
Fast and simple 
hara
ter 
lasses and bounded gaps patternmat
hing, with appli
ations to protein sear
hing�Gonzalo Navarroy Mathieu RaÆnotzAbstra
tThe problem of fast exa
t and approximate sear
hing for a pattern that 
ontainsClasses of 
hara
ters and Bounded size Gaps (CBG) in a text has a wide range of appli-
ations, among whi
h a very important one is protein pattern mat
hing (for instan
e, onePROSITE protein site is asso
iated with the CBG [RK℄� x(2; 3) � [DE℄ � x(2; 3)� Y ,where the bra
kets mat
h any of the letters inside, and x(2; 3) a gap of length between2 and 3). Currently, the only way to sear
h for a CBG in a text is to 
onvert it intoa full regular expression (RE). However, a RE is more sophisti
ated than a CBG, andsear
hing for it with a RE pattern mat
hing algorithm 
ompli
ates the sear
h and makesit slow. This is the reason why we design in this arti
le two new pra
ti
al CBG mat
hingalgorithms that are mu
h simpler and faster than all the RE sear
h te
hniques. The �rstone looks exa
tly on
e at ea
h text 
hara
ter. The se
ond one does not need to 
onsiderall the text 
hara
ters and hen
e it is usually faster than the �rst one, but in bad 
asesmay have to read the same text 
hara
ter more than on
e. We then propose a 
riterionbased on the form of the CBG to 
hoose a-priori the fastest between both. We also showhow to sear
h permitting a few mistakes in the o

urren
es. We performed many pra
ti
alexperiments using the PROSITE database, and all them show that our algorithms arethe fastest in virtually all 
ases.1 Introdu
tionThis paper deals with the problem of fast sear
hing of patterns that 
ontain Classes of 
har-a
ters and Bounded size Gaps (CBG) in texts. This problem o

urs in various �elds, likeinformation retrieval, data mining and 
omputational biology. We are parti
ularly interestedin the latter one.In 
omputational biology, this problem has many appli
ations, among whi
h the mostimportant is protein mat
hing. These last few years, huge protein site pattern databaseshave been developed, like PROSITE [7, 13℄. These databases are 
olle
tions of protein sitedes
riptions. For ea
h protein site, the database 
ontains diverse information, notably thepattern. This is an expression formed with 
lasses of 
hara
ters and bounded size gaps on theamino a
id alphabet (of size 20). This pattern is used to sear
h for a possible o

urren
e ofthis protein in a longer one. For example, the protein site number PS00007 has as its pattern�Partially supported by ECOS-Sud proje
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the expression [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y , where the bra
kets mean that the position
an mat
h any of the letters inside, and x(2; 3) means a gap of length between 2 and 3.Currently, these patterns are 
onsidered as full regular expressions (REs) over a �xedalphabet �, i.e generalized patterns 
omposed of (i) basi
 
hara
ters of the alphabet (addingthe empty word " and also a spe
ial symbol x that 
an mat
h all the letters of �), (ii)
on
atenation (denoted � ), (ii) union (j) and (iii) Kleene 
losure (�). This latter operationL� on a set of words L means that we a

ept all the words made by a 
on
atenation ofwords of L. For instan
e, our previous pattern 
an be 
onsidered as the regular expression(RjK) � x � x � (xj") � (DjE) � x � x � (xj") � Y . We note jREj the length of a RE, that is thenumber of symbols in it. The sear
h is done with the 
lassi
al algorithms for RE sear
hing,that are however quite 
ompli
ated. The RE needs to be 
onverted into an automaton andthen sear
hed in the text. It 
an be 
onverted into a deterministi
 automaton (DFA) inworst 
ase time O(2jREj), and then the sear
h is linear in the size n of the text, giving atotal 
omplexity of O(2jREj+n). It 
an also be 
onverted into a nondeterministi
 automaton(NFA) in linear time O(jREj) and then sear
hed in the text in O(n � jREj) time, giving atotal of O(n� jREj) time. We give a review of these methods in Se
tion 3. The majority ofthe PROSITE mat
hing softwares use these te
hniques [16, 30℄.None of the presented te
hniques are fully adequate for CBGs. First, the algorithms areintrinsi
ally 
ompli
ated to understand and to implement. Se
ond, all the te
hniques performpoorly for 
ertain types of REs. The \diÆ
ult" REs are in general those whose DFAs arevery large, a very 
ommon 
ase when translating CBGs to REs. Third, espe
ially with regardto the sizes of the DFAs, the simpli
ity of CBGs is not translated into their 
orrespondingREs. At the very least, resorting to REs implies solving a simple problem by 
onverting itinto a more 
ompli
ated one. Indeed, the experimental time results when applied to our CBGexpressions are far from reasonable in regard of the simpli
ity of CBGs and 
ompared to thesear
h for expressions that just 
ontain 
lasses of 
hara
ters [26℄.This is the motivation of this paper. We present two new simple algorithms to sear
hfor CBGs in a text, that are also experimentally mu
h faster than all the previous ones.These algorithms make plenty use of \bit-parallelism", that 
onsists in using the intrinsi
parallelism of the bit manipulations inside 
omputer words to perform many operations inparallel. Competitive algorithms have been obtained using bit parallelism for exa
t stringmat
hing [2, 34℄, approximate string mat
hing [2, 34, 35, 3, 22℄, and REs mat
hing [18, 33, 25℄.Although these algorithms generally work well only on patterns of moderate length, they aresimpler, more 
exible (e.g. they 
an easily handle 
lasses of 
hara
ters), and have very lowmemory requirements.We performed two di�erent types of experiments, 
omparing our algorithms against thefastest known ones for RE sear
hing. We use as CBGs the patterns of the PROSITE database.We �rst 
ompared them as \pure pattern mat
hing", i.e. sear
hing for the CBGs in a 
om-pilation of 6 megabytes of protein sequen
es (from the TIGR Mi
robial database). We then
ompared them as \library mat
hing", that is sear
h for a large set of PROSITE patterns ina protein sequen
e of 300 amino a
ids. Our algorithms are by far the fastest in both 
ases.Moreover, in the se
ond 
ase, the sear
h time improvements are dramati
, as our algorithmsare about 100 times faster than the best RE mat
hing algorithms when pattern prepro
essingtimes be
ome important.An extended abstra
t of this paper has already been published in [27℄, without all thedetails and without sear
hing with di�eren
es.We use the following de�nitions throughout the paper. � is the alphabet, a word on � is2



a �nite sequen
e of 
hara
ters of �. �� means the set of all the words build on �. A wordw 2 �� is a fa
tor (or substring) of p 2 �� if p 
an be written p = uwv, u; v 2 ��. A fa
torw of p is 
alled a suÆx of p is p = uw, u 2 ��, and a pre�x of p is p = wu, u 2 ��.We note with bra
kets a subset of elements of �: [ART ℄ means the subset fA;R; Tg (asingle letter 
an be expressed in this way too). We add the spe
ial symbol x to denote asubset that 
orresponds to the whole alphabet. We also add a symbol x(a; b); a < b, for abounded size gap of minimal length a and maximal b, and use x(a) as a short for x(a; a) (sox = x(1) = x(1; 1)). A CBG on � is formally a �nite sequen
e of symbols that 
an be (i)bra
kets, (ii) x and (iii) bounded size gaps x(a; b). We de�ne m as the total number of su
hsymbols in a CBG.We use the notation T = t1t2 : : : tn for the text of n 
hara
ters of � in whi
h we aresear
hing for the CBGs. A CBG mat
hes T at position j if there is an alignment of tj�i : : : tjwith the CBG, 
onsidering that (i) a bra
ket mat
hes with any text letter that appears insidebra
kets; (ii) an xmat
hes any text letter; and (iii) a bounded gap x(a; b) mat
hes at minimuma and at maximum b arbitrary 
hara
ters of T . We denote by ` the minimum size of a possiblealignment and L the size of a maximum one. For example, [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y(where ` = 7 and L = 9) mat
hes the text T = AHLRKDEDATY at position 11 by 3di�erent alignments (see Figure 1).
A H L R K D E D A T Y Text

