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Abstract

Real-world point sets tend to be clustered, so using a machine word for each
point is wasteful. In this paper we first show how a compact representation
of quadtrees using O(1) bits per node can break this bound on clustered point
sets, while offering efficient range searches. We then describe a new compact
quadtree representation based on heavy-path decompositions, which supports
queries faster than previous compact structures. We present experimental evi-
dence showing that our structure is competitive in practice.

Key words: compact data structures, quadtrees, heavy-path decomposition,
range queries, clustered points.

1. Introduction

Storing and querying two-dimensional points sets is fundamental in compu-
tational geometry, geographic information systems, graphics, and many other
fields. Most researchers have aimed at designing data structures whose size,
measured in machine words, is linear in the number of points. That is, data
structures are considered small if they store a set of n points on a u × u grid
in O(n) words of O(log u) bits each. Using O(n log u) bits is within a constant
factor of optimality when the points are distributed uniformly at random over
the grid, but we can often do better on real-world point sets because they tend
to be clustered and, therefore, compressible.

Quadtrees [1, 2] store the point’s coordinates in implicit form, along a root-
to-leaf path per point. Quadtrees may have o(n log u) nodes when the points
are clustered, because closer points tend to share a longer part of their path.

✩An early partial version of this paper appeared in Proc. of the Data Compression Con-
ference 2015.
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Still, classic quadtrees are implemented with pointers, which take Ω(log u) bits
per node, and since they use one node per point at the very least, they require
Ω(n log u) bits overall; the same happens if we store the explicit coordinates
instead of the paths [3].

Recently, various authors [4, 5, 6] proposed quadtree representations based
on succinct trees, which avoid pointers. These structures store the coordinates
implicitly using the paths, and those paths use O(1) bits per quadtree node.
Therefore, they are able to use o(n log u) bits of space, while offering the same
asymptotic query times as traditional structures when supporting edge-by-edge
navigation. Venkat and Mount [5] noted, however, that

“A method for compressing paths or moving over multiple edges
at once using a succinct structure may speed up the many algorithms
that rely on traversal of the quadtree.”

Some previous data structures, such as skip-quadtrees [7] and path-decomposed
tries [8], are evidence that quadtree variants can indeed use O(1) bits per node
while moving over multiple edges at once. The authors of skip-quadtrees only
aimed at a space bound of O(n log u) bits and did not give an implementation,
while the authors of path-decomposed tries gave mainly experimental analyses.

This paper contains two main contributions:

1. We give a space analysis of quadtree data structures as a function of the
amount of clustering of the point set, showing that compressed quadtrees
can use o(n log u) bits of space on clustered points. We also show that
quadtree queries speed up on clustered points.

2. We present the first compressed quadtree data structure that, within that
space, uses heavy-path decomposition in order to provide one-step navi-
gation over multiple edges, thereby speeding up queries.

After describing the compressed quadtree data structure in Section 2, con-
tribution 1 is provided in Section 3, and contribution 2 in Sections 4 (which
describes the new structure) and Section 5 (which gives the new query algo-
rithms). In Section 6 we describe some practical improvements and in Section 7
we show experimentally that our structure is competitive, and in particular that
it outperforms current alternatives when retrieving isolated points. We conclude
in Section 8.

2. Basic Concepts

2.1. Model of computation

Like most of the work on compressed data structures, we assume the RAM
model of computation, where the machine word holds Θ(log u) bits and can
perform all the usual arithmetic and bitwise operations operations on words in
constant time. Note log n = O(log u) because n ≤ u2.
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Figure 1: A set of points, indicated by 1s, on a 16 × 16 grid (left); the quadtree for those
points (right). The heavy lines in the quadtree indicate the path to the leaf corresponding to
the shaded point on the grid.

2.2. Bitvectors

A bitvector is an array B[1, n] of bits. We are interested, apart from accessing
any bit B[i], in implementing two operations: rankb(B, i) counts the number
of times bit b appears in B[1, i], whereas selectb(B, j) is the position of the jth
occurrence of bit b in B. All these operations can be computed in constant time
using only o(n) extra bits on top of B [9, 10].

2.3. Quadtrees

There are many kinds of quadtrees. Our definition corresponds to the so-
called MX-Quadtree [11, 2].

Definition 1. Let P be a set of n points on a discrete grid [1, u]2. If n is 0,
then the quadtree for the grid is a leaf storing 0. If u = 1, then the quadtree is
a leaf storing 1 if the cell contains a point and 0 if not. Otherwise, the quadtree
is a tree whose root stores a 1 and has four children, which are the quadtrees of
the grid’s four quadrants. We say that a node covers the area of its subgrid and
that it is an ancestor of the points in that subgrid.

Example. Figure 1 shows an example, taken from Brisaboa et al. [6]. Notice the
order of the quadrants is top-left, top-right, bottom-left, bottom-right, instead of
the counterclockwise order customary in mathematics. This is called the Morton
or Z-ordering and it is useful because, assuming u is a power of 2 and the origin
is at the top right — without loss of generality, since we can manipulate the
coordinate system to make it so — the obvious binary encoding of a root-to-
leaf path is the interleaving of the binary representations of the corresponding
point’s y- and x-coordinates.

For example, if we imagine the edges descending from each internal node
in Figure 1 are labelled 0, 1, 2, 3 from left to right, then the thick edges are
labelled 2, 1, 1, 2; the obvious binary encoding for this path is 10 01 01 10. The
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coordinates for the shaded point, which corresponds to the leaf at the end of
this path, are (6, 9), so interleaving the binary representations 1001 and 0110
of its y- and x-coordinates also gives 10 01 01 10 . We can interleave a point’s
coordinates in O(1) time using, for example, pre-computed tables.

We now summarize a few simple facts on quadtrees.

Fact 1. A quadtree for the set of points P on a grid [1, u]2 has height at most lg u
and O(n log u) nodes. A node at depth j covers a square area of size 2lg(u)−j ×
2lg(u)−j. A leaf storing a 1 is at depth lg u and hence covers a single cell; there
is exactly one such leaf per point in P.

A quadtree can efficiently find the points lying on a region of the grid.

Definition 2. A query R ⊆ [1, u]2 aims to retrieve the points of P that lie
within R. The result is denoted P ∩ R. When R is a rectangle, the query is
called a range query, and the special case R = [x, x + 1)× [y, y + 1) is called a
membership test for the point (x, y).

Given a query region R, the quadtree computes P∩R by starting at the root
and visiting all the nodes whose subgrids overlap R, reporting the coordinates
of every leaf storing 1. In a range query we can determine in constant time
whether a node’s area overlaps R. This reduces the problem of computing the
cost of solving a query to that of computing the size of a quadtree.

Fact 2. Let Q = P ∩ R be the output of a range query. Then the cost of
enumerating Q by traversing all the nodes overlapping R in a quadtree for P is
proportional to the number of nodes in a quadtree for Q.

