Fast and simple character classes and bounded gaps pattern
matching, with applications to protein searching”

Gonzalo Navarrof Mathieu Raffinot#

Abstract

The problem of fast exact and approximate searching for a pattern that contains
Classes of characters and Bounded size Gaps (CBG) in a text has a wide range of appli-
cations, among which a very important one is protein pattern matching (for instance, one
PROSITE protein site is associated with the CBG [RK] — x(2,3) — [DE] — 2(2,3) - Y,
where the brackets match any of the letters inside, and z(2,3) a gap of length between
2 and 3). Currently, the only way to search for a CBG in a text is to convert it into
a full regular expression (RE). However, a RE is more sophisticated than a CBG, and
searching for it with a RE pattern matching algorithm complicates the search and makes
it slow. This is the reason why we design in this article two new practical CBG matching
algorithms that are much simpler and faster than all the RE search techniques. The first
one looks exactly once at each text character. The second one does not need to consider
all the text characters and hence it is usually faster than the first one, but in bad cases
may have to read the same text character more than once. We then propose a criterion
based on the form of the CBG to choose a-priori the fastest between both. We also show
how to search permitting a few mistakes in the occurrences. We performed many practical
experiments using the PROSITE database, and all them show that our algorithms are
the fastest in virtually all cases.

1 Introduction

This paper deals with the problem of fast searching of patterns that contain Classes of char-
acters and Bounded size Gaps (CBG) in texts. This problem occurs in various fields, like
information retrieval, data mining and computational biology. We are particularly interested
in the latter one.

In computational biology, this problem has many applications, among which the most
important is protein matching. These last few years, huge protein site pattern databases
have been developed, like PROSITE [7, 13]. These databases are collections of protein site
descriptions. For each protein site, the database contains diverse information, notably the
pattern. This is an expression formed with classes of characters and bounded size gaps on the
amino acid alphabet (of size 20). This pattern is used to search for a possible occurrence of
this protein in a longer one. For example, the protein site number PS00007 has as its pattern

*Partially supported by ECOS-Sud project CI9E04.

fDept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile.
gnavarro@dcc.uchile.cl. Partially supported by Fondecyt grant 1-020831.

$ONRS - Laboratoire Génome et Informatique, Tour Evry 2, 523, Place des Terrasses de I’Agora, 91034
Evry, France. raffinot@genopole.cnrs.fr

the expression [RK]—z(2,3) —[DE] —z(2,3) — Y, where the brackets mean that the position
can match any of the letters inside, and x(2,3) means a gap of length between 2 and 3.

Currently, these patterns are considered as full regular expressions (REs) over a fixed
alphabet X, i.e generalized patterns composed of (i) basic characters of the alphabet (adding
the empty word ¢ and also a special symbol z that can match all the letters of %), (ii)
concatenation (denoted -), (ii) union (]) and (iii) Kleene closure (). This latter operation
L* on a set of words £ means that we accept all the words made by a concatenation of
words of £. For instance, our previous pattern can be considered as the regular expression
(RIK) -x-x-(zle) - (D|E) -2z -z (x|e) - Y. We note |RE| the length of a RE, that is the
number of symbols in it. The search is done with the classical algorithms for RE searching,
that are however quite complicated. The RE needs to be converted into an automaton and
then searched in the text. It can be converted into a deterministic automaton (DFA) in
worst case time O(2/7Fl), and then the search is linear in the size n of the text, giving a
total complexity of O(2/%”! £ n). It can also be converted into a nondeterministic automaton
(NFA) in linear time O(|RE|) and then searched in the text in O(n x |RE]) time, giving a
total of O(n x |RE]) time. We give a review of these methods in Section 3. The majority of
the PROSITE matching softwares use these techniques [16, 30].

None of the presented techniques are fully adequate for CBGs. First, the algorithms are
intrinsically complicated to understand and to implement. Second, all the techniques perform
poorly for certain types of REs. The “difficult” REs are in general those whose DFAs are
very large, a very common case when translating CBGs to REs. Third, especially with regard
to the sizes of the DFAs, the simplicity of CBGs is not translated into their corresponding
REs. At the very least, resorting to REs implies solving a simple problem by converting it
into a more complicated one. Indeed, the experimental time results when applied to our CBG
expressions are far from reasonable in regard of the simplicity of CBGs and compared to the
search for expressions that just contain classes of characters [26].

This is the motivation of this paper. We present two new simple algorithms to search
for CBGs in a text, that are also experimentally much faster than all the previous ones.
These algorithms make plenty use of “bit-parallelism”, that consists in using the intrinsic
parallelism of the bit manipulations inside computer words to perform many operations in
parallel. Competitive algorithms have been obtained using bit parallelism for exact string
matching [2, 34], approximate string matching [2, 34, 35, 3, 22], and REs matching [18, 33, 25].
Although these algorithms generally work well only on patterns of moderate length, they are
simpler, more flexible (e.g. they can easily handle classes of characters), and have very low
memory requirements.

We performed two different types of experiments, comparing our algorithms against the
fastest known ones for RE searching. We use as CBGs the patterns of the PROSITE database.
We first compared them as “pure pattern matching”, i.e. searching for the CBGs in a com-
pilation of 6 megabytes of protein sequences (from the TIGR Microbial database). We then
compared them as “library matching”, that is search for a large set of PROSITE patterns in
a protein sequence of 300 amino acids. Our algorithms are by far the fastest in both cases.
Moreover, in the second case, the search time improvements are dramatic, as our algorithms
are about 100 times faster than the best RE matching algorithms when pattern preprocessing
times become important.

An extended abstract of this paper has already been published in [27], without all the
details and without searching with differences.

We use the following definitions throughout the paper. X is the alphabet, a word on ¥ is

a finite sequence of characters of Y. X* means the set of all the words build on ¥. A word
w € X* is a factor (or substring) of p € ¥* if p can be written p = uwv, u,v € ¥*. A factor
w of p is called a suffiz of p is p = ww, u € ¥*, and a prefiz of p is p = wu, u € X*.

We note with brackets a subset of elements of 3: [ART] means the subset {A, R, T} (a
single letter can be expressed in this way too). We add the special symbol z to denote a
subset that corresponds to the whole alphabet. We also add a symbol x(a,b), a < b, for a
bounded size gap of minimal length @ and maximal b, and use z(a) as a short for x(a,a) (so
x = z(1) = z(1,1)). A CBG on X is formally a finite sequence of symbols that can be (i)
brackets, (ii) = and (iii) bounded size gaps z(a,b). We define m as the total number of such
symbols in a CBG.

We use the notation T' = tyty...t, for the text of n characters of ¥ in which we are
searching for the CBGs. A CBG matches T' at position j if there is an alignment of ¢;_; ...,
with the CBG, considering that (i) a bracket matches with any text letter that appears inside
brackets; (ii) an z matches any text letter; and (iii) a bounded gap z(a, b) matches at minimum
a and at maximum b arbitrary characters of T'. We denote by ¢ the minimum size of a possible
alignment and L the size of a maximum one. For example, [RK]—z(2,3) —[DE]—z(2,3) - Y
(where £ = 7 and L = 9) matches the text T = AHLRKDEDATY at position 11 by 3
different alignments (see Figure 1).

Figure 1: Three different alignments of the CBG [RK]|—z(2,3) — [DE] —x(2,3) — Y over the
text T = AHLRKDEDATY at the same ending position.