YDK 
2 2

YDR 
23

YER 
2 3Figure 1: Three di�erent alignments of the CBG [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y over thetext T = AHLRKDEDATY at the same ending position.Definition 1 Sear
hing for a CBG in a text T = t1t2 : : : tn 
onsists in �nding all the posi-tions j of T in whi
h there is an alignment of the CBG with a suÆx of t1 : : : tj.This paper is organized as follows. We begin in Se
tion 2 by summarizing the two mainbit-parallel approa
hes that lead to fast eÆ
ient mat
hing algorithms for simple strings butalso for patterns that 
ontain 
lasses of 
hara
ters. In Se
tion 3, we explain in detail whatare the approa
hes to sear
h for full REs. We then present in Se
tion 4 our new algorithm(whi
h we 
all a \forward algorithm"), that reads all the 
hara
ters of the text exa
tly on
e.It is based on a new automaton representation and simulation. We present in Se
tion 5another algorithm (whi
h we 
all a \ba
kward algorithm" despite that it pro
esses the textbasi
ally left to right), that allows us to skip some 
hara
ters of the text, being generallyfaster. However, it 
an not been used for all types of CBGs, and it is sometimes slowerthan the forward one. Consequently, we give in the next Se
tion 6 a good experimental
riterion that enables us to 
hoose a-priori the fastest, depending on the form of the CBG.Se
tion 7 is devoted to the experimental results for both algorithms 
ompared to the fastestRE sear
hing algorithms. Se
tion 8 deals with several extensions of the algorithm. Se
tion9 
onsiders the possibility of permitting a few di�eren
es between the o

urren
es and thepatterns spe
i�
ation. Se
tion 10 gives our 
on
lusions.3



2 Bit-ParallelismIn [2℄, a new approa
h to text sear
hing was proposed. It is based on bit-parallelism [1℄. Thiste
hnique 
onsists in taking advantage of the intrinsi
 parallelism of the bit operations insidea 
omputer word. By using 
leverly this fa
t, the number of operations that an algorithmperforms 
an be 
ut down by a fa
tor of at most w, where w is the number of bits in the
omputer word. Sin
e in 
urrent ar
hite
tures w is 32 or 64, the speedup is very signi�
ativein pra
ti
e.Figure 2 shows a non-deterministi
 automaton that sear
hes for a pattern in a text. Clas-si
al pattern mat
hing algorithms, su
h as KMP [17℄, 
onvert this automaton to deterministi
form and a
hieve O(n) sear
h time. The Shift-Or algorithm [2℄, on the other hand, uses bit-parallelism to simulate the automaton in its nondeterministi
 form. It a
hieves O(mn=w)worst-
ase time, i.e., an optimal speedup over the 
lassi
al O(mn) simulation. For m � w,Shift-Or is twi
e as fast as KMP be
ause of better use of 
omputer registers. Moreover, it iseasily extended to handle 
lasses of 
hara
ters.
b a a b b a a

Σ

1 2 3 4 5 6 70Figure 2: A nondeterministi
 automaton to sear
h for the pattern p = baabbaa in a text. Theinitial state is 0.We use some notation to des
ribe the operations on bits. We use exponentiation todenote bit repetition, e.g. 031 = 0001. We denote as b` : : : b1 the bits of a mask of length `,whi
h is stored somewhere inside the 
omputer word of length w. We use C-like syntax foroperations on the bits of 
omputer words, i.e. \j" is the bitwise-or, \&" is the bitwise-and,\�" 
omplements all the bits, and \<<" moves the bits to the left and enters zeros fromthe right, e.g. b`b`�1 : : : b2b1 << 3 = b`�3 : : : b2b1000. We 
an also perform arithmeti
operations on the bits, su
h as addition and subtra
tion, whi
h operate the bits as if theyformed a number, for instan
e b` : : : bx10000 � 1 = b` : : : bx01111.We explain now the basi
 algorithm and then a later improvement over it.2.1 Forward s
anningWe present now the Shift-And algorithm, whi
h is an easier-to-explain (though a little lesseÆ
ient) variant of Shift-Or. The algorithm builds �rst a table B whi
h for ea
h 
hara
terstores a bit mask bm : : : b1. The mask in B[
℄ has the i-th bit set if and only if pi = 
. Thestate of the sear
h is kept in a ma
hine word D = dm : : : d1, where di is set whenever p1p2 : : : pimat
hes the end of the text read up to now (another way to see it is to 
onsider that di tellswhether the state numbered i in Figure 2 is a
tive). Therefore, we report a mat
h wheneverdm is set.We set D = 0 originally, and for ea
h new text 
hara
ter Tj , we update D using theformula D0  ((D << 1) j 0m�11) & B[Tj℄The formula is 
orre
t be
ause the i-th bit is set if and only if the (i � 1)-th bit was setfor the previous text 
hara
ter and the new text 
hara
ter mat
hes the pattern at position4



i. In other words, Tj�i+1 : : : Tj = p1 : : : pi if and only if Tj�i+1 : : : Tj�1 = p1 : : : pi�1 andTj = pi. Again, it is possible to relate this formula to the movement that o

urs in thenondeterministi
 automaton for ea
h new text 
hara
ter: ea
h state gets the value of theprevious state, but this happens only if the text 
hara
ter mat
hes the 
orresponding arrow.Finally, the \j 0m�11" after the shift allows a mat
h to begin at the 
urrent text position (thisoperation is saved in the Shift-Or, where all the bits are 
omplemented). This 
orrespondsto the self-loop at the beginning of the automaton.The 
ost of this algorithm is O(n). Although we 
onsider only masks of length m here, inpra
ti
e the masks are of length w (as explained earlier) and some provisions may be ne
essaryto handle the unwanted extra bits. For patterns longer than the 
omputer word (i.e. m > w),the algorithm uses dm=we 
omputer words for the simulation (not all them are a
tive all thetime), with a worst-
ase 
ost of O(mn=w) and an average 
ase 
ost of O(n).2.2 Classes of 
hara
tersThe Shift-Or algorithm is not only very simple, but it also has some further advantages. Themost immediate one is that it is very easy to extend it to handle 
lasses of 
hara
ters. Thatis, ea
h pattern position does not only mat
h a single 
hara
ter but a set of 
hara
ters. If Ciis the set of 
hara
ters that mat
h the position i in the pattern, we set the i-th bit of B[
℄for all 
 2 Ci. In [2℄ they show also how to allow a limited number k of mismat
hes in theo

urren
es, at O(nm log(k)=w) 
ost.This paradigm was later enhan
ed [34℄ to support extended patterns, whi
h allow wild
ards, regular expressions, approximate sear
h with nonuniform 
osts, and 
ombinations.Further development of the bit-parallelism approa
h for approximate string mat
hing lead tosome of the fastest algorithms for short patterns [3, 22℄. In most 
ases, the key idea was tosimulate a nondeterministi
 �nite automaton. It is interesting also to mention [11℄, whi
hsear
hes allowing mismat
hes by using a 
ombination of bit-parallelism and Boyer-Moore.Bit-parallelism has be
ame a general way to simulate simple nondeterministi
 automatainstead of 
onverting them to deterministi
. This is how we use it in our algorithm.2.3 Ba
kward s
anningThe main disadvantage of Shift-Or is its inability to skip 
hara
ters, whi
h makes it slowerthan the algorithms of the Boyer-Moore [5℄ or the BDM [10, 9℄ families. We des
ribe inthis se
tion the BNDM pattern mat
hing algorithm [26℄. This algorithm, a 
ombination ofShift-Or and BDM, has all the advantages of the bit-parallel forward s
an algorithm, and inaddition it is able to skip some text 
hara
ters.BNDM is based on a suÆx automaton. A suÆx automaton on a pattern P = p1p2 : : : pmis an automaton that re
ognizes all the suÆxes of P . The nondeterministi
 version of thisautomaton is shown in Figure 3. Note that the automaton will not run out of a
tive states aslong as it has read a fa
tor of P . In the original BDM this automaton is made deterministi
.BNDM, instead, simulates the automaton using bit-parallelism. Just as for Shift-And, wekeep the state of the sear
h using m bits of a 
omputer word D = dm : : : d1.A very important fa
t is that this automaton 
an not only be used to re
ognize the suÆxesof P , but also fa
tors of P . Note that there is a path labeled by x from the initial state ifand only if x is a fa
tor of P . That is, the nondeterministi
 automaton will not run out ofa
tive states as long as it has read a fa
tor of P .5
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I
ε ε ε ε ε ε ε εFigure 3: A nondeterministi
 suÆx automaton for the pattern P = baabbaa. Dashed linesrepresent "-transitions (i.e. they o