The Quadtree Complexity Theorem [12, 13, 2] establishes that the number
of maximal-area quadtree nodes inside a rectangle R of size p × q, plus their
ancestors, is O(p + q + log u). We traverse all those nodes to solve the query
P ∩ R, plus the paths towards every point inside R. If we pessimistically add
lg u nodes to account for each such path, we obtain the following result.

Theorem 3. The time complexity for solving the range query Q = P ∩ R,
where R is a rectangle of size p × q, on a quadtree for P over a [1, u]2 grid, is
O(p + q + (|Q|+ 1) log u).

If the points in P are clustered, however, then intuitively the root-to-leaf
paths in the quadtree will share many nodes and we will use less space and
time. The query time can be refined to O(p + q + log u + |Q|(1 + log(pq/|Q|)))
[14, p. 361], which shows that the time per reported point decreases on smaller
or denser query ranges. We further exploit this idea to provide more refined
space and time bounds on clustered points in the Section 3.

Quadtrees can be generalized to d ≥ 2 dimensions, in which case each
node has 2d children. On a universe [1, u]d, the quadtree still has height
log2d u

d = lg u. The Quadtree Complexity Theorem formula generalizes to
O
(
dqd−1 + log u

)
for a hypercube R of side q, and consequently the search time

complexity for the query Q = P ∩R becomes O
(
dqd−1 + (|Q|+ 1) log u

)
.
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2.4. Compressed quadtrees

Brisaboa, Ladra and Navarro [4] proposed a compressed quadtree represen-
tation called k2-tree (a quadtree corresponds to using k = 2). It represents a
quadtree using exactly 1 bit per node, by collecting the 0s and 1s of the tree in
levelwise order (omitting the root). They show that, by adding rank and select
support to this concatenation of bits, the quadtree can be navigated towards
children and parent in constant time: if we identify the node v with the position
i so that the 4 bits describing its children are in B[4i− 3..4i] (so the root is 1),
then the identifier of the jth child of v is rank1(B, 4(i− 1) + j) + 1, and that of
the parent of v is ⌈select1(B, i− 1)/4⌉.

Example. The quadtree on the right of Figure 1 is represented as a bitvector
B concatenating the bits 1110 (the first level), followed by 110110100100 (the
second level), and so on. To traverse the path in bold, we start at the root node,
i = 1, and take the third child (j = 3) with i′ = rank1(B, 4·0+3)+1 = 4. Indeed,
the child is the 4th node in a levelwise traversal of the quadtree. Its second child
(j = 2) is i′′ = rank1(B, 4 · 3 + 2) + 1 = 10. Again, the child is the 10th node in
the levelwise traversal. The parent of node i′′ is ⌈select1(B, 9)/4⌉ = 4 = i′.

There are several other variants of this representation [5, 6], as well as various
techniques to further reduce space. A major improvement in compression [4]
can be obtained in practice by exploiting small-scale regularities that arise in
many real-world datasets. To do this, they consider small submatrices of a
predefined size (for instance, 4× 4 or 8× 8), and only represent the tree up to
those submatrices, effectively trimming the lower levels of the tree. The different
submatrices that arise are then sorted by frequency and stored explicitly in a
matrix vocabulary, and a sequence of matrix identifiers is used as a last level
of the tree. Directly-Addressable Codes [15] (DACs) are used to store and
access the sequence. The k2-tree representation can be naturally extended to d
dimensions, hence becoming a kd-tree.

3. Tighter Bounds on Quadtrees of Clustered Point Sets

We first bound the size of a quadtree when the points can be distributed in c
clusters of the same level; then we generalize the result to hierarchical clustering.

Theorem 4. Let P be a set of points on the discrete grid [1, u]2. Let P =
P1⊎· · ·⊎Pc be a partition of P into c clusters, so that each Pi contains |Pi| = ni

points lying on a square region of side ℓi (the square regions are not necessarily
disjoint). Then the quadtree of P has O(c log u +

∑
i ni log ℓi) nodes.

Proof. Let S be any ℓ× ℓ square on the grid and N = S ∩P be the points of P
that lie within S. Let A be the set of ancestors of the points in N , and A′ be
the ancestors of the corners of S (those corners may or may not be in P). Since
the quadtree of P has maximum height lg u and S has 4 corners, it holds

|A| ≤ |A ∪A′| ≤ |A\A′|+ |A′| < |A\A′|+ 4 lg u .
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By Fact 1, any ancestor v of a point in N that has depth at most lg(u/ℓ)
covers all the points in a square of size at least 2ℓ × 2ℓ. Therefore, the square
must contain at least one corner of S, and thus v ∈ A′. It follows that

|A\A′| ≤ |N |(lg u− lg(u/ℓ)) = |N | lg ℓ ,

so |A| < |N | lg ℓ + 4 lg u. Since each cluster Pi has |N | = ni points that lie
within a square of size ℓi × ℓi, the result follows.

Theorem 5. Let P be a set of points on the discrete grid [1, u]2, and T be a
tree with root r. Every node t ∈ T stores a set Pt ⊆ P of nt points, which is the
union of the points stored at its children. The sets Pt of all the nodes t ∈ T at
the same depth form a partition of P into clusters. The points Pt of every node
t ∈ T lie on a square region of side ℓt; those regions need not be disjoint. Then

the quadtree of P has O
(∑

t∈T \{r} log ℓp(t) +
∑

t∈L nt log ℓt

)
nodes, where p(t)

is the parent of t in T and L ⊆ T is the set of leaf nodes in T .

Proof. Applying Theorem 4 on the non-hierarchical clustering induced by the
c = |L| leaves of T , we obtain the upper bound O

(
|L| log ℓr +

∑
t∈L nt log ℓt

)
.

We now refine the first term of the bound, which comes from adding up the
ancestors of the 4 corners of each of the regions in L. Instead of adding up
their ancestors up to the root, let us count those ancestors in a finer-grained
mode. Consider the 4 corners of a square of size ℓt × ℓt containing the points
in Pt. Their O

(
log ℓp(t)

)
ancestors of depth over lg u − lg(u/ℓp(t)) are charged

to the node t. The higher ancestors, however, cover a square of size at least
2ℓp(t) ×2ℓp(t) by Fact 1, and therefore are also ancestors of some of the 4 corners
of the area of the parent of t, p(t). We then do not need to account for those
higher ancestors of the corners of the area of t. The result follows.

For example, consider a hierarchical clustering where each cluster lying on a
square region of side ℓ distributes its points evenly into c sub-clusters lying on
squares of side ℓ/s, for logs u levels of clustering. By Theorem 5, the quadtree
has O(n log s) nodes, and its compressed representation uses O(n log s) bits,
which can be o(n log u).

Due to Fact 2, these result also bound the cost of a query on the quadtree of
a set of clustered points, because we traverse precisely the quadtree nodes that
lead to the output points.

All those results easily generalize to d dimensions, by enclosing each cluster
in a hypercube with 2d corners.