DEFINITION 1 Searching for a CBG in a text T = t1ty...t, consists in finding all the posi-
tions j of T' in which there is an alignment of the CBG with a suffiz of t1...t;.

This paper is organized as follows. We begin in Section 2 by summarizing the two main
bit-parallel approaches that lead to fast efficient matching algorithms for simple strings but
also for patterns that contain classes of characters. In Section 3, we explain in detail what
are the approaches to search for full REs. We then present in Section 4 our new algorithm
(which we call a “forward algorithm”), that reads all the characters of the text exactly once.
It is based on a new automaton representation and simulation. We present in Section 5
another algorithm (which we call a “backward algorithm” despite that it processes the text
basically left to right), that allows us to skip some characters of the text, being generally
faster. However, it can not been used for all types of CBGs, and it is sometimes slower
than the forward one. Consequently, we give in the next Section 6 a good experimental
criterion that enables us to choose a-priori the fastest, depending on the form of the CBG.
Section 7 is devoted to the experimental results for both algorithms compared to the fastest
RE searching algorithms. Section 8 deals with several extensions of the algorithm. Section
9 considers the possibility of permitting a few differences between the occurrences and the
patterns specification. Section 10 gives our conclusions.

2 Bit-Parallelism

In [2], a new approach to text searching was proposed. It is based on bit-parallelism [1]. This
technique consists in taking advantage of the intrinsic parallelism of the bit operations inside
a computer word. By using cleverly this fact, the number of operations that an algorithm
performs can be cut down by a factor of at most w, where w is the number of bits in the
computer word. Since in current architectures w is 32 or 64, the speedup is very significative
in practice.

Figure 2 shows a non-deterministic automaton that searches for a pattern in a text. Clas-
sical pattern matching algorithms, such as KMP [17], convert this automaton to deterministic
form and achieve O(n) search time. The Shift-Or algorithm [2], on the other hand, uses bit-
parallelism to simulate the automaton in its nondeterministic form. It achieves O(mn/w)
worst-case time, i.e., an optimal speedup over the classical O(mn) simulation. For m < w,
Shift-Or is twice as fast as KMP because of better use of computer registers. Moreover, it is
easily extended to handle classes of characters.

(% b b b a a
O e O e O B O e O s O R O ©

Figure 2: A nondeterministic automaton to search for the pattern p = baabbaa in a text. The
initial state is 0.

We use some notation to describe the operations on bits. We use exponentiation to
denote bit repetition, e.g. 031 = 0001. We denote as by ...b; the bits of a mask of length ¢,
which is stored somewhere inside the computer word of length w. We use C-like syntax for
operations on the bits of computer words, i.e. “|” is the bitwise-or, “&” is the bitwise-and,
“~” complements all the bits, and “<<” moves the bits to the left and enters zeros from
the right, e.g. byby_1...bob1 << 3 = bp_3...b620:000. We can also perform arithmetic
operations on the bits, such as addition and subtraction, which operate the bits as if they
formed a number, for instance by...b,10000 — 1 =b,...5,01111.

We explain now the basic algorithm and then a later improvement over it.

2.1 Forward scanning

We present now the Shift-And algorithm, which is an easier-to-explain (though a little less
efficient) variant of Shift-Or. The algorithm builds first a table B which for each character
stores a bit mask by, ...b;. The mask in BJc] has the i-th bit set if and only if p; = ¢. The
state of the search is kept in a machine word D = d,,, ... dq, where d; is set whenever p1ps ... p;
matches the end of the text read up to now (another way to see it is to consider that d; tells
whether the state numbered i in Figure 2 is active). Therefore, we report a match whenever
d,, 1s set.

We set D = 0 originally, and for each new text character T}, we update D using the
formula,

D'+ ((D<<1)]0m™ ') & B[T}]

The formula is correct because the i-th bit is set if and only if the (i — 1)-th bit was set
for the previous text character and the new text character matches the pattern at position

i. In other words, Tj_;y1...T; = py...p; if and only if T;_;y...T;_y = py...pi—1 and
T; = p;. Again, it is possible to relate this formula to the movement that occurs in the
nondeterministic automaton for each new text character: each state gets the value of the
previous state, but this happens only if the text character matches the corresponding arrow.
Finally, the | 0™ 11" after the shift allows a match to begin at the current text position (this
operation is saved in the Shift-Or, where all the bits are complemented). This corresponds
to the self-loop at the beginning of the automaton.

The cost of this algorithm is O(n). Although we consider only masks of length m here, in
practice the masks are of length w (as explained earlier) and some provisions may be necessary
to handle the unwanted extra bits. For patterns longer than the computer word (i.e. m > w),
the algorithm uses [m/w] computer words for the simulation (not all them are active all the
time), with a worst-case cost of O(mn/w) and an average case cost of O(n).

2.2 Classes of characters

The Shift-Or algorithm is not only very simple, but it also has some further advantages. The
most immediate one is that it is very easy to extend it to handle classes of characters. That
is, each pattern position does not only match a single character but a set of characters. If C;
is the set of characters that match the position 7 in the pattern, we set the i-th bit of B]c]
for all ¢ € C;. In [2] they show also how to allow a limited number & of mismatches in the
occurrences, at O(nm log(k)/w) cost.

This paradigm was later enhanced [34] to support extended patterns, which allow wild
cards, regular expressions, approximate search with nonuniform costs, and combinations.
Further development of the bit-parallelism approach for approximate string matching lead to
some of the fastest algorithms for short patterns [3, 22]. In most cases, the key idea was to
simulate a nondeterministic finite automaton. It is interesting also to mention [11], which
searches allowing mismatches by using a combination of bit-parallelism and Boyer-Moore.

Bit-parallelism has became a general way to simulate simple nondeterministic automata
instead of converting them to deterministic. This is how we use it in our algorithm.

2.3 Backward scanning

The main disadvantage of Shift-Or is its inability to skip characters, which makes it slower
than the algorithms of the Boyer-Moore [5] or the BDM [10, 9] families. We describe in
this section the BNDM pattern matching algorithm [26]. This algorithm, a combination of
Shift-Or and BDM, has all the advantages of the bit-parallel forward scan algorithm, and in
addition it is able to skip some text characters.

BNDM is based on a suffix automaton. A suffix automaton on a pattern P = p1ps ... o,
is an automaton that recognizes all the suffixes of P. The nondeterministic version of this
automaton is shown in Figure 3. Note that the automaton will not run out of active states as
long as it has read a factor of P. In the original BDM this automaton is made deterministic.
BNDM, instead, simulates the automaton using bit-parallelism. Just as for Shift-And, we
keep the state of the search using m bits of a computer word D = d,,, ... d;.

A very important fact is that this automaton can not only be used to recognize the suffixes
of P, but also factors of P. Note that there is a path labeled by x from the initial state if
and only if z is a factor of P. That is, the nondeterministic automaton will not run out of
active states as long as it has read a factor of P.

Figure 3: A nondeterministic suffix automaton for the pattern P = baabbaa. Dashed lines
represent e-transitions (i.e. they occur without consuming any input).

The suffix automaton is used to design a simple pattern matching algorithm. This algo-
rithm is O(mn) time in the worst case, but optimal on average (O(nlog, m/m) time). Other
more complex variations such as TurboBDM [10] and MultiBDM [9, 29] achieve linear time
in the worst case.

