
Fast and simple harater lasses and bounded gaps patternmathing, with appliations to protein searhing�Gonzalo Navarroy Mathieu RaÆnotzAbstratThe problem of fast exat and approximate searhing for a pattern that ontainsClasses of haraters and Bounded size Gaps (CBG) in a text has a wide range of appli-ations, among whih a very important one is protein pattern mathing (for instane, onePROSITE protein site is assoiated with the CBG [RK℄� x(2; 3) � [DE℄ � x(2; 3)� Y ,where the brakets math any of the letters inside, and x(2; 3) a gap of length between2 and 3). Currently, the only way to searh for a CBG in a text is to onvert it intoa full regular expression (RE). However, a RE is more sophistiated than a CBG, andsearhing for it with a RE pattern mathing algorithm ompliates the searh and makesit slow. This is the reason why we design in this artile two new pratial CBG mathingalgorithms that are muh simpler and faster than all the RE searh tehniques. The �rstone looks exatly one at eah text harater. The seond one does not need to onsiderall the text haraters and hene it is usually faster than the �rst one, but in bad asesmay have to read the same text harater more than one. We then propose a riterionbased on the form of the CBG to hoose a-priori the fastest between both. We also showhow to searh permitting a few mistakes in the ourrenes. We performed many pratialexperiments using the PROSITE database, and all them show that our algorithms arethe fastest in virtually all ases.1 IntrodutionThis paper deals with the problem of fast searhing of patterns that ontain Classes of har-aters and Bounded size Gaps (CBG) in texts. This problem ours in various �elds, likeinformation retrieval, data mining and omputational biology. We are partiularly interestedin the latter one.In omputational biology, this problem has many appliations, among whih the mostimportant is protein mathing. These last few years, huge protein site pattern databaseshave been developed, like PROSITE [7, 13℄. These databases are olletions of protein sitedesriptions. For eah protein site, the database ontains diverse information, notably thepattern. This is an expression formed with lasses of haraters and bounded size gaps on theamino aid alphabet (of size 20). This pattern is used to searh for a possible ourrene ofthis protein in a longer one. For example, the protein site number PS00007 has as its pattern�Partially supported by ECOS-Sud projet C99E04.yDept. of Computer Siene, University of Chile. Blano Enalada 2120, Santiago, Chile.gnavarro�d.uhile.l. Partially supported by Fondeyt grant 1-020831.zCNRS - Laboratoire G�enome et Informatique, Tour Evry 2, 523, Plae des Terrasses de l'Agora, 91034Evry, Frane. raffinot�genopole.nrs.fr 1



the expression [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y , where the brakets mean that the positionan math any of the letters inside, and x(2; 3) means a gap of length between 2 and 3.Currently, these patterns are onsidered as full regular expressions (REs) over a �xedalphabet �, i.e generalized patterns omposed of (i) basi haraters of the alphabet (addingthe empty word " and also a speial symbol x that an math all the letters of �), (ii)onatenation (denoted � ), (ii) union (j) and (iii) Kleene losure (�). This latter operationL� on a set of words L means that we aept all the words made by a onatenation ofwords of L. For instane, our previous pattern an be onsidered as the regular expression(RjK) � x � x � (xj") � (DjE) � x � x � (xj") � Y . We note jREj the length of a RE, that is thenumber of symbols in it. The searh is done with the lassial algorithms for RE searhing,that are however quite ompliated. The RE needs to be onverted into an automaton andthen searhed in the text. It an be onverted into a deterministi automaton (DFA) inworst ase time O(2jREj), and then the searh is linear in the size n of the text, giving atotal omplexity of O(2jREj+n). It an also be onverted into a nondeterministi automaton(NFA) in linear time O(jREj) and then searhed in the text in O(n � jREj) time, giving atotal of O(n� jREj) time. We give a review of these methods in Setion 3. The majority ofthe PROSITE mathing softwares use these tehniques [16, 30℄.None of the presented tehniques are fully adequate for CBGs. First, the algorithms areintrinsially ompliated to understand and to implement. Seond, all the tehniques performpoorly for ertain types of REs. The \diÆult" REs are in general those whose DFAs arevery large, a very ommon ase when translating CBGs to REs. Third, espeially with regardto the sizes of the DFAs, the simpliity of CBGs is not translated into their orrespondingREs. At the very least, resorting to REs implies solving a simple problem by onverting itinto a more ompliated one. Indeed, the experimental time results when applied to our CBGexpressions are far from reasonable in regard of the simpliity of CBGs and ompared to thesearh for expressions that just ontain lasses of haraters [26℄.This is the motivation of this paper. We present two new simple algorithms to searhfor CBGs in a text, that are also experimentally muh faster than all the previous ones.These algorithms make plenty use of \bit-parallelism", that onsists in using the intrinsiparallelism of the bit manipulations inside omputer words to perform many operations inparallel. Competitive algorithms have been obtained using bit parallelism for exat stringmathing [2, 34℄, approximate string mathing [2, 34, 35, 3, 22℄, and REs mathing [18, 33, 25℄.Although these algorithms generally work well only on patterns of moderate length, they aresimpler, more exible (e.g. they an easily handle lasses of haraters), and have very lowmemory requirements.We performed two di�erent types of experiments, omparing our algorithms against thefastest known ones for RE searhing. We use as CBGs the patterns of the PROSITE database.We �rst ompared them as \pure pattern mathing", i.e. searhing for the CBGs in a om-pilation of 6 megabytes of protein sequenes (from the TIGR Mirobial database). We thenompared them as \library mathing", that is searh for a large set of PROSITE patterns ina protein sequene of 300 amino aids. Our algorithms are by far the fastest in both ases.Moreover, in the seond ase, the searh time improvements are dramati, as our algorithmsare about 100 times faster than the best RE mathing algorithms when pattern preproessingtimes beome important.An extended abstrat of this paper has already been published in [27℄, without all thedetails and without searhing with di�erenes.We use the following de�nitions throughout the paper. � is the alphabet, a word on � is2