ur without 
onsuming any input).The suÆx automaton is used to design a simple pattern mat
hing algorithm. This algo-rithm is O(mn) time in the worst 
ase, but optimal on average (O(n log�m=m) time). Othermore 
omplex variations su
h as TurboBDM [10℄ and MultiBDM [9, 29℄ a
hieve linear timein the worst 
ase.To sear
h for a pattern P = p1p2 : : : pm in a text T = t1t2 : : : tn, the suÆx automaton ofP r = pmpm�1 : : : p1 (i.e the pattern read ba
kwards) is built. A window of length m is slidalong the text, from left to right. The algorithm sear
hes ba
kward inside the window for afa
tor of the pattern P using the suÆx automaton, i.e. the suÆx automaton of the reversepattern is fed with the 
hara
ters in the text window read ba
kward. This ba
kward sear
hends in two possible forms:1. We fail to re
ognize a fa
tor, i.e we rea
h a window letter � that makes the automatonrun out of a
tive states. This means that the suÆx of the window we have read is notanymore a fa
tor of P . Figure 4 illustrates this 
ase. We then shift the window tothe right, its starting position 
orresponding to the position following the letter � (we
annot miss an o

urren
e be
ause in that 
ase the suÆx automaton would have founda fa
tor of it in the window).

� last
WindowRe
ord in last the window position when a terminal state is rea
hedSear
h for a fa
tor with the DAWGlast

The maximum pre�x starts at lastFail to re
ognize a fa
tor at �: the pattern 
an not start before �.�safe shift New windowFigure 4: Basi
 sear
h with the suÆx automaton2. We rea
h the beginning of the window, therefore re
ognizing the pattern P sin
e thelength-m window is a fa
tor of P (indeed, it is equal to P ). We report the o

urren
e,and shift the window by 1.The bit-parallel simulation works as follows. Ea
h time we position the window in the6



text we initialize D = 1m and s
an the window ba
kward. For ea
h new text 
hara
ter readin the window we update D. If we run out of 1's in D then there 
annot be a mat
h and wesuspend the s
anning and shift the window. If we 
an perform m iterations then we reportthe mat
h.We use a mask B whi
h for ea
h 
hara
ter 
 stores a bit mask. This mask sets the bits
orresponding to the positions where the reversed pattern has the 
hara
ter 
 (just as in theShift-And algorithm). The formula to update D isD0  (D & B[tj℄) << 1BNDM is not only faster than Shift-Or and BDM (for 5 � m � 100 or so), but it 
ana

ommodate all the extensions mentioned. Of parti
ular interest to this work is that it 
aneasily deal with 
lasses of 
hara
ters by just altering the prepro
essing, and it is by far thefastest algorithm to sear
h for this type of patterns [26℄.Note that this type of sear
h is 
alled \ba
kward" s
anning be
ause the text 
hara
tersinside the window are read ba
kwards. However, the sear
h progresses from left to right inthe text as the window is shifted.3 Regular expression sear
hingThe usual way of dealing with an expression with 
hara
ter 
lasses and bounded gaps isa
tually to sear
h for it as a full regular expression (RE) [16, 30℄. A gap of the form x(a; b)is 
onverted into a letters x followed by b� a subexpressions of the form (xj").The traditional te
hnique [31℄ to sear
h for a RE of length O(m) in a text of length n isto 
onvert the expression into a nondeterministi
 �nite automaton (NFA) with O(m) nodes.Then, it is possible to sear
h the text using the automaton at O(mn) worst 
ase time, or to
onvert the NFA into a deterministi
 �nite automaton (DFA) in worst 
ase time O(2m) andthen s
an the text in O(n) time.Some te
hniques have been proposed to obtain a good tradeo� between both extremes.In 1992, Myers [18℄ presented a four-russians approa
h whi
h obtains O(mn= log n) worst-
ase time and extra spa
e. Other simulation te
hniques that aim at good tradeo�s based on
ombinations of DFAs and bit-parallel simulation of NFAs are given in [34, 25℄.There exist 
urrently many di�erent te
hniques to build an NFA from a regular expressionR. The most 
lassi
al one is Thompson's 
onstru
tion [31℄, whi
h builds an NFA with at most2m states (where m is 
ounted as the number of letters and "'s in the RE). A se
ond one isGlushkov's 
onstru
tion, popularized by Berry and Sethi in [4℄. The NFA resulting of this
onstru
tion has the advantage of having justm+1 states (wherem is 
ounted as the numberof letters in the RE).A lot of resear
h on Glushkov's 
onstru
tion has been pursued, like [6℄, where it is shownthat the resulting NFA is quadrati
 in the number of edges in the worst 
ase. In [14℄, a longtime open question about the minimal number of edges of an NFA (without �-transition) withlinear number of states was answered, showing a O(m2) 
onstru
tion with O(m) states andO(m(logm)2) edges, as well as a lower bound of O(m logm) edges. In [12℄, the 
onstru
tiontime was improved to O(m(logm)2). Hen
e, Glushkov 
onstru
tion is not spa
e-optimal. Animprovement has been proposed in [15℄, building a quotient of Glushkov's automaton. Someresear
h has been done also to try to 
onstru
t dire
tly a DFA from a regular expression,without 
onstru
ting an NFA, su
h as [8℄. 7
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d

d(b) Glushkov 
onstru
tionFigure 5: The two 
lassi
al NFA 
onstru
tions on our example a � b � 
 � x � (xj") � (xj") � d � e.We re
all that x mat
hes the whole alphabet �. The Glushkov automaton is " free, but bothpresent some diÆ
ulties to perform an eÆ
ient bit-parallelism on them.We show in Figure 5 the Thompson and Glushkov automata for an example CBG a� b�
� x(1; 3)� d� e, whi
h we translate into the regular expression a � b � 
 � x � (xj") � (xj") � d � e.Both Thompson and Glushkov automata present some parti
ular properties. Some algo-rithms like [18, 34℄ make use of Thompson's automaton properties and some others, like [25℄,make use of Glushkov's ones.Finally, some work has been pursued in skipping 
hara
ters when sear
hing for a RE. Asimple heuristi
 that has very variable su

ess is implemented in Gnu Grep, where they tryto �nd a plain substring inside the RE, so as to use the sear
h for that substring as a �lterfor the sear
h of the 
omplete RE. In [32℄ they propose to redu
e the sear
h of a RE to amultipattern sear
h for all the possible strings of some length that 
an mat
h the RE (usinga multipattern Boyer-Moore like algorithm). In [25℄ they propose the use of an automatonthat re
ognizes reversed fa
tors of strings a