To search for a pattern P = pypy...p, in a text T = t1ty...1,, the suffix automaton of
P" = pypm-1-..p1 (i.e the pattern read backwards) is built. A window of length m is slid
along the text, from left to right. The algorithm searches backward inside the window for a
factor of the pattern P using the suffix automaton, i.e. the suffix automaton of the reverse
pattern is fed with the characters in the text window read backward. This backward search
ends in two possible forms:

1. We fail to recognize a factor, i.e we reach a window letter o that makes the automaton
run out of active states. This means that the suffix of the window we have read is not
anymore a factor of P. Figure 4 illustrates this case. We then shift the window to
the right, its starting position corresponding to the position following the letter o (we
cannot miss an occurrence because in that case the suffix automaton would have found
a factor of it in the window).

Window
la?t

S ——
Search for a factor with the DAWG
Record in last the window position when a terminal state is reached

la§t

LTI lol I [Tl

Fail to recognize a factor at ¢: the pattern can not start before o.
The maximum prefix starts at last

LTI el TP PP PP PP T

safe shift New window

Figure 4: Basic search with the suffix automaton

2. We reach the beginning of the window, therefore recognizing the pattern P since the
length-m window is a factor of P (indeed, it is equal to P). We report the occurrence,
and shift the window by 1.

The bit-parallel simulation works as follows. Each time we position the window in the

text we initialize D = 1™ and scan the window backward. For each new text character read
in the window we update D. If we run out of 1’s in D then there cannot be a match and we
suspend the scanning and shift the window. If we can perform m iterations then we report
the match.

We use a mask B which for each character ¢ stores a bit mask. This mask sets the bits
corresponding to the positions where the reversed pattern has the character ¢ (just as in the
Shift-And algorithm). The formula to update D is

D' « (D & B[tj]) << 1

BNDM is not only faster than Shift-Or and BDM (for 5 < m < 100 or so), but it can
accommodate all the extensions mentioned. Of particular interest to this work is that it can
easily deal with classes of characters by just altering the preprocessing, and it is by far the
fastest algorithm to search for this type of patterns [26].

Note that this type of search is called “backward” scanning because the text characters
inside the window are read backwards. However, the search progresses from left to right in
the text as the window is shifted.

3 Regular expression searching

The usual way of dealing with an expression with character classes and bounded gaps is
actually to search for it as a full regular expression (RE) [16, 30]. A gap of the form z(a,b)
is converted into a letters z followed by b — a subexpressions of the form (z|e).

The traditional technique [31] to search for a RE of length O(m) in a text of length n is
to convert the expression into a nondeterministic finite automaton (NFA) with O(m) nodes.
Then, it is possible to search the text using the automaton at O(mn) worst case time, or to
convert the NFA into a deterministic finite automaton (DFA) in worst case time O(2™) and
then scan the text in O(n) time.

Some techniques have been proposed to obtain a good tradeoff between both extremes.
In 1992, Myers [18] presented a four-russians approach which obtains O(mn/logn) worst-
case time and extra space. Other simulation techniques that aim at good tradeoffs based on
combinations of DFAs and bit-parallel simulation of NFAs are given in [34, 25].

There exist currently many different techniques to build an NFA from a regular expression
R. The most classical one is Thompson’s construction [31], which builds an NFA with at most
2m states (where m is counted as the number of letters and €’s in the RE). A second one is
Glushkov’s construction, popularized by Berry and Sethi in [4]. The NFA resulting of this
construction has the advantage of having just m+ 1 states (where m is counted as the number
of letters in the RE).

A lot of research on Glushkov’s construction has been pursued, like [6], where it is shown
that the resulting NFA is quadratic in the number of edges in the worst case. In [14], a long
time open question about the minimal number of edges of an NFA (without e-transition) with
linear number of states was answered, showing a O(m?) construction with O(m) states and
O(m(logm)?) edges, as well as a lower bound of O(m logm) edges. In [12], the construction
time was improved to O(m(logm)?). Hence, Glushkov construction is not space-optimal. An
improvement has been proposed in [15], building a quotient of Glushkov’s automaton. Some
research has been done also to try to construct directly a DFA from a regular expression,
without constructing an NFA, such as [§].

e//’®7 *S*}@\g g/’ £>@ £
IO e O OO o}

RO RO e R R
X X

(a) Thompson construction

OB Oan O OO ©

(b) Glushkov construction

Figure 5: The two classical NFA constructions on our example a -b-c-z - (zle) - (z|e) - d - e.
We recall that z matches the whole alphabet . The Glushkov automaton is € free, but both
present some difficulties to perform an efficient bit-parallelism on them.

We show in Figure 5 the Thompson and Glushkov automata for an example CBG a — b —
¢ —xz(1,3) —d — e, which we translate into the regular expression a-b-c-z - (z|e) - (z|e) - d-e.

Both Thompson and Glushkov automata present some particular properties. Some algo-
rithms like [18, 34] make use of Thompson’s automaton properties and some others, like [25],
make use of Glushkov’s ones.

Finally, some work has been pursued in skipping characters when searching for a RE. A
simple heuristic that has very variable success is implemented in Gnu Grep, where they try
to find a plain substring inside the RE, so as to use the search for that substring as a filter
for the search of the complete RE. In [32] they propose to reduce the search of a RE to a
multipattern search for all the possible strings of some length that can match the RE (using
a multipattern Boyer-Moore like algorithm). In [25] they propose the use of an automaton
that recognizes reversed factors of strings accepted by the RE (in fact a manipulation of the
original automaton) using a BNDM-like scheme to search for those factors (see Section 2).

However, none of the presented techniques seems fully adequate for CBGs. First, the
algorithms are intrinsically complicated to understand and to implement. Second, all the
techniques perform poorly for a certain type of REs. The “difficult” REs are in general those
whose DFAs are very large, a very common case when translating CBGs to REs. Third,
especially with regard to the sizes of the DFAs, the simplicity of CBGs is not translated
into their corresponding REs. For example, the CBG “[RK]| — z(2,3) — [DE] — 2(2,3) = Y”
considered in the Introduction yields a DFA which needs about 600 pointers to be represented.

At the very least, resorting to REs implies solving a simple problem by converting it into
a more complicated one. Indeed, the experimental time results when applied to our CBG
expressions are far from reasonable in regard of the simplicity of CBGs, as seen in Section
7. As we show in that section, CBGs can be searched for much faster by designing specific

algorithms for them. This is what we do in the next sections.

4 A forward search algorithm for CBG patterns

We express the search problem of a pattern with classes of characters and gaps using a
non-deterministic automaton. Compared to the automaton for simple patterns (Section 2),
this one permits the existence of gaps between consecutive positions, so that each gap has a
minimum and a maximum length. The automaton we use does not correspond to any of those
obtained with the regular expression simulations (see Section 3), although the functionality
is the same.

Figure 6 shows an example for the pattern a — b — ¢ — x(1,3) — d — e. Between the
letters ¢ and d we have inserted three transitions that can be followed by any letter, which
corresponds to the maximum length of the gap. Two e-transitions leave the state where
abc has been recognized and skip one and two subsequent edges, respectively. This allows
skipping one to three text characters before finding the cd at the end of the pattern. The
initial self-loop allows the match to begin at any text position.

€

z . >
[
-

£ \
m a b c { X \ X \ X d e
O O O S O OLR OLE Oen O ©
Figure 6: Our non-deterministic automaton for the pattern a —b —c—x(1,3) —d —e.