a �nite sequene of haraters of �. �� means the set of all the words build on �. A wordw 2 �� is a fator (or substring) of p 2 �� if p an be written p = uwv, u; v 2 ��. A fatorw of p is alled a suÆx of p is p = uw, u 2 ��, and a pre�x of p is p = wu, u 2 ��.We note with brakets a subset of elements of �: [ART ℄ means the subset fA;R; Tg (asingle letter an be expressed in this way too). We add the speial symbol x to denote asubset that orresponds to the whole alphabet. We also add a symbol x(a; b); a < b, for abounded size gap of minimal length a and maximal b, and use x(a) as a short for x(a; a) (sox = x(1) = x(1; 1)). A CBG on � is formally a �nite sequene of symbols that an be (i)brakets, (ii) x and (iii) bounded size gaps x(a; b). We de�ne m as the total number of suhsymbols in a CBG.We use the notation T = t1t2 : : : tn for the text of n haraters of � in whih we aresearhing for the CBGs. A CBG mathes T at position j if there is an alignment of tj�i : : : tjwith the CBG, onsidering that (i) a braket mathes with any text letter that appears insidebrakets; (ii) an xmathes any text letter; and (iii) a bounded gap x(a; b) mathes at minimuma and at maximum b arbitrary haraters of T . We denote by ` the minimum size of a possiblealignment and L the size of a maximum one. For example, [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y(where ` = 7 and L = 9) mathes the text T = AHLRKDEDATY at position 11 by 3di�erent alignments (see Figure 1).
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2 3Figure 1: Three di�erent alignments of the CBG [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y over thetext T = AHLRKDEDATY at the same ending position.Definition 1 Searhing for a CBG in a text T = t1t2 : : : tn onsists in �nding all the posi-tions j of T in whih there is an alignment of the CBG with a suÆx of t1 : : : tj.This paper is organized as follows. We begin in Setion 2 by summarizing the two mainbit-parallel approahes that lead to fast eÆient mathing algorithms for simple strings butalso for patterns that ontain lasses of haraters. In Setion 3, we explain in detail whatare the approahes to searh for full REs. We then present in Setion 4 our new algorithm(whih we all a \forward algorithm"), that reads all the haraters of the text exatly one.It is based on a new automaton representation and simulation. We present in Setion 5another algorithm (whih we all a \bakward algorithm" despite that it proesses the textbasially left to right), that allows us to skip some haraters of the text, being generallyfaster. However, it an not been used for all types of CBGs, and it is sometimes slowerthan the forward one. Consequently, we give in the next Setion 6 a good experimentalriterion that enables us to hoose a-priori the fastest, depending on the form of the CBG.Setion 7 is devoted to the experimental results for both algorithms ompared to the fastestRE searhing algorithms. Setion 8 deals with several extensions of the algorithm. Setion9 onsiders the possibility of permitting a few di�erenes between the ourrenes and thepatterns spei�ation. Setion 10 gives our onlusions.3



2 Bit-ParallelismIn [2℄, a new approah to text searhing was proposed. It is based on bit-parallelism [1℄. Thistehnique onsists in taking advantage of the intrinsi parallelism of the bit operations insidea omputer word. By using leverly this fat, the number of operations that an algorithmperforms an be ut down by a fator of at most w, where w is the number of bits in theomputer word. Sine in urrent arhitetures w is 32 or 64, the speedup is very signi�ativein pratie.Figure 2 shows a non-deterministi automaton that searhes for a pattern in a text. Clas-sial pattern mathing algorithms, suh as KMP [17℄, onvert this automaton to deterministiform and ahieve O(n) searh time. The Shift-Or algorithm [2℄, on the other hand, uses bit-parallelism to simulate the automaton in its nondeterministi form. It ahieves O(mn=w)worst-ase time, i.e., an optimal speedup over the lassial O(mn) simulation. For m � w,Shift-Or is twie as fast as KMP beause of better use of omputer registers. Moreover, it iseasily extended to handle lasses of haraters.
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1 2 3 4 5 6 70Figure 2: A nondeterministi automaton to searh for the pattern p = baabbaa in a text. Theinitial state is 0.We use some notation to desribe the operations on bits. We use exponentiation todenote bit repetition, e.g. 031 = 0001. We denote as b` : : : b1 the bits of a mask of length `,whih is stored somewhere inside the omputer word of length w. We use C-like syntax foroperations on the bits of omputer words, i.e. \j" is the bitwise-or, \&" is the bitwise-and,\�" omplements all the bits, and \<<" moves the bits to the left and enters zeros fromthe right, e.g. b`b`�1 : : : b2b1 << 3 = b`�3 : : : b2b1000. We an also perform arithmetioperations on the bits, suh as addition and subtration, whih operate the bits as if theyformed a number, for instane b` : : : bx10000 � 1 = b` : : : bx01111.We explain now the basi algorithm and then a later improvement over it.2.1 Forward sanningWe present now the Shift-And algorithm, whih is an easier-to-explain (though a little lesseÆient) variant of Shift-Or. The algorithm builds �rst a table B whih for eah haraterstores a bit mask bm : : : b1. The mask in B[℄ has the i-th bit set if and only if pi = . Thestate of the searh is kept in a mahine word D = dm : : : d1, where di is set whenever p1p2 : : : pimathes the end of the text read up to now (another way to see it is to onsider that di tellswhether the state numbered i in Figure 2 is ative). Therefore, we report a math wheneverdm is set.We set D = 0 originally, and for eah new text harater Tj , we update D using theformula D0  ((D << 1) j 0m�11) & B[Tj℄The formula is orret beause the i-th bit is set if and only if the (i � 1)-th bit was setfor the previous text harater and the new text harater mathes the pattern at position4



i. In other words, Tj�i+1 : : : Tj = p1 : : : pi if and only if Tj�i+1 : : : Tj�1 = p1 : : : pi�1 andTj = pi. Again, it is possible to relate this formula to the movement that ours in thenondeterministi automaton for eah new text harater: eah state gets the value of theprevious state, but this happens only if the text harater mathes the orresponding arrow.Finally, the \j 0m�11" after the shift allows a math to begin at the urrent text position (thisoperation is saved in the Shift-Or, where all the bits are omplemented). This orrespondsto the self-loop at the beginning of the automaton.The ost of this algorithm is O(n). Although we onsider only masks of length m here, inpratie the masks are of length w (as explained earlier) and some provisions may be neessaryto handle the unwanted extra bits. For patterns longer than the omputer word (i.e. m > w),the algorithm uses dm=we omputer words for the simulation (not all them are ative all thetime), with a worst-ase ost of O(mn=w) and an average ase ost of O(n).2.2 Classes of haratersThe Shift-Or algorithm is not only very simple, but it also has some further advantages. Themost immediate one is that it is very easy to extend it to handle lasses of haraters. Thatis, eah pattern position does not only math a single harater but a set of haraters. If Ciis the set of haraters that math the position i in the pattern, we set the i-th bit of B[℄for all  2 Ci. In [2℄ they show also how to allow a limited number k of mismathes in theourrenes, at O(nm log(k)=w) ost.This paradigm was later enhaned [34℄ to support extended patterns, whih allow wildards, regular expressions, approximate searh with nonuniform osts, and ombinations.Further development of the bit-parallelism approah for approximate string mathing lead tosome of the fastest algorithms for short patterns [3, 22℄. In most ases, the key idea was tosimulate a nondeterministi �nite automaton. It is interesting also to mention [11℄, whihsearhes allowing mismathes by using a ombination of bit-parallelism and Boyer-Moore.Bit-parallelism has beame a general way to simulate simple nondeterministi automatainstead of onverting them to deterministi. This is how we use it in our algorithm.2.3 Bakward sanningThe main disadvantage of Shift-Or is its inability to skip haraters, whih makes it slowerthan the algorithms of the Boyer-Moore [5℄ or the BDM [10, 9℄ families. We desribe inthis setion the BNDM pattern mathing algorithm [26℄. This algorithm, a ombination ofShift-Or and BDM, has all the advantages of the bit-parallel forward san algorithm, and inaddition it is able to skip some text haraters.BNDM is based on a suÆx automaton. A suÆx automaton on a pattern P = p1p2 : : : pmis an automaton that reognizes all the suÆxes of P . The nondeterministi version of thisautomaton is shown in Figure 3. Note that the automaton will not run out of ative states aslong as it has read a fator of P . In the original BDM this automaton is made deterministi.BNDM, instead, simulates the automaton using bit-parallelism. Just as for Shift-And, wekeep the state of the searh using m bits of a omputer word D = dm : : : d1.A very important fat is that this automaton an not only be used to reognize the suÆxesof P , but also fators of P . Note that there is a path labeled by x from the initial state ifand only if x is a fator of P . That is, the nondeterministi automaton will not run out ofative states as long as it has read a fator of P .5