Corollary 6. Let P be a set of points on the discrete grid [1, u]d and T be a
tree defined as in Theorem 5, except that now the points Pt of every node t ∈ T
lie on a hypercube of side ℓt; those hypercubes need not be disjoint. Then the

quadtree of P has O
(∑

t∈T \{r} 2d log ℓp(t) +
∑

t∈L nt log ℓt

)
nodes.

We can combine these results with the improvements that favor dense clus-

ters [14], though the formulas are messier: nt log ℓt becomes nt log min(ℓt, u/n
1/d
i ).
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Figure 2: The heavy-path decomposition of the binary tree for the example from Figure 1.
Nodes storing 1s are black; nodes storing 0s are shown hollow, and discarded; thick edges
belong to heavy paths. The numbers below the black leaves indicate our path ordering.

4. A Compressed Quadtree Representation based on Heavy Paths

We describe a new compressed quadtree representation for two-dimensional
points which, like the k2-tree, uses O(1) bits per node and supports the basic
navigation towards parent and children in O(1) time. In the next section we
show that this representation can support queries faster than the k2-tree and,
in general, than the standard quadtree representations. We will also generalize
our representation to higher dimensions.

4.1. Data structure

To store a quadtree, we first replace each internal node by a binary tree
of height 2 and remove any node that has no descendant storing a 1. Let T
be the resulting binary tree. The number of nodes in T is 1/2 (when every
quadtree node has only one child with with a 1) to 3/2 (when all quadtree
nodes children have 1s) of those in the quadtree. In addition to simplifying
our construction, this modification makes quadtrees more practical in higher
dimensions [16], which we will also consider at the end of this section.

We then perform a heavy-path decomposition [17] of T , as follows.

Definition 3. A heavy-path decomposition of T is a recursive decomposition of
T into paths called heavy paths. The first heavy path goes from the root to a
leaf, so that if the path contains a node v then it also contains the child of v with
the most leaf descendants (breaking ties arbitrarily). Once the first heavy path
is defined, its nodes are cut off the tree T , leaving a forest of former subtrees of
T . We then recursively decompose every remaining subtree into heavy paths.

A well-known property of this decomposition is that every root-to-leaf path
in T consists of O(log n) initial segments of heavy paths. In the sequel we call
heavy paths simply paths.

Example. Figure 2 shows the heavy-path decomposition of the binary tree for
our example of Figure 1.

We encode each path h as a binary string whose 0s and 1s indicate which of
h’s nodes are left children and which are right children, respectively (considering
the root as a left child), in increasing order of their depths. Note that all the
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H 000000110 10010100 1100010 110111 001001 10010 1010 1000 1110 1110 010 10 1 1 ,

L0 1-------- ,

L1 -1------- 0------- ,

L2 --1------ -0------ 1------ ,

L3 ---1----- --0----- -0----- 0----- 0----- ,

L4 ----1---- ---0---- --1---- -1---- -0---- 1---- ,

L5 -----0--- ----1--- ---0--- --0--- --0--- -0--- 0--- 0--- 0--- 0--- ,

L6 ------0-- -----1-- ----0-- ---0-- ---0-- --0-- -0-- -0-- -0-- -0-- 0-- ,

L7 -------1- ------0- -----0- ----0- ----0- ---0- --1- --0- --0- --0- -0- 0- ;

P [1..9] = ⟨63, 61, 58, 42, 37, 25, 18, 10, 1⟩
N [1..9] = ⟨12, 11, 10, 6, 5, 3, 2, 1, 0⟩

Figure 3: The bitvectors H and Ld and the arrays P and N for the tree of Figure 2. Dashes
and spaces are shown only to indicate how the bits in Ld and H correspond.

paths end at the same depth, and thus their length plus the depth of their
topmost node is the same for all.

We then sort the set of all those path encodings in decreasing order of their
length. Ties between two paths h and h′ of the same length are broken as
follows: if the topmost nodes of h and h′ are v and v′, respectively, the paths
are ordered in the same way of the paths containing the parents of v and v′.
Notice that v and v′ cannot have the same parent, since they have the same
height and the tree is binary. The numbers below the leaves in Figure 2 indicate
how we order the paths in our example.

Our first structure is a bitvector H that concatenates the encodings of all
the paths, once sorted as described. This bitvector has exactly |T | bits, one
representing each node of T . We say that the bit H[i] corresponds to the node
v if H[i] indicates whether v is a left child or a right child.

For each depth d < 2 lg u (considering the root to have depth 0 and leaves
to have depth 2 lg u), we store a bitvector Ld with 1s indicating which nodes at
that depth in T have two children. These bitvectors have as many bits as there
are internal nodes in T . Figure 3 shows them for our running example.

Our final structures are much smaller: an array P of 2 lg u+ 1 entries stores
in P [ℓ] the position in H where the first path of length ℓ (measured in number
of nodes) is encoded (or null if there are no paths of that length). Similarly, an
array N stores in N [ℓ] the number of paths longer than ℓ. We give support to
perform predecessor queries on P and N : pred(P, i) gives the minimum length
ℓ for which P [ℓ] ≤ i. Because we sorted the paths by decreasing length in H, ℓ
is the length of the path H[i] belongs to. Similarly, pred(N, k) tells the length
ℓ of the kth path in H.

Definition 4. Our compressed quadtree representation for n points on a u× u
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grid has the following components, whose precise contents are defined above:

• A bitvector H of |T | bits concatenating all heavy paths.

• Bitvectors Ld, for 0 ≤ d < 2 lg u, with less than |T | bits in total.

• Arrays P and N , of O(log u) integers overall.

Theorem 7. Our compressed quadtree representation on a set of points in [1, u]2

uses O(1) bits per quadtree node, plus O
(
log2 u

)
bits.

Proof. Bitvector H and all the Lds take O(1) bits per node in T and, there-
fore, O(1) bits per node of the original quadtree. The arrays P and N , with
predecessor data structures, require just O

(
log2 u

)
further bits.

4.2. Navigation

In this section we show how the basic parent/child navigation can be sup-
ported on our data structures.

4.2.1. Moving to the parent

Suppose H[i] corresponds to node v in T . As explained, we obtain the length
ℓ of the path containing v with ℓ = pred(P, i). Further, the path of v is the kth
(in our ordering) of length ℓ and v is the jth top-down node in its path, where
k = ⌈(i− P [ℓ] + 1)/ℓ⌉ and j = (i− P [ℓ] + 1)− (k − 1)ℓ. Because the top node
in the path of v is at depth 2 log u− ℓ, the depth of v is d = 2 log u− ℓ + j.

If j > 1, v is not the topmost node in its path, and then its parent u
corresponds to H[i− 1]. If j = 1, instead, u belongs to another path. Since u is
at depth d− 1, it is mentioned in Ld−1. Further, the nodes at depth d− 1 with
a child starting a path are exactly those that have two children (the other child
continues the path of its parent). Finally, because we order the paths according
to the order of their parent node, it turns out that, since v starts the kth path
at depth d, its parent u is the kth node at depth d−1 having two children. The
position of u in Ld−1 is then found with p = select1(Ld−1, k).

