
Mathsimile: A Flexible ApproximateMathing Tool for Personal NamesSearhingGonzalo Navarro Riardo Baeza-YatesDept. of Computer Siene, University of Chile,Blano Enalada 2120, Santiago, Chile.fgnavarro,rbaezag�d.uhile.l.Jo~ao Marelo Azevedo AroverdeMathsimile Ltda - CTO,Rua Ribeiro de Brito, 1002/1103, CEP 51.021-310, Reife-PE, Brazil.jmarelo�mathsimile.om.brAbstratIn this paper we present the arhiteture and algorithms behind Mathsimile, anapproximate string mathing lookup tool espeially designed for human and om-pany names searhes against a large textual database. Part of a larger informationretrieval environment, this spei� engine aepts an input text �le with a set ofpersonal and ompany names and a set of restritions for the searh. After a bathproessing, the engine outputs another text �le ontaining the ourrenes that matheah reord of the input names �le, aording to its searh parameters. Beyond thesimilarity searh apabilities applied on eah word that forms a name, the tool on-siders a set of personal names formation rules for their words suh as ombination,abbreviation, harater mapping, dupliity detetions, ordering, word omission andinsertion, among others. This engine is used in a sueeded ommerial appliation(also named Mathsimile), whih uses this tool to allow lawyers names searhesagainst many oÆial law journals publiations.1 IntrodutionLiving in a world surrounded by errors and mistakes, the overwhelming existing searhtehnologies does not address the human tendeny to be inexat. They were designed tomainly fous on exat mathing searhes apabilities. Many situations tend to fail whenthose algorithms are applied, instead of performing approximate string mathing searhesin a textual database, where they have higher hanes to su�er some kind of (undesirable)orruption, or even when the valuable information an su�er modi�ations the way thatthey an appear, in funtion of their nature.

Computational biology, image analysis, speeh proessing, medial diagnosis and legaltexts onstitute motivation examples for this kind of searh. In the sope of the last onewe have found a partiular situation foused on personal names searhes, where existsformation rules that an write the same piee of information in many ways. In addition,we have to add typos, spelling errors, OCR errors, et.Mathsimile will �nd a person name, a ompany name or a simple geographial ad-dress even if the words that form the name present errors among their haraters. Supposethe following example for a hypothetial fellow named "Juan Abigahil Eslopênio deCapriolli". This name is formed by �ve distint words that an easily su�er modi�-ations suh as words dupliity, abbreviations, omissions, insertions and transpositions.Thus, the following ourrene triggered by Mathsimile would be orretly evaluated forthe above example: "Caprioli, Juam A. Slopenio". Easy to be deteted by the humansense of similarity, but not by normal query languages, this ourrene has a large haneto be the pattern name we were looking for.The reverse senario is also true, when we do not know for sure what we are lookingfor. For example, we an query a personal name like "Catano Velozo" (whih is wrongfor the Brazilian singer and omposer named Caetano Veloso) and the Mathsimile searhengine one more will trigger ourrenes for "Caetano B. Costa Veloso", and so on.Thus, Mathsimile allow users of an arbitrary information system to �nd quikly andeasily the information they want, even when they are not sure the way this informationshould be written or mathed, allowing harater and word errors.Mathsimile's revolutionary lookup tehnology e�etively rede�nes the searh paradigm.Under other existing tehnologies, the terms used in a searh query stritly limit the in-formation that the query returns; as a result, even minor errors in the query potentiallyreturn unwanted or irrelevant information. Mathsimile tolerates a wide spetrum of vari-ations and errors, in an attempt to model a human notion of similarity. Despite that thisis done at a simple, low syntati level, it helps bridge the gap between human tendeniesand omputer requirements.To solve the problem of string mathing allowing errors, also alled approximate stringmathing, Mathsimile uses a balane of theoretial data strutures and advaned teh-niques for fast searhing algorithms to model a human similarity judgment under strittime performane onstraints. The mathematial properties of this type of model allowMathsimile to ompute eah math using an extremely eÆient algorithm. The result isan extremely fast searh engine apable to proess thousands of patterns against a largetextual database (measured in Gb) in hours.Unlike the typial \advaned searh" features found on popular searh engines, Math-simile uses no speial query syntax - no speial pre�xes, suÆxes, brakets, braes, orBoolean onnetives. Otherwise, Mathsimile lets the user personalize a set of lengthindependent personal and ompany names, alled \Inputs", to be searhed against anytextual database, independent of its length and language. It makes no language-spei�assumptions, intelligently handling aented and speial haraters found in many lan-guages.This paper is organized as follows: Setion 2 presents related work, setion 3 theoverall design of the system, setion 4 the algorithmi tehniques used by the searhengine, setion 5 analytial and experimental performane results, and the last setionthe onlusions.