b a a b b a a
1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε εFigure 3: A nondeterministi suÆx automaton for the pattern P = baabbaa. Dashed linesrepresent "-transitions (i.e. they our without onsuming any input).The suÆx automaton is used to design a simple pattern mathing algorithm. This algo-rithm is O(mn) time in the worst ase, but optimal on average (O(n log�m=m) time). Othermore omplex variations suh as TurboBDM [10℄ and MultiBDM [9, 29℄ ahieve linear timein the worst ase.To searh for a pattern P = p1p2 : : : pm in a text T = t1t2 : : : tn, the suÆx automaton ofP r = pmpm�1 : : : p1 (i.e the pattern read bakwards) is built. A window of length m is slidalong the text, from left to right. The algorithm searhes bakward inside the window for afator of the pattern P using the suÆx automaton, i.e. the suÆx automaton of the reversepattern is fed with the haraters in the text window read bakward. This bakward searhends in two possible forms:1. We fail to reognize a fator, i.e we reah a window letter � that makes the automatonrun out of ative states. This means that the suÆx of the window we have read is notanymore a fator of P . Figure 4 illustrates this ase. We then shift the window tothe right, its starting position orresponding to the position following the letter � (weannot miss an ourrene beause in that ase the suÆx automaton would have founda fator of it in the window).

� last
WindowReord in last the window position when a terminal state is reahedSearh for a fator with the DAWGlast

The maximum pre�x starts at lastFail to reognize a fator at �: the pattern an not start before �.�safe shift New windowFigure 4: Basi searh with the suÆx automaton2. We reah the beginning of the window, therefore reognizing the pattern P sine thelength-m window is a fator of P (indeed, it is equal to P ). We report the ourrene,and shift the window by 1.The bit-parallel simulation works as follows. Eah time we position the window in the6



text we initialize D = 1m and san the window bakward. For eah new text harater readin the window we update D. If we run out of 1's in D then there annot be a math and wesuspend the sanning and shift the window. If we an perform m iterations then we reportthe math.We use a mask B whih for eah harater  stores a bit mask. This mask sets the bitsorresponding to the positions where the reversed pattern has the harater  (just as in theShift-And algorithm). The formula to update D isD0  (D & B[tj℄) << 1BNDM is not only faster than Shift-Or and BDM (for 5 � m � 100 or so), but it anaommodate all the extensions mentioned. Of partiular interest to this work is that it aneasily deal with lasses of haraters by just altering the preproessing, and it is by far thefastest algorithm to searh for this type of patterns [26℄.Note that this type of searh is alled \bakward" sanning beause the text haratersinside the window are read bakwards. However, the searh progresses from left to right inthe text as the window is shifted.3 Regular expression searhingThe usual way of dealing with an expression with harater lasses and bounded gaps isatually to searh for it as a full regular expression (RE) [16, 30℄. A gap of the form x(a; b)is onverted into a letters x followed by b� a subexpressions of the form (xj").The traditional tehnique [31℄ to searh for a RE of length O(m) in a text of length n isto onvert the expression into a nondeterministi �nite automaton (NFA) with O(m) nodes.Then, it is possible to searh the text using the automaton at O(mn) worst ase time, or toonvert the NFA into a deterministi �nite automaton (DFA) in worst ase time O(2m) andthen san the text in O(n) time.Some tehniques have been proposed to obtain a good tradeo� between both extremes.In 1992, Myers [18℄ presented a four-russians approah whih obtains O(mn= log n) worst-ase time and extra spae. Other simulation tehniques that aim at good tradeo�s based onombinations of DFAs and bit-parallel simulation of NFAs are given in [34, 25℄.There exist urrently many di�erent tehniques to build an NFA from a regular expressionR. The most lassial one is Thompson's onstrution [31℄, whih builds an NFA with at most2m states (where m is ounted as the number of letters and "'s in the RE). A seond one isGlushkov's onstrution, popularized by Berry and Sethi in [4℄. The NFA resulting of thisonstrution has the advantage of having justm+1 states (wherem is ounted as the numberof letters in the RE).A lot of researh on Glushkov's onstrution has been pursued, like [6℄, where it is shownthat the resulting NFA is quadrati in the number of edges in the worst ase. In [14℄, a longtime open question about the minimal number of edges of an NFA (without �-transition) withlinear number of states was answered, showing a O(m2) onstrution with O(m) states andO(m(logm)2) edges, as well as a lower bound of O(m logm) edges. In [12℄, the onstrutiontime was improved to O(m(logm)2). Hene, Glushkov onstrution is not spae-optimal. Animprovement has been proposed in [15℄, building a quotient of Glushkov's automaton. Someresearh has been done also to try to onstrut diretly a DFA from a regular expression,without onstruting an NFA, suh as [8℄. 7
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d(b) Glushkov onstrutionFigure 5: The two lassial NFA onstrutions on our example a � b �  � x � (xj") � (xj") � d � e.We reall that x mathes the whole alphabet �. The Glushkov automaton is " free, but bothpresent some diÆulties to perform an eÆient bit-parallelism on them.We show in Figure 5 the Thompson and Glushkov automata for an example CBG a� b�� x(1; 3)� d� e, whih we translate into the regular expression a � b �  � x � (xj") � (xj") � d � e.Both Thompson and Glushkov automata present some partiular properties. Some algo-rithms like [18, 34℄ make use of Thompson's automaton properties and some others, like [25℄,make use of Glushkov's ones.Finally, some work has been pursued in skipping haraters when searhing for a RE. Asimple heuristi that has very variable suess is implemented in Gnu Grep, where they tryto �nd a plain substring inside the RE, so as to use the searh for that substring as a �lterfor the searh of the omplete RE. In [32℄ they propose to redue the searh of a RE to amultipattern searh for all the possible strings of some length that an math the RE (usinga multipattern Boyer-Moore like algorithm). In [25℄ they propose the use of an automatonthat reognizes reversed fators of strings aepted by the RE (in fat a manipulation of theoriginal automaton) using a BNDM-like sheme to searh for those fators (see Setion 2).However, none of the presented tehniques seems fully adequate for CBGs. First, thealgorithms are intrinsially ompliated to understand and to implement. Seond, all thetehniques perform poorly for a ertain type of REs. The \diÆult" REs are in general thosewhose DFAs are very large, a very ommon ase when translating CBGs to REs. Third,espeially with regard to the sizes of the DFAs, the simpliity of CBGs is not translatedinto their orresponding REs. For example, the CBG \[RK℄� x(2; 3) � [DE℄� x(2; 3) � Y "onsidered in the Introdution yields a DFA whih needs about 600 pointers to be represented.At the very least, resorting to REs implies solving a simple problem by onverting it intoa more ompliated one. Indeed, the experimental time results when applied to our CBGexpressions are far from reasonable in regard of the simpliity of CBGs, as seen in Setion7. As we show in that setion, CBGs an be searhed for muh faster by designing spei�8



