
Approximate String Mathing on Ziv-Lempel Compressed TextJuha K�arkk�ainen� Gonzalo Navarroy Esko UkkonenyAbstratWe present the �rst nontrivial algorithm for approximate pattern mathing on ompressedtext. The format we hoose is the Ziv-Lempel family. Given a text of length u ompressed intolength n, and a pattern of length m, we report all the R ourrenes of the pattern in the textallowing up to k insertions, deletions and substitutions. On LZ78/LZW we need O(mkn + R)time in the worst ase and O(k2n+mkmin(n; (m�)k) +R) on average where � is the alphabetsize. The experimental results show a pratial speedup over the basi approah of up to 2Xfor moderate m and small k. We extend the algorithms to more general ompression formatsand approximate mathing models.1 IntrodutionThe string mathing problem is de�ned as follows: given a pattern P = p1 : : : pm and a textT = t1 : : : tu, �nd all the ourrenes of P in T , i.e. return the set fjxj; T = xPyg. The omplexityof this problem is O(u) in the worst ase and O(u log�(m)=m) on average (where the haratersare independent and uniformly distributed over an alphabet of size �), and there exist algorithmsahieving both time omplexities using O(m) extra spae [CR94, AG97℄.A generalization of the basi string mathing problem is approximate string mathing: an errorthreshold k is also given as input, and we want to report all the ending positions of text substringswhih math the pattern after performing a number of operations on them whose total ost annotexeed k. Formally, we have to return the set fjxP 0j; T = xP 0y and ed(P; P 0) � kg, where ed(P; P 0)is the \edit distane" between both strings.Di�erent models for edit distane �t di�erent appliations. We deal in this paper with a rathergeneral one: the operations permitted are harater insertions, deletions and substitutions. Adi�erent nonnegative ost an be assigned to the operations depending on the involved haraters.Two popular speializations of this model are the Levenshtein distane (where eah insertion,deletion and substitution osts 1) and the Hamming distane (where eah substitution osts 1 andinsertions and deletions ost 1, i.e. they are not allowed). In these two ases the problem makessense for k < m.A lot of study has been arried out on the Levenshtein distane. The omplexity of the searhproblem is for this ase O(u) in the worst ase and O(u(k + log�(m))=m) on average. Bothomplexities have been ahieved, despite that the spae and preproessing ost is exponential in mor k in the �rst ase and (high-degree) polynomial in m in the seond ase. The best known worstase time omplexity is O(ku) if the spae has to be polynomial in m (see [Nav01℄ for a survey).A partiularly interesting ase of string mathing is related to text ompression. Text ompres-sion [BCW90℄ tries to exploit the redundanies of the text to represent it using less spae. There�Dept. of Computer Siene, University of Helsinki. ftpkarkka,ukkoneng�s.helsinki.fi.yDept. of Computer Siene, University of Chile. gnavarro�d.uhile.l. Supported in part by Fondeyt grant1-020831. 1

are many di�erent ompression shemes, among whih the Ziv-Lempel family [ZL77, ZL78℄ is oneof the most popular in pratie beause of its good ompression ratios ombined with eÆientompression and deompression time.The ompressed mathing problem was �rst de�ned in [AB92℄ as the task of performing stringmathing in a ompressed text without deompressing it. Given a text T = t1 : : : tu, a orrespondingompressed string Z = z1 : : : zn, and a pattern P = p1 : : : pm, the ompressed mathing problemonsists in �nding all ourrenes of P in T , using only P and Z. A naive algorithm, whih �rstdeompresses the string Z and then performs standard string mathing, takes time O(m+ u). Anoptimal algorithm takes worst-ase time O(m + n + R), where R is the number of mathes (notethat it ould be that R = u > n).The ompressed mathing problem is important in pratie. Today's textual databases arean exellent example of appliations where both problems are ruial: the texts should be keptompressed to save spae, I/O and network time, and they should be eÆiently searhed. However,these two ombined requirements are not easy to ahieve together, as the only solution before the90s was to proess queries by unompressing the texts and then searhing them. In partiular,approximate searhing on ompressed text was advoated in [AB92℄ as an open problem.This is our fous in this paper. We present the �rst solution to the problem of ompressedapproximate string mathing. The format we hoose is the Ziv-Lempel family, �rst fousing onthe LZ78 and LZW variants and on the Levenshtein distane, and later extending the results tomore general senarios, suh as a more general Ziv-Lempel format proposed in [NR99℄ whih we all\LZ-Bloks" in this paper, ollage systems [KST+99℄, and general edit distane with di�erent osts.Table 1 summarizes our ontribution on the di�erent formats and ost models. The value kids isde�ned as k divided by the minimum ost of an edit operation (hene kids = k on the Levenshteinand Hamming models), while kid is de�ned as 1 + 2k=(minimum ost of an insertion or a deletion)(hene kid = 1 + 2k on the Levenshtein distane and kid = 1 for Hamming). The table gives theomplexities for these two ases separately anyway. For more details about the meaning of theresults we refer the reader to the body of the paper.To assess the pratial impat of our methods, we implemented the Levenshtein searh over theLZ78 format. We wrote our own ompressor, whih in exhange of about 10% inrease in the sizeof the ompressed �le permits faster searhing. The experimental results show that this tehniquean take less than half of the time needed by the basi approah, for moderate m and small kvalues. This paper is an extended and updated version of [KNU00℄.2 Related WorkTwo lasses of tehniques exist to ompress text. The �rst ones, alled stati (or semi-stati)methods, hoose a �xed mapping from symbols or sequenes in T to symbols or sequenes in Z,and apply the same mapping aross all the ompression proess. The seond ones, alled adaptivemethods, modify the mapping as the ompression goes on.Some ompressed text searh tehniques fous on stati methods. EÆient solutions based onHu�man oding [Huf52℄ on words have been presented in [MNZBY00℄, but they need that thetext ontains natural language and be large (say, 10 Mb or more). Moreover, they allow onlysearhing for whole words and phrases. For general texts, diverse tehniques related to byte-pair2

Distane LZ78/LZW LZ-Bloks Collage systemsGeneralw.. mkidn mk2idn�(n) mk2idjDj+mkidjSja.. kidskidn+mkidmin(n; (m�)kids)Levenshteinw.. mkn mk2n�(n) mk2jDj+mkjSja.. k2n+mkmin(n; (m�)k)Hammingw.. mn mn�(n) m(jDj+ jSj)a.. kn+mmin(n; (m�)k)Table 1: The searh omplexities (worst and average ase) obtained for di�erent models. Weexluded \+R" from all the omplexities and �(n) denotes the inverse of A(2n; n) (Akermann'sfuntion).enoding (i.e. replaing frequent bigrams by unused haraters) have been shown to be eÆient[Man97, SMT+00℄. However, in general the ompression ratios obtained are poor, i.e. inferioror similar to a lassial Hu�man oding of the text. Moreover, in all these ompression formatsn = �(u), so the speedups an only be measured in pratial terms.A seond line of researh onsiders adaptive shemes suh as Ziv-Lempel ompression, whihis based on �nding repetitions in the text and replaing them with referenes to similar stringspreviously appeared. LZ77 [ZL77℄ is able to referene any substring of the text already proessedand has a best ase of n = O(log u), while LZ78 [ZL78℄ and LZW [Wel84℄ referene only a singleprevious referene plus a new letter that is added, with a best ase of n = O(pu). A hybridamong these is LZ-Bloks, whih was proposed in [NR99℄ to ahieve the searh time of LZ78 andthe ompression ratio of LZ77.The LZ family is extremely popular beause of its general appliability, good ompressionratios, and fast ompression/deompression time. String mathing in Ziv-Lempel ompressed textsis, however, muh more omplex than on many stati shemes, beause the pattern an appear indi�erent forms aross the ompressed text.The �rst algorithm, from 1994 [ABF96℄, presents a ompressed mathing algorithm for LZ78working in time and spae O(m2 + n) for the existene problem (i.e. determine whether or notP appears in T). The only tehnique for LZ77 [FT98℄ is a randomized algorithm taking timeO(m+ n log2(u=n)) for the existene problem.An extension of [ABF96℄ to multipattern searhing was presented in [KTS+98℄, together withthe �rst experimental results in this area. They ahieve O(m2+n) time and spae for the existeneproblem, although this time m is the total length of all the patterns.New pratial results appeared in [NR99℄, whih presented a general sheme to searh Ziv-Lempel ompressed texts (for simple and extended patterns) and speialized it for the partiularases of LZ77, LZ78 and LZ-Bloks, proposed there. A similar result, restrited to simple patternsand to the LZW format, was independently found and presented in [KTS+99℄. A Boyer-Moore3