epted by the RE (in fa
t a manipulation of theoriginal automaton) using a BNDM-like s
heme to sear
h for those fa
tors (see Se
tion 2).However, none of the presented te
hniques seems fully adequate for CBGs. First, thealgorithms are intrinsi
ally 
ompli
ated to understand and to implement. Se
ond, all thete
hniques perform poorly for a 
ertain type of REs. The \diÆ
ult" REs are in general thosewhose DFAs are very large, a very 
ommon 
ase when translating CBGs to REs. Third,espe
ially with regard to the sizes of the DFAs, the simpli
ity of CBGs is not translatedinto their 
orresponding REs. For example, the CBG \[RK℄� x(2; 3) � [DE℄� x(2; 3) � Y "
onsidered in the Introdu
tion yields a DFA whi
h needs about 600 pointers to be represented.At the very least, resorting to REs implies solving a simple problem by 
onverting it intoa more 
ompli
ated one. Indeed, the experimental time results when applied to our CBGexpressions are far from reasonable in regard of the simpli
ity of CBGs, as seen in Se
tion7. As we show in that se
tion, CBGs 
an be sear
hed for mu
h faster by designing spe
i�
8



algorithms for them. This is what we do in the next se
tions.4 A forward sear
h algorithm for CBG patternsWe express the sear
h problem of a pattern with 
lasses of 
hara
ters and gaps using anon-deterministi
 automaton. Compared to the automaton for simple patterns (Se
tion 2),this one permits the existen
e of gaps between 
onse
utive positions, so that ea
h gap has aminimum and a maximum length. The automaton we use does not 
orrespond to any of thoseobtained with the regular expression simulations (see Se
tion 3), although the fun
tionalityis the same.Figure 6 shows an example for the pattern a � b � 
 � x(1; 3) � d � e. Between theletters 
 and d we have inserted three transitions that 
an be followed by any letter, whi
h
orresponds to the maximum length of the gap. Two "-transitions leave the state whereab
 has been re
ognized and skip one and two subsequent edges, respe
tively. This allowsskipping one to three text 
hara
ters before �nding the 
d at the end of the pattern. Theinitial self-loop allows the mat
h to begin at any text position.
a b c x x x d e

ε

εΣ

1 2 3 4 5 6 7 80Figure 6: Our non-deterministi
 automaton for the pattern a� b� 
� x(1; 3) � d� e.To build the NFA, we start with the initial state S0 and read the pattern symbol bysymbol (a symbol being a 
lass of 
hara
ters or a gap1). We add new automaton edges andstates for ea
h new symbol read. If after 
reating state Si the next pattern symbol is a 
lassof 
hara
ters C we 
reate a state Si+1 and add an edge labeled C from state Si to state Si+1.On the other hand, if the new pattern symbol is a gap of the form x(a; b), we 
reate b statesSi+1 : : : Si+b and edges labeled � linking state Sj to Sj+1 for j 2 i : : : i+ b� 1. Additionally,we 
reate b � a "-transitions from state Si to states Si+1 : : : Si+b�a. The last state 
reatedin the whole pro
ess is the �nal state.We are now interested in an eÆ
ient simulation of the above automaton. Despite that thisis a parti
ular 
ase of a regular expression, its simpli
ity permits a more eÆ
ient simulation.In parti
ular, a fast bit-parallel simulation is possible.We represent ea
h automaton state by a bit in a 
omputer word. The initial state is notrepresented be
ause it is always a
tive. As with the normal Shift-And, we shift all the bitsto the left and use a table of masks B indexed by the 
urrent text 
hara
ter. This a

ountsfor all the arrows that go from states Sj to Sj+1.The remaining problem is how to represent the "-transitions. For this sake, we 
hose2 torepresent a
tive states by 1 and ina
tive states by 0. We 
all \gap-initial" states those statesSi from where an "-transition leaves. For ea
h gap-initial state Si 
orresponding to a gapx(a; b), we de�ne its \gap-�nal" state to be Si+b�a+1, i.e. the one following the last state1Note that x and single letters 
an also be seen as 
lasses of 
hara
ters.2It is possible to devise a formula for the opposite 
ase, but unlike Shift-Or, it is not faster.9



rea
hed by an "-transition leaving Si. In the example of Figure 6, we have one gap-initialstate (S3) and one gap-�nal state (S6).We 
reate a bit mask I whi
h has 1 in the gap-initial states, and another mask F thathas 1 in the gap-�nal states. Then, if we keep the state of the sear
h in a bit mask D, thenafter performing the normal Shift-And step, we simulate all the "-moves with the operationD0  D j ((F � (D & I)) & � F )The rationale is as follows. First, D & I isolates the a
tive gap-initial states. Subtra
tingthis from F has two possible results for ea
h gap-initial state Si. First, if it is a
tive the resultwill have 1 in all the states from Si to Si+b�a, su

essfully propagating the a
tive state Sito the desired target states. Se
ond, if Si is ina
tive the result will have 1 only in Si+b�a+1.This undesired 1 is removed by operating the result with \& � F". On
e the propagation hasbeen done, we or the result with the already a
tive states in D. Note that the propagationsof di�erent gaps do not interfere with ea
h other, sin
e all the subtra
tions have lo
al e�e
t.Let us 
onsider again our example of Figure 6. The 
orresponding I and F masks are00000100 and 00100000, respe
tively (re
all that the bit masks are read right-to-left). Letus also 
onsider that we have read the text ab
, and hen
e our D mask is 00000100. Atthis point the "-transitions should take e�e
t. Indeed, ((F � (D & I)) & � F ) yields((00100000 � 00000100) & 11011111) = 00011100, where states S3, S4 and S5 have beena
tivated. If, on the other hand, D = 00000010, the propagation formula yields ((00100000�00000000) & 11011111) = 00000000 and nothing 
hanges.Figure 7 shows the 
omplete algorithm. For simpli
ity the 
ode assumes that there 
annotbe gaps at the beginning or at the end of the pattern (whi
h are meaningless anyway). Thevalue L (maximum length of a mat
h) is obtained in O(m) time by a simple pass over thepattern P , summing up the maximum gap lengths and individual 
lasses (re
all that m is thenumber of symbols in P ). The prepro
essing takes O(Lj�j) time, while the s
anning needsO(n) time. If L > w, however, we need several ma
hine words for the simulation, whi
h thustakes O(ndL=we) time.5 A ba
kward sear
h algorithm for CBG patternsWhen the sear
hed patterns 
ontain just 
lasses of 
hara
ters, the ba
kward bit-parallel ap-proa
h (see Se
tion 2) leads to the fastest algorithm BNDM [26℄. The sear
h is done by slidingover the text (in forward dire
tion) a window that has the size of the minimum possible align-ment (`). We read the window ba
kwards trying to re
ognize a fa
tor of the pattern. If werea
h the beginning of the window, then we found an alignment. Else, we shift the windowto the beginning of the longest fa
tor found.We extend now BNDM to deal with CBGs. To re
ognize all the reverse fa
tors of a CBG,we use quite the same automaton built in Se
tion 4 on the reversed pattern, but without theinitial self-loop, and 
onsidering that all the states are a
tive at the beginning. We 
reate aninitial state I and "-transitions from I to ea
h state of the automaton. Figure 8 shows theautomaton for the pattern a � b � 
 � x(1; 3) � d � e. A word read by this automaton is afa
tor of the CBG as long as there exists at least one a
tive state.The bit-parallel simulation of this automaton is quite the same as that of the forwardautomaton (see Se
tion 4). The only modi�
ations are (a) that we build it on P r, thereversed pattern; (b) that the the bit mask D that registers the state of the sear
h has to be10



Sear
h (P1:::m,T1:::n) /* Prepro
essing */L  maximum length of a mat
hfor 
 2 � do B[
℄  0LI  0L, F  0Li  0for j 2 1 : : : mif Pj is of the form x(a; b) then /* a gap */I  I j (1 << (i� 1))F  F j (1 << (i+ b� a))for 
 2 �, k 2 i : : : i+ b� 1 do B[
℄  B[
℄ j (1 << k)i  i+ belse /* Pj is a 
lass of 
hara
ters */for 
 2 Pj do B[
℄  B[
℄ j (1 << i) i  i+ 1nF  � FM  1 << (L� 1) /* final state *//* S
anning */D  0Lfor j 2 1 : : : nif D & M 6= 0L then report a mat
h ending at j � 1D  ((D << 1) j 0L�11) & B[tj℄D  D j ((F � (D & I)) & nF )Figure 7: The forward s
anning algorithm.