algorithms for them. This is what we do in the next setions.4 A forward searh algorithm for CBG patternsWe express the searh problem of a pattern with lasses of haraters and gaps using anon-deterministi automaton. Compared to the automaton for simple patterns (Setion 2),this one permits the existene of gaps between onseutive positions, so that eah gap has aminimum and a maximum length. The automaton we use does not orrespond to any of thoseobtained with the regular expression simulations (see Setion 3), although the funtionalityis the same.Figure 6 shows an example for the pattern a � b �  � x(1; 3) � d � e. Between theletters  and d we have inserted three transitions that an be followed by any letter, whihorresponds to the maximum length of the gap. Two "-transitions leave the state whereab has been reognized and skip one and two subsequent edges, respetively. This allowsskipping one to three text haraters before �nding the d at the end of the pattern. Theinitial self-loop allows the math to begin at any text position.
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1 2 3 4 5 6 7 80Figure 6: Our non-deterministi automaton for the pattern a� b� � x(1; 3) � d� e.To build the NFA, we start with the initial state S0 and read the pattern symbol bysymbol (a symbol being a lass of haraters or a gap1). We add new automaton edges andstates for eah new symbol read. If after reating state Si the next pattern symbol is a lassof haraters C we reate a state Si+1 and add an edge labeled C from state Si to state Si+1.On the other hand, if the new pattern symbol is a gap of the form x(a; b), we reate b statesSi+1 : : : Si+b and edges labeled � linking state Sj to Sj+1 for j 2 i : : : i+ b� 1. Additionally,we reate b � a "-transitions from state Si to states Si+1 : : : Si+b�a. The last state reatedin the whole proess is the �nal state.We are now interested in an eÆient simulation of the above automaton. Despite that thisis a partiular ase of a regular expression, its simpliity permits a more eÆient simulation.In partiular, a fast bit-parallel simulation is possible.We represent eah automaton state by a bit in a omputer word. The initial state is notrepresented beause it is always ative. As with the normal Shift-And, we shift all the bitsto the left and use a table of masks B indexed by the urrent text harater. This aountsfor all the arrows that go from states Sj to Sj+1.The remaining problem is how to represent the "-transitions. For this sake, we hose2 torepresent ative states by 1 and inative states by 0. We all \gap-initial" states those statesSi from where an "-transition leaves. For eah gap-initial state Si orresponding to a gapx(a; b), we de�ne its \gap-�nal" state to be Si+b�a+1, i.e. the one following the last state1Note that x and single letters an also be seen as lasses of haraters.2It is possible to devise a formula for the opposite ase, but unlike Shift-Or, it is not faster.9



reahed by an "-transition leaving Si. In the example of Figure 6, we have one gap-initialstate (S3) and one gap-�nal state (S6).We reate a bit mask I whih has 1 in the gap-initial states, and another mask F thathas 1 in the gap-�nal states. Then, if we keep the state of the searh in a bit mask D, thenafter performing the normal Shift-And step, we simulate all the "-moves with the operationD0  D j ((F � (D & I)) & � F )The rationale is as follows. First, D & I isolates the ative gap-initial states. Subtratingthis from F has two possible results for eah gap-initial state Si. First, if it is ative the resultwill have 1 in all the states from Si to Si+b�a, suessfully propagating the ative state Sito the desired target states. Seond, if Si is inative the result will have 1 only in Si+b�a+1.This undesired 1 is removed by operating the result with \& � F". One the propagation hasbeen done, we or the result with the already ative states in D. Note that the propagationsof di�erent gaps do not interfere with eah other, sine all the subtrations have loal e�et.Let us onsider again our example of Figure 6. The orresponding I and F masks are00000100 and 00100000, respetively (reall that the bit masks are read right-to-left). Letus also onsider that we have read the text ab, and hene our D mask is 00000100. Atthis point the "-transitions should take e�et. Indeed, ((F � (D & I)) & � F ) yields((00100000 � 00000100) & 11011111) = 00011100, where states S3, S4 and S5 have beenativated. If, on the other hand, D = 00000010, the propagation formula yields ((00100000�00000000) & 11011111) = 00000000 and nothing hanges.Figure 7 shows the omplete algorithm. For simpliity the ode assumes that there annotbe gaps at the beginning or at the end of the pattern (whih are meaningless anyway). Thevalue L (maximum length of a math) is obtained in O(m) time by a simple pass over thepattern P , summing up the maximum gap lengths and individual lasses (reall that m is thenumber of symbols in P ). The preproessing takes O(Lj�j) time, while the sanning needsO(n) time. If L > w, however, we need several mahine words for the simulation, whih thustakes O(ndL=we) time.5 A bakward searh algorithm for CBG patternsWhen the searhed patterns ontain just lasses of haraters, the bakward bit-parallel ap-proah (see Setion 2) leads to the fastest algorithm BNDM [26℄. The searh is done by slidingover the text (in forward diretion) a window that has the size of the minimum possible align-ment (`). We read the window bakwards trying to reognize a fator of the pattern. If wereah the beginning of the window, then we found an alignment. Else, we shift the windowto the beginning of the longest fator found.We extend now BNDM to deal with CBGs. To reognize all the reverse fators of a CBG,we use quite the same automaton built in Setion 4 on the reversed pattern, but without theinitial self-loop, and onsidering that all the states are ative at the beginning. We reate aninitial state I and "-transitions from I to eah state of the automaton. Figure 8 shows theautomaton for the pattern a � b �  � x(1; 3) � d � e. A word read by this automaton is afator of the CBG as long as there exists at least one ative state.The bit-parallel simulation of this automaton is quite the same as that of the forwardautomaton (see Setion 4). The only modi�ations are (a) that we build it on P r, thereversed pattern; (b) that the the bit mask D that registers the state of the searh has to be10