type algorithm for LZ78/LZW was presented in [NT00℄, whih is urrently the fastest in pratiefor moderately long patterns.An interesting abstration of the existing algorithms over a general ompression format alledollage systems was presented in [KST+99℄.Approximate string mathing on ompressed text was advoated in [AB92℄. It has been solvedfor Hu�man oding of words [MNZBY00℄ by searhing the unompressed text voabulary, but thesolution is limited to searh for a whole word and retrieve whole words that are similar, on naturallanguage texts. The problem has also been solved for the simpler Hamming distane on LZ78 atO(nmk2 log(k)=w+R) worst ase time [NR98℄, where w is the length in bits of the mahine word.The aim of this paper is to present the �rst general solution to this problem for the Ziv-Lempelfamily and the so-alled regular ollage systems. The speialization of this solution to LZ78/LZWand Levenshtein distane �rst appeared in [KNU00℄, of whih this work is an extended version.Shortly after [KNU00℄, an alternative solution was presented in [MKT+00℄. This alternative so-lution, based on bit parallelism, is restrited to solve the existene problem for the Levenshteindistane.3 Approximate String Mathing by Dynami ProgrammingWe introdue some notation for the rest of the paper. A string S is a sequene of haraters over analphabet �. If the alphabet is �nite we all � its size. The length of S is denoted as jSj, thereforeS = s1 : : : sjSj where si 2 �. A substring of S is denoted as Si:::j = sisi+1 : : : sj, and if i > j,Si:::j = ", the empty string of length zero. In partiular, Si = si. P and T , the pattern and thetext, are strings of length m and u, respetively.We reall that ed(A;B), the edit distane between strings A and B, is the minimum total ostof the operations neessary to onvert A into B or vie versa (the osts are usually symmetri). Thebasi algorithm to ompute the edit distane between two strings A and B was disovered manytimes in the past, e.g. [NW70℄. This was onverted into a searh algorithm muh later [Sel80℄. We�rst show how to ompute the edit distane between two strings A and B. Later, we extend thatalgorithm to searh for the approximate ourrenes of a pattern in a text.3.1 Computing the Edit DistaneLet us all (" ! a) the ost to insert a harater a, (a ! ") that to delete a and (a ! b) thatto replae a by b. It is assumed that no harater of the strings to onvert is operated upon morethan one, so for onsisteny a triangular inequality has to hold: (a !) � (a! b) + (b !).It has also to hold that (a! a) = 0.The algorithm to ompute edit distane is based on dynami programming. To omputeed(A;B), a matrix C0:::jAj;0:::jBj is �lled, where Ci;j represents the minimum ost of the operationsneeded to onvert A1:::i into B1:::j . This is omputed as followsC0;0 = 0Ci;j = min(Ci�1;j�1 + (ai ! bj); Ci�1;j + (ai ! "); Ci;j�1 + ("! bj))where at the end CjAj;jBj = ed(A;B). It is assumed that C has the value 1 when aessed outsidebounds. 4

The rationale of the above formula is as follows. First, C0;0 represents the edit distane betweentwo empty strings. For two non-empty strings of length i and j, we assume indutively that allthe edit distanes between shorter strings have already been omputed, and try to onvert A1:::iinto B1:::j . Three hoies exist, aording to the three edit operations we are onsidering. We ansubstitute ai by bj and then proeed in the best possible way to onvert A1:::i�1 into B1:::j�1. Wean also delete ai and onvert, in the best way, A1:::i�1 into B1:::j. Finally, we an insert bj at theend of A1:::i and onvert, in the best way, A1:::i into B1:::j�1. In all ases, the ost to onvert therest is already omputed.The above formula is simpli�ed when we use the Levenshtein distane:Ci;0 = i; C0;j = jCi;j = if (ai = bj) then Ci�1;j�1 else 1 + min(Ci�1;j�1; Ci�1;j ; Ci;j�1)The dynami programming algorithm must �ll the matrix in suh a way that the upper, left,and upper-left neighbors of a ell are omputed prior to omputing that ell. This is easily ahievedby either a row-wise left-to-right traversal or a olumn-wise top-to-bottom traversal. Figure 1 (left)illustrates this algorithm to ompute ed("survey", "surgery") under the Levenshtein distane.s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2
s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2 A

B

Figure 1: On the left, the dynami programming algorithm to ompute the Levenshtein distanebetween "survey" and "surgery". The bold entries show the path to the �nal result. At theenter, the variation to searh for "survey" the text "surgery". All the entries up to the �nalative ells for k = 1 are in boldfae. On the right, the dependeny sheme between ells.Therefore, the algorithm is O(jAjjBj) time in the worst and average ase. However, the spaerequired is only O(min(jAj; jBj)). This is beause, in the ase of a olumn-wise proessing, onlythe previous olumn must be stored in order to ompute the new one, and therefore we just keepone olumn and update it. We an proess the matrix row-wise or olumn-wise so that the spaerequirement is minimized.On the other hand, the sequenes of operations performed to transform A into B an be easilyreovered from the matrix, simply by proeeding from the ell CjAj;jBj to the ell C0;0 following thepath (i.e. sequene of operations) that mathes the update formula (multiple paths may exist).In this ase, however, we need to store the omplete matrix or at least an area around the maindiagonal. Therefore, for eah alignmnent there exists at least one optimal path of edit steps fromell (0; 0) to ell (jAj; jBj). 5

3.2 Approximate Text SearhingWe show now how to adapt this algorithm to searh for a short pattern P a long text T . We reallthat the problem is: given a pattern P of length m, a text T of length u, and an error level k, �ndall the text positions j suh that ed(P; Tj0:::j) � k for some j0. We will all \mathes" the endingpositions of the ourrenes (i.e. the j values).The algorithm is basially the same, with A = P and B = T (proeeding olumn-wise so thatO(m) spae is required). The only di�erene is that we must allow that any text position is thepotential start of a math. This is ahieved by setting C0;j = 0 for all j 2 0 : : : u. That is, the emptypattern mathes with zero errors at any text position (beause it mathes with a text substring oflength zero).The algorithm then initializes its olumn C0:::m with the valuesC0 = 0 ; Ci = Ci�1 + (pi ! ")and proesses the text harater by harater. At eah new text harater tj , its olumn vetor isupdated to C00:::m. The update formula for i > 0 isC0i = min(Ci�1 + (pi ! tj); C0i�1 + (pi ! "); Ci + ("! tj))whih for the Levenshtein distane redues toC0i = if (pi = tj) then Ci�1 else 1 + min(Ci�1; C0i�1; Ci)With this formula the invariant that holds after proessing text position j is Ci = led(P1:::i; T1:::j),where led(A;B) = mini21:::jBj ed(A;Bi:::jBj)that is, Ci is the minimum edit distane between P1:::i and a suÆx of the text already seen. Hene,all the text positions where Cm � k are reported as mathes (ending points of ourrenes).The searh time of this algorithm is O(mu) and its spae requirement is O(m). Figure 1 (enter)exempli�es.3.3 Some Properties and De�nitionsWe make a few de�nitions that are useful to analyze the eÆieny of the algorithms and to relatedi�erent error models.De�nition 1 Let kids be the maximum number of operations that an be arried out to onvert Ainto B with error threshold k. That iskids = � kminf(x! y); x 6= y 2 � [f"gg�The de�nition is useful when there are no zero osts, otherwise we ould use kids = jAj + jBj.Note that kids = k for Hamming and Levenshtein distanes.6