11
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IFigure 8: The non-deterministi
 automaton built in the ba
kward algorithm to re
ognize allthe reversed fa
tors of the CBG a� b� 
� x(1; 3) � d� e.initialized with D = 1L to perform the initial "-transitions; and (
) that we do not or D with0L�11 when we shift it, for there is no more initial self-loop.The ba
kward CBG mat
hing algorithm shifts a window of size ` along the text. Insideea
h window, it traverses ba
kward the text trying to re
ognize a fa
tor of the CBG (this iswhy the automaton that re
ognizes all the fa
tors has to be built on the reverse pattern P r).If the ba
kward sear
h inside the window fails (i.e. there are no more a
tive states in theba
kward automaton) before rea
hing the beginning of the window, then the sear
h windowis shifted to the beginning of the longest fa
tor re
ognized, exa
tly like in the �rst 
ase of the
lassi
 BNDM (see Se
tion 2).If the begining of the window is rea
hed with the automaton still holding a
tive states,then some fa
tor of length ` of the CBG is re
ognized in the window. Unlike the 
ase of exa
tstring mat
hing, where all the o

urren
es have the same length of the pattern, this does notautomati
ally imply that we have re
ognized the whole pattern. We need a way to verify apossible alignment (that 
an be longer than `) starting at the beginning of the window. Sowe read the 
hara
ters again from the beginning of the window with the forward automatonof Se
tion 4, but without the initial self-loop. This forward veri�
ation ends when (1) theautomaton rea
hes its �nal state, in whi
h 
ase we found the pattern; (2) there are no morea
tive states in the automaton, in whi
h 
ase there is no pattern o

urren
e starting at thewindow. As there is no initial loop, the forward veri�
ation surely �nishes after reading atmost L 
hara
ters of the text. We then shift the sear
h window one 
hara
ter to the rightand resume the sear
h.Figure 9 shows the 
omplete algorithm. Some optimizations are not shown for 
larity,for example many tests 
an be avoided by breaking loops from inside, some variables 
an bereused, et
.The worst 
ase 
omplexity of the ba
kward s
anning algorithm is O(nL), whi
h is quitebad in theory. However, on the average, the ba
kward algorithm is expe
ted to be faster thanthe forward one. The next se
tion gives a good experimental 
riterion to know in whi
h 
asesthe ba
kward algorithm is faster than the forward one. The experimental sear
h results (seeSe
tion 7) on the PROSITE database show that the ba
kward algorithm is almost always thefastest.6 Whi
h algorithm to use ?We have now two di�erent algorithms, a forward and a ba
kward one, so a natural questionis whi
h one should be 
hosen for a parti
ular problem. We seek for a simple 
riterion that12



Ba
kward sear
h (P1:::m,T1:::n)L  maximum length of a mat
h /* Prepro
essing */`  minimum length of a mat
hfor 
 2 � do Bf [
℄  0L; Bb[
℄  0LIf  0L, Ff  0L, Ib  0L, Fb  0Li  0for j 2 1 : : : mif Pj is of the form x(a; b) then /* a gap */If  If j (1 << (i� 1)) , Ib  Ib j (1 << (L� (i+ b)� 1))Ff  Ff j (1 << (i+ b� a)) , Fb  Fb j (1 << (L� i� a))for 
 2 �, k 2 i : : : i+ b� 1 doBf [
℄  Bf [
℄ j (1 << k); Bb[
℄  Bb[
℄ j (1 << (L� k � 1))i  i+ belse /* Pj is a 
lass of 
hara
ters */for 
 2 Pj doBf [
℄  Bf [
℄ j (1 << i); Bb[
℄  Bb[
℄ j (1 << (L� i� 1))i  i+ 1nFf  � Ff ; nFb  � FbM  1 << (L� 1) /* final state for the forward s
an* /pos  0 /* S
anning */while pos � n� ` doj  `, Db  1Lwhile Db 6= 0L and j > 0Db  Db & Bb[tpos+j℄Db  Db j ((Fb � (Db & Ib)) & nFb)j  j � 1if Db 6= 0L and j = 0 /* f orward s
an */Df  0L�11, v  1while Df 6= 0L and pos+ v � nDf  Df & Bf [tpos+v℄Df  Df j ((Ff � (Df & If )) & nFf )if Df & M 6= 0L thenreport a mat
h beginning at pos+ 1Df  0LDf  (Df << 1)v  v + 1Db  (Db << 1)pos  pos+ j + 1Figure 9: The ba
kward s
anning algorithm.13



enables us to 
hoose the best algorithm.In parti
ular, let us 
onsider the maximum gap length G in the CBG. If G � `, then everytext window of length ` is a fa
tor of the CBG, so we will surely traverse all the window duringthe ba
kward s
an and always shift in 1, for a 
omplexity of 
(n`) at least. Consequently, theba
kward approa
h we have presented must be restri
ted at least to CBGs in whi
h G < `.This 
an be 
arried on further. Ea
h time we position a window in the text, we knowthat at least G+ 1 
hara
ters in the window will be inspe
ted before shifting. Moreover, thewindow will not be shifted by more than `�G positions. Hen
e the total number of 
hara
terinspe
tions a
ross the sear
h is at least (G+1)n=(`�G), whi
h is larger than n (the numberof 
hara
ters inspe
ted by a forward s
an) whenever ` < 2G + 1.Hen
e, we de�ne (G+1)=` as a simple parameter governing most of the performan
e of theba
kward s
an algorithm, and predi
t that 0.5 is the point above whi
h the ba
kward s
anningis worse than forward s
anning. Of 
ourse this measure is not perfe
t, as it disregards thee�e
t of other gaps, 
lasses of 
hara
ters and the 
ost of forward 
he
king in the ba
kwards
an, but a full analysis is extremely 
ompli
ated and, as we see in the next se
tion, thissimple 
riterion gives good results.A

ording to this 
riterion, we 
an design an optimized version of our ba
kward s
anningalgorithm. The idea is that we 
an 
hoose the \best" pre�x of the pattern, i.e. the pre�xthat minimizes (G + 1)=`. The ba
kward s
anning 
an be done using this pre�x, while theforward veri�
ation of potential mat
hes is done with the full pattern. This 
ould be extendedto sele
ting the best fa
tor of the pattern, but the 
ode would be more 
ompli
ated (as theveri�
ation phase would have to s
an in both dire
tions, bu�ering would be 
ompli
ated, and,as we see in the next se
tion, the di�eren
e is not so large.7 Experimental resultsWe have tested our algorithms over an example of 1,168 PROSITE patterns [16, 13℄ and a 6megabytes (MB) text 
ontaining a 
on
atenation of protein sequen
es taken from the TIGRMi
robial database. The set had originally 1,316 patterns from whi
h we sele
ted the 1,230whose L (maximum length of a mat
h) does not ex
eed w, the number of bits in the 
omputerword of our ma
hine. This leaves us with 93% of the patterns. From them, we ex
luded the62 (5%) for whi
h G � `, whi
h as explained 
annot be reasonably sear
hed with ba
kwards
anning. This leaves us with the 1,168 patterns.We have used an Intel Pentium III ma
hine of 500 MHz running Linux. We show usertimes averaged over 10 trials. Three di�erent algorithms are tested: Fwd is the forward-s
analgorithm des
ribed in Se
tion 4, Bwd is the ba
kward-s
an algorithm of Se
tion 5 and Optis the same Bwd where we sele
t for the ba
kward sear
hing the best pre�x of the pattern,a