2 Related WorkThe algorithmi problems faed by Mathsimile lie in what is known as \approximatestring mathing", a well established �eld in stringology with appliations in text retrieval,omputational biology, pattern reognition and a dozen of other �elds. The main errormodel used in approximate string mathing permits symbol insertions, deletions, substi-tutions and transpositions. This model has been validated many times in the past, e.g.[10, 4, 14, 6℄.The problem of approximate string mathing onsists of �nding all the ourrenesof a pattern in a text where a limited number of di�erenes between the pattern andan ourrene is permitted. We distinguish between sequential and indexed solutions.Sequential solutions do not permit to preproess the text. There has been researh onsequential searhing sine the sixties, see [11℄ for a reent survey. Indexed solutions permitbuilding a data struture on the text beforehand in order to answer queries later. Therehas been researh in this trend sine the nineties, see [12℄ for a survey.Nevertheless, our partiular problem involves searhing thousands of patterns in a textallowing errors. Multiple approximate pattern mathing is a rather undeveloped area, soin Mathsimile we have used a ombination of known and new tehniques. We borrowmostly from trie baktraking tehniques [16, 5℄.From the appliations point of view, there are few systems permitting approximatemathing on natural language text (there are more systems for spei� omputationalbiology appliations, e.g. [5℄), and none addressing our partiular problem. The �rst suhsystem was Glimpse [9℄, whih indexes the text and permits approximate searhing bylooking sequentially all the voabulary words. The same idea, with few modi�ations, hasbeen used in other natural language indexes [3, 13℄.A reent system relying on a slightly di�erent approximate mathing model is LikeIt[17℄. In this system symbol transpositions are permitted and penalized aording to theirdistanes from their original positions. Based on reent algorithmi developments, LikeItstill does not deal with the simultaneous searh of thousands of patterns.3 System Design and CapabilitiesBasially, the Mathsimile's kernel aepts an input text �le with a set of personal andompany names (also alled patterns) with a set of parameters whih to determine thesearh features to be used. The engine preproesses the patterns building an index basedon suÆx trees. Notie that in our appliation the text database hanges more often thanthe patterns, so it is not worth to preproess the text (for example, the oÆial journalsare printed daily). Then, using this pattern index, the engine sequentially sans thetarget text �les. At the end, the engine outputs one text �le ontaining the ourrenesthat mathes eah reord for the input �les, and optionally an output another text �leontaining spurious or weaker ourrenes, if they were �ltered through a exat searhmehanism based in ditionaries.Next we highlight the main features of the parameterization.The system distinguishes between personal and ompany names. For personal names,the input �le points out whih are given names and surnames. In legal texts, we will