De�nition 2 Let kid be one plus two times the maximum di�erene in lengths between two stringsA and B whih are at distane k. That iskid = 1 + 2 � kminf(x! "); ("! x); x 2 �g�Again, kid =1 if there are zero osts for insertion or deletion. Note that kid = 1 + 2k for theLevenshtein distane and kid = 1 for Hamming. That is, the ourrenes of a pattern of length mhave length between m�k andm+k under the Levenshtein model, and exatly m under Hamming.This property is important for our omplexity results.On the other hand, the dynami programming matrix has a number of properties that havebeen used to derive better algorithms. We are interested in two of them.Property 1 Let A and B be two strings suh that A = A1A2. Then there exist strings B1 and B2suh that B = B1B2 and ed(A;B) = ed(A1; B1) + ed(A2; B2).That is, there must be some point inside B where its optimal omparison against A an bedivided at any arbitrary point in A. This is easily seen by onsidering an optimal path thatonverts A into B. The path must have at least one node in eah row (and olumn), and thereforeit an be split into a path leading to the ell (jA1j; r), for some r, and a path leading from thatell to (jAj; jBj). Thus, r = jB1j, whih determines B1. For example ed("survey";"surgery") =ed("surv";"surg") + ed("ey";"ery").Note that this property depends on our hoie of operations. For example, it is not true anymoreif we introdue the transposition, whih allows us to swith adjaent haraters in just one step.If transpositions ost 1, then ed("survey";"suvrey") = 1, yet we annot split the �rst string into"sur" and "vey" and obtain the same result as before.The seond property refers to the so-alled ative ells of the C vetor when searhing for Pallowing k errors. All the ells with value � k are alled \ative". As noted in [Ukk85℄:Property 2 The output of the searh depends only on the ative ells, and the rest an be assumedto have any value larger than k.Under the Levenshtein distane it holds that, from an iteration of the dynami programmingalgorithm to the next, the last ative ell an be inremented at most by 1, beause neighboringells of the matrix di�er at most by 1. Hene the position of the last ative ell an be maintainedat O(1) amortized time per iteration. That is, for eah new olumn omputed we have to hekwhether it has grown by 1 or whether it has dereased arbitrarily.The searh algorithm needs to work only on the ative ells. As onjetured in [Ukk85℄ andproved in [CL92, BYN99℄, there are O(k) ative ells on average and therefore the dynami pro-gramming takes O(ku) time on average. Figure 1 (enter) illustrates. This an be generalized toarbitrary osts, to obtain O(kidsu) searh time on average.Considering Property 2, we use a modi�ed version of ed in this paper. When we use ed(A;B)we mean the exat edit distane between A and B if it is � k, otherwise any number larger thank an be returned. It is lear that the output of an algorithm using this de�nition is the same aswith the original one. 7

4 The Ziv-Lempel Compression FormatThe general idea of Ziv-Lempel ompression is to replae substrings in the text by a pointer toa previous ourrene of them. If the pointer takes less spae than the string it is replaing,ompression is obtained. Di�erent variants over this type of ompression exist, see for example[BCW90℄. We are partiularly interested in two formats, whih we desribe more in depth.4.1 LZ78 and LZW CompressionThe Ziv-Lempel ompression algorithm named LZ78 [ZL78℄ is based on a ditionary of bloks, inwhih we add every new blok omputed. At the beginning of the ompression, the ditionaryontains a single blok b0 of length 0. The urrent step of the ompression is as follows: if weassume that a pre�x T1:::j of T has been already ompressed into a sequene of bloks Z = b1 : : : br,all them in the ditionary, then we look for the longest pre�x of the rest of the text Tj+1:::u whihis a blok of the ditionary. One we found this blok, say bs of length `s, we onstrut a new blokbr+1 = (s; Tj+`s+1), we write the pair at the end of the ompressed �le Z, i.e Z = b1 : : : brbr+1, andwe add the blok to the ditionary. It is easy to see that this ditionary is pre�x-losed (i.e. anypre�x of an element is also an element of the ditionary) and a natural way to represent it is a trie.We give as an example the ompression of the word ananas in Figure 2. The �rst blok is (0; a),and next (0; n). When we read the next a, a is already the blok 1 in the ditionary, but an is notin the ditionary. So we reate a third blok (1; n). We then read the next a, a is already the blok1 in the ditionary, but as do not appear. So we reate a new blok (1; s).
0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 2: Compression of the word ananas with the algorithm LZ78.The ompression algorithm is O(u) time in the worst ase and eÆient in pratie if the di-tionary is stored as a trie, whih allows rapid searhing of the new text pre�x (for eah haraterof T we move one in the trie). The deompression needs to build the same ditionary (the pairthat de�nes the blok r is read at the r-th step of the algorithm), although this time an arrayimplementation is preferable over a trie based one. Compared to LZ77, the ompression is ratherfast but deompression is slow.Many variations on LZ78 exist, whih deal basially with the best way to ode the pairs in theompressed �le, or with the best way to ompress using limited memory. A partiularly interestingvariant is from Welh, alled LZW [Wel84℄. In this ase, the extra letter (seond element of the8

pair) is not oded, but it is taken as the �rst letter of the next blok (the ditionary is started withone blok per letter). LZW is used by Unix's Compress program.In this paper we do not onsider LZW separately but just as a oding variant of LZ78. This isbeause the �nal letter of LZ78 an be readily obtained by keeping ount of the �rst letter of eahblok (this is opied diretly from the referened blok) and then looking at the �rst letter of thenext blok.4.2 LZ-Bloks FormatLZ78 does not ahieve as good performane as the LZ77 ompression format. As noted in [NR99,KST+99℄, searhing in LZ77 ompressed text is very diÆult. In [NR99℄ they propose a formatwhih is a hybrid, ahieving a ompression ratio better than LZ78 and keeping the same searheÆieny. We desribe that format now.Assume that a pre�x T1:::j of T has been already ompressed into a sequene of bloks Z =b1 : : : br. We look now for the longest pre�x v of Tj+1:::u whih is represented by a sequene bs : : : bs+halready present in the ompressed �le. If there are many alternative hoies for the same v, theone with the minimum of bloks is used (to redue the ost of onatenations). And if still severalpossibilities our, the �rst ourrene is seleted, to ode smaller numbers. This new blok is odedas (s; h). If v is empty (i.e the letter tj+1 is new), a speial blok (0; tj+1) is oded. With the sameexample ananas, we obtain: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 1) as; (0; a)(0; n)(1; 1)(1; 0)s; (0; a)(0; n)(1; 1)(1; 0)(0; s).The ompression an still be performed in O(u) time by using a sparse suÆx tree [KU96℄ whereonly the blok beginnings are inserted and when we fall out of the trie we take the last node visitedwhih orresponds to a blok ending. Deompression needs to keep trak of the bloks already seento be able to retrieve the appropriate text. The ompression ratio is between those of LZ77 andLZ78.A partiular ase of this format is presented by Miller and Wegman [MW85℄, where the newblok is not the previous one plus the �rst letter of the new one, but simply the onatenation ofthe previous and the new one.4.3 Collage SystemsMany ompression formats have been uni�ed in [KST+99℄ under the onept of ollage system.This model divides the ompression format into two parts: a ditionary D whih stores the setof symbols that an be used in the ompressed text, and the ompressed text S itself, whih isa sequene of elements in D. The Ziv-Lempel format interleaves the representations of D and S,sine a new element of D is reated after eah symbol of S is output. In simpler formats, suh asHu�man, the ditionary is the set of bit streams that represent eah text harater.Collage systems are lassi�ed aording to the type of operations that an be applied to buildD. Atomi elements, onatenation of other elements in D, repetition and trunation of an elementin D are the operations onsidered in [KST+99℄. In partiular, atomi elements and onatenation(whih are the allowed operations in the so-alled regular ollage systems) are enough to enom-pass LZ78/LZW and LZ-Bloks, while LZ77 requires trunation and this ompliates the work ofompressed pattern mathing algorithms. 9