Because the paths are deployed on H by increasing starting depth (or de-
creasing length), all the paths having a node at depth d− 1 precede those that
do not. Further, since the nodes in Ld−1 appear in the same order of H, we
have that the node at Ld−1[p] is the node at depth d− 1 in the pth path of H.
The length of that path is found with ℓ′ = pred(N, p), and it is the k′ path of
length ℓ′, for k′ = p − N [ℓ′]. The position i′ of u in H is then computed as
i′ = P [ℓ′] + (k′ − 1)ℓ′ + (d− 1)− (2 lg u− ℓ′)− 1: the paths of length ℓ′ start at
P [ℓ′], then we have the preceding k′ − 1 paths of length ℓ′, and in our path we
want the node with absolute depth d′ − 1, which we convert to an offset (i.e.,
relative depth) by subtracting the depth of the first node in the path, 2 lg u− ℓ′.

9



Example. Let v be the top node in the ninth path in our ordering (see the
first node in the path labeled 9 in Figure 2). It corresponds to the underlined
position H[i = 50]. Its parent u is the second node in the fourth path, at
H[i′ = 26]. To find u from i = 50, we first compute ℓ = pred(P, 50) = 4, the
length of the path v belongs to. We also compute k = ⌈(50−42+1)/4⌉ = 3 and
j = (50− 42 + 1)− 2 · 4 = 1, so v is the first node in its path, which is the 3rd of
length 4. The depth of v is d = 8−4+1 = 5. Since j = 1, u lies in another path.
It is of depth d− 1 = 4, and thus mentioned at position p = select1(L4, 3) = 4.
To find its position in H, we compute ℓ′ = pred(N, 4) = 6, the length of its
path, as well as k′ = 4−N [6] = 1, so that the path of u is the first of length 6.
We then compute its position i′ = P [6] + 0 + 4− (8− 6)− 1 = 26.

4.2.2. Moving to a child

We compute ℓ, k, j, and d for v as before. If the depth d of v is 2 log u, then v
is a leaf; otherwise it has left and/or right children. Further, one of the children
of v is at H[i + 1]: the left child if H[i + 1] = 0 and the right if H[i + 1] = 1.

To determine if v has another child, and where, we must locate v in Ld. We
compute r = N [ℓ]+k, the rank of v’s path in H, thus v is the rth node of depth
d. Therefore, v has another child iff Ld[r] = 1.

This child is the top node of another path, which starts at depth d + 1
and thus is of length ℓ′′ = 2 log u − d + 1. Since there are s = rank1(Ld, r)
nodes of depth d from where new paths start, the child of v is at H[i′′], where
i′′ = P [ℓ′′] + (s− 1)ℓ′′.

Example. Reversing our previous example, we have for u the values i = 26,
ℓ = 6, k = 1, j = 2, and d = 4. Since u’s depth is d = 4 < 8, u is not a leaf.
One of its children is at H[26 + 1]; since H[27] = 0, this is the left child of u.
To find if there is a right one, we compute r = N [6] + 1 = 4, so the path of u is
the 4th in H and u is the 4th node of depth 4. Since L4[4] = 1, u has a right
child. This child starts a path at depth d + 1 = 5, of length ℓ′′ = 8− 5 + 1 = 4,
and it is the 3rd of those because s = rank1(L4, 4) = 3. We then find the right
child at H[i′′], where i′′ = P [4] + 2 · 4 = 50, where indeed we find v.

Theorem 8. Our compressed quadtree representation on a set of 2-dimensional
points can move to the parent of a node or to any desired child in O(1) time.

Proof. Moving to the parent or to a child in the quadtree requires a constant
number of steps on T , each of which is dominated by the time of the predeces-
sor operations on P and N . Since these arrays have a logarithmic number of
elements, predecessors can be computed in constant time [18].

More practically, we note that, on a downward traversal from the root, we
always know the length ℓ of the current path, and therefore we can perform the
operations without the need of predecessor queries. In Section 5 we show how
heavy paths speed up the specific operations to query quadtrees.
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4.3. Higher dimensions

In dimension d, each quadtree node has 2d children, and the quadtree is still
of height lg u. Therefore our binary tree T introduces d− 1 levels per quadtree
edge, reaching height d lg u. Simulating a quadtree move towards the parent
or children takes O(d) steps in T . Each such step may require predecessor
queries on the arrays P and N , which now contain O(d log u) elements. Those

predecessor queries can be carried out in time O
(

log log d
log log u

)
[19].

The addition of new nodes in T may increase their number by a factor of
2d+1−2

2d
< 2 with respect to the number of nodes in the original quadtree (if a

quadtree node has 2d children, T adds 2d−2 new nodes between the parent and
the children). If we consider the number of 1s in the original quadtree, then T
has at most d nodes per 1 (i.e., a path of length d towards the 1-child of every
quadtree node), and thus O(d log u) nodes per represented point.

Corollary 9. Our compressed quadtree representation on a set of points in
[1, u]d uses O(1) bits per quadtree node (or, alternatively, O(d log u) bits per
point), plus O

(
d log2 u

)
bits. It can move to the parent of a node or to any

desired child in time O
(
d log log d

log log u

)
.

These space and time factors are similar to what can be obtained on previous
compressed quadtree representations [4, 14] on high dimensions. Although they
can move to parents and children in constant time, their space may grow up to
2d bits per node, that is, exponentially with the dimension, because each node
has 2d children and most of them are 0s. This can be alleviated with a bitvector
representation for B that exploits sparsity [20], which recovers the O(1) bits per
1 in the quadtree. In exchange, operation rank takes time O(d), so moving to
a child takes time O(d), while moving to the parent still takes O(1) time.

Although both solutions seem then comparable in terms of space and basic
operations, we show next how to leverage the heavy-path representation to
support root-to-leaf traversals in time O(d log d + log n) instead of O(d log u).
This is particularly relevant for membership queries.

5. Membership and Range Queries

Suppose we want to determine whether the point (x, y) is in the set. The first
step is to obtain the Morton code M of the point, by interlacing the bits that
describe the integers x and y. We can do this in time O(1/ϵ), for any constant ϵ,
with a table using O(uϵ) space. This table does not depend on the data points:
for any two chunks of (ϵ/2) lg u bits, the table returns their interlacing. We can
then find the Morton code of (x, y) by pieces of ϵ lg n bits, via 2/ϵ accesses to
the table with the consecutive pieces of (ϵ/2) lg u bits of x and y.