ording to the 
riterion of the previous se
tion.A �rst experiment aims at measuring the eÆ
ien
y of the algorithms with respe
t to the
riterion of the previous se
tion. Figure 10 shows the results, where the patterns have been
lassi�ed along the x axis by their (G+1)=` value. As predi
ted, 0.5 is the value from whi
hBwd starts to be worse than Fwd ex
ept for a few ex
eptions (where the di�eren
e is not sobig anyway). It is also 
lear that Opt avoids many of the worst 
ases of Bwd. Finally, theplot shows that the time of Fwd is very stable. While the forward s
an runs always at around50 MB/se
, the ba
kward s
an 
an be as fast as 200 MB/se
.What Figure 10 fails to show is that in fa
t most PROSITE patterns have a very low14
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Figure 10: Sear
h times (in tenths of se
onds per MB) for all the patterns 
lassi�ed by their(G+ 1)=` value.(G+ 1)=` value. Figure 11 plots the number of patterns a
hieving a given sear
h time, afterremoving a few outliers (the 12 that took more than 0.04 se
onds for Bwd). Fwd has alarge peak be
ause of its stable time, while the ba
kward s
anning algorithms have a widerhistogram whose main body is well before the peak of Fwd. Indeed, 95.6% of the patterns aresear
hed for faster by Bwd than by Fwd, and the per
entage raises to 97.6% if we 
onsiderOpt.The plot also shows that there is little statisti
al di�eren
e between Bwd and Opt. Rather,Opt is useful to remove some very bad 
ases of Bwd.
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Figure 11: Histogram of sear
h times for our di�erent algorithms.Our third experiment aims at 
omparing our sear
h method against 
onverting the patternto a regular expression and resorting to general regular expression sear
hing. From the existingalgorithms to sear
h for regular expressions we have sele
ted the following.Dfa: Builds a deterministi
 �nite automaton and uses it to sear
h the text.Nfa: Builds a non-deterministi
 �nite automaton and uses it to sear
h the text, updating all15



the states at ea
h text position.Myers: Is an intermediate between Dfa and Nfa [18℄, a non-deterministi
 automaton formedby a few blo
ks (up to 4 in our experiments) where ea
h blo
k is a deterministi
 au-tomaton over a subset of the states. \(xj")" was expressed as \.?" in the syntax of thissoftware.Agrep: Is an existing software [34, 33℄ that implements another intermediate between Dfaand Nfa, where most of the transitions are handled using bit-parallelism and the "-transitions with a deterministi
 table. \(xj")" was expressed as \(.|"")" in the syntaxof this software.Grep: Is Gnu Grep with the option "-E" to make it a

ept regular expressions. This softwareuses a heuristi
 that, in addition to (lazy) deterministi
 automaton sear
hing, looks forlong enough literal pattern substrings and uses them as a fast �lter for the sear
h. Thegaps \x(a; b)" were 
onverted to \.fa,bg" to permit spe
ialized treatment by Grep.BNDM: Uses the ba
kward approa
h we have extended to CBGs, but adapted to generalREs instead [25℄. It needs to build to deterministi
 automata, one for ba
kward sear
hand another for forward veri�
ation.Multipattern: Redu
es the problem to multipattern Boyer-Moore sear
hing of all the stringsof length ` that mat
h the RE [32℄. We have used \agrep -f" as the multipattern sear
halgorithm.To these, we have added our Fwd and Opt algorithms. Figure 12 shows the results.From the forward s
anning algorithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip text
hara
ters), the fastest is our Fwd algorithm thanks to its simpli
ity. Agrep has about thesame mean but mu
h more varian
e. Dfa su�ers from high prepro
essing times and largegenerated automata. Nfa needs to update many states one by one for ea
h text 
hara
terread. Myers su�ers from a 
ombination of both and shows two peaks that 
ome from itsspe
ialized 
ode to deal with small automata.The ba
kward s
anning algorithms Opt and Grep (able to skip text 
hara
ters) are fasterthan the previous ones in almost all 
ases. Among them, Opt is faster on average and hasless varian
e, while the times of Grep extend over a range that surpasses the time of our Fwdalgorithm for a non-negligible portion of the patterns. This is be
ause Grep 
annot always�nd a suitable �ltering substring and in that 
ase it resorts to forward s
anning. Note thatBNDM and Multipattern have been ex
luded from the plots due to their poor performan
eon this set of patterns.Apart from the faster text s
anning, our algorithms also bene�t from lower prepro
essingtimes when 
ompared to the algorithms that resort to regular expression sear
hing. This isbarely noti
eable in our previous experiment, but it is important in a 
ommon s
enario ofthe protein sear
hing problem: all the patterns from a set are sear
hed for inside a new shortprotein. In this 
ase the prepro
essing time for all the patterns is mu
h more important thanthe s
anning time over the (normally rather short) protein.We have simulated this s
enario by sele
ting 100 random substrings of length 300 from ourtext and running the previous algorithms on all the 1,168 patterns. Table 1 shows the timeaveraged over the 100 substrings and a

umulated over the 1,168 patterns. The di�eren
e in16
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Figure 12: Histogram of sear
h times for our best algorithms and for regular expressionsear
hing algorithms.favor of our new algorithms is drasti
. Note also that this problem is an interesting �eld ofresear
h for multipattern CBG sear
h algorithms.Algorithm Fwd Bwd Opt Dfa Nfa Myers Agrep GrepTime 0.058 0.056 0.050 125.91 4.43 7.84 10.22 9.42Table 1: Sear
h time in se
onds for all the 1,168 patterns over a random protein of length300.8 ExtensionsIn this se
tion we in
lude several extensions to the basi
 algorithms depi
ted in previousse
tions.8.1 Obtaining all the text o

urren
esOur forward s
anning algorithm reports all the �nal positions of the text o

urren
es, whileour ba
kward s
anning algorithm reports all the initial text positions. In several appli
ations17



ShiftLeft (Xt : : : X1,i)prevX  0wfor i 2 1 : : : tZi  (Xi << i) j prevXprevX  Xi >> (w � i)return Zt : : : Z1Subtra
t (Xt : : : X1,Yt : : : Y1)
arry  0for i 2 1 : : : tZi  Xi � Yi � 
arryif Zi > Xi or (Yi = 1w and 
arry = 1)
arry  1else 
arry  0return Zt : : : Z1Figure 13: Multiword algorithms for X << i and X � Y .it is ne
essary to report all the o

urren
es, not only their initial or �nal positions. That is,if several o

urren
es of a CBG begin/end at the same position, we want to report all the
orresponding �nal/initial positions.If we use ba
kward s
anning, we are for
ed to use a forward veri�
ation, whi
h is donewith an automaton similar to the forward sear
h one, but without the initial self-loop. InSe
tion 5 we only wanted to report the initial positions, so we stopped the forward veri�
ationas soon as (i) we rea
hed a �nal state, (ii) we ran out of �nal states, (iii) the text �nished.If we want to report all the �nal positions 
orresponding to a given initial position, then,instead of stopping as soon as 
ondition (i) is met, we will report a new �nal position everytime (i) holds, and will keep reporting o

urren
es until (ii) or (iii) hold.In 
ase of forward s
anning we have to do the symmetri
 job. Ea
h time the forwards
anning �nds a �nal o

urren
e position, we should perform a ba
kward veri�
ation, reading
hara
ters ba
kward from the �nal position, and using a veri�
ation automaton built on thereversed pattern.However, in some appli
ations, one 
an be interested in reporting other information,espe
ially when the mat
hes interse
t. Many studies have been done on that subje
t forregular expressions and these might be applied for CBG [21℄.8.2 Handling longer patternsIf the number L of bits needed to represent the pattern is larger than w, the number of bitsin the 
omputer word, then several 
omputer words have to be employed for the simulation.The easiest way to handle this is to implement all the operations on a new data type formedby an array of 
omputer words. This is rather simple for operations that operate the bitslo
ally, e.g. \&, \j", \�", \=", and so on, but it be
omes a bit tri
kier for others, su
h as\<<" and \�". We give pseudo
ode in Figure 13 for these two operations.Sin
e operating with multiple words is usually mu
h slower than with a single word, it18