5 A General Searh ApproahWe present now a general approah for approximate pattern mathing over a text Z = b1 : : : bn,that is expressed as a sequene of n bloks. Eah blok br represents a substring Br of T , suh thatB1 : : : Bn = T . Moreover, eah blok Br is formed by a onatenation of previously seen bloksand/or expliit letters. Our goal is to �nd the positions in T where ourrenes of P with at mostk errors end, using Z.For simpliity of the exposition we onentrate on the Levenshtein model. Later we show howthe algorithm an be extended.Our approah is to adapt an algorithm designed to proess T harater by harater so that itproesses T blok by blok, using the fat that bloks are built from previous bloks and expliitletters. In this setion we show how we have adapted the lassial dynami programming algorithm.Part of the algorithm depends on the spei� ompression format used, and this is overed in thefollowing setions. We also show later that the O(ku) algorithm based on ative ells an be adaptedas well.We need a little more notation before explaining the algorithm. Eah math is de�ned eitheras overlapping or internal. A math j is internal if there is an ourrene of P ending at j totallyontained in some blok Br (i.e. if the blok repeats the ourrene surely repeats). Otherwise itis an overlapping math.The general mehanism of the searh is as follows: we read the bloks br one by one. For eahnew blok b read, representing a string B, and where we have already proessed T1:::j, we updatethe state of the searh so that after working on the blok we have proessed T1:::j+jBj = T1:::jB.To proess eah blok, three steps are arried out: (1) its desription (to be spei�ed shortly) isomputed, (2) the ourrenes ending inside the blok B are reported, and (3) the state of thesearh is updated.The state of the searh onsists of two elements� The last text position onsidered, j (initially 0).� A vetor Ci, for i 2 0 : : : m, where Ci = led(P1:::i; T1:::j). Initially, Ci = i. This vetor is thesame as for plain dynami programming, exept that all ells whose value is larger than kan have any value larger than k (reall Property 2).The desription of all the bloks already seen is maintained. Say that blok b represents thetext substring B. Then the desription of b is formed by the length jBj and some vetors indexedby i 2 1 : : : m (their values are assumed to be k + 1 if aessed outside bounds).� Ii;i0(b) = ed(Pi:::i0 ; B), for i 2 1 : : : m; i0 2 max(i+ jBj�k�1; i�1) : : :min(i+ jBj+k�1;m),whih at eah point gives the edit distane between B and Pi:::i0 . Note that I has O(mk)entries per blok. In partiular, the set of possible i0 values is empty if i > m+ k + 1� jBj,in whih ase Ii;i0(b) = k + 1.� Pi(b) = led(P1:::i; B), for i 2 1 : : : m, gives the minimum edit distane between the pre�x oflength i of P and a suÆx of B. Note that P has O(m) entries per blok.10

� Si;i0(b) = ed(Pi:::m; B1:::i0), for i 2 1 : : : m; i0 2 max(m� i+1�k; 0) : : :min(m� i+1+k; jBj),gives the edit distane between the suÆx starting at i in P and the pre�x ending at i0 in B.Note that S has O(mk) entries per blok. Again, the set of possible i0 values is empty (andSi;i0(B) = k + 1) if i < m+ 1� k � jBj.� M(B), whih is an array storing the internal mathes of B (its size ranges from zero to jBj).The o�sets with respet to the beginning of B are stored, in inreasing order. The totalnumber of entries over all the bloks is the number of internal mathes found, whih annotexeed R.Figure 3 illustrates the matries I and S and how are they �lled under di�erent situations. TheP andM vetors are simpler and hene exluded from the �gure.

m

1

i

1 |B| 1 |B|

1

m

i

|B| >= m+k |B| < m+k

S
m 2k+1

i’ i’

i

m

1 1

m

i

i’ i’1 m m1

|B| 2k+1

|B| >= k |B| < k

|B|+k+1

I

Figure 3: The I and S matries that omprise the desription of a blok b representing a string B.The way to ompute the desription of the bloks is format-dependent and is overed later. Wespeify now how to report the mathes and update the state of the searh one the desription ofa new blok b has been omputed. Three ations are arried out, in this order.11

Reporting the overlapping mathes. An overlapping math ending inside the new blok Borresponds to an ourrene that spans a suÆx of the text already seen T1:::j and a pre�x of B.From Property 1, we know that if suh an ourrene mathes P with k errors (or less) then itmust be possible to split P into P1:::i and Pi+1:::m, suh that the text suÆx mathes the �rst halfand the pre�x of B mathes the seond half. Figure 4 illustrates.
Pi

C i+1,i’Si +

T Bj

Figure 4: Splitting of an overlapping math (grayed).Therefore, all the possible overlapping mathes are found by onsidering all the possible positionsi in the pattern. The hek for a math ending at text position j+ i0 is then split into two parts. A�rst ondition states that P1:::i mathes a suÆx of T1:::j with k1 errors, whih an be heked usingthe C vetor. A seond ondition states that Pi+1:::m mathes B1:::i0 with k2 errors, whih an beheked using S. Finally, we require that k1 + k2 � k.Summarizing, the text position j + i0 (i0 2 1 : : :min(m+ k � 1; jBj)) is reported ifmax(m�1;m�i0+k)mini=min(1;m�i0�k) (Ci + Si+1;i0(b)) � k (1)and we also have to report the positions j + i0 suh that Cm + i0 � k (for i0 2 1 : : : k). Thisorresponds to Sm+1;i0(b) = i0, whih is not stored in that matrix.The total ost for this hek is O(mk). The ourrenes are not immediately reported butstored in inreasing order in an auxiliary array (of size at most m+ k), beause they an mix andollide with internal mathes.Reporting the internal mathes. These are mathes totally ontained inside B. Their o�setshave already been stored in M(b) when the desription of b was omputed. These mathes mayollide and intermingle with the overlapping mathes. We merge both hains of mathes and reportthem in inreasing order and without repetitions. This an be done in time proportional to thenumber of mathes reported (whih adds up O(R) aross all the searh).Updating the C vetor and j. To update C we need to determine the best edit distane betweenP1:::i and a suÆx of the new text T1:::j+jBj = T1:::jB. Two hoies exist for suh a suÆx: eitherit is totally inside B or it spans a suÆx of T1:::j and the whole B. Figure 5 illustrates the twoalternatives. The �rst ase orresponds to a math of P1:::i against a suÆx of B, whih is omputedin P. For the seond ase we an use Property 1 again to see that suh an ourrene is formed bymathing P1:::i0 against some suÆx of T1:::j and Pi0+1:::i against the whole B. This an be solvedby ombining C and I.The formula to update C to a new C0 is thereforeC0i min(Pi(b); min(i�1;i�jBj+k)mini0=max(1;i�jBj�k)(Ci0 + Ii0+1;i(b))) (2)12

T Bj

P
i

Pi

T Bj

C i’ + I i’+1,i

Pii’Figure 5: Two hoies to update the C vetor.whih �nds the orret value if it is not larger than k, and gives something larger than k otherwise(this is in aordane to our modi�ed de�nition of ed). Sine there are m ells to ompute and eahone searhes over at most 2k + 1 values, the total ost to update C is O(mk).Finally, j is easily updated by adding jBj to it.Complexity. All the proesses desribed up to now take O(mkn) time for the existene problemand O(mkn + R) time to report the R mathes of P . We have to add the time to ompute theblok desriptions, a proess that is detailed in the next setions.The spae requirement for this algorithm is basially that to store the blok desriptions: thelengths, matries and mathes. The lengths an be stored using n log(u) bits1. For the matries,we observe that eah element of those arrays di�ers from the previous one by at most 1, that isIi;i0+1(b) = Ii;i0(b) � 1, Pi+1(b) = Pi(b) � 1, and Si;i0+1(b) = Si;i0(b)� 1. Their �rst value is trivialand does not need to be stored. Therefore, eah suh ell an be represented only with 2 bits, fora total spae requirement of (8mk + 2m)n bits at most.The internal mathes, on the other hand, are at most R numbers that need R log u bits. Wealso need n log u bits to point diretly into the array of internal mathes. Therefore the total spaerequirement in bits is 2m(4k + 1)n + 2n log u + R log u.6 Computing Blok Desriptions for the LZ78 and LZW FormatsWe show now how to do the rest of the updates in the LZ78 format, where eah blok b0 representsB0 = Ba, where B is the string represented by a previous blok b and a is an expliit letter. Theproedure is almost the same as for LZW so we omit it here and onentrate on LZ78 only. Aninitial blok b0 represents the string ", and its desription is as follows.� j"j = 0.� Ii;i0(b0) = i0 � i+ 1, i 2 1 : : : m; i0 2 i� 1 : : :min(i+ k � 1;m).� Pi(b0) = i, i 2 1 : : : m.� Si;0(b0) = m� i+ 1, i 2 m� k + 1 : : : m.We give now the update formulas for the ase when a new letter a is added to B in order toform B0. These an be visualized as speial ases of dynami programming matries between Band parts of P .1We give all the spae requirements in exat number of bits, disregarding lower order terms. The logarithms arebase 2 unless otherwise indiated. 13

� jB0j = jBj+ 1.� Ii;i0(b0) = Ii;i0�1(b) if a = pi0 , and 1 + min(Ii;i0(b);Ii;i0�1(b0);Ii;i0�1(b)) otherwise. We startwith2 Ii;max(i�1;i+jB0j�k�2)(b0) = min(jB0j; k + 1), and ompute the values for inreasing i0.This orresponds to �lling a dynami programming matrix where the haraters of Pi::: arethe olumns and the haraters of B are the rows. Adding a to B is equivalent to adding anew row to the matrix, and we store at eah blok only the row of the matrix orrespondingto its last letter (the rest an be retrieved by going bak in the referenes). For eah i, thereare 2k + 1 suh olumns stored at eah blok B, orresponding to the interesting i0 values.Figure 6 illustrates. To relate this to the matrix of I in Figure 3 one needs to onsider thatthere is a three dimensional matrix indexed by i, i0 and jBj. Figure 3 shows the plane storedat eah blok B, orresponding to its last letter. Figure 6 shows a plane obtained by �xing i.
0 1 2

0

0

3 ...