We now enter the binary tree T from the root, using the successive bits of
M to decide whether to go left or right. That is, each bit of M corresponds to
an edge to follow. Instead of processing M bit by bit and descending in T edge
by edge, however, we descend path by path.
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Algorithm 1: Membership(x, y)

1 M [1..2 lg u]← Morton code of (x, y);
2 s← 1;
3 ℓ← 2 lg u + 1;
4 p← 1;
5 d← 0;
6 while true do
7 m← LCP(M [d + 1..], H[p + 1..]);
8 if m = ℓ− 1 then return yes;
9 r ← N [ℓ] + s;

10 if Ld+m[r] = 0 then return no;
11 s← rank1(Ld+m, r);
12 ℓ← ℓ−m− 1;
13 p← P [ℓ] + ℓ · (s− 1);
14 d← d + m + 1;

We first determine the prefix of the first path (the one starting at the root)
that we must follow. For this sake, we compute m = LCP(M [d+1..], H[p+1..]),
where d = 0, p = 1, and LCP(X,Y ) is the length of the longest common prefix
between bitstrings X and Y (we start from p + 1 because the first bit of the
first path, H[1], is spurious, whereas H[2] refers to the first edge). Note that
the length of the first path, H[p..], is ℓ = 2 lg u + 1, with ℓ− 1 edges.

If m = ℓ− 1, then M [d + 1..] matches the whole path starting at H[p], and
then we know that the point is stored in the quadtree. If not, then M [d + 1..]
shares its first m edges with the path starting at H[p], matching up to node
H[p+m], but not H[p+m+ 1] (e.g., if m = 0 and p = 1 then M matches only
the root node). We must then determine if H[p+m] has two children and, if so,
move to the other child. This is done as described in Section 4.2. If H[p + m]
has only one child, then (x, y) is not in the set. Otherwise, letting H[p′] be the
other child of H[p+m], we know that H[p′] starts a path of length ℓ′ = ℓ−m−1,
with ℓ′ − 1 edges. We then update p← p′, d← d + m + 1, ℓ← ℓ−m− 1.

This process is repeated until we find (x, y) or determine it is not in the set
of points. Since we switch to another descendant heavy path at each step in our
process, we perform O(log n) steps [17]. Algorithm 1 gives the pseudocode.

Note that we always know the length ℓ of the path we are navigating, and
therefore moving to a child requires only O(1) time. Just the rank functionality
on the bitvectors, without using select nor predecessor queries, is needed. We
can also compute m = LCP(X,Y ) in O(1) time if |X| and |Y | are O(log u) (we
apply LCP on H[p + 1..], but it suffices to consider only the first 2 lg u bits of
that suffix). With Z = X xor Y , the m highest bits become 0 and the (m+1)th
becomes 1. We then use a constant-time technique to find the highest 1 in Z
[21]. We can also compute LCP using tables of size uϵ, as before.

Example. To perform a membership query for (6, 9) = (01102, 10012) in our
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quadtree of Figure 1 (the shaded cell), we first interlace the bitstrings to obtain
the path label, M = 10010110, and then use it to traverse the path-decomposed
tree T of Figure 2. We first try to match M [1..] with the longest path, of length
9, from H[2..] = 00000110 . . . (see Figure 3). The common prefix is of length
m = 0, so we cannot go past the root by that path. We then see that the root
has another child, which is H[10], starting a path of length 9 − 0 − 1 = 8 (our
algorithm computes r = 1, s = 1, ℓ = 8, p = 10, and d = 1, continuing because
L0[1] = 1). Since m = LCP(M [2..], H[11..]) = 5, we can advance up to H[15],
where M wants to go right (M [7] = 1) but the path goes left (H[16] = 0). We
then find that H[15] has another child, H[61], which starts a path of length
8− 5− 1 = 2 (our algorithm computes r = 2, s = 1, ℓ = 2, p = 61, and d = 7,
continuing because L6[2] = 1). We finally compute m = LCP(M [8..], H[62]) =
1, so we have arrived at a leaf (m = ℓ− 1) and report that the point exists.

In the worst case, we must traverse O(log n) paths along this process. This
contrasts with the O(log u) time needed with the classical representation, show-
ing that our structure should be faster on sparse points sets. Further, we need
fewer path switches in the way to isolated points. The next theorem shows that
the membership time indeed improves on those points.

Theorem 10. With the help of a constant table using uϵ space (for any constant
ϵ > 0), our compressed quadtree representation supports a membership query for
(x, y) in O(log n) time. Further, the time is O(ming{log(u/g) + log kg}), where
kg is the number of points in P within distance g of (x, y).

Proof. The O(log n) bound follows from the heavy-path decomposition. Fur-
ther, any ancestor v of (x, y) of depth at least 2 lg(u/g) + 2 in T covers a
subgrid of size at most g/2 × g/2, whose points that are then at distance at
most (g/2)

√
2 < g from (x, y). Thus, v covers at most kg points of P. It follows

that the path from v to the deepest ancestor w ∈ T of (x, y) consists of O(log kg)
initial segments of heavy paths. To see why, consider that if we ascend from w
to v, every time we move from the topmost node in one heavy path to its parent
in another heavy path, the number of leaf descendants in the subtree below us
at least doubles. Since the path from the root to v has length O(log(u/g)),
the path from the root to w consists of O(log(u/g) + log kg) initial segments of
heavy paths.

The following corollary, which combines Theorems 5 and 10, suggests that
our structure should be particularly suited to applications in which points are
highly clustered (e.g., towns) but queries are chosen uniformly or according to
a different distribution (e.g., seismic activity).

Corollary 11. Let P be a set of points on the discrete grid [1, u]2 and T be a
tree defined as in Theorem 5. Let Tℓ be the set of nodes at level ℓ in T . Then
a membership query for (x, y) takes O(minℓ maxt∈Tℓ

log(u/d(Pt, (x, y)))) time,
where d(Pt, (x, y)) is the minimum distance between a point in Pt and (x, y).

Proof. Let mℓ = maxt∈Tℓ
log(u/d(Pt, (x, y))) = log(u/mint∈Tℓ

d(Pt, (x, y))).
Let us define g = (1/2) mint∈Tℓ

d(Pt, (x, y)), so kg = 0 and mℓ = O(log(u/g)).
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By Theorem 10, the cost of the membership query is thenO(log(u/g) + log kg) =
O(mℓ). This bound holds for every level ℓ, so the time is O(minℓ mℓ).

5.1. Range queries

In order to output all the points in P∩R given a query region R = [x1, x2]×
[y1, y2], we first traverse via heavy paths towards the lowest ancestor of R in the
quadtree. For this sake, we compute m = min(LCP(x1, x2),LCP(y2, y2)) and
define x and y as the first m bits of x1 and y1, respectively. We then interlace
(x, y) into a bitstring M of length 2m, and traverse towards M in the quadtree
as described in the main part of this section. The node v we arrive at is the
ancestor of all the points in R. We now traverse edge by edge towards all the
descendants of v using the method described in Section 4.2, in constant time
per edge traversed, avoiding to enter into nodes whose area does not intersect
R, and reporting all the leaves found.

The node v can be very high in the tree, even for small regions, and thus
this method is no faster in the worst case than the classical one. We expect,
however, it to be faster in many cases when the query region is small. We inherit
the refined bounds for classic quadtrees [14, p. 361].