�nd always at least one of them (in the worst ase, one is an initial). Let us examinethe following example: "Juan Carlos Bartolomeu Mattos Netto". It an be publishedlike this: "Matos, J. Carla B. Neto". There exists higher hanes to be the person weare looking for. Note that we have one surname followed by on name, with a stopwordamong them with less than three haraters, whih we an disard with a lower ost (itsexistene is insigni�ant to the �nal result). The following ourrene is also honored:"Juan Neto". Less hanes to be the person we are looking for but an be.Inside names we an: 1) allow intruders words insertions. Ex: "Juan BeneditoNeto"; 2) set the error level applied in eah word (as a % of the length); 3) �lteringthe results using a ditionary of names and surnames that disard spurious ourrenes.All these values or ations have a default ase.Allowing intruders words (that ones that are not among those given for the originalinput) is meaningful if the original words are the �rst word of a name set and the lastword of a surname set respetively. This ould represent people derived from the samefamily. The variable error level per word is useful when you have short and long namesthat you want to treat di�erently. The �lter heks for \personal names rules formation".These rules an di�er from language to language, depending on their ultures and mor-phologial/semantial onstrutions and speaking habits. The disadvantage of this �lteris that there must exist one ditionary for names and one for surname for eah languageproessed, so it is an optional feature.Company names an be one or more words. Inside them we an ag whih is themost important word (that typially will always appear). For example, in the followinginput reord: "Eletropaulo Metropolitana", the �rst word is the important one, andwill appear even with errors. We also allow to have dupliate input keywords for ommonabbreviations whih are not due to errors. For example: "Eletrop Metrop".All these parameters and ations an be prede�ned through a on�guration �le. Inpartiular, de�nes whih set of haraters an ompose one valid word. Numbers anbe disarded beause there is no sense to have them inside personal names. Eah wordis a sequene of a valid haraters subset, surrounded by spae harater at both sides.Nevertheless, a minimal length an be spei�ed (the default is 3). Shorter sequenes arenot onsidered words (so they annot be intruder words).Mapping of haratars an also be spei�ed. This an simulate the \ase insensitive"behavior, for example, and disard the aents arose from our alphabet. The \mapping"is a good tehnique to enhane the algorithm performane, allowing the ode to work witha valid subset of haraters determined by the \word haraters" session.The default ost of eah error is 1. However, this an also be hanged, speifyingdi�erent osts for inserting, deletion, replaing, or transposing letters. In this ase themaximum allowed ost to trigger a math must be spei�ed.4 Algorithmi PriniplesWe desribe in this setion the algorithms and data strutures behind Mathsimile. Someof these are already known in the sienti� literature, while others have been spei�allydeveloped for our needs. This last ategory inludes a phrase mathing algorithm andour overall arhiteture.

4.1 The Searh ProblemWe �rst de�ne the searh problem preisely, motivating the deisions taken.De�ning the text and patterns. We onsider the text as a sequene of words. Aword is a string formed by letters and delimited by separators, whih an be de�ned by theuser. On the other hand, we have a set of patterns to searh in the text. Eah pattern isformed by a sequene of pattern words. Patterns and text words obey the same formationrules. The user an also speify a mapping of haraters, whih is used to normalize everytext and pattern word, as well as a set of stopwords, i.e. text and pattern words that willnot be onsidered when mathing.Now that we have de�ned preisely what is the text and what is the set of patterns,we de�ne the mathing riterion. There are two levels of mathing. A �rst level dealswith single words and their possible typing or spelling errors. A seond level deals withphrases (sequenes of words) and their possible di�erenes in arrangement.Intraword similarity. Our �rst task is to determine when a text and a pattern wordare similar enough. By \similar enough" we mean that the ost to transform the textword into the pattern word is smaller than a user de�ned threshold. The user an speifythis threshold in several ways, and it an be di�erent for every pattern word.There are many forms to de�ne \ost", but a popular one is the minimum numberof insertions, deletions, substitutions and transposition of adjaent haraters that areneessary to onvert the text word into the pattern word. This is a variant over theoriginal Levenshtein distane [7, 8℄.The e�etiveness of this ost measure is well known. For instane, about 80% of thetypial typing errors are orreted allowing just one insertion, deletion, substitution ortransposition [4℄. It is also known, however [14, 6℄, that making every suh operation toost 1 (i.e. just ounting the number of those operations) is simplisti, as muh betterresults are ahieved by permitting ommon errors to ost less. For example, we angive a lower ost to the transposition of two letters that are lose in the keyboard orto omissions due to ommon spelling errors. So we hoose a ost model where all theseoperations are permitted but we let the user hange the ost of the insertion or deletionof every harater, and the ost of substituting or transposing every harater with everyother. This permits us parameterizing the tool to di�erent senarios and languages.The ost model is de�ned by means of two funtions, Æ and � , whih represent theosts to perform the diverse alterations on the text word (we ould have hosen to thinkon altering pattern word instead). For two di�erent letters a and b, Æ(a; b) is the ost tosubstitute a by b in the text word (it is assumed that Æ(a; a) = 0). For a letter a presentin the text word, Æ(a; ") is the ost to delete a from the word. For a letter a, Æ("; a) is theost to insert a in the word. Finally, for two di�erent letters a followed by b, adjaent inthe text word, �(a; b) is the ost to transpose them, i.e. to onvert ab into ba.Phrase similarity. We de�ne now when two phrases math. The �rst is a sequeneof text words and the seond is a whole pattern. From now on, we say that a text anda pattern words math whenever they are similar enough aording to the user de�nedthreshold, and we disregard their internal di�erenes.