Searh (P1:::m,T1:::n) /* Preproessing */L  maximum length of a mathfor  2 � do B[℄  0LI  0L, F  0Li  0for j 2 1 : : : mif Pj is of the form x(a; b) then /* a gap */I  I j (1 << (i� 1))F  F j (1 << (i+ b� a))for  2 �, k 2 i : : : i+ b� 1 do B[℄  B[℄ j (1 << k)i  i+ belse /* Pj is a lass of haraters */for  2 Pj do B[℄  B[℄ j (1 << i) i  i+ 1nF  � FM  1 << (L� 1) /* final state *//* Sanning */D  0Lfor j 2 1 : : : nif D & M 6= 0L then report a math ending at j � 1D  ((D << 1) j 0L�11) & B[tj℄D  D j ((F � (D & I)) & nF )Figure 7: The forward sanning algorithm.
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IFigure 8: The non-deterministi automaton built in the bakward algorithm to reognize allthe reversed fators of the CBG a� b� � x(1; 3) � d� e.initialized with D = 1L to perform the initial "-transitions; and () that we do not or D with0L�11 when we shift it, for there is no more initial self-loop.The bakward CBG mathing algorithm shifts a window of size ` along the text. Insideeah window, it traverses bakward the text trying to reognize a fator of the CBG (this iswhy the automaton that reognizes all the fators has to be built on the reverse pattern P r).If the bakward searh inside the window fails (i.e. there are no more ative states in thebakward automaton) before reahing the beginning of the window, then the searh windowis shifted to the beginning of the longest fator reognized, exatly like in the �rst ase of thelassi BNDM (see Setion 2).If the begining of the window is reahed with the automaton still holding ative states,then some fator of length ` of the CBG is reognized in the window. Unlike the ase of exatstring mathing, where all the ourrenes have the same length of the pattern, this does notautomatially imply that we have reognized the whole pattern. We need a way to verify apossible alignment (that an be longer than `) starting at the beginning of the window. Sowe read the haraters again from the beginning of the window with the forward automatonof Setion 4, but without the initial self-loop. This forward veri�ation ends when (1) theautomaton reahes its �nal state, in whih ase we found the pattern; (2) there are no moreative states in the automaton, in whih ase there is no pattern ourrene starting at thewindow. As there is no initial loop, the forward veri�ation surely �nishes after reading atmost L haraters of the text. We then shift the searh window one harater to the rightand resume the searh.Figure 9 shows the omplete algorithm. Some optimizations are not shown for larity,for example many tests an be avoided by breaking loops from inside, some variables an bereused, et.The worst ase omplexity of the bakward sanning algorithm is O(nL), whih is quitebad in theory. However, on the average, the bakward algorithm is expeted to be faster thanthe forward one. The next setion gives a good experimental riterion to know in whih asesthe bakward algorithm is faster than the forward one. The experimental searh results (seeSetion 7) on the PROSITE database show that the bakward algorithm is almost always thefastest.6 Whih algorithm to use ?We have now two di�erent algorithms, a forward and a bakward one, so a natural questionis whih one should be hosen for a partiular problem. We seek for a simple riterion that12



Bakward searh (P1:::m,T1:::n)L  maximum length of a math /* Preproessing */`  minimum length of a mathfor  2 � do Bf [℄  0L; Bb[℄  0LIf  0L, Ff  0L, Ib  0L, Fb  0Li  0for j 2 1 : : : mif Pj is of the form x(a; b) then /* a gap */If  If j (1 << (i� 1)) , Ib  Ib j (1 << (L� (i+ b)� 1))Ff  Ff j (1 << (i+ b� a)) , Fb  Fb j (1 << (L� i� a))for  2 �, k 2 i : : : i+ b� 1 doBf [℄  Bf [℄ j (1 << k); Bb[℄  Bb[℄ j (1 << (L� k � 1))i  i+ belse /* Pj is a lass of haraters */for  2 Pj doBf [℄  Bf [℄ j (1 << i); Bb[℄  Bb[℄ j (1 << (L� i� 1))i  i+ 1nFf  � Ff ; nFb  � FbM  1 << (L� 1) /* final state for the forward san* /pos  0 /* Sanning */while pos � n� ` doj  `, Db  1Lwhile Db 6= 0L and j > 0Db  Db & Bb[tpos+j℄Db  Db j ((Fb � (Db & Ib)) & nFb)j  j � 1if Db 6= 0L and j = 0 /* f orward san */Df  0L�11, v  1while Df 6= 0L and pos+ v � nDf  Df & Bf [tpos+v℄Df  Df j ((Ff � (Df & If )) & nFf )if Df & M 6= 0L thenreport a math beginning at pos+ 1Df  0LDf  (Df << 1)v  v + 1Db  (Db << 1)pos  pos+ j + 1Figure 9: The bakward sanning algorithm.13



enables us to hoose the best algorithm.In partiular, let us onsider the maximum gap length G in the CBG. If G � `, then everytext window of length ` is a fator of the CBG, so we will surely traverse all the window duringthe bakward san and always shift in 1, for a omplexity of 
(n`) at least. Consequently, thebakward approah we have presented must be restrited at least to CBGs in whih G < `.This an be arried on further. Eah time we position a window in the text, we knowthat at least G+ 1 haraters in the window will be inspeted before shifting. Moreover, thewindow will not be shifted by more than `�G positions. Hene the total number of haraterinspetions aross the searh is at least (G+1)n=(`�G), whih is larger than n (the numberof haraters inspeted by a forward san) whenever ` < 2G + 1.Hene, we de�ne (G+1)=` as a simple parameter governing most of the performane of thebakward san algorithm, and predit that 0.5 is the point above whih the bakward sanningis worse than forward sanning. Of ourse this measure is not perfet, as it disregards thee�et of other gaps, lasses of haraters and the ost of forward heking in the bakwardsan, but a full analysis is extremely ompliated and, as we see in the next setion, thissimple riterion gives good results.Aording to this riterion, we an design an optimized version of our bakward sanningalgorithm. The idea is that we an hoose the \best" pre�x of the pattern, i.e. the pre�xthat minimizes (G + 1)=`. The bakward sanning an be done using this pre�x, while theforward veri�ation of potential mathes is done with the full pattern. This ould be extendedto seleting the best fator of the pattern, but the ode would be more ompliated (as theveri�ation phase would have to san in both diretions, bu�ering would be ompliated, and,as we see in the next setion, the di�erene is not so large.7 Experimental resultsWe have tested our algorithms over an example of 1,168 PROSITE patterns [16, 13℄ and a 6megabytes (MB) text ontaining a onatenation of protein sequenes taken from the TIGRMirobial database. The set had originally 1,316 patterns from whih we seleted the 1,230whose L (maximum length of a math) does not exeed w, the number of bits in the omputerword of our mahine. This leaves us with 93% of the patterns. From them, we exluded the62 (5%) for whih G � `, whih as explained annot be reasonably searhed with bakwardsanning. This leaves us with the 1,168 patterns.We have used an Intel Pentium III mahine of 500 MHz running Linux. We show usertimes averaged over 10 trials. Three di�erent algorithms are tested: Fwd is the forward-sanalgorithm desribed in Setion 4, Bwd is the bakward-san algorithm of Setion 5 and Optis the same Bwd where we selet for the bakward searhing the best pre�x of the pattern,aording to the riterion of the previous setion.A �rst experiment aims at measuring the eÆieny of the algorithms with respet to theriterion of the previous setion. Figure 10 shows the results, where the patterns have beenlassi�ed along the x axis by their (G+1)=` value. As predited, 0.5 is the value from whihBwd starts to be worse than Fwd exept for a few exeptions (where the di�erene is not sobig anyway). It is also lear that Opt avoids many of the worst ases of Bwd. Finally, theplot shows that the time of Fwd is very stable. While the forward san runs always at around50 MB/se, the bakward san an be as fast as 200 MB/se.What Figure 10 fails to show is that in fat most PROSITE patterns have a very low14
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Figure 10: Searh times (in tenths of seonds per MB) for all the patterns lassi�ed by their(G+ 1)=` value.(G+ 1)=` value. Figure 11 plots the number of patterns ahieving a given searh time, afterremoving a few outliers (the 12 that took more than 0.04 seonds for Bwd). Fwd has alarge peak beause of its stable time, while the bakward sanning algorithms have a widerhistogram whose main body is well before the peak of Fwd. Indeed, 95.6% of the patterns aresearhed for faster by Bwd than by Fwd, and the perentage raises to 97.6% if we onsiderOpt.The plot also shows that there is little statistial di�erene between Bwd and Opt. Rather,Opt is useful to remove some very bad ases of Bwd.
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Figure 11: Histogram of searh times for our di�erent algorithms.Our third experiment aims at omparing our searh method against onverting the patternto a regular expression and resorting to general regular expression searhing. From the existingalgorithms to searh for regular expressions we have seleted the following.Dfa: Builds a deterministi �nite automaton and uses it to searh the text.Nfa: Builds a non-deterministi �nite automaton and uses it to searh the text, updating all15