To build the NFA, we start with the initial state Sy and read the pattern symbol by
symbol (a symbol being a class of characters or a gap'). We add new automaton edges and
states for each new symbol read. If after creating state S; the next pattern symbol is a class
of characters C we create a state S;;1 and add an edge labeled C from state S; to state S;;1.
On the other hand, if the new pattern symbol is a gap of the form z(a,b), we create b states
Sit1...Si4p and edges labeled ¥ linking state S; to S;j41 for 7 € i...4 4+ b — 1. Additionally,
we create b —a e-transitions from state S; to states S;y1...S;15_q. The last state created
in the whole process is the final state.

We are now interested in an efficient simulation of the above automaton. Despite that this
is a particular case of a regular expression, its simplicity permits a more efficient simulation.
In particular, a fast bit-parallel simulation is possible.

We represent each automaton state by a bit in a computer word. The initial state is not
represented because it is always active. As with the normal Shift-And, we shift all the bits
to the left and use a table of masks B indexed by the current text character. This accounts
for all the arrows that go from states S; to S;41.

The remaining problem is how to represent the e-transitions. For this sake, we chose? to
represent active states by 1 and inactive states by 0. We call “gap-initial” states those states
S; from where an e-transition leaves. For each gap-initial state S; corresponding to a gap
z(a,b), we define its “gap-final” state to be S;1p_q41, i.e. the one following the last state

'Note that = and single letters can also be seen as classes of characters.
2Tt is possible to devise a formula for the opposite case, but unlike Shift-Or, it is not faster.

reached by an e-transition leaving S;. In the example of Figure 6, we have one gap-initial
state (S3) and one gap-final state (Sg).

We create a bit mask I which has 1 in the gap-initial states, and another mask F' that
has 1 in the gap-final states. Then, if we keep the state of the search in a bit mask D, then
after performing the normal Shift-And step, we simulate all the e-moves with the operation

D« D | (F (D&I) & ~F)

The rationale is as follows. First, D & I isolates the active gap-initial states. Subtracting
this from F' has two possible results for each gap-initial state S;. First, if it is active the result
will have 1 in all the states from S; to S;ip_q, successfully propagating the active state S;
to the desired target states. Second, if S; is inactive the result will have 1 only in S;y 4 441.
This undesired 1 is removed by operating the result with “& ~ F”. Once the propagation has
been done, we or the result with the already active states in D. Note that the propagations
of different gaps do not interfere with each other, since all the subtractions have local effect.

Let us consider again our example of Figure 6. The corresponding I and F' masks are
00000100 and 00100000, respectively (recall that the bit masks are read right-to-left). Let
us also consider that we have read the text abc, and hence our D mask is 00000100. At
this point the e-transitions should take effect. Indeed, ((F' — (D & I)) & ~ F) yields
((00100000 — 00000100) & 11011111) = 00011100, where states Sz, S4 and S; have been
activated. If, on the other hand, D = 00000010, the propagation formula yields ((00100000 —
00000000) & 11011111) = 00000000 and nothing changes.

Figure 7 shows the complete algorithm. For simplicity the code assumes that there cannot
be gaps at the beginning or at the end of the pattern (which are meaningless anyway). The
value L (maximum length of a match) is obtained in O(m) time by a simple pass over the
pattern P, summing up the maximum gap lengths and individual classes (recall that m is the
number of symbols in P). The preprocessing takes O(L|X|) time, while the scanning needs
O(n) time. If L > w, however, we need several machine words for the simulation, which thus
takes O(n[L/w]) time.

5 A backward search algorithm for CBG patterns

When the searched patterns contain just classes of characters, the backward bit-parallel ap-
proach (see Section 2) leads to the fastest algorithm BNDM [26]. The search is done by sliding
over the text (in forward direction) a window that has the size of the minimum possible align-
ment (¢). We read the window backwards trying to recognize a factor of the pattern. If we
reach the beginning of the window, then we found an alignment. Else, we shift the window
to the beginning of the longest factor found.

We extend now BNDM to deal with CBGs. To recognize all the reverse factors of a CBG,
we use quite the same automaton built in Section 4 on the reversed pattern, but without the
initial self-loop, and considering that all the states are active at the beginning. We create an
initial state I and e-transitions from I to each state of the automaton. Figure 8 shows the
automaton for the pattern a — b — ¢ — x(1,3) —d — e. A word read by this automaton is a
factor of the CBG as long as there exists at least one active state.

The bit-parallel simulation of this automaton is quite the same as that of the forward
automaton (see Section 4). The only modifications are (a) that we build it on P", the
reversed pattern; (b) that the the bit mask D that registers the state of the search has to be

10

Search (P m,T1.n)

/* Preprocessing */
L < maximum length of a match
for c €Y do B[] « 0F
I « 0f, F « of
1 < 0
for jel...m
if P; is of the form z(a,b) then /* a gap */

I « I | (1<<((i—1))

F «— F | (<< (i+b—a))

for ce X, k€i...i+b—1do Ble] < Bl | (1<<k)

1 +— 1+0b
else /* P; is a class of characters */
for c€ Pj do Blc] < Bl | (1 <<1i) i — i+1
nF + ~F

M + 1<<(L-1) /* final state */

/* Scanning */
D « 0"
for jel...n
if D & M # 0" then report a match ending at j — 1
D «+ ((D<<1) | 0" ') & Bltj]
D < D| (F-(D & I)) & nF)

Figure 7: The forward scanning algorithm.

11

€

-

\\
N
SN

7
/ -z \
/ / \

O O ORN O O OL ORGSO

l | | | | ! | | |

L -t € € € € € € € €

\ \ \ \ \ \ \ \ \

TSR SN SN SO U SOOI ORI PO SO __@<

Figure 8: The non-deterministic automaton built in the backward algorithm to recognize all
the reversed factors of the CBG a —b— ¢ —z(1,3) —d —e.

initialized with D = 1% to perform the initial e-transitions; and (c) that we do not or D with
0%~'1 when we shift it, for there is no more initial self-loop.

The backward CBG matching algorithm shifts a window of size ¢ along the text. Inside
each window, it traverses backward the text trying to recognize a factor of the CBG (this is
why the automaton that recognizes all the factors has to be built on the reverse pattern P").

If the backward search inside the window fails (i.e. there are no more active states in the
backward automaton) before reaching the beginning of the window, then the search window
is shifted to the beginning of the longest factor recognized, exactly like in the first case of the
classic BNDM (see Section 2).

If the begining of the window is reached with the automaton still holding active states,
then some factor of length ¢ of the CBG is recognized in the window. Unlike the case of exact
string matching, where all the occurrences have the same length of the pattern, this does not
automatically imply that we have recognized the whole pattern. We need a way to verify a
possible alignment (that can be longer than /) starting at the beginning of the window. So
we read the characters again from the beginning of the window with the forward automaton
of Section 4, but without the initial self-loop. This forward verification ends when (1) the
automaton reaches its final state, in which case we found the pattern; (2) there are no more
active states in the automaton, in which case there is no pattern occurrence starting at the
window. As there is no initial loop, the forward verification surely finishes after reading at
most L characters of the text. We then shift the search window one character to the right
and resume the search.

Figure 9 shows the complete algorithm. Some optimizations are not shown for clarity,
for example many tests can be avoided by breaking loops from inside, some variables can be
reused, etc.

The worst case complexity of the backward scanning algorithm is O(nL), which is quite
bad in theory. However, on the average, the backward algorithm is expected to be faster than
the forward one. The next section gives a good experimental criterion to know in which cases
the backward algorithm is faster than the forward one. The experimental search results (see
Section 7) on the PROSITE database show that the backward algorithm is almost always the
fastest.