0

0
...

0
i

B’

P
PI

i...
i-1

i’

B’

P

0 1 2

1

2

3 ...

3

4
...

|B’|

|B|

P

P*

* (b’)

(b)

|B’|

|B|

I

Ii,*

i,*

(b)

(b’)

00

Figure 6: The virtual dynami programming matries. On the left, between B and Pi:::, to omputeI. On the right, between B and P , to ompute P.� Pi(b0) = Pi�1(b) if a = pi and 1 + min(Pi(b);Pi�1(b0);Pi�1(b)) otherwise. We assume thatP0(b0) = 0 and ompute the values for inreasing i. This orresponds again to �lling a dynamiprogramming matrix where the haraters of P are the olumns, while the haraters of Bare the rows. The (virtual) matrix has i at the i-th olumn of the �rst row and zeros in the�rst olumn. Figure 6 illustrates.� Si;i0(b0) = Si;i0(b) if i0 � jBj, and Ii;m(b0) otherwise. This is a simpler formula beause if wehave a pre�x of B mathing a suÆx of P the fat stays true after adding more haratersat the end of B. Only the mathes omprising the whole B0 are new, and those are easilyretrieved using I. That is, Si;i0(b) = Ii;m(b(jBj�i0+1)), where b(r) denotes the blok reahedafter following r times the bakward hain of referened bloks. Formally, b(0) = b and b(r+1)is the blok referened by b(r).This shows that we do not need in pratie to store S, sine we an retrieve it by followingthe bak hain of pointers. Moreover, S is used only to report the overlapping mathes and2Note that it may be that this initial value annot be plaed in the matrix beause its position would be outsidebounds. 14

it is not hard to use the values in the same order given by the bakward hain. Instead of Swe need to store ref(b) = b(max(1;jBj�(m+k�1)))whih allows us to reover the values Si;m+k�1; Si;m+k�2; : : : ;Si;1, in that order. This doesnot alter the time omplexity.� M(b0) = M(b), where the position jB0j is added if Pm(b0) � k. That is, all the mathesinternal to B are also internal to B0. Then, a new internal math at the last position of theblok may be added if an ourrene of P inside B0 ends there.This is so simple in LZ78 that we an even not storeM expliitly. Instead, eah blok an storethe number of the last blok in the referening hain whih holds a math in its last position,let us all it Math(b). Hene, Math(b0) = Math(b) if Pm(b) > k, and b otherwise. Theoriginal value ofM(b) an be obtained by following the hain, in reverse order, in O(jM(b)j)time. Again, this does not alter the omplexity. Moreover, it an be easily ombined to theremoval of S sine both sets of mathes that have to be merged (internal and external) willbe obtained in reverse order.Complexity. As an be seen, the updates of P ost O(m) per blok, but those of I and Stake O(mk). The updates to M add up O(R) along the total proess. In any ase, the generalomplexity O(mkn+R) is maintained.This omplexity is the same if we replae S andM by ref andMath. Eah of the new vetorsneeds n log n bits. Therefore the number of bits required in this ase beomes 2m(3k+1)n + 3n log u.7 Computing Blok Desriptions for More General FormatsIn the format proposed in Setion 4.2, eah blok is a onatenation of many previous bloks. Inthis ase the searh ost rises to O(mk2n�(n) + R), where �(n) is the inverse of Akermann'sA(2n; n). We desribe the ase of onatenating two previous bloks in O(mk2) time, and lateronsider how to generalize for several bloks.7.1 Conatenating Two Variable-Size BloksAssume now that b0 is formed by onatenating b1 and b2, i.e. B0 = B1B2. The formulas to omputethe blok desription make heavy use of Property 1. The desriptions are omputed as follows (seeFigure 7).� Ii;i0(b0) = mini002i+jB1j�k:::i+jB1j+k(Ii;i00(b1) + Ii00+1;i0(b2)). This aounts for the fat thatpattern substrings mathing B1B2 are formed by a substring mathing B1 followed by asubstring mathing B2. In this ase �lling eah of the O(mk) ells osts O(k), for a totalupdate ost of O(mk2) per blok.� Pi(b0) = min(Pi(b2);mini02i�jB2j�k:::i�jB2j+k(Pi0(b1) + Ii0+1;i(b2)). This aounts for the fatthat pattern pre�xes mathing a suÆx of B1B2 are either those mathing a suÆx of B2 orthose mathing a suÆx of B1 followed by an ourrene of B2. This osts O(mk).15

B2B1

P

i’’

I
i,i’’

I
i’’+1,i’

i i’

B1 B2

i P

S
i+1,i’

Pi

P

P
i’

I
i’+1,i

ii’

B1 B2

PI

M

I
i,i’’

S

B2B1

iP

i’

i’

i’’iP

i’’+1,i’

Si,i’

S

i’

P

Figure 7: Computing blok desriptions under the blok format.� Si;i0(b0) = Si;i0(b1) if i0 � jB1j, else mini002i+jB1j�k:::i+jB1j+k(Ii;i00(b1) + Si00+1;i0(b2)). This isbeause suÆxes of P mathing a pre�x of B1B2 math either a pre�x of B1 (if the pre�x isshorter than B1) or are formed by a pattern substring mathing the whole B1 followed by therest of P mathing a pre�x of B2. The ost for this is also O(mk2).� For M(b0) we opy M(b1), then add the mathes that appear when onatenating B1 andB2 and then opy M(b2). The mathes that appear in the onatenation ending at i0 21 : : : m+ k � 1 in B2 satisfy mini2m�i0�k:::m�i0+k(Pi(b1) + Si+1;i0(b2)) � k. For eah suh i0,jB1j+ i0 is added as a math. Now, those mathes must be merged with those internal to B2.The omplexity is O(mk) per blok plus O(R) in total.7.2 Conatenating Many Variable-Size BloksThe method above an be trivially extended by omposition to onatenate h bloks in O(h)onatenation operations. This gives a total time omplexity of O(mk2H) for ompressed patternmathing in the LZ-Bloks format, where H is the total number of bloks in the onatenations.In the worst ase, H =
(n2). We next show how the time is lowered to O(mk2n�(n)), where �(n)is the inverse of A(2n; n) (the Akermann funtion).We will use an algorithm by Tarjan [Tar79℄ based on the path ompression tehnique. Thealgorithm operates on a semigroup (D;�) with assoiative operation �. In our ase, D is the setof possible blok desriptions and � is the onatenation operation. The algorithm arries out asequene of instrutions that build and manipulate a forest with verties labeled by elements of D.There are three kinds of instrutions:� LABEL(r; x): Label the root r with x. 16