the states at eah text position.Myers: Is an intermediate between Dfa and Nfa [18℄, a non-deterministi automaton formedby a few bloks (up to 4 in our experiments) where eah blok is a deterministi au-tomaton over a subset of the states. \(xj")" was expressed as \.?" in the syntax of thissoftware.Agrep: Is an existing software [34, 33℄ that implements another intermediate between Dfaand Nfa, where most of the transitions are handled using bit-parallelism and the "-transitions with a deterministi table. \(xj")" was expressed as \(.|"")" in the syntaxof this software.Grep: Is Gnu Grep with the option "-E" to make it aept regular expressions. This softwareuses a heuristi that, in addition to (lazy) deterministi automaton searhing, looks forlong enough literal pattern substrings and uses them as a fast �lter for the searh. Thegaps \x(a; b)" were onverted to \.fa,bg" to permit speialized treatment by Grep.BNDM: Uses the bakward approah we have extended to CBGs, but adapted to generalREs instead [25℄. It needs to build to deterministi automata, one for bakward searhand another for forward veri�ation.Multipattern: Redues the problem to multipattern Boyer-Moore searhing of all the stringsof length ` that math the RE [32℄. We have used \agrep -f" as the multipattern searhalgorithm.To these, we have added our Fwd and Opt algorithms. Figure 12 shows the results.From the forward sanning algorithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip textharaters), the fastest is our Fwd algorithm thanks to its simpliity. Agrep has about thesame mean but muh more variane. Dfa su�ers from high preproessing times and largegenerated automata. Nfa needs to update many states one by one for eah text haraterread. Myers su�ers from a ombination of both and shows two peaks that ome from itsspeialized ode to deal with small automata.The bakward sanning algorithms Opt and Grep (able to skip text haraters) are fasterthan the previous ones in almost all ases. Among them, Opt is faster on average and hasless variane, while the times of Grep extend over a range that surpasses the time of our Fwdalgorithm for a non-negligible portion of the patterns. This is beause Grep annot always�nd a suitable �ltering substring and in that ase it resorts to forward sanning. Note thatBNDM and Multipattern have been exluded from the plots due to their poor performaneon this set of patterns.Apart from the faster text sanning, our algorithms also bene�t from lower preproessingtimes when ompared to the algorithms that resort to regular expression searhing. This isbarely notieable in our previous experiment, but it is important in a ommon senario ofthe protein searhing problem: all the patterns from a set are searhed for inside a new shortprotein. In this ase the preproessing time for all the patterns is muh more important thanthe sanning time over the (normally rather short) protein.We have simulated this senario by seleting 100 random substrings of length 300 from ourtext and running the previous algorithms on all the 1,168 patterns. Table 1 shows the timeaveraged over the 100 substrings and aumulated over the 1,168 patterns. The di�erene in16
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Figure 12: Histogram of searh times for our best algorithms and for regular expressionsearhing algorithms.favor of our new algorithms is drasti. Note also that this problem is an interesting �eld ofresearh for multipattern CBG searh algorithms.Algorithm Fwd Bwd Opt Dfa Nfa Myers Agrep GrepTime 0.058 0.056 0.050 125.91 4.43 7.84 10.22 9.42Table 1: Searh time in seonds for all the 1,168 patterns over a random protein of length300.8 ExtensionsIn this setion we inlude several extensions to the basi algorithms depited in previoussetions.8.1 Obtaining all the text ourrenesOur forward sanning algorithm reports all the �nal positions of the text ourrenes, whileour bakward sanning algorithm reports all the initial text positions. In several appliations17



ShiftLeft (Xt : : : X1,i)prevX  0wfor i 2 1 : : : tZi  (Xi << i) j prevXprevX  Xi >> (w � i)return Zt : : : Z1Subtrat (Xt : : : X1,Yt : : : Y1)arry  0for i 2 1 : : : tZi  Xi � Yi � arryif Zi > Xi or (Yi = 1w and arry = 1)arry  1else arry  0return Zt : : : Z1Figure 13: Multiword algorithms for X << i and X � Y .it is neessary to report all the ourrenes, not only their initial or �nal positions. That is,if several ourrenes of a CBG begin/end at the same position, we want to report all theorresponding �nal/initial positions.If we use bakward sanning, we are fored to use a forward veri�ation, whih is donewith an automaton similar to the forward searh one, but without the initial self-loop. InSetion 5 we only wanted to report the initial positions, so we stopped the forward veri�ationas soon as (i) we reahed a �nal state, (ii) we ran out of �nal states, (iii) the text �nished.If we want to report all the �nal positions orresponding to a given initial position, then,instead of stopping as soon as ondition (i) is met, we will report a new �nal position everytime (i) holds, and will keep reporting ourrenes until (ii) or (iii) hold.In ase of forward sanning we have to do the symmetri job. Eah time the forwardsanning �nds a �nal ourrene position, we should perform a bakward veri�ation, readingharaters bakward from the �nal position, and using a veri�ation automaton built on thereversed pattern.However, in some appliations, one an be interested in reporting other information,espeially when the mathes interset. Many studies have been done on that subjet forregular expressions and these might be applied for CBG [21℄.8.2 Handling longer patternsIf the number L of bits needed to represent the pattern is larger than w, the number of bitsin the omputer word, then several omputer words have to be employed for the simulation.The easiest way to handle this is to implement all the operations on a new data type formedby an array of omputer words. This is rather simple for operations that operate the bitsloally, e.g. \&, \j", \�", \=", and so on, but it beomes a bit trikier for others, suh as\<<" and \�". We give pseudoode in Figure 13 for these two operations.Sine operating with multiple words is usually muh slower than with a single word, it18