6 Which algorithm to use ?

We have now two different algorithms, a forward and a backward one, so a natural question
is which one should be chosen for a particular problem. We seek for a simple criterion that

12

Backward search (Pi .11 .n)

L <+ maximum length of a match /* Preprocessing */
¢ < minimum length of a match
for c € X do Byld <+ 0", By[c] « 0"
Iy « 0F, Fy « 0, I, « 0F, F, « 0OF
1 < 0
for jel...m
if P; is of the form z(a,b) then /* a gap */
If — If|(1<<('l—1)) , Iy Ib‘(1<<(L—(’i+b)—1))
Fr « Fp | (1<<(i+b—a)) , F <« F | (1<<(L—1i—a))
for ceX, k€i...i+b—1 do
Bild — Byld | (1<<k), Bd « Byld | (1<<(L—k—1))
i — i+b
else /* P; is a class of characters */
for c€ P; do
Bild « Byld | (1<<i), Byle] « Bifd | (1<<(L—i-1))
1 — i+1
an — NFf, nky, < ~F
M + 1<<(L-1) /* final state for the forward scan* /

pos <+ O /* Scanning */
while pos < n—/ do
J o~ {, Dy + -
while Dy # 0" and j >0
Dy < Dy & Byltpos+s]
Dy « Dy | (F,— (Dy & Ip)) & nFy)
J o= -1
if Dy #0" and j=0 /* f orward scan */
D « 01, v « 1
while D; # 0" and pos+wv <n
Df — Df & Bf[tp05+v}
Dy « Dy | (Ff —(Dy & If)) & nFy)
if Dy & M # 0 then
report a match beginning at pos+1
Dy + 0"
Dy « (Dy<<1)
vv+1
D, « (D,<<1)
pos <+ pos—+j+1

Figure 9: The backward scanning algorithm.

13

enables us to choose the best algorithm.

In particular, let us consider the maximum gap length G in the CBG. If G > /, then every
text window of length 7 is a factor of the CBG, so we will surely traverse all the window during
the backward scan and always shift in 1, for a complexity of 2(nf) at least. Consequently, the
backward approach we have presented must be restricted at least to CBGs in which G < /.

This can be carried on further. Each time we position a window in the text, we know
that at least G 4 1 characters in the window will be inspected before shifting. Moreover, the
window will not be shifted by more than ¢ — G positions. Hence the total number of character
inspections across the search is at least (G + 1)n/(¢ — G), which is larger than n (the number
of characters inspected by a forward scan) whenever ¢ < 2G + 1.

Hence, we define (G+1)// as a simple parameter governing most of the performance of the
backward scan algorithm, and predict that 0.5 is the point above which the backward scanning
is worse than forward scanning. Of course this measure is not perfect, as it disregards the
effect of other gaps, classes of characters and the cost of forward checking in the backward
scan, but a full analysis is extremely complicated and, as we see in the next section, this
simple criterion gives good results.

According to this criterion, we can design an optimized version of our backward scanning
algorithm. The idea is that we can choose the “best” prefix of the pattern, i.e. the prefix
that minimizes (G + 1)/¢. The backward scanning can be done using this prefix, while the
forward verification of potential matches is done with the full pattern. This could be extended
to selecting the best factor of the pattern, but the code would be more complicated (as the
verification phase would have to scan in both directions, buffering would be complicated, and,
as we see in the next section, the difference is not so large.

7 Experimental results

We have tested our algorithms over an example of 1,168 PROSITE patterns [16, 13] and a 6
megabytes (MB) text containing a concatenation of protein sequences taken from the TIGR
Microbial database. The set had originally 1,316 patterns from which we selected the 1,230
whose L (maximum length of a match) does not exceed w, the number of bits in the computer
word of our machine. This leaves us with 93% of the patterns. From them, we excluded the
62 (5%) for which G > /¢, which as explained cannot be reasonably searched with backward
scanning. This leaves us with the 1,168 patterns.

We have used an Intel Pentium III machine of 500 MHz running Linux. We show user
times averaged over 10 trials. Three different algorithms are tested: Fwd is the forward-scan
algorithm described in Section 4, Bwd is the backward-scan algorithm of Section 5 and Opt
is the same Bwd where we select for the backward searching the best prefix of the pattern,
according to the criterion of the previous section.

A first experiment aims at measuring the efficiency of the algorithms with respect to the
criterion of the previous section. Figure 10 shows the results, where the patterns have been
classified along the z axis by their (G 4 1)/¢ value. As predicted, 0.5 is the value from which
Buwd starts to be worse than Fwd except for a few exceptions (where the difference is not so
big anyway). It is also clear that Opt avoids many of the worst cases of Bwd. Finally, the
plot shows that the time of Fwd is very stable. While the forward scan runs always at around
50 MB/sec, the backward scan can be as fast as 200 MB/sec.

What Figure 10 fails to show is that in fact most PROSITE patterns have a very low

14

tenths of secsMB

T T — —
=
—— Opt
1 eeee—— -
)
i
k]
@
=
z
Ll e e e L e Ll e e L e
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
(G+1)/ell (G+1)/ell

Figure 10: Search times (in tenths of seconds per MB) for all the patterns classified by their
(G + 1)/¢ value.

(G + 1) /¢ value. Figure 11 plots the number of patterns achieving a given search time, after
removing a few outliers (the 12 that took more than 0.04 seconds for Bwd). Fwd has a
large peak because of its stable time, while the backward scanning algorithms have a wider
histogram whose main body is well before the peak of Fwd. Indeed, 95.6% of the patterns are
searched for faster by Bwd than by Fwd, and the percentage raises to 97.6% if we consider Opt.
The plot also shows that there is little statistical difference between Bwd and Opt. Rather,
Opt is useful to remove some very bad cases of Bwd.

600 - Fwd :]

500 |- ————r .
400 - 1

300]

frequency

200 [- , -

100 |-

e e e e e e b e e b e e b e b e by
0.05 0.1 0.15 0.2 0.25 0.3 0.35

tenths of secsMB
Figure 11: Histogram of search times for our different algorithms.

Our third experiment aims at comparing our search method against converting the pattern
to a regular expression and resorting to general regular expression searching. From the existing
algorithms to search for regular expressions we have selected the following.

Dfa: Builds a deterministic finite automaton and uses it to search the text.

Nfa: Builds a non-deterministic finite automaton and uses it to search the text, updating all

15

the states at each text position.

Myers: Is an intermediate between Dfa and Nfa [18], a non-deterministic automaton formed
by a few blocks (up to 4 in our experiments) where each block is a deterministic au-
tomaton over a subset of the states. “(z|e)” was expressed as “.?” in the syntax of this
software.

”

Agrep: Is an existing software [34, 33] that implements another intermediate between Dfa
and Nfa, where most of the transitions are handled using bit-parallelism and the e-
transitions with a deterministic table. “(z|e)” was expressed as “(.["")” in the syntax
of this software.

Grep: Is Gnu Grep with the option "-E" to make it accept regular expressions. This software
uses a heuristic that, in addition to (lazy) deterministic automaton searching, looks for
long enough literal pattern substrings and uses them as a fast filter for the search. The
gaps “z(a,b)” were converted to “.{a,b}” to permit specialized treatment by Grep.

BNDM: Uses the backward approach we have extended to CBGs, but adapted to general
REs instead [25]. It needs to build to deterministic automata, one for backward search
and another for forward verification.