� LINK(v; w): Combine the trees with roots v and w into a single tree by making v the parentof w.� EVAL(v): Find the root of the tree urrently ontaining v, say r, and return the produt ofall labels on the path from v to r.A LABEL-instrution takes the time needed to make a opy of the label x and a LINK-instrutionexeutes in onstant time. For N EVAL-instrutions in a forest of n nodes Tarjan gives an amor-tized time omplexity of O((N + n)�(N + n; n)T�), where T� is the time taken by a �-operationand �(N;n) is the inverse Akermann's funtion. The algorithm requires that the sequene ofinstrutions is given o�-line exept for the labels in the LABEL-instrutions.The blok desriptions for the LZ-Bloks format an be produed with a suitable sequene ofinstrutions. The sequene of instrutions builds a linear tree by adding one vertex at a time asthe root of the tree. Let v1; v2; : : : be the sequene of verties added to the tree. After vi is addedto the tree, it is labeled by the desription of the basi blok bi and then all blok onatenations(requested by later bloks) that end at bi are omputed and saved for later. The desription of ablok onatenation bj � � � bi is omputed by exeuting EVAL(vj). Thus the sequene of instrutionsonsists of n instrutions of eah kind. The sequene an be omputed with linear time san ofthe ompressed text satisfying the o�-line requirement. This gives the total time omplexity ofO(mk2n�(n)), where �(n) is short for �(2n; n).7.3 Collage SystemsUnder the model of a ollage system, a ompressed pattern mathing algorithm has oneptuallytwo parts: �rst preompute any required information on the ditionary D, and seond proess thesymbols of S.The algorithm we have presented in this setion an be diretly applied to any regular ollagesystem (i.e. the ditionary is formed by basi symbols and onatenations of previously formedsymbols). The desription of every blok in the ditionary D is omputed �rst, and then we goover the elements of S updating the searh state and reporting the mathes.The worst ase time omplexity of this sheme is O(mk2jDj + mkjSj + R).8 A Faster Algorithm on Average for LZ78/LZWA simple form to speed up the dynami programming algorithm on ompressed text is based onProperty 2. That is, we try to work only on the ative ells of C, I and P.We are interested in showing that the property that says that there are on average O(k) ativeells in C at a random text position holds also when those text positions are the endpoints of Ziv-Lempel bloks in the text. Moreover, we would like to onsider more general random models, sineuniform distribution of haraters does not marry well with text ompression.First assume that the text is arbitrary but �xed and that the pattern P is generated by a Markovproess suh that no string has probability 1 (i.e. the Markov proess is not degenerated). Thenumber of ative ells at the end of the bloks depends on the probability of ommon haratersbetween P and the last m+k text haraters at the end of eah blok. Even if we onsider that all17

suh text substrings math with the most probable patterns, still the ombinatorial argument usedin [BYN99℄ to prove the O(k) bound stays valid. Just the onstant 1=�, whih represents probabilityof mathing between two random haraters, has to be replaed by the highest probability of apattern substring in the Markov proess. This only hanges the onstant of the O(k) bound.The same happens if we onsider a text generated by a Markovian soure and a �xed arbitrarypattern: despite that the distribution of the text at the end of the bloks needs not be the sameas for random text positions, still eah substring has a probability of ourring smaller than 1, andtherefore even if the pattern is formed by the most ommon text substrings the argument leading tothe O(k) result stays valid. Finally, this also holds obviously if both pattern and text are generatedby a Markovian soure.Our onjeture is in fat that the suÆxes of Ziv-Lempel bloks have a distribution whih ismore uniform than that of the text, but we annot prove it and it is not neessary for our results.If the last ative ell is at position O(k) in C, then the same happens to the P values, sinePi(b) � Ci after proessing blok b.We update C and P up to their last ative ells only. We reall the minimization formula (2)to update C, and note that the Ci0 are on average ative only for i0 = O(k). Therefore only thevalues i 2 jBj�O(k) have a hane of being � k. The minimization with Pi does not hange thingsbeause this vetor has also O(k) ative values on average.Therefore, updating C osts O(k2) per blok on average. Computing P takes O(k) time sineonly the ative part of the vetor needs to be traversed.A more hallenging problem appears when trying to apply the tehnique to Ii;i0(b). The keyidea in this ase omes from onsidering that ed(Pi:::i0 ; B) > k if jBj� (i0� i+1) > k, and thereforeany blok B suh that jBj > m + k annot have any ative value in I. Sine there are at mostO(�m+k) di�erent bloks of length at most m + k (reall that � is the alphabet size of the text),we an work O(mk�m+k) in total in omputing I values. This is obtained by marking the bloksthat do not have any ative value in their I matrix, so that the I matrix of the bloks refereningthem do not need to be omputed either (moreover, the omputation of C and overlapping mathesan be simpli�ed).However, this bound an be improved. The set of di�erent strings mathing a pattern P withat most k errors, alled Uk(P) = fP 0; ed(P; P 0) � kgis �nite. More spei�ally, it is shown in [Ukk85℄ that if jP j = m, then jUk(P)j = O((m�)k). Thislimits the total number of di�erent bloks B that an be preproessed for a given pattern substringPi:::i0 . Summing over all the possible substrings Pi:::i0 , onsidering that omputing eah suh entryfor eah blok takes O(1) time, we have a total ost of O(mk(m�)k). Note that this is a worst aseresult, not only average ase. Another limit for the total amount of work is still O(mkn), so theost is O(mkmin(n; (m�)k)).Finally, we have to onsider the ost of reporting the mathes. This is O(R) plus the ost tosearh for the overlapping mathes. We use Formula (1) to �nd them, whih an be seen to ostO(k2) only, sine there are O(k) ative values in C on average and therefore i0 2 m� O(k) is alsolimited to O(k) di�erent values.Summarizing, we an solve the problem on LZ78 and LZW in O(k2n+mkmin(n; (m�)k) +R)average time. Note in partiular that the middle term is asymptotially independent on n, leading18

to O(k2n + R) for large enough n. Moreover, the spae required is redued as well, beause onlythe relevant parts of the matries need to be stored.9 Searhing Under General Cost ModelsWe onsider now how to modify our previous algorithms in order to adapt them to varying searhosts. The general mehanism is very similar and the information we store does not hange. Theonly di�erene at this respet is that it is not true anymore that adjaent ells di�er by at mostone, so we annot store the I, P and S matries anymore using 2 bits per ell. Instead, we needlog(k + 2) bits.The main operational hange orresponds to the plaes where k plays a role in the algorithm.As explained in Setion 3.3, kid is the width of the range of di�erenes in length between two stringsthat math with error threshold k. The two dimensional matries I and S will store only O(mkid)entries. Moreover, all the plaes where O(mk) or O(mk2) omplexities have appeared to dealwith overlapping mathes, ompute blok desriptions or update the searh state, the k (atually1 + 2k) omes in fat from the maximum di�erene in length between two mathing strings, so ithas to be replaed by kid. Another operational hange appears in the LZ78/LZW format, wherewe expliitly �ll ells of dynami programming matries when we ompute new blok desriptions.The generalized formulas of edit distane have to be used in this ase.This means that in the worst ase we an searh in O(mkidn+R) on LZ78/LZW, O(mk2idn�(n)+R) on LZ-Bloks and O(mk2idjDj + mkidjSj + R) on regular ollage systems. For example, forHamming distane this redues to O(mn + R) in LZ87/LZW, O(mn�(n) + R) on LZ-Bloks andO(m(jDj+jSj+R) on regular ollage systems. This side result beomes the best existing omplexityfor this problem (the only one was from [NR98℄, O(k2ndm log(k)=we) on LZ78/LZW).When it omes to the average ase improvement for LZ78/LZW, the result of [Ukk85℄ thatjUk(P)j = O((m�)k) remains valid if we replae k by kids. The rationale is that in the worstase we an perform kids operations on P before surpassing the error threshold k, and eah suhoperation an alter one harater in P (hene the m hoies) and replae/insert any other harater(hene the � hoies). On the other hand, it is not hard to show that the number of ative ellsper olumn is on average O(kids). Therefore the average ase time an be made O(kidskidn +mkidmin(n; (�m)kids) +R). For Hamming, this is O(kn+mmin(n; (�m)k) +R).Despite the generality of this ost funtion, we have left aside some operations that violate Prop-erty 1, suh as transposition of adjaent haraters. This has been mainly for tehnial onveniene,as in fat many extensions of this kind an be inluded in our approah by laboriously onsideringand pathing the exeptions they trigger. For example, transpositions ould be arranged for byexpliitly trying a transposition in the limit of two bloks eah time we apply Property 1. Generalsubstring replaement (i.e. arbitrary substrings an be replaed at arbitrary osts) is also possi-ble at the expense of heking the limits between bloks for the presene of those strings, whihertainly ompliates the approah.
19