Corollary 12. Our compressed quadtree representation outputs Q = P ∩R, for
a rectangle R of size p× q, in time O(p + q + log u + |Q|(1 + log(pq/|Q|))).

5.2. Higher dimensions

In dimension d, the description of the point sought, (x1, . . . , xd), has d lg u
bits, and it might not fit in a computer word of size O(log u). We can still
use the precomputed table of size uϵ described at the beginning of this section
to obtain the bitstring M (of length d lg u) in time O((1/ϵ)d log d), as follows.
Build a binary tree where the root represents all the d coordinates, 1, . . . , d.
Its left child represents the odd positions of the parent, 1, 3, 5, . . . and the right
child the even positions, 2, 4, 6, . . .. This division, taking odd and even positions,
continues until the leaves represent only one dimension 1 ≤ i ≤ d and store the
bitstrings xi. Now, bottom up, every internal node merges the bitstrings of its
two descendants by chunks of (ϵ/2) lg u bits, until the root obtains M . It is easy
to see that the tree has lg d levels and that the total work per level is O(d/ϵ).

Once we obtain M , the membership query proceeds as for two dimensions.
The only difference is that a single LCP query may take time O(d), because the
prefix may coincide in m = O(d log u) bits. However, the sum of all those m
values along the search is also O(d log u), because we advance in M by m + 1
positions each time. Therefore, the time to descend to the leaf (x1, . . . , xd) or
to determine it does not exist is O(d + log n). Note that we do not require
predecessor queries to determine membership.

Corollary 13. With the help of a constant table using uϵ space (for any constant
ϵ > 0), our compressed quadtree representation supports a membership query for
(x1, . . . , xd) in O(d log d + log n) time.

Our finer results can be similarly extended to d dimensions; we leave them
as exercises to the reader.
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6. Practical Optimizations and Implementation Variants

For the creation of the path labels, we use a precomputed table of 256 entries
to compute the interleaving byte-wise, together with some arithmetics to build
the final path. For the 3-dimensional case we have also used an implementation
based on magic numbers. In practice, the computation of the initial path has
negligible effect on the total query times.

The query algorithms described in previous sections always use a top-to-
bottom traversal of the conceptual tree T , which leads to a number of practical
optimizations. A first practical choice, already mentioned, is the adjustment of
the traversal algorithms to keep track of the current depth, thereby avoiding the
need for predecessor structures in P and N . In this section we describe other
practical variants that can reduce the space usage of our structure.

A first significant space improvement can be obtained by removing informa-
tion in H that can be deduced during top-down traversals. Bitvector H stores,
for each path, a bitstring representing its nodes, marking whether each is a left
or a right child. During top-down traversal, we always start at the beginning
of the first path, and whenever we switch to a new path we always start at its
beginning. Note that when switching paths, the first bit of the new path can
be inferred, since it is the opposite of the next bit in the current path. Indeed,
in the membership query of Section 5 we always skip that first bit, H[p], and
compare M [d + 1..] with H[p + 1..]. Therefore, we can remove the first bit of
each path in H and still perform top-down traversals on the tree. Since all the
paths are shortened in the same way, the navigational properties remain the
same and only minor changes are required. Overall, we save one bit per path,
or which is the same, per point in P.

Another improvement in space can be obtained by noting that there are
only n 1s across all the bitvectors Ld, at the starting node of each path. In
contrast, their total length can be up to 2n lg u (i.e., one path in T per point),
getting closer to that maximum on sparse datasets. We can then use for the
bitvectors Ld a compressed bitvector representation [22] that supports constant-
time access and rank queries but uses less space when the bitvector has many
more 0s than 1s. With that representation, the whole set of bitvectors Ld fits
within O(n log log u) bits. In practice this representation is slower, though.

Finally, we can also apply to our structure the matrix-vocabulary compres-
sion applied on the last levels of the quadtree [4], described at the end of Sec-
tion 2.4. We can trim T a few levels above the last one, and use DACs to replace
the removed levels by a matrix vocabulary and a DAC-encoded sequence of ma-
trix identifiers. All the query algorithms remain the same, though they stop
at a smaller depth d′. Once this depth is reached, we find the corresponding
submatrix, and perform single-cell access or range queries over the submatrix
in the same ways as the classical compressed quadtree [4].
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7. Experimental Evaluation

7.1. Experimental framework

We tested the performance of our solution on real datasets from different
domains. We consider grids extracted from geographic information systems
(GIS), social networks (SN), Web graphs (WEB) and RDF datasets (RDF).

• The datasets dblp and enwiki are network data corresponding to the social
network datasets dblp-2011 and enwiki-2013, provided by the Laboratory
for Web Algorithmics1 [23, 24].

• Collections indochina and uk are obtained from Web graph crawls, from
the indochina-2004 and uk-2002 datasets provided by the Laboratory for
Web Algorithmics.

• We build three datasets storing geographic information by processing the
Geonames dataset, which stores over 9 million locations, discretizing them
on a grid. We build three different datasets (GIS-sparse, GIS-med, GIS-
dense) by varying the resolution of the grid.

• We build three datasets storing RDF-based grids, by parsing the DBPedia
dataset2. RDF stores triples (S,P,O) that represent labeled edges in a
graph, where the predicate P represents the label. We partition the dataset
by predicate, so each individual element can be regarded as a binary grid,
and select three different datasets, RDF-sparse, RDF-med, and RDF-dense,
with significantly different number of points in the grid.

These datasets aim at testing the performance of our technique on a wide
variety of real-world applications. The selection of GIS-based and RDF-based
datasets also aims at providing insights on its relative performance depending
on the sparsity of the data, which is a key element for our structure. Table 1
describes the main characteristics of the studied datasets, including the grid size
(all grids are square, of size u× u) and the number n of points in the grid.

We compare our representation with the k2-tree [4], the best known com-
pressed quadtree representation, which has been shown to achieve very good
compression on most of those domains, especially on Web graphs and RDF
data. We use two different implementations of the k2-tree: k2-treep is a direct
implementation of the structure, with all the bitmaps stored in plain form, and
using k = 2 in all levels of the tree; k2-treeDAC is an enhanced version that
applies a number of improvements over the basic approach: it uses k = 4 in the
first 6 levels of decomposition and k = 2 in the remaining levels; also, DACs are
used to replace the last 3 levels of the tree by submatrices of size 8× 8.