may be advisable to 
hoose a small enough subpattern to s
an, and verify the existen
e of the
omplete pattern with the multiword algorithm only when the shorter subpattern is found.This was done in Se
tion 6 with other purposes, and it 
an be used to ensure that the sear
his done for a short subpattern, even if we opt for forward s
anning.8.3 Sele
ting the best subpattern to sear
h forIn Se
tion 6 we have shown that a 
lever idea is to 
hoose a pre�x of the sear
h patternthat minimizes (G + 1)=`, where G is its longest gap and ` the minimum length of a stringmat
hing the pre�x. In the previous subse
tion we have also shown that it may be better to
hoose a small enough pre�x to perform a fast s
anning. Ea
h o

urren
e of the pre�x hasto be veri�ed for the o

urren
e of the whole pattern.An interesting topi
 is that we are not for
ed to 
hoose a pre�x, but any fa
tor of thepattern would do. An in
onvenient is that veri�
ation is more 
omplex, sin
e we have to verifyfor full o

urren
es in both dire
tions. That is, if we 
hoose Pi:::i0 for ba
kward s
anning,then for ea
h initial position j of an o

urren
e of Pi:::i0 , we have to verify tj�1tj�2 : : : for thereverse of P1:::i�1 and tjtj+1 : : : for Pi:::m. However, the reward for a more 
omplex 
ode 
anbe signi�
ant if we have to sear
h for a pattern with a long gap near the beginning.8.4 Ba
kward s
anning with linear worst 
ase timeIn 
ertain 
ases, although the average speed of the ba
kward s
an may be desirable, the riskof a quadrati
 sear
h time for a given pattern may be una

eptable. We show in this se
tionthat it is possible to skip 
hara
ters while still guaranteeing the linear worst 
ase sear
h timeof the forward algorithm. In pra
ti
e the resulting algorithm is slower than a pure ba
kwards
anning, but it is better than no skipping 
hara
ters at all if linear worst 
ase time has tobe guaranteed.The main 
lassi
al idea [10, 28℄ to build su
h a linear worst 
ase algorithm is to avoidretraversing the same 
hara
ters in the ba
kward window veri�
ation. Assume we sear
h fora simple string P of length p. The sear
h is done through a window of length p. We dividethe work done on the sequen
e into two parts: forward and ba
kward s
anning. To be linearin the worst 
ase, none of these two parts must retraverse 
hara
ters. In the forward s
an, itis enough to keep tra
k of the longest pattern pre�x v that mat
hes the 
urrent text suÆx.However, we need to use also ba
kward sear
hing in order to skip 
hara
ters. The idea isthat the window of length p is pla
ed so that the 
urrent longest pre�x mat
hed v is alignedwith the beginning of the window. The position of the 
urrent text 
hara
ter inside thewindow (i.e. jvj) is 
alled the 
riti
al position. At any point in the forward s
an we 
an pla
ethe window (shifted jvj 
hara
ters from the 
urrent text position) and try a ba
kward sear
h.Clearly, this is only promising when v is not very long 
ompared to p. Usually, a ba
kwards
an is attempted when the pre�x is less than bp=�
, where 0 < � < p is a �xed arbitrary
onstant (usually � = 2).The ba
kward sear
h pro
eeds almost as before, but it �nishes as soon as the 
riti
alposition is rea
hed. The two possibilities are:(i) We rea
h the 
riti
al position. In this 
ase we are not able to skip 
hara
ters. Theforward sear
h is resumed in the pla
e where it was left (i.e. from the 
riti
al position),totally retraverses the window, and 
ontinues until the 
ondition to try a new ba
kwards
an holds again. 19



(ii) We do not rea
h the 
riti
al position, as we fail reading ba
kwards on a 
hara
ter �.This means that there 
annot be a mat
h in the 
urrent window. We start a forwards
an from s
rat
h just after �, we then totally retraverse the window, and 
ontinue untila new ba
kward s
an seems promising.This simple approa
h for a simple word must be adapted to the 
ase of CBG. First, toavoid missing any mat
h, we �x the size of the window to `, the length of a smallest possiblemat
h of the CBG. All mat
hes of the CBG are found through the forward s
an. A pre�x ofthe window 
orresponds in the CBG to paths beginning at the origin marked by a
tive statesin the 
urrent bit mask D (see Se
tion 4). We repla
e the 
riterion of bp=�
 by that of testingif no a
tive bits remain on the right half of D, whi
h 
an be tested in 
ontant time.In the 
ase of a general regular expression, the linear worst 
ase framework 
an be applied,but with more involved modi�
ations [25℄.9 Sear
hing allowing di�eren
esApart from the 
exibility in permitting 
lasses of 
hara
ters and gaps, it is useful to thatthe o

urren
es di�er by a few 
hara
ters from the pattern spe
i�
ation. This is modeled asfollows. Let d : �� � �� �! R+ be a distan
e fun
tion between strings. A threshold k isgiven together with the sear
h pattern. Then, we are interested in reporting text substringsw su
h that d(w; v) � k for some v that mat
hes the sear
h pattern.Definition 2 Sear
hing for a CBG in a text T = t1t2 : : : tn with threshold k under a distan
ed() 
onsists in �nding all the positions j of T su
h that there is a suÆx w of t1 : : : tj whered(w; v) � k for some alignment v of the CBG.The distan
e between the two strings is usually regarded as the 
ost to 
onvert one stringinto the other via a sequen
e of operations over one or the other. The distan
e, 
alled ingeneral an edit distan
e, is the sum of the 
osts in
urred a
ross all the operations. Di�erentappli
ations permit di�erent operations and assign them di�erent 
osts. In 
omputationalbiology, the usual operations are (a) substitute a given 
hara
ter by another, at a real-valued 
ost that depends on the 
hara
ters substituted; (b) insert/delete 
hara
ters into/fromeither string, at a 
ost that depends on the 
hara
ters inserted/deleted and on the number of
onse
utive insertions/deletions made (usually inserting/deleting a group 
osts less than thesum of the individual operations).There exist good algorithms to deal with regular expression sear
hing allowing k di�er-en
es [20, 19℄. In parti
ular, the latter fo
uses on the so-
alled \network expressions", whi
hare regular expressions without 
y
les. Although the worst-
ase sear
h 
ost is O(mn) [20℄,somewhat improved average time sear
h algorithms are possible [19℄. These algorithms arerather slow in 
omparison to those for exa
t sear
hing, but they permit using the 
omplex 
ostfun
tions that are of interest in 
omputational biology. Sin
e CBG patterns 
an be translatedinto network expressions, these algorithms give a solution.It is interesting, however, that mu
h faster sear
hing is possible if we �x the 
ost of 
har-a
ter insertions, deletions and substitutions at 1. This simpler distan
e, 
alled Levenshteindistan
e, 
an be rephrased as the number of insertions, deletions and substitutions ne
essaryto make both strings equal. The sear
h algorithms for Levenshtein distan
e are so fast in
omparison to those for a general edit distan
e, that it be
omes interesting to use them as a20



pre-�lter for more re�ned sear
hes into the proteins that happen to be interesting 
andidatesfor the sear
h.There exist some algorithms to handle regular expression sear
hing allowing di�eren
esunder Levenshtein distan
e [34, 36, 24℄ (the latter indeed permits arbitrary integer weights).Albeit mu
h faster than the algorithms for general edit distan
es, they are 
onsiderably slowerthan those for exa
t regular expression sear
hing. It is natural to ask whether we 
ould designspe
i�
 algorithms for CBG patterns, whi
h 
ould be simpler and faster.A general te
hnique introdu
ed in [34℄ permits adapting any bit-parallel exa
t sear
halgorithm to one permitting k di�eren
es. Re
all our automaton of Figure 6 for the patterna� b� 
� x(1; 3) � d� e. The automaton of Figure 14 sear
hes for it permitting at most 2di�eren
es. The verti
al arrows are traversed by � and the diagonal arrows by � [ f"g.