10 Signi�ane of the ResultsWe onsider now the theoretial and pratial signi�ane of the results obtained. We onentrateon the results for LZ78/LZW, where more ompeting options exist.10.1 Memory RequirementsFirst onsider the spae requirements. In the worst ase, when we remove the S andM tables, weneed 2m(3k + 1)n + 3n log n bits. Despite that this may seem impratial, this is not so. A �rstonsideration is that normal ompressors use only a suÆx (\window") of the text already seen, inorder to use bounded memory independent of n. The normal mehanism is that when the numberof nodes in the LZ78 trie reahes a given amount N , the trie is deleted and the ompression startsagain from srath for the rest of the �le.Our searh mehanism an use the same mark to start reusing its alloated memory from srathas well, sine no node seen in the past will be referened again (only the state of the searh (C; j) hasto be remembered). This tehnique an be adapted to more omplex ways of reusing the memoryunder various LZ ompression shemes [BCW90℄.If a ompressor is limited to use N nodes, then the deompression needs at the very leastO(N log(N�)) bits of memory3. Sine the searh algorithm an be restarted after reading Nbloks, it requires only 2m(3k + 1)N + 3N logN bits. Hene the amount of memory required tosearh is never more than�3 + 2m(3k + 1)logN � � memory for deompressionand we reall that this an be lowered in the average ase.10.2 Time ComplexityDespite that ours is the �rst algorithm for approximate searhing allowing errors, there exist alsoalternative approahes, some of them trivial and others not spei�ally designed for approximatesearhing. Moreover, an alternative algorithm truly designed for approximate searhing appearedin the while [MKT+00℄.The �rst alternative approah is DS, a trivial deompress-then-searh algorithm. This yields,for the worst ase, O(ku) [GP90℄ or O(mjUk(P)j+u) [Ukk85℄ time, where we reall that jUk(P)j isO((m�)k). For the average ase, the best result in theory is O(u+(k+log�m)u=m) = O(u) [CM94℄.This is ompetitive when u=n is not large, and it needs muh memory for fast deompression.A seond alternative approah, OM, onsiders that all the overlapping mathes an be obtainedby deompressing the �rst and last m+ k haraters of eah blok, and using any searh algorithmon that deompressed text. The internal mathes are obtained by opying previous results. Thetotal amount of text to proess is O(mn). Using the previous algorithms, this yields worst asetimes of O(kmn+R) and O(mjUk(P)j+mn+R), and O((k + log�m)n+mn+R) = O(mn+R)3In fat, reasonably fast deompression needs to store the text already deompressed, whih requires U log � +N logU bits, where U is the text size that was ompressed to N symbols.20

Algorithm Worst ase time Average ase timeDS ku umjUk(P)j+ uOM kmn+R mn+RmjUk(P)j+mn+RMP m2jUk(P)j2 + n+R m2jUk(P)j2 + n+RBP mk3=w n mk3=w nOurs mkn+R k2n+mkmin(n; jUk(P)j) +RTable 2: Worst and average ase time for di�erent approahes on LZ78/LZW.on average. Exept for large u=n, it is normally impratial to deompress the �rst and last m+ kharaters of eah blok.Yet a third alternative, MP, is to redue the problem to multipattern searhing of all the stringsin Uk(P). As shown in [KTS+98℄, a set of strings of total lengthM an be searhed for in O(M2+n)time and spae in LZ78 and LZW ompressed text. This yields an O(m2jUk(P)j2 + n+ R) worstase time algorithm, whih for our ase is normally impratial due to the huge number of patternsto searh for.Table 2 ompares the omplexities for LZ78/LZW. As an be seen, our algorithm yields thebest average ase omplexity fork = O(qu=n) ^ k = O(pm) ^log� n2(1 + log�m) � k + 12 +O� 1log�m� � log� n1 + log�mwhere essentially the �rst ondition states that the ompressed text should be reasonably smallompared to the unompressed text (this exludes DS), the seond ondition states that the numberof errors should be small ompared to the pattern length (this exludes OM) and the third onditionstates that n should be large enough to make jUk(P)j not signi�ant but small enough to makejUk(P)j2 signi�ant (this exludes MP and OM). This means in pratie that our approah is thefastest for short and medium patterns and low error levels.We onsider now the alternative approah BP [MKT+00℄, whih an solve only the existeneproblem in O(mk3n=w) worst ase time, where w is the number of bits in the omputer word. Weare better in the worst ase for k =
(pw). On average, we are also better when k + O(1) �log�(n=w)=(1 + log�m).10.3 Experimental ResultsWe have implemented our algorithm on LZ78 in order to determine its pratial value. Our im-plementation is based on the version that does not store S and M. It does not store the matrixvalues using 2 bit deltas, but their full values are stored in whole bytes (this works for k < 255).21

The spae is further redued by not storing the information on bloks that are not to bereferened later. In LZ78 this disards all the leaves of the trie. Of ourse a seond ompressionpass is neessary to add this bit to eah ompressed ode. Now, if this is done then we an evennot assign a number to those nodes (i.e. the original nodes are renumbered) and thus redue thenumber of bits of the bakward pointers. This an redue the e�et of the extra bit and reduesthe memory neessary for deompression as well.We run our experiments on a Sun UltraSpar-1 of 167 MHz and 64 Mb of RAM. We haveompressed 10 Mb of Wall Street Journal artiles (WSJ) and 10 Mb of DNA text with lines utevery 60 haraters. We use an ad-ho LZ78 ompressor whih stores the pair (s; a) orrespondingto the bakward referene and new harater in the following form: s is stored as a sequene ofbytes where the last bit is used to signal the end of the ode; and a is oded as a whole byte.Compression ould be further redued by better oding but this would require more time to readthe ompressed �le. The extra bit indiating whether eah node is going to be used again or not isadded to s, i.e. we ode 2s or 2s+ 1 to distinguish among the two possibilities.Using the plain LZ78 format, WSJ was redued to 45.02% of its original size, while addingthe extra bit to mark the leaves of the trie raised this perentage to 45.46%, i.e. less than 1%of inrement. The �gures for DNA were 39.69% with plain ompression and 40.02% adding theextra bit. As a omparison, Unix Compress program, an LZW ompressor that uses bit oding,obtained 38.75% for WSJ and 27.91% for DNA. Compression took about 20 seonds of user time,while deompression took 2.09 seonds for WSJ and 1.80 for DNA. In our omplexity analysis n ismeasured in bloks and u in bytes. In this ase we have u=n = 8:6 for WSJ and 9.9 for DNA.We have ompared our algorithm against a more pratial version of DS, whih deompressesthe text on the y and searhes it, instead of writing it to a new deompressed �le and then readingit again to searh. The searh algorithm is the O(ku) average time algorithm desribed in [Ukk85℄,that is, a modi�ed dynami programming that works on the ative ells only. We use this algorithmbeause it is the one that we adapted to obtain our new algorithm (this gives a measure of theimprovement obtained) and beause it is the only one able to ope with the general version ofthe problem with arbitrary edition osts. It would also be possible to use the same DS approahwith a faster algorithm, but this would work only on spei� instanes of the problem. The O(ku)algorithm is unbeaten in exibility to ope with all the variants of the approximate searh problem,and our algorithms share this exibility.On the other hand, the OM-type algorithms are unpratial for typial ompression ratios (i.e.u=n at most 10) beause of their need to keep ount of the m+ k �rst and last haraters of eahblok. The MP approah does not seem pratial either, sine for m = 10 and k = 1 it has togenerate an automaton of more than one million states at the very least. We tested the ode of[KTS+98℄ on our texts and it took 5.50 seonds for just one pattern of m = 10. This outrules it inour ases of interest.We have tested m = 10, 20 and 30, and k = 1, 2 and 3. These are the most interesting valuesin text searhing appliations. For eah pattern length, we seleted 100 random patterns from thetext and used the same patterns for both algorithms. Table 3 shows the results.As the table shows, we an atually improve upon the deompression of the text and theappliation of the same searh algorithm. In pratial terms, we an searh the original �le atabout 2:5 : : : 3:2 Mb/se when k = 1, while the time stays reasonable and ompetitive for k = 2 as22