Multipattern: Reduces the problem to multipattern Boyer-Moore searching of all the strings
of length £ that match the RE [32]. We have used “agrep -f” as the multipattern search
algorithm.

To these, we have added our Fwd and Opt algorithms. Figure 12 shows the results.
From the forward scanning algorithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip text
characters), the fastest is our Fwd algorithm thanks to its simplicity. Agrep has about the
same mean but much more variance. Dfa suffers from high preprocessing times and large
generated automata. Nfa needs to update many states one by one for each text character
read. Muyers suffers from a combination of both and shows two peaks that come from its
specialized code to deal with small automata.

The backward scanning algorithms Opt and Grep (able to skip text characters) are faster
than the previous ones in almost all cases. Among them, Opt is faster on average and has
less variance, while the times of Grep extend over a range that surpasses the time of our Fwd
algorithm for a non-negligible portion of the patterns. This is because Grep cannot always
find a suitable filtering substring and in that case it resorts to forward scanning. Note that
BNDM and Multipattern have been excluded from the plots due to their poor performance
on this set of patterns.

Apart from the faster text scanning, our algorithms also benefit from lower preprocessing
times when compared to the algorithms that resort to regular expression searching. This is
barely noticeable in our previous experiment, but it is important in a common scenario of
the protein searching problem: all the patterns from a set are searched for inside a new short
protein. In this case the preprocessing time for all the patterns is much more important than
the scanning time over the (normally rather short) protein.

We have simulated this scenario by selecting 100 random substrings of length 300 from our
text and running the previous algorithms on all the 1,168 patterns. Table 1 shows the time
averaged over the 100 substrings and accumulated over the 1,168 patterns. The difference in

16

600 |- S g1

L ; —— Opt 1

i | Dfa]

500 - I s Nfa |4

i n —e Myers |]

L | Agrep | A

400 i e Grep |]

>]
§ 300 _|
g]
200 .

100 -

O = TSR LS N

i 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1]

0 0.5 1 1.5 2

tenths of secsM B

Figure 12: Histogram of search times for our best algorithms and for regular expression
searching algorithms.

favor of our new algorithms is drastic. Note also that this problem is an interesting field of
research for multipattern CBG search algorithms.

Algorithm || Fwd | Bwd | Opt Dfa Nfa | Myers | Agrep | Grep
Time 0.058 | 0.056 | 0.050 | 125.91 | 4.43 | 7.84 10.22 | 9.42

Table 1: Search time in seconds for all the 1,168 patterns over a random protein of length
300.

8 Extensions

In this section we include several extensions to the basic algorithms depicted in previous
sections.

8.1 Obtaining all the text occurrences

Our forward scanning algorithm reports all the final positions of the text occurrences, while
our backward scanning algorithm reports all the initial text positions. In several applications

17

ShiftLeft (X;...Xy,i)
prevX + Q¥
foriel...t
Ziy <+ (X; <<i) | prevX
prevX <« X; >> (w—1)
return 7;... 7

Subtract (X;...Xy,Y;...Y7)
carry <+ 0
for iel...t
Z; +— X; =Y, —carry
if Z; > X; or (Y; =1" and carry =1)
carry < 1
else carry + 0
return 7;... 7

Figure 13: Multiword algorithms for X << i and X —Y.

it is necessary to report all the occurrences, not only their initial or final positions. That is,
if several occurrences of a CBG begin/end at the same position, we want to report all the
corresponding final/initial positions.

If we use backward scanning, we are forced to use a forward verification, which is done
with an automaton similar to the forward search one, but without the initial self-loop. In
Section 5 we only wanted to report the initial positions, so we stopped the forward verification
as soon as (1) we reached a final state, (i4) we ran out of final states, (ii7) the text finished.
If we want to report all the final positions corresponding to a given initial position, then,
instead of stopping as soon as condition (i) is met, we will report a new final position every
time (7) holds, and will keep reporting occurrences until (ii) or (7i7) hold.

In case of forward scanning we have to do the symmetric job. Each time the forward
scanning finds a final occurrence position, we should perform a backward verification, reading
characters backward from the final position, and using a verification automaton built on the
reversed pattern.

However, in some applications, one can be interested in reporting other information,
especially when the matches intersect. Many studies have been done on that subject for
regular expressions and these might be applied for CBG [21].

8.2 Handling longer patterns

If the number L of bits needed to represent the pattern is larger than w, the number of bits
in the computer word, then several computer words have to be employed for the simulation.
The easiest way to handle this is to implement all the operations on a new data type formed
by an array of computer words. This is rather simple for operations that operate the bits
locally, e.g. “&, “|”, “~”, “=”, and so on, but it becomes a bit trickier for others, such as
“<<” and “—”". We give pseudocode in Figure 13 for these two operations.

Since operating with multiple words is usually much slower than with a single word, it

18

may be advisable to choose a small enough subpattern to scan, and verify the existence of the
complete pattern with the multiword algorithm only when the shorter subpattern is found.
This was done in Section 6 with other purposes, and it can be used to ensure that the search
is done for a short subpattern, even if we opt for forward scanning.

8.3 Selecting the best subpattern to search for

In Section 6 we have shown that a clever idea is to choose a prefix of the search pattern
that minimizes (G + 1)/, where G is its longest gap and ¢ the minimum length of a string
matching the prefix. In the previous subsection we have also shown that it may be better to
choose a small enough prefix to perform a fast scanning. Each occurrence of the prefix has
to be verified for the occurrence of the whole pattern.

An interesting topic is that we are not forced to choose a prefix, but any factor of the
pattern would do. An inconvenient is that verification is more complex, since we have to verify
then for each initial position j of an occurrence of P; ;/, we have to verify ¢;_;¢;_o... for the
reverse of P;_; 1 and t;t;41... for P ,,. However, the reward for a more complex code can
be significant if we have to search for a pattern with a long gap near the beginning.

8.4 Backward scanning with linear worst case time

In certain cases, although the average speed of the backward scan may be desirable, the risk
of a quadratic search time for a given pattern may be unacceptable. We show in this section
that it is possible to skip characters while still guaranteeing the linear worst case search time
of the forward algorithm. In practice the resulting algorithm is slower than a pure backward
scanning, but it is better than no skipping characters at all if linear worst case time has to
be guaranteed.

The main classical idea [10, 28] to build such a linear worst case algorithm is to avoid
retraversing the same characters in the backward window verification. Assume we search for
a simple string P of length p. The search is done through a window of length p. We divide
the work done on the sequence into two parts: forward and backward scanning. To be linear
in the worst case, none of these two parts must retraverse characters. In the forward scan, it
is enough to keep track of the longest pattern prefix v that matches the current text suffix.

However, we need to use also backward searching in order to skip characters. The idea is
that the window of length p is placed so that the current longest prefix matched v is aligned
with the beginning of the window. The position of the current text character inside the
window (i.e. |v|) is called the critical position. At any point in the forward scan we can place
the window (shifted |v| characters from the current text position) and try a backward search.
Clearly, this is only promising when v is not very long compared to p. Usually, a backward
scan is attempted when the prefix is less than |p/«|, where 0 < a < p is a fixed arbitrary
constant (usually a = 2).

The backward search proceeds almost as before, but it finishes as soon as the critical
position is reached. The two possibilities are:

(i) We reach the critical position. In this case we are not able to skip characters. The
forward search is resumed in the place where it was left (i.e. from the critical position),
totally retraverses the window, and continues until the condition to try a new backward
scan holds again.