Σ Σ Σ Σ ΣΣΣΣΣ

a b c x x x d e

ε

1 2 3 4 5 6 7 80

a b c x x x d e

ε

1 2 3 4 5 6 7 80

a b c x x x d e

εΣ

1 2 3 4 5 6 7 80

ε

ε

ε

Σ Σ Σ Σ ΣΣΣΣΣ

Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε

Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε Σ,ε

Figure 14: A non-deterministi
 automaton to sear
h for the pattern a� b� 
�x(1; 3)� d� ewith 2 di�eren
es.The rationale of the automaton is as follows. The original automaton has been repli
atedk = 2 times apart from its original version, whi
h stays on top. Let us 
all \
opy i" the i-th
opy of the automaton, where 
opy zero is the original one. Then, 
opy i will rea
h its �nalstate whenever we �nd the pattern in the text with i errors. This should be immediate for
opy zero. On
e we a

ept it for 
opy i, we noti
e that a verti
al arrow permits us skipping atext 
hara
ter without 
hanging the automaton state we are at, ex
ept that we a
tivate thesame state in the next 
opy. This is equivalent to permitting a deletion in the text (or aninsertion in the pattern) and in
rementing the number of di�eren
es seen. A diagonal arrowtraversed by " permits us skipping a 
hara
ter of the pattern without a
tually seeing it inthe text, so it 
orresponds to an insertion in the text (or a deletion in the pattern). Finally,a diagonal arrow traversed by a 
hara
ter � permits us advan
ing in the pattern and in thetext without having a mat
h, so we are indeed substituting a text 
hara
ter by a pattern
hara
ter, or vi
e versa. Hen
e we will rea
h the �nal state in 
opy i + 1 whenever we needa single further di�eren
e to extend an o

urren
e found by 
opy i.In the original formulation [34, 28℄, more arrows would have been ne
essary, as in generalwe have to insert a \diagonal" arrow between rows i and i+1 for every arrow in the original21



Sear
h (P1:::m,T1:::n,k)/* Prepro
essing identi
al to forward sear
hing, Figure 7 *//* S
anning */D0  0Lfor i 2 1 : : : kDi  Di�1 j (Di�1 << 1) j 0L�11Di  ((F � (Di & I)) & nF )for j 2 1 : : : nif Dk & M 6= 0L then report a mat
h ending at j � 1oldD  D0D0  ((D0 << 1) j 0L�11) & B[tj℄D0  D0 j ((F � (D0 & I)) & nF )for i 2 1 : : : knewD  (Di << 1) & B[tj℄newD  newD j oldD j ((oldD j Di�1) << 1) j 0L�11newD  newD j ((F � (newD & I)) & nF )oldD  DiDi  newDFigure 15: The forward s
anning algorithm allowing k di�eren
es.automaton. In our 
ase, this turns out to be unne
essary (and is re
e
ted in simpler 
ode).The only arrows not 
onsidered are the "-transitions of Figure 6. Keeping in mind that,whenever state j is a
tive at 
opy i, it has to be a
tive at 
opy i + 1 (sin
e this representsmat
hing a pattern pre�x with i and i+ 1 di�eren
es), it is not hard to see that these extraarrows are unne
essary.Simulating the behavior of the automaton is easy on
e we know how to simulate ea
h row.Say that Di is the bit mask that 
ontains the state of the sear
h at 
opy i. Then, in order toupdate the 
urrent values D0 : : : Dk to the new values D00 : : : D0k, we �rst 
ompute D00 fromD0 using the usual formula for exa
t sear
hing. Then, for ea
h i 2 1 : : : k, we 
ompute D0ifrom Di, Di�1 and D0i�1. The right order to 
onsider the arrows is to 
onsider horizontal,verti
al and diagonal �rst, and then leaving the treatment of gaps for the se
ond stage, asfollows (note than only D0 has a self-loop)D0i  (Di << 1) & B[tj℄D0i  D0i j Di�1 j ((Di�1 << 1) j 0L�11) j (D0i�1 << 1)D0i  D0i j ((F � (D0i & I)) & nF )where, in the middle line, Di�1 a

ounts for the verti
al arrows, (Di�1 << 1) j 0L�11 for thediagonal arrows via �, and D0i�1 << 1 (that is, the new value of Di) a

ounts for diagonalarrows via ". The 
omplete s
anning algorithm is given in Figure 15.It would be possible to adapt this te
hnique to ba
kward s
anning as well, but in pra
ti
ethe shifts are too short when we allow di�eren
es, so this is never better than forward s
anning.22



k Ours Nrgrep0 0.221 0.5461 0.361 1.2242 0.583 1.9853 0.797 2.805Table 2: Comparison between algorithms for sear
hing allowing k di�eren
es. Times areexpressed in tenths of se
onds, averaged over all the patterns.Table 2 shows a 
omparison between this algorithm and the fastest algorithm for regularexpression sear
hing with unitary 
ost errors [34℄. As shown in [24℄, the te
hnique of [34℄ (fromwhere we have adapted our CBG sear
h algorithm) is by far the fastest for this 
ase. Althoughthat te
hnique is already implemented in Agrep [33℄, we have adapted the implementation ofNrgrep [23℄, whi
h poses less limits on pattern lengths and k values. In both 
ases, spe
i�

ode is written and optimized for ea
h k value, and we just 
ount the number of mat
hes.For a des
ription of the ma
hine, the text and the patterns used, see Se
tion 7.As it 
an be seen, our method is 3.4 to 3.5 times faster, thanks to simpler 
ode and morelo
ality of referen
e. In addition, it is mu
h simpler to program. As for exa
t forward s
anning,varian
e is very low, so 
onsidering average values is enough. We have in
luded the times forthe 
orresponding exa
t sear
h algorithms to show the pri
e of permitting di�eren
es.10 Con
lusionsWe have presented two new sear
h algorithms for CBGs, i.e. expressions formed by a sequen
eof 
lasses of 
hara
ters and bounded gaps. CBGs are of spe
ial interest to 
omputationalbiology appli
ations. All the 
urrent approa
hes rely on 
onverting the CBG into a regularexpression (RE), whi
h is mu
h more 
omplex. Therefore the sear
h 
ost is mu
h higher thanne
essary for a CBG.Our algorithms are spe
i�
ally designed for CBGs and are based on BNDM, a 
ombina-tion of bit-parallelism and ba
kward sear
hing with suÆx automata. This 
ombination hasbeen re
ently proved to be very e�e
tive for patterns formed by simple letters and 
lasses of
hara
ters [26℄. We have extended BNDM to allow for limited gaps.We have presented experiments showing that our new algorithms are mu
h faster and morepredi
table than all the other algorithms based on regular expression sear
hing. In addition,we have presented a 
riterion to sele
t the best among the two that has experimentally shownto be very reliable. This makes the algorithms of spe
ial interest for pra
ti
al appli
ations,su
h as protein sear
hing.Finally, we have shown how to handle several extensions, su
h as skipping 
hara
ters whileat the same time ensuring a linear worst 
ase time, permitting a few di�eren
es betweenthe pattern and the text, handling large patterns, re
overing initial and �nal positions ofo

urren
es, and �nding the optimal sear
h subpattern to optimize the sear
h time.A more 
hallenging type of sear
h permits negative gaps in the mat
hes (
ombined withdi�eren
es). This is solved in [19℄, but whether a faster bit-parallel algorithm 
an be designedremains an open question. Another relevant question is whether we 
an extend the sear
hallowing di�eren
es to the 
ase where insertions, deletions and substitutions have di�erent23



weights, as done re
ently for regular expressions in [24℄. With the approa
h we have presentedit is not hard to give a given integer 
ost I to all insertions, D to all deletions, and S to allsubstitutions, but it is not possible that the 
ost depends on the 
hara
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