1http://law.di.unimi.it
2http://wiki.dbpedia.org/Downloads351
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File Type Grid size (u) Points (n)
dblp SN 986,324 6,707,236
enwiki SN 4,206,785 101,355,853
indochina WEB 7,414,866 194,109,311
uk WEB 18,520,486 298,113,762
GIS-sparse GIS 67,108,864 9,335,371
GIS-med GIS 4,194,304 9,328,003
GIS-dense GIS 524,288 9,188,290
RDF-sparse RDF 66,973,084 138,303
RDF-med RDF 66,973,084 7,936,138
RDF-dense RDF 66,973,084 98,714,022

Table 1: Description of the datasets used in our experiments

We also compare our representation with path-decomposed tries (PDT) [8].
We use two of the configurations proposed by the authors that provide a reason-
able space-time tradeoff: the centroid hollow monotone-hash technique (PDT-
hollow) and the centroid compressed trie, where labels are compressed using
RePair (PDT-RP). Note that PDT is designed to represent string dictionaries,
and only supports membership queries. In order to transform the point grids
into collections of strings suitable for PDT, we use the Morton code for each
individual point in the collection and build the PDT representation of the col-
lection of Morton codes. Membership queries are directly translated into PDT
operations, but queries involving rows/columns or ranges are not specifically
supported and are therefore transformed into a number of membership queries.

We test four different implementations of our proposal, hpqt, considering
two main variables. First, bitvectors Ld can be stored in plain form (hpqtp) or
compressed with the so-called RRR technique [22] (hpqtc). Second, we may use
our basic implementation, with all paths stored completely, or use the DAC-
based compression of the submatrices in the lower levels. This compression
leads to two further variants, hpqtp+DAC and hpqtc+DAC.

We implemented the hpqt variants in C++, using LibCDS 2 3 to provide the
bitvector implementations used. Both k2-tree implementations are provided by
the authors and implemented in C. PDT is implemented in C++, and obtained
from the original author’s repository4. All implementations were compiled using
GCC with full optimization enabled. Experiments were executed on a machine
with Intel Xeon E5-2470@2.3GHz (8 cores) CPU, and 64GB of RAM. The op-
erating system was Debian 9.8 (kernel 4.9.0-8-amd64).

7.2. Space usage

In this section we compare the compression performance of hpqt with k2-
tree variants. Table 2 displays the compression obtained, in bits per point,

3https://github.com/fclaude/libcds2
4https://github.com/ot/path decomposed tries
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DAC PDT
Dataset hpqtp hpqtc k2-treep hpqtp hpqtc k2-tree hollow RP
dblp 11.62 9.23 10.76 10.08 8.88 9.84 9.00 25.43
enwiki 17.56 13.49 16.96 15.01 13.37 14.66 9.11 31.07
indochina 3.29 2.92 2.57 1.28 1.27 1.22 7.51 16.10
uk 4.04 3.73 3.30 2.08 2.02 2.04 7.99 17.04
GIS-sparse 44.19 29.66 44.01 38.32 28.48 38.02 8.23 51.15
GIS-med 30.61 21.28 30.10 25.42 20.72 24.83 8.22 40.64
GIS-dense 17.37 13.05 16.55 13.85 13.21 13.17 8.14 29.81
RDF-sparse 45.01 30.35 45.69 39.81 29.63 46.98 11.06 57.36
RDF-med 11.19 9.02 9.80 7.36 7.09 6.93 9.28 24.30
RDF-dense 31.94 22.22 31.61 27.28 21.54 26.93 9.31 43.42

Table 2: Space required by all implementations (in bits per point). We put in bold the best
and underline the second best space for each dataset.

in all the test datasets. Let us first focus on the comparison between hpqt
variants and the k2-tree. The results show that hpqtc variants achieve better
compression than the k2-tree in almost all the datasets. The k2-tree only obtains
the best compression results in indochina and RDF-med, two datasets where
the differences between representations are not very high in general. Plain
versions, hpqtp, are still slightly larger than the equivalent k2-tree, both with
basic representations and with DAC.

Let us compare the compression obtained by PDT variants, displayed in the
last two columns of Table 2. The space usage of PDT follows patterns completely
different from the other alternatives: PDT-hollow is very consistent, using 8–10
bits per point in all the datasets, whereas PDT-RP requires much more space,
ranging from 16 to 57 bits per point depending on the dataset. The consistency
of PDT-hollow makes it much more efficient than hpqt to represent datasets
with no clear regularities in the points, such as clustering. For instance, in
the GIS-sparse dataset, PDT-hollow is 3–5 times smaller than the hpqt variants,
and in RDF-sparse it is roughly 3–4 times smaller. However, in the Web graph
datasets, PDT-hollow is far from the compression offered by hpqt or k2-tree
variants, becoming 2–4 times larger than our proposal. Note that the space
partitioning of hpqt and k2-tree is expected to work well on sparse grids with
clustered points, whereas PDT does not explicitly consider any of this.

Overall, the results show that hpqt outperforms k2-tree in space in almost all
cases, achieving good compression especially on Web graphs. Alternatives like
PDT-hollow, which do not exploit point regularities, outperform both hpqt and
k2-tree in space on datasets where the points are distributed more randomly, for
example on GIS. We recall, however, that PDT is not designed for representing
point grids, as it does not support range queries. The next sections complement
this analysis by testing the query performance of all these representations.

7.3. Membership queries

We now test the performance of our technique for membership queries, which
check whether a given point exists in the grid or not. We test separately for
empty and filled cells, and perform a third test on isolated filled cells. For each

18



dataset and query type, we build a collection of 100,000 query points. For empty
and filled cells we select these points at random, whereas for isolated cells we
select the 100,000 points that are farthest away from their closest neighbor. We
run each full query set 100 times in each dataset and measure the average.

Figure 4 displays the result of membership queries for empty cells on all the
datasets. The datasets are grouped by family, and we describe the tendency of
each method in the datasets of the same family using lines. One first general
conclusion is that the DAC variants are smaller and faster than those represent-
ing all the nodes in bitvectors. In general, the best variants by far are always
hpqtp+DAC and k2-treeDAC, the latter being always slightly smaller and almost
always faster, by a smaller or a larger margin, with the exception of the dense
GIS datasets. All k2-tree and hpqt variants improve in general on sparser or
more clustered point sets, because isolated empty cells tend to be higher in the
quadtree, but the k2-tree exploits this effect better because its search cost is
directly proportional to the depth of the leaf sought. Our compressed variants,
hpqtc, are significantly slower than the plain ones, hpqtp, and provide relevant
space-time tradeoffs only on the sparser GIS and RDF datasets, where points
distribute uniformly and then the Ld bitvectors tend to have about 2 lg u bits
per 1. In many cases PDT-hollow offers very attractive space, though it is also
significantly slower. The variant PDT-RP is never competitive.

Figure 5 displays the result for filled cells, following the same grouping
of datasets used in Figure 4. For these queries, hpqtp and hpqtp+DAC be-
come clearly faster than the k2-tree variants, while using similar space. In
the sparser GIS and RDF datasets, even the slow compressed variants, hpqtc

and hpqtc+DAC, outperform the k2-tree both in space and time. On the other
hand, PDT-hollow and PDT-RP are also much more competitive, especially on
the GIS and RDF datasets, where PDT-hollow is still the smallest by far (except
on RDF-med) but now its speed is much more competitive. In turn, PDT-RP
is by far the fastest in many cases, though it is considerably larger in general.
Note that the query times of PDT do not change significantly with respect to
Figure 4, whereas accessing filled cells is much more expensive for hpqt and
especially for k2-tree, because filled leaves are always in the deepest level.