For sequenes of words, we use a model where we an delete pattern words and inserttext words in the pattern (or whih is the same, delete text words). Permitting substi-tution of words seems unreasonable given that we already detet words that are lose toeah other and assume that they math. We found the transpositions to be of little useat this level, although for future work we are onsidering models where the order of thewords is irrelevant.The similarity riterion for phrases inludes two thresholds. We permit deleting atmost D words from the pattern, and inserting at most I spurious (text) words in thepattern. The user has several ways to speify these thresholds, in general or for spei�patterns in the set. This turned out to be more adequate than setting a single threshold,say for I + D, beause we an ontrol more preisely the minimum amount of patternwords that must be present in order to onsider that a math has ourred, as well ashow many spurious words an be reasonably aepted in between interesting words.For our partiular Portuguese language appliation of personal and ompanies namessearhing, however, we need a �ner ontrol. This has lead to some extensions of the abovemathing riterion (whih an be swithed on or o� for every pattern).Reporting the results. The goal is to report maximal sequenes of text words thatmath some pattern by outputting its exat text position (as well as the identi�ation ofthe pattern mathed and some information on how lose is the ourrene to the orretlywritten pattern, used for ranking the results). The word \maximal" means that we annotenlarge the sequene reported and still make it math.Reporting maximal ourrenes is in general a good hoie beause it alls the attentionof the user over a longer sequene of text words that math the pattern, giving a bettergrasp of the relevane of the math. For example, if we permit one insertion and onedeletion, then "Maria Rosa Ferreira de Oliveira" mathes against "Maria Ferreirade Oliveira", yet it also mathes with the pre�x "Maria Ferreira".4.2 General ArhitetureNow it should be lear that our problem is to detet patterns in the text even when thewords are spelled di�erently and arranged di�erently. Hene the software works at threelevels: (1) Text tokenizing, a very basi layer that delimits and normalizes text words;(2) Reognizing pattern words, whih reognizes the text words with enough similarity topattern words, the similarity being measured at the harater level; and (3) Reognizingwhole patterns, whih reognizes text phrases (sequenes of words) whih are similarenough to whole patterns, where we measure the similarity at the word level.The �rst level implements a reading routine that delivers the text words one by one.It delimits the words, maps the haraters, removes stopwords and delivers normalizedwords to the next level. The set of patterns is normalized aording to the same rules.The seond level proesses eah word reeived against the set of all the patterns inone shot. A suitable data struture is used to arrange all the set of patterns in order topermit simultaneously omparing the text word against the whole set of patterns. As aresult, this level triggers for eah text word a set of ourrenes (permitting errors) ofthe word inside the patterns, pointing out every pattern involved and speifying whihpattern word has mathed.

The third level is in harge of mathing the whole pattern. However, it is invoked onlywhen a text word relevant to some pattern has been reognized. This level keeps for everypattern P information about the last text window where the pattern ould math. Sinewe report maximal ourrenes, we need to have surpassed the area of interest beforeanalyzing the window and reporting possible ourrenes.Hene, we run the phrase mathing algorithm only over text windows that have somehane of being similar enough to a pattern. Eah text word is analyzed in turn, andthe patterns holding similar words get their windows updated. Those that may triggera math are analyzed at that moment. At the end of eah text doument proessedwe inrement our virtual word ount by a number large enough to avoid any onfusionwith previous text. When we �nish proessing all the text olletion we must hek allthe patterns for remaining mathes not yet reported beause we did not know they weremaximal (note that we know that a math is maximal only when we �nd that the nextourrene in the text is far ahead).The arhiteture is shown in Figure 1. We detail now the two most important levels.
Search