may be advisable to hoose a small enough subpattern to san, and verify the existene of theomplete pattern with the multiword algorithm only when the shorter subpattern is found.This was done in Setion 6 with other purposes, and it an be used to ensure that the searhis done for a short subpattern, even if we opt for forward sanning.8.3 Seleting the best subpattern to searh forIn Setion 6 we have shown that a lever idea is to hoose a pre�x of the searh patternthat minimizes (G + 1)=`, where G is its longest gap and ` the minimum length of a stringmathing the pre�x. In the previous subsetion we have also shown that it may be better tohoose a small enough pre�x to perform a fast sanning. Eah ourrene of the pre�x hasto be veri�ed for the ourrene of the whole pattern.An interesting topi is that we are not fored to hoose a pre�x, but any fator of thepattern would do. An inonvenient is that veri�ation is more omplex, sine we have to verifyfor full ourrenes in both diretions. That is, if we hoose Pi:::i0 for bakward sanning,then for eah initial position j of an ourrene of Pi:::i0 , we have to verify tj�1tj�2 : : : for thereverse of P1:::i�1 and tjtj+1 : : : for Pi:::m. However, the reward for a more omplex ode anbe signi�ant if we have to searh for a pattern with a long gap near the beginning.8.4 Bakward sanning with linear worst ase timeIn ertain ases, although the average speed of the bakward san may be desirable, the riskof a quadrati searh time for a given pattern may be unaeptable. We show in this setionthat it is possible to skip haraters while still guaranteeing the linear worst ase searh timeof the forward algorithm. In pratie the resulting algorithm is slower than a pure bakwardsanning, but it is better than no skipping haraters at all if linear worst ase time has tobe guaranteed.The main lassial idea [10, 28℄ to build suh a linear worst ase algorithm is to avoidretraversing the same haraters in the bakward window veri�ation. Assume we searh fora simple string P of length p. The searh is done through a window of length p. We dividethe work done on the sequene into two parts: forward and bakward sanning. To be linearin the worst ase, none of these two parts must retraverse haraters. In the forward san, itis enough to keep trak of the longest pattern pre�x v that mathes the urrent text suÆx.However, we need to use also bakward searhing in order to skip haraters. The idea isthat the window of length p is plaed so that the urrent longest pre�x mathed v is alignedwith the beginning of the window. The position of the urrent text harater inside thewindow (i.e. jvj) is alled the ritial position. At any point in the forward san we an plaethe window (shifted jvj haraters from the urrent text position) and try a bakward searh.Clearly, this is only promising when v is not very long ompared to p. Usually, a bakwardsan is attempted when the pre�x is less than bp=�, where 0 < � < p is a �xed arbitraryonstant (usually � = 2).The bakward searh proeeds almost as before, but it �nishes as soon as the ritialposition is reahed. The two possibilities are:(i) We reah the ritial position. In this ase we are not able to skip haraters. Theforward searh is resumed in the plae where it was left (i.e. from the ritial position),totally retraverses the window, and ontinues until the ondition to try a new bakwardsan holds again. 19



(ii) We do not reah the ritial position, as we fail reading bakwards on a harater �.This means that there annot be a math in the urrent window. We start a forwardsan from srath just after �, we then totally retraverse the window, and ontinue untila new bakward san seems promising.This simple approah for a simple word must be adapted to the ase of CBG. First, toavoid missing any math, we �x the size of the window to `, the length of a smallest possiblemath of the CBG. All mathes of the CBG are found through the forward san. A pre�x ofthe window orresponds in the CBG to paths beginning at the origin marked by ative statesin the urrent bit mask D (see Setion 4). We replae the riterion of bp=� by that of testingif no ative bits remain on the right half of D, whih an be tested in ontant time.In the ase of a general regular expression, the linear worst ase framework an be applied,but with more involved modi�ations [25℄.9 Searhing allowing di�erenesApart from the exibility in permitting lasses of haraters and gaps, it is useful to thatthe ourrenes di�er by a few haraters from the pattern spei�ation. This is modeled asfollows. Let d : �� � �� �! R+ be a distane funtion between strings. A threshold k isgiven together with the searh pattern. Then, we are interested in reporting text substringsw suh that d(w; v) � k for some v that mathes the searh pattern.Definition 2 Searhing for a CBG in a text T = t1t2 : : : tn with threshold k under a distaned() onsists in �nding all the positions j of T suh that there is a suÆx w of t1 : : : tj whered(w; v) � k for some alignment v of the CBG.The distane between the two strings is usually regarded as the ost to onvert one stringinto the other via a sequene of operations over one or the other. The distane, alled ingeneral an edit distane, is the sum of the osts inurred aross all the operations. Di�erentappliations permit di�erent operations and assign them di�erent osts. In omputationalbiology, the usual operations are (a) substitute a given harater by another, at a real-valued ost that depends on the haraters substituted; (b) insert/delete haraters into/fromeither string, at a ost that depends on the haraters inserted/deleted and on the number ofonseutive insertions/deletions made (usually inserting/deleting a group osts less than thesum of the individual operations).There exist good algorithms to deal with regular expression searhing allowing k di�er-enes [20, 19℄. In partiular, the latter fouses on the so-alled \network expressions", whihare regular expressions without yles. Although the worst-ase searh ost is O(mn) [20℄,somewhat improved average time searh algorithms are possible [19℄. These algorithms arerather slow in omparison to those for exat searhing, but they permit using the omplex ostfuntions that are of interest in omputational biology. Sine CBG patterns an be translatedinto network expressions, these algorithms give a solution.It is interesting, however, that muh faster searhing is possible if we �x the ost of har-ater insertions, deletions and substitutions at 1. This simpler distane, alled Levenshteindistane, an be rephrased as the number of insertions, deletions and substitutions neessaryto make both strings equal. The searh algorithms for Levenshtein distane are so fast inomparison to those for a general edit distane, that it beomes interesting to use them as a20