Finally, Figure 6 displays the query times for isolated filled cells, where our
structure excels, becoming 2–3 times faster than for random filled cells. Now
even the bitvector-compressed hpqt variants are faster than the k2-tree. As in
the previous cases, PDT-hollow provides a competitive space-time tradeoff in
some datasets, especially on the sparser RDFs, and PDT-RP is sometimes the
fastest (though also the largest), but the margin is much narrower than before.

7.4. Range queries

We now consider range queries, which ask for all the points in a defined
window of the grid. For these experiments, we selected fixed square window
sizes (4, 16, 64, 256, 1024), and for each window size and dataset we built sets
of 1,000 random window queries.

Figure 7 displays the query times obtained on the social networks and Web
graphs, with varying window size. In this type of queries, hpqtp, hpqtp+DAC,
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Figure 4: Query times of membership queries for empty cells. Times are in µs/query. Datasets
are grouped by family, and lines join the points on different datasets of the same family: SN
includes, from left to right, dblp–enwiki; WEB includes indochina–uk; GIS includes GIS-dense–
GIS-med–GIS-sparse; RDF includes RDF-med–RDF-dense–RDF-sparse.

and k2-treeDAC are always the fastest. On small windows, hpqt is more efficient
to reach the deepest node that contains the window, whereas on larger windows
k2-treeDAC takes over, generally by a small margin. Note that the bitvector-
compressed variant hpqtc+DAC is always competitive in time as well. Finally,
note that PDT-hollow and PDT-RP are orders of magnitude slower even on
the smallest windows, because they do not support range queries and we must
resort to individual searches of all the possible points in the query window.

Figure 8 displays the results on the GIS and RDF datasets, which are more
difficult to compress. On those, hpqtp and hpqtp+DAC are the fastest in almost
every case. The sparser datasets, displayed at the top, yield as expected the
greatest difference in performance, with hpqtp being 2–4 times faster than k2-
treeDAC. On the other hand, hpqtc and hpqtc+DAC are slower than k2-tree, but
get very close. The PDT variants are again much slower in all range queries.

We can conclude that the hpqt is generally faster than the k2-tree at range
queries, particularly for smaller windows. The PDT structure is not competitive
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Figure 5: Query times of membership queries for filled cells. Times are in µs/query.

for these queries.
Other kinds of queries, such as row/column queries (requesting all points in

a row/column of the grid), are frequent when representing graphs. On those
queries the k2-tree is slightly faster in general, since the efficiency of the hpqt
to locate the submatrix enclosing the query window does not produce any ad-
vantage.

7.5. Higher dimensions

Finally, we test the applicability of our proposal to higher dimensions. We
compare hpqt with an implementation of the k3-tree, the extension of the k2-
tree to 3 dimensions. We used a set of datasets, mdt500, mdt700, and mdtmed,
which had previously been evaluated for the k3-tree [6]. Those 3-dimensional
grids are obtained from elevation rasters, by considering the value stored in the
raster of values as the third dimension. Table 3 shows their main characteristics.

We will focus only on the variants including DAC compression (hpqtp+DAC,
hpqtc+DAC, and k3-treeDAC, the k3-tree with matrix vocabulary), because the
k3-treeDAC is the only available implementation of the k3-tree.
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Figure 6: Query times of membership queries for isolated filled cells. Times are in µs/query.

We first study compression and query performance for membership queries.
For each dataset, we perform a membership query for each of the points it
contains, and measure the average query time. Figure 9 displays the results
obtained for all the datasets. The results are similar in all cases: hpqtp+DAC

and hpqtc+DAC are slightly larger than k3-treeDAC, but this difference is very
small (less than 5% for hpqtp+DAC, and around 1% for hpqtc+DAC). On the other
hand, both of our solutions are significantly faster than k3-treeDAC: hpqtp+DAC

is about 2.5 times faster, and the compressed variant hpqtc+DAC is still 25%
faster than k3-treeDAC in all the datasets.

We now analyze the performance on range queries. For each dataset, we
run sets of 100,000 random window queries, for different window sizes with the
same side in all dimensions: 4× 4× 4 to 256× 256× 256.

Figure 10 displays the query times on all the datasets, for varying win-
dow sizes. As on 2-dimensional data, hpqt variants are faster for small query
windows, and all the times become close on larger windows. In particular,
hpqtp+DAC is significantly faster than k3-treeDAC in all cases for the smallest
window sizes. The compressed variant, hpqtc+DAC, is the slowest, but still close
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Figure 7: Query times for window queries, with varying window size, for SN (top) and WEB
(bottom) datasets. Results are in µs/query. Log-scale is used in both axis.

to k3-treeDAC in all cases.
Overall, we observe in general that the performance gap between hpqt and

k2-tree widens on three dimensions compared to the two-dimensional case, which
is in line with our theoretical expectations.

8. Conclusions

We have introduced a fast space-efficient representation of quadtrees based
on heavy-path decompositions, answering in the affirmative to the conjecture
of Venkat and Mount [5]. Our structure represents a quadtree on n points in a
grid of size u× u using O(1) bits per quadtree node, and answers membership
queries in O(log n) time. Other compressed quadtree representations [4, 5],
instead, require O(log u) time, which can be significantly higher on sparse grids.
We also prove that the space and time of our structure benefits from sparse and
clustered point sets, which are common in various applications. Some, but not
all, of those benefits extend to other quadtree representations as well.
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Figure 8: Query times for window queries, with varying window size, for GIS (left) and RDF
(right) datasets. Results are in µs/query. Log-scale is used in both axis.

We implemented our structure, demonstrating that it is also practical and
competitive. The space requirements of our new representation are similar to
other space-efficient representations of quadtrees, such as the k2-trees [4], but
our structure is typically faster at retrieving existing points, especially isolated
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Dataset Grid size (r × c× d) Points
mdt500 4, 001× 5, 841× 578 23,051,888
mdt700 3, 841× 5, 841× 472 15,662,092
mdtmed 7, 721× 11, 081× 978 84,028,401

Table 3: Raster datasets used.

ones. Our structure is also generally faster to handle range queries, and on
higher dimensions. Previous structures, instead, are faster when querying large
empty areas of the grid.

One future work direction is to explore how the heavy-path decomposition
can be used to speed up other more sophisticated queries, like approximate-range
and nearest-neighbor searches, by exploiting its ability to efficiently arrive at a
desired submatrix.

Another interesting future work challenge is to make our structure dynamic,
enabling point insertions and deletions, as done for the k2-tree and variants
[5, 25, 26]. Every point insertion requires, in principle, marking that a new
node has now two children (i.e., flipping a bit in some bitvector Ld) and adding
a new path to the representation, somewhere inside bitvector H. Removing a
point reverses this process. This can be supported in time O(log u/ log log u) if
we use dynamic bitvectors [27], which is also the blowup factor induced on the
other operations. Other approaches, which do not affect query times, might be
possible [28].
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