WSJk Ours DS Ours DS Ours DSm = 10 m = 10 m = 20 m = 20 m = 30 m = 301 3.77 4.72 3.28 4.64 3.13 4.622 5.63 5.62 4.77 5.46 6.10 5.423 11.60 6.43 9.22 6.29 13.61 6.22DNAk Ours DS Ours DS Ours DSm = 10 m = 10 m = 20 m = 20 m = 30 m = 301 3.91 5.21 2.49 5.08 2.57 5.062 6.98 6.49 3.81 6.31 5.02 6.283 11.51 8.91 9.28 7.51 15.35 7.50Table 3: CPU times to searh ompressed �les WSJ and DNA of u = 10 Mb.k I P Others Total1 0.05 Mb 1.23 Mb 5.59 Mb 6.87 Mb2 0.78 Mb 1.91 Mb 5.59 Mb 8.28 Mb3 4.50 Mb 2.60 Mb 5.59 Mb 12.69 MbTable 4: Spae requirement to searh for a pattern with m = 10 over WSJ, of u = 10 Mb.well.Our implementation is not memory-eÆient. However, it may be interesting to measure thenumber of bytes required by the I and P vetors as k grows. Table 4 shows the results for m = 10and k = 1 to 3. It an be seen how I grows sharply as k inreases, while P grows linearly. In ourimplementation there is also an overhead of 10 bytes per blok, whih adds about 5.6 Mb to thespae. As a omparison, a fast DS approah needs at least 12.23 Mb.11 ConlusionsWe have presented the �rst solution to the open problem of approximate pattern mathing overZiv-Lempel ompressed text. Our algorithm an �nd the R ourrenes of a pattern of length mallowing k errors over a text ompressed by LZ78 or LZW into n bloks in O(kmn+R) worst-asetime and O(k2n + R) average ase time. We have shown that this is of theoretial and pratialinterest for small k and moderate m values. We an also deal with more general LZ formats atO(mk2n�(n)+R) worst ase time and with regular ollage systems in O(mk2jDj+mkjSj+R) time.We have also shown that more omplex distanes an be dealt with, as well as simpler ases suh asHamming distane, where O(mn+R) worst ase time and O(kn+R) average time an be obtained.Our experiments show that in LZ78/LZW we an searh at twie the speed of deompressing and23

searhing with the basi tehnique.Many theoretial and pratial questions remain open. A �rst one is whether we an adaptan O(ku) worst ase time algorithm (where u is the size of the unompressed text) instead ofthe dynami programming algorithm we have seleted, whih is O(mu) time. This ould yield anO(k2n+R) worst-ase time algorithm. Our e�orts to adapt one of these algorithms [GP90℄ yieldedthe same O(mkn+R) time we already have.A seond open question is how an we improve the searh time in pratie. For instane, forthe Levenshtein distane we an store 2 bits per ell and adapt [Mye99℄ to update P and I usingbit-parallelism. We believe that this ould yield improvements for larger k values. On the otherhand, we have not devised a bit-parallel tehnique to update C and to detet overlapping mathes,but perhaps some lues an be found in [MKT+00℄ (whih however reports very bad experimentalresults). Another idea is to map all the haraters not belonging to the pattern to a unique symbolat searh time, to avoid reomputing similar states. This, however, requires a �ner traking of thetrie of bloks to detet also desendants of similar states. This yields more work and higher spaerequirement.A third question is whether faster �ltration algorithms an be adapted to this problem with-out deompressing all the text. For example, the �lter based in splitting the pattern in k + 1piees, searhing the piees without errors and running dynami programming on the text sur-rounding the ourrenes [WM92℄ ould be applied by using the multipattern searh algorithm of[KTS+98℄. In theory the omplexity is O(m2 + n + ukm2=�bm=(k+1)), whih is ompetitive fork < m=�(log�(u=n) + log�m). Some progress in this respet has already been made [NKT+01℄.Finally, it would be interesting to onsider other more general ompression models, suh asLZ77. LZ77 is more popular than LZ78 beause of its generally higher ompression ratio and fasterdeompression, but searhing on it seems to be extremely diÆult.Referenes[AB92℄ A. Amir and G. Benson. EÆient two-dimensional ompressed mathing. In Pro.DCC'92, pages 279{288, 1992.[ABF96℄ A. Amir, G. Benson, and M. Farah. Let sleeping �les lie: Pattern mathing in Z-ompressed �les. J. of Comp. and Sys. Sienes, 52(2):299{307, 1996. Earlier versionin Pro. SODA'94.[AG97℄ A. Apostolio and Z. Galil. Pattern Mathing Algorithms. Oxford University Press,Oxford, UK, 1997.[BCW90℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prentie Hall, 1990.[BYN99℄ R. Baeza-Yates and G. Navarro. Faster approximate string mathing. Algorithmia,23(2):127{158, 1999.[CL92℄ W. Chang and J. Lampe. Theoretial and empirial omparisons of approximatestring mathing algorithms. In Pro. CPM'92, LNCS 644, pages 172{181, 1992.24

[CM94℄ W. Chang and T. Marr. Approximate string mathing and loal similarity. In Pro.CPM'94, LNCS 807, pages 259{273, 1994.[CR94℄ M. Crohemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.[FT98℄ M. Farah and M. Thorup. String mathing in Lempel-Ziv ompressed strings. Algo-rithmia, 20:388{404, 1998. Previous version in STOC'95.[GP90℄ Z. Galil and K. Park. An improved algorithm for approximate string mathing. SIAMJ. on Computing, 19(6):989{999, 1990.[Huf52℄ D. Hu�man. A method for the onstrution of minimum-redundany odes. Pro. ofthe I.R.E., 40(9):1090{1101, 1952.[KNU00℄ J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string mathing over Ziv-Lempel ompressed text. In Pro. CPM'2000, LNCS 1848, pages 195{209, 2000.[KST+99℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frameworkfor ompressed pattern mathing. In Pro. 6th Intl. Symp. on String Proessing andInformation Retrieval (SPIRE'99), pages 89{96. IEEE CS Press, 1999.[KTS+98℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple patternmathing in LZW ompressed text. In Pro. DCC'98, pages 103{112, 1998.[KTS+99℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Shift-And approahto pattern mathing in LZW ompressed text. In Pro. CPM'99, LNCS 1645, pages1{13, 1999.[KU96℄ J. K�arkk�ainen and E. Ukkonen. Sparse suÆx trees. In Pro. 2nd Annual InternationalConferene on Computing and Combinatoris (COCOON'96), LNCS 1090, 1996.[Man97℄ U. Manber. A text ompression sheme that allows fast searhing diretly in theompressed �le. ACM Trans. on Information Systems, 15(2):124{136, 1997.[MKT+00℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallelapproah to approximate string mathing in ompressed texts. In Pro. SPIRE'2000,2000. To appear.[MNZBY00℄ E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exible wordsearhing on ompressed text. ACM Transations on Information Systems (TOIS),18(2):113{139, 2000.[MW85℄ V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In CombinatorialAlgorithms on Words, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag, 1985.[Mye99℄ G. Myers. A fast bit-vetor algorithm for approximate string mathing based ondynami progamming. Journal of the ACM, 46(3):395{415, 1999.25

[Nav01℄ G. Navarro. A guided tour to approximate string mathing. ACM Computing Surveys,33(1):31{88, 2001.[NKT+01℄ Gonzalo Navarro, Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and SetsuoArikawa. Faster approximate string mathing over ompressed text. In Pro. 11thIEEE Data Compression Conferene (DCC'01), pages 459{468, 2001.[NR98℄ G. Navarro and M. RaÆnot. A general pratial approah to pattern mathing overZiv-Lempel ompressed text. Tehnial Report TR/DCC-98-12, Dept. of ComputerSiene, Univ. of Chile, 1998.[NR99℄ G. Navarro and M. RaÆnot. A general pratial approah to pattern mathing overZiv-Lempel ompressed text. In Pro. CPM'99, LNCS 1645, pages 14{36, 1999.[NT00℄ G. Navarro and J. Tarhio. Boyer-Moore string mathing over Ziv-Lempel ompressedtext. In Pro. CPM'2000, LNCS 1848, pages 166{180, 2000.[NW70℄ S. Needleman and C. Wunsh. A general method appliable to the searh for similari-ties in the amino aid sequenes of two proteins. J. of Moleular Biology, 48:444{453,1970.[Sel80℄ P. Sellers. The theory and omputation of evolutionary distanes: pattern reognition.J. of Algorithms, 1:359{373, 1980.[SMT+00℄ Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-Mooretype algorithm for ompressed pattern mathing. In Pro. CPM'2000, LNCS 1848,pages 181{194, 2000.[Tar79℄ R. E. Tarjan. Appliations of path ompression on balaned trees. Journal of theACM, 26(4):690{715, 1979.[Ukk85℄ E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.[Wel84℄ T. A. Welh. A tehnique for high performane data ompression. IEEE ComputerMagazine, 17(6):8{19, June 1984.[WM92℄ S. Wu and U. Manber. Fast text searhing allowing errors. Comm. of the ACM,35(10):83{91, 1992.[ZL77℄ J. Ziv and A. Lempel. A universal algorithm for sequential data ompression. IEEETrans. Inf. Theory, 23:337{343, 1977.[ZL78℄ J. Ziv and A. Lempel. Compression of individual sequenes via variable length oding.IEEE Trans. Inf. Theory, 24:530{536, 1978.
26