19

(i) We do not reach the critical position, as we fail reading backwards on a character o.
This means that there cannot be a match in the current window. We start a forward
scan from scratch just after o, we then totally retraverse the window, and continue until
a new backward scan seems promising.

This simple approach for a simple word must be adapted to the case of CBG. First, to
avoid missing any match, we fix the size of the window to /, the length of a smallest possible
match of the CBG. All matches of the CBG are found through the forward scan. A prefix of
the window corresponds in the CBG to paths beginning at the origin marked by active states
in the current bit mask D (see Section 4). We replace the criterion of |p/a] by that of testing
if no active bits remain on the right half of D, which can be tested in contant time.

In the case of a general regular expression, the linear worst case framework can be applied,
but with more involved modifications [25].

9 Searching allowing differences

Apart from the flexibility in permitting classes of characters and gaps, it is useful to that
the occurrences differ by a few characters from the pattern specification. This is modeled as
follows. Let d : ¥* x ¥* — R* be a distance function between strings. A threshold k is
given together with the search pattern. Then, we are interested in reporting text substrings
w such that d(w,v) < k for some v that matches the search pattern.

DEFINITION 2 Searching for a CBG in a text T = t1ty .. .t, with threshold k under a distance
d() consists in finding all the positions j of T such that there is a suffix w of t1...t; where
d(w,v) <k for some alignment v of the CBG.

The distance between the two strings is usually regarded as the cost to convert one string
into the other via a sequence of operations over one or the other. The distance, called in
general an edit distance, is the sum of the costs incurred across all the operations. Different
applications permit different operations and assign them different costs. In computational
biology, the usual operations are (a) substitute a given character by another, at a real-
valued cost that depends on the characters substituted; (b) insert/delete characters into/from
either string, at a cost that depends on the characters inserted/deleted and on the number of
consecutive insertions/deletions made (usually inserting/deleting a group costs less than the
sum of the individual operations).

There exist good algorithms to deal with regular expression searching allowing k differ-
ences [20, 19]. In particular, the latter focuses on the so-called “network expressions”, which
are regular expressions without cycles. Although the worst-case search cost is O(mn) [20],
somewhat improved average time search algorithms are possible [19]. These algorithms are
rather slow in comparison to those for exact searching, but they permit using the complex cost
functions that are of interest in computational biology. Since CBG patterns can be translated
into network expressions, these algorithms give a solution.

It is interesting, however, that much faster searching is possible if we fix the cost of char-
acter insertions, deletions and substitutions at 1. This simpler distance, called Levenshtein
distance, can be rephrased as the number of insertions, deletions and substitutions necessary
to make both strings equal. The search algorithms for Levenshtein distance are so fast in
comparison to those for a general edit distance, that it becomes interesting to use them as a

20

pre-filter for more refined searches into the proteins that happen to be interesting candidates
for the search.

There exist some algorithms to handle regular expression searching allowing differences
under Levenshtein distance [34, 36, 24] (the latter indeed permits arbitrary integer weights).
Albeit much faster than the algorithms for general edit distances, they are considerably slower
than those for exact regular expression searching. It is natural to ask whether we could design
specific algorithms for CBG patterns, which could be simpler and faster.

A general technique introduced in [34] permits adapting any bit-parallel exact search
algorithm to one permitting £ differences. Recall our automaton of Figure 6 for the pattern
a—b—c—x(1,3) —d— e. The automaton of Figure 14 searches for it permitting at most 2
differences. The vertical arrows are traversed by ¥ and the diagonal arrows by ¥ U {¢}.

Figure 14: A non-deterministic automaton to search for the pattern a —b—c—z(1,3) —d—e
with 2 differences.

The rationale of the automaton is as follows. The original automaton has been replicated
k = 2 times apart from its original version, which stays on top. Let us call “copy 4" the i-th
copy of the automaton, where copy zero is the original one. Then, copy ¢ will reach its final
state whenever we find the pattern in the text with 4 errors. This should be immediate for
copy zero. Once we accept it for copy 7, we notice that a vertical arrow permits us skipping a
text character without changing the automaton state we are at, except that we activate the
same state in the next copy. This is equivalent to permitting a deletion in the text (or an
insertion in the pattern) and incrementing the number of differences seen. A diagonal arrow
traversed by e permits us skipping a character of the pattern without actually seeing it in
the text, so it corresponds to an insertion in the text (or a deletion in the pattern). Finally,
a diagonal arrow traversed by a character ¥ permits us advancing in the pattern and in the
text without having a match, so we are indeed substituting a text character by a pattern
character, or vice versa. Hence we will reach the final state in copy 7 + 1 whenever we need
a single further difference to extend an occurrence found by copy 3.

In the original formulation [34, 28], more arrows would have been necessary, as in general
we have to insert a “diagonal” arrow between rows i and i + 1 for every arrow in the original

21

Search (Pi. .m,T1. . n,k)

/* Preprocessing identical to forward searching, Figure 7 x*/
/* Scanning */
Dy « 0"
for ie€l...k
D; + D; 1| (Di1<<1) |01
for jel...n
if Dy & M # 0" then report a match ending at j — 1
oldD <+ DO
Dy « ((Dy<<1) |0 ") & B[t;]
Dy < Do | (F— (Do & I)) & nF)
foriel...k
newD < (D; <<1) & Bl[t;]
newD < newD | oldD | ((oldD | D; 1) << 1) | 0"="1
newD < newD | (F — (newD & I)) & nF)
oldD <+ D;
D; « newD

Figure 15: The forward scanning algorithm allowing & differences.

automaton. In our case, this turns out to be unnecessary (and is reflected in simpler code).
The only arrows not considered are the e-transitions of Figure 6. Keeping in mind that,
whenever state j is active at copy 4, it has to be active at copy 7 + 1 (since this represents
matching a pattern prefix with ¢ and i + 1 differences), it is not hard to see that these extra
arrows are unnecessary.

Simulating the behavior of the automaton is easy once we know how to simulate each row.
Say that D; is the bit mask that contains the state of the search at copy i. Then, in order to
update the current values Dy ... Dy, to the new values Dy ... D, we first compute Dy from
Dy using the usual formula for exact searching. Then, for each i € 1...k, we compute D;
from D;, D; 1 and D;fl. The right order to consider the arrows is to consider horizontal,
vertical and diagonal first, and then leaving the treatment of gaps for the second stage, as
follows (note than only Dy has a self-loop)

D! « (D;<<1) & BIt]]
D; « Dj| D] ((Diix <<1)[0"'1) | (D], << 1)
D, « D}|(F— (D;&I)) & nF)

where, in the middle line, D; | accounts for the vertical arrows, (D; | << 1) | 0“~'1 for the
diagonal arrows via 3, and D] ; << 1 (that is, the new value of D;) accounts for diagonal
arrows via €. The complete scanning algorithm is given in Figure 15.

It would be possible to adapt this technique to backward scanning as well, but in practice
the shifts are too short when we allow differences, so this is never better than forward scanning.

22

k | Ours | Nrgrep
0] 0.221 | 0.546
110361 | 1.224
210583 | 1.985
310797 | 2.805

Table 2: Comparison between algorithms for searching allowing £ differences. Times are
expressed in tenths of seconds, averaged over all the patterns.

