate string mat
hing and lo
al similarity. In Pro
.CPM'94, LNCS 807, pages 259{273, 1994.[CR94℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.[FT98℄ M. Fara
h and M. Thorup. String mat
hing in Lempel-Ziv
ompressed strings. Algo-rithmi
a, 20:388{404, 1998. Previous version in STOC'95.[GP90℄ Z. Galil and K. Park. An improved algorithm for approximate string mat
hing. SIAMJ. on Computing, 19(6):989{999, 1990.[Huf52℄ D. Hu�man. A method for the
onstru
tion of minimum-redundan
y
odes. Pro
. ofthe I.R.E., 40(9):1090{1101, 1952.[KNU00℄ J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string mat
hing over Ziv-Lempel
ompressed text. In Pro
. CPM'2000, LNCS 1848, pages 195{209, 2000.[KST+99℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frameworkfor
ompressed pattern mat
hing. In Pro
. 6th Intl. Symp. on String Pro
essing andInformation Retrieval (SPIRE'99), pages 89{96. IEEE CS Press, 1999.[KTS+98℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple patternmat
hing in LZW
ompressed text. In Pro
. DCC'98, pages 103{112, 1998.[KTS+99℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Shift-And approa
hto pattern mat
hing in LZW
ompressed text. In Pro
. CPM'99, LNCS 1645, pages1{13, 1999.[KU96℄ J. K�arkk�ainen and E. Ukkonen. Sparse suÆx trees. In Pro
. 2nd Annual InternationalConferen
e on Computing and Combinatori
s (COCOON'96), LNCS 1090, 1996.[Man97℄ U. Manber. A text
ompression s
heme that allows fast sear
hing dire
tly in the
ompressed �le. ACM Trans. on Information Systems, 15(2):124{136, 1997.[MKT+00℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallelapproa
h to approximate string mat
hing in
ompressed texts. In Pro
. SPIRE'2000,2000. To appear.[MNZBY00℄ E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and
exible wordsear
hing on
ompressed text. ACM Transa
tions on Information Systems (TOIS),18(2):113{139, 2000.[MW85℄ V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In CombinatorialAlgorithms on Words, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag, 1985.[Mye99℄ G. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing based ondynami
 progamming. Journal of the ACM, 46(3):395{415, 1999.25

[Nav01℄ G. Navarro. A guided tour to approximate string mat
hing. ACM Computing Surveys,33(1):31{88, 2001.[NKT+01℄ Gonzalo Navarro, Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and SetsuoArikawa. Faster approximate string mat
hing over
ompressed text. In Pro
. 11thIEEE Data Compression Conferen
e (DCC'01), pages 459{468, 2001.[NR98℄ G. Navarro and M. RaÆnot. A general pra
ti
al approa
h to pattern mat
hing overZiv-Lempel
ompressed text. Te
hni
al Report TR/DCC-98-12, Dept. of ComputerS
ien
e, Univ. of Chile, 1998.[NR99℄ G. Navarro and M. RaÆnot. A general pra
ti
al approa
h to pattern mat
hing overZiv-Lempel
ompressed text. In Pro
. CPM'99, LNCS 1645, pages 14{36, 1999.[NT00℄ G. Navarro and J. Tarhio. Boyer-Moore string mat
hing over Ziv-Lempel
ompressedtext. In Pro
. CPM'2000, LNCS 1848, pages 166{180, 2000.[NW70℄ S. Needleman and C. Wuns
h. A general method appli
able to the sear
h for similari-ties in the amino a
id sequen
es of two proteins. J. of Mole
ular Biology, 48:444{453,1970.[Sel80℄ P. Sellers. The theory and
omputation of evolutionary distan
es: pattern re
ognition.J. of Algorithms, 1:359{373, 1980.[SMT+00℄ Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-Mooretype algorithm for
ompressed pattern mat
hing. In Pro
. CPM'2000, LNCS 1848,pages 181{194, 2000.[Tar79℄ R. E. Tarjan. Appli
ations of path
ompression on balan
ed trees. Journal of theACM, 26(4):690{715, 1979.[Ukk85℄ E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.[Wel84℄ T. A. Wel
h. A te
hnique for high performan
e data
ompression. IEEE ComputerMagazine, 17(6):8{19, June 1984.[WM92℄ S. Wu and U. Manber. Fast text sear
hing allowing errors. Comm. of the ACM,35(10):83{91, 1992.[ZL77℄ J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression. IEEETrans. Inf. Theory, 23:337{343, 1977.[ZL78℄ J. Ziv and A. Lempel. Compression of individual sequen
es via variable length
oding.IEEE Trans. Inf. Theory, 24:530{536, 1978.
26