pre-�lter for more re�ned searhes into the proteins that happen to be interesting andidatesfor the searh.There exist some algorithms to handle regular expression searhing allowing di�erenesunder Levenshtein distane [34, 36, 24℄ (the latter indeed permits arbitrary integer weights).Albeit muh faster than the algorithms for general edit distanes, they are onsiderably slowerthan those for exat regular expression searhing. It is natural to ask whether we ould designspei� algorithms for CBG patterns, whih ould be simpler and faster.A general tehnique introdued in [34℄ permits adapting any bit-parallel exat searhalgorithm to one permitting k di�erenes. Reall our automaton of Figure 6 for the patterna� b� � x(1; 3) � d� e. The automaton of Figure 14 searhes for it permitting at most 2di�erenes. The vertial arrows are traversed by � and the diagonal arrows by � [ f"g.
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Figure 14: A non-deterministi automaton to searh for the pattern a� b� �x(1; 3)� d� ewith 2 di�erenes.The rationale of the automaton is as follows. The original automaton has been repliatedk = 2 times apart from its original version, whih stays on top. Let us all \opy i" the i-thopy of the automaton, where opy zero is the original one. Then, opy i will reah its �nalstate whenever we �nd the pattern in the text with i errors. This should be immediate foropy zero. One we aept it for opy i, we notie that a vertial arrow permits us skipping atext harater without hanging the automaton state we are at, exept that we ativate thesame state in the next opy. This is equivalent to permitting a deletion in the text (or aninsertion in the pattern) and inrementing the number of di�erenes seen. A diagonal arrowtraversed by " permits us skipping a harater of the pattern without atually seeing it inthe text, so it orresponds to an insertion in the text (or a deletion in the pattern). Finally,a diagonal arrow traversed by a harater � permits us advaning in the pattern and in thetext without having a math, so we are indeed substituting a text harater by a patternharater, or vie versa. Hene we will reah the �nal state in opy i + 1 whenever we needa single further di�erene to extend an ourrene found by opy i.In the original formulation [34, 28℄, more arrows would have been neessary, as in generalwe have to insert a \diagonal" arrow between rows i and i+1 for every arrow in the original21



Searh (P1:::m,T1:::n,k)/* Preproessing idential to forward searhing, Figure 7 *//* Sanning */D0  0Lfor i 2 1 : : : kDi  Di�1 j (Di�1 << 1) j 0L�11Di  ((F � (Di & I)) & nF )for j 2 1 : : : nif Dk & M 6= 0L then report a math ending at j � 1oldD  D0D0  ((D0 << 1) j 0L�11) & B[tj℄D0  D0 j ((F � (D0 & I)) & nF )for i 2 1 : : : knewD  (Di << 1) & B[tj℄newD  newD j oldD j ((oldD j Di�1) << 1) j 0L�11newD  newD j ((F � (newD & I)) & nF )oldD  DiDi  newDFigure 15: The forward sanning algorithm allowing k di�erenes.automaton. In our ase, this turns out to be unneessary (and is reeted in simpler ode).The only arrows not onsidered are the "-transitions of Figure 6. Keeping in mind that,whenever state j is ative at opy i, it has to be ative at opy i + 1 (sine this representsmathing a pattern pre�x with i and i+ 1 di�erenes), it is not hard to see that these extraarrows are unneessary.Simulating the behavior of the automaton is easy one we know how to simulate eah row.Say that Di is the bit mask that ontains the state of the searh at opy i. Then, in order toupdate the urrent values D0 : : : Dk to the new values D00 : : : D0k, we �rst ompute D00 fromD0 using the usual formula for exat searhing. Then, for eah i 2 1 : : : k, we ompute D0ifrom Di, Di�1 and D0i�1. The right order to onsider the arrows is to onsider horizontal,vertial and diagonal �rst, and then leaving the treatment of gaps for the seond stage, asfollows (note than only D0 has a self-loop)D0i  (Di << 1) & B[tj℄D0i  D0i j Di�1 j ((Di�1 << 1) j 0L�11) j (D0i�1 << 1)D0i  D0i j ((F � (D0i & I)) & nF )where, in the middle line, Di�1 aounts for the vertial arrows, (Di�1 << 1) j 0L�11 for thediagonal arrows via �, and D0i�1 << 1 (that is, the new value of Di) aounts for diagonalarrows via ". The omplete sanning algorithm is given in Figure 15.It would be possible to adapt this tehnique to bakward sanning as well, but in pratiethe shifts are too short when we allow di�erenes, so this is never better than forward sanning.22



k Ours Nrgrep0 0.221 0.5461 0.361 1.2242 0.583 1.9853 0.797 2.805Table 2: Comparison between algorithms for searhing allowing k di�erenes. Times areexpressed in tenths of seonds, averaged over all the patterns.Table 2 shows a omparison between this algorithm and the fastest algorithm for regularexpression searhing with unitary ost errors [34℄. As shown in [24℄, the tehnique of [34℄ (fromwhere we have adapted our CBG searh algorithm) is by far the fastest for this ase. Althoughthat tehnique is already implemented in Agrep [33℄, we have adapted the implementation ofNrgrep [23℄, whih poses less limits on pattern lengths and k values. In both ases, spei�ode is written and optimized for eah k value, and we just ount the number of mathes.For a desription of the mahine, the text and the patterns used, see Setion 7.As it an be seen, our method is 3.4 to 3.5 times faster, thanks to simpler ode and moreloality of referene. In addition, it is muh simpler to program. As for exat forward sanning,variane is very low, so onsidering average values is enough. We have inluded the times forthe orresponding exat searh algorithms to show the prie of permitting di�erenes.10 ConlusionsWe have presented two new searh algorithms for CBGs, i.e. expressions formed by a sequeneof lasses of haraters and bounded gaps. CBGs are of speial interest to omputationalbiology appliations. All the urrent approahes rely on onverting the CBG into a regularexpression (RE), whih is muh more omplex. Therefore the searh ost is muh higher thanneessary for a CBG.Our algorithms are spei�ally designed for CBGs and are based on BNDM, a ombina-tion of bit-parallelism and bakward searhing with suÆx automata. This ombination hasbeen reently proved to be very e�etive for patterns formed by simple letters and lasses ofharaters [26℄. We have extended BNDM to allow for limited gaps.We have presented experiments showing that our new algorithms are muh faster and morepreditable than all the other algorithms based on regular expression searhing. In addition,we have presented a riterion to selet the best among the two that has experimentally shownto be very reliable. This makes the algorithms of speial interest for pratial appliations,suh as protein searhing.Finally, we have shown how to handle several extensions, suh as skipping haraters whileat the same time ensuring a linear worst ase time, permitting a few di�erenes betweenthe pattern and the text, handling large patterns, reovering initial and �nal positions ofourrenes, and �nding the optimal searh subpattern to optimize the searh time.A more hallenging type of searh permits negative gaps in the mathes (ombined withdi�erenes). This is solved in [19℄, but whether a faster bit-parallel algorithm an be designedremains an open question. Another relevant question is whether we an extend the searhallowing di�erenes to the ase where insertions, deletions and substitutions have di�erent23
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