Table 2 shows a comparison between this algorithm and the fastest algorithm for regular
expression searching with unitary cost errors [34]. As shown in [24], the technique of [34] (from
where we have adapted our CBG search algorithm) is by far the fastest for this case. Although
that technique is already implemented in Agrep [33], we have adapted the implementation of
Nrgrep [23], which poses less limits on pattern lengths and k& values. In both cases, specific
code is written and optimized for each k value, and we just count the number of matches.
For a description of the machine, the text and the patterns used, see Section 7.

As it can be seen, our method is 3.4 to 3.5 times faster, thanks to simpler code and more
locality of reference. In addition, it is much simpler to program. As for exact forward scanning,
variance is very low, so considering average values is enough. We have included the times for
the corresponding exact search algorithms to show the price of permitting differences.

10 Conclusions

We have presented two new search algorithms for CBGs, i.e. expressions formed by a sequence
of classes of characters and bounded gaps. CBGs are of special interest to computational
biology applications. All the current approaches rely on converting the CBG into a regular
expression (RE), which is much more complex. Therefore the search cost is much higher than
necessary for a CBG.

Our algorithms are specifically designed for CBGs and are based on BNDM, a combina-
tion of bit-parallelism and backward searching with suffix automata. This combination has
been recently proved to be very effective for patterns formed by simple letters and classes of
characters [26]. We have extended BNDM to allow for limited gaps.

We have presented experiments showing that our new algorithms are much faster and more
predictable than all the other algorithms based on regular expression searching. In addition,
we have presented a criterion to select the best among the two that has experimentally shown
to be very reliable. This makes the algorithms of special interest for practical applications,
such as protein searching.

Finally, we have shown how to handle several extensions, such as skipping characters while
at the same time ensuring a linear worst case time, permitting a few differences between
the pattern and the text, handling large patterns, recovering initial and final positions of
occurrences, and finding the optimal search subpattern to optimize the search time.

A more challenging type of search permits negative gaps in the matches (combined with
differences). This is solved in [19], but whether a faster bit-parallel algorithm can be designed
remains an open question. Another relevant question is whether we can extend the search
allowing differences to the case where insertions, deletions and substitutions have different

23

weights, as done recently for regular expressions in [24]. With the approach we have presented
it is not hard to give a given integer cost I to all insertions, D to all deletions, and S to all
substitutions, but it is not possible that the cost depends on the characters involved.

References
. Baeza-Yates. Text retrieval: eory and practice. In 12th or omputer Congress

[1] R. B Y T ieval: Theory and practice. In 12th IFIP World Comp Congress,
volume I, pages 465 476. Elsevier Science, September 1992.

. Baeza-Yates an . Gonnet. A new approach to text searching. , : , October

2] R.B Y. dG. G A h hing. CACM, 35(10):74 82, Octob
1992.

[3] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127
158, 1999.

[4] G. Berry and R. Sethi. From regular expression to deterministic automata. Theor. Comput. Sci.,
48(1):117-126, 1986.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM,
20(10):762-772, 1977.

[6] A. Briiggemann-Klein. Regular expressions into finite automata. Theoretical Computer Science,
120(2):197-213, November 1993.

[7] P. Bucher and A. Bairoch. A generalized profile syntax for biomolecular sequences motifs and its
function in automatic sequence interpretation. In Proceedings 2nd International Conference on
Intelligent Systems for Molecular Biology, pages 53 61, AAAIPress, Menlo Park,, 1994.

[8] C.-H. Chang and R. Paige. From regular expression to DFA’s using NFA’s. In Proceedings of the
CPM’92, LNCS 664, pages 90 110. Springer-Verlag, Berlin, 1992.

[9] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[10] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Ryt-
ter. Speeding up two string-matching algorithms. Algorithmica, 12:247 267, 1994.

[11] N. El-Mabrouk and M. Crochemore. Boyer-Moore strategy to efficient approximate string match-
ing. In Proc. CPM’96, LNCS 1075, pages 24 38. Springer-Verlag, Berlin, 1996.

[12] C.Hagenah and A. Muscholl. Computing epsilon-free NFA from regular expressions in O(n log(n))
time. In Proc. MFCS’98, LNCS 1450, pages 277 285, 1998.

[13] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database, its status in 1999.
Nucleic Acids Res., 27:215 219, 1999.

14] J. Hromkoviéc, S. Seibert, and T. Wilke. Translating regular expression into small e-free nonde-

g reg
terministic automata. In Proc. STACS 97, LNCS 1200, pages 55 66. Springer-Verlag, 1997.

[15] L. Hlie and S. Yu. Constructing NFAs by optimal use of positions in regular expressions. In
Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS
2373, pages 115-132. Springer-Verlag, Berlin, 2002.

[16] L.F. Kolakowski Jr., J.A.M. Leunissen, and J.E. Smith. ProSearch: fast searching of protein se-
quences with regular expression patterns related to protein structure and function. Biotechniques,
13:919-921, 1992.

[17] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(1):323-350, 1977.

[18] E. Myers. A four-russian algorithm for regular expression pattern matching. J. of the ACM,

39(2):430 448, 1992.

24

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

E. Myers. Approximate matching of network expressions with spacers. Journal of Computational
Biology, 3(1):33 51, 1996.

E. W. Myers and W. Miller. Approximate matching of regular expressions. Bulletin of Mathe-
matical Biology, 51:7-37, 1989.

E. W. Myers, P. Oliva, and K. Guimaraes. Reporting exact and approximate regular expression
matches. In Proc. CPM’98, LNCS 1448, pages 91 103. Springer-Verlag, Berlin, 1998.

G. Myers. A fast bit-vector algorithm for approximate pattern matching based on dynamic
progamming. In Proc. CPM’98, LNCS v. 1448, pages 1-13. Springer-Verlag, 1998.

G. Navarro. NR-grep: a fast and flexible pattern matching tool. Software Practice and Experience
(SPE), 31:1265 1312, 2001.

G. Navarro. Approximate regular expression searching with arbitrary integer weights. Technical
Report TR/DCC-2002-6, Dept. of Computer Science, University of Chile, July 2002.

G. Navarro and M. Raffinot. Fast regular expression matching. In Proc. WAE’99, LNCS 1668,
pages 198-212. Springer-Verlag, Berlin, 1999.

G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics (JEA), 5(4), 2000.
http://www. jea.acm.org/2000/NavarroString.

G. Navarro and M. Raffinot. Fast and simple character classes and bounded gaps pattern match-
ing, with application to protein searching. In Proceedings of the 5th Annual International Con-
ference on Computational Molecular Biology (RECOMB), pages 231 240. ACM Press, 2001.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings — Practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, 2002. ISBN 0-521-
81307-7. 280 pages.

M. Raffinot. On the multi backward dawg matching algorithm (MultiBDM). In Proc. WSP’97,
pages 149 165. Carleton University Press, 1997.

R. Staden. Screening protein and nucleic acid sequences against libraries of patterns. DNA
Sequence, 1:369-374, 1991.

K. Thompson. Regular expression search algorithm. CACM, 11(6):419 422, 1968.

B. Watson. Tazonomies and toolkits of reqular language algorithms. PhD thesis, Eindhoven Univ.
of Technology, The Netherlands, 1995.

S. Wu and U. Manber. Agrep — a fast approximate pattern-matching tool. In Proc. USENIX
Technical Conference, pages 153 162, 1992.

S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83 91, October 1992.

S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited expression
matching. Algorithmica, 15(1):50-67, 1996.

S. Wu, U. Manber, and E. W. Myers. A subquadratic algorithm for approximate regular expression
matching. Journal of Algorithms, 19(3):346 360, 1995.

25