options

Text tokenizer
Pattern words

recognizer

Whole patterns

recognized

Text Patterns

text words patterns
matches in

occurrences
whole patternFigure 1: The arhiteture of the algorithm.4.3 Reognizing Pattern WordsThe �rst level is responsible for deteting all the text words that are similar enough tosome pattern word. We �rst explain how to ompute the similarity between a text and apattern word, and then how to do the same against a large set of pattern words.4.3.1 Similarity between Two WordsLet us assume that we have a text word x1:::n and a pattern word y1:::m and want toompute the ost to onvert x into y. A well known dynami programming algorithm [8℄�lls a matrix C of size (n+ 1)� (m+ 1) with the following rule:C0;0 = 0Ci;j = min (Ci�1;j�1 + Æ(xi; yj); Ci�1;j + Æ(xi; "); Ci;j�1 + Æ("; yj);if xi�1xi = yjyj�1 then Ci�2;j�2 + �(xi�1; xi) else 1)where we assume that C yields 1 when aessed at negative indies.

We �ll the matrix olumn by olumn (left to right), and �ll eah olumn top to bottom.This guarantees that previous ells are already omputed when we �ll Ci;j. The distanebetween x and y is in the �nal ell, Cn;m.The rationale of this formula is as follows. Ci;j represents the distane between x1:::iand y1:::j. Hene C0;0 = 0 beause the two empty strings are equal. To �ll a general ellCi;j, we assume indutively that all the distanes between shorter strings have alreadybeen omputed, and try to onvert x1::i into y1::j.Consider the last haraters xi and yj. Let us follow the four allowed operations. First,we an substitute xi by yj (paying Æ(xi; yj)) and onvert in the best possible way x1::i�1into y1::j�1 (at ost Ci�1;j�1). Seond, we an delete xi (at ost Æ(xi; ")) and onvertin the best way x1::i�1 into y1::j (at ost Ci�1;j). Third, we an insert yj at the endof x1::i (at ost Æ("; yj)) and onvert in the best way x1::i into y1::j�1 (paying Ci;j�1).Finally, if xi�1xi = yjyj�1 then a transposition an be attempted: we onvert xi�1xi intoxixi�1 = yj�1yj (paying �(xi�1; xi) for this) and onvert in the best possible way x1::i�2into y1::j�2, at ost Ci�2;j�2.4.3.2 Comparing against Multiple WordsNow, our problem is that we have a large set of pattern words (thousands of them) andwant to �nd every approximate math between a given text word and a pattern word.Comparing the patterns one by one is a naive solution, but we present a better one.We address this problem as follows. We build a trie data struture on the set of patternwords, whih permits us simulating the ost omputation algorithm of Setion 4.3.1 soas to ompare eah individual text word to all the pattern words at the same time. Atrie built on a set of words is a tree with labeled edges where every node orresponds toa unique pre�x of one or more words. The root orresponds to the empty string, ". If anode orresponds to string z and it has a hild by an edge labeled a, then the hild nodeorresponds to the string za. The leaves of the trie orrespond to omplete words.Let us assume that our text word is the string x and our pattern word (any of them)is y. All those pattern words y are stored together in the trie. Sine eah node of the trierepresents a pre�x of the set of patterns (in our example, the �rst node of the third linerepresents "ab", whih is a pre�x of two of the words of the trie), the plan is to go downthe trie by all the possible branhes, and �ll for every node a new olumn of the dynamiprogramming matrix of Setion 4.3.1. The idea is that the olumn omputed for a nodethat represents the string z orresponds to the C matrix between our text string x andthe pattern pre�x z.Aording to the formula to �ll C of Setion 4.3.1, we initialize the �rst olumnCi;0 = Pik=1 Æ(xi; "), whih orresponds to the root of the trie, i.e. the empty string(whih is a pre�x of every pattern). Now, we desend reursively by every branh ofthe trie. When we desend by a branh labeled by the letter a, we �ll a new olumnwhih orresponds to adding letter a to the urrent pattern pre�x z. Hene, hildrennodes generate their olumn using that of their parent and grandparent nodes (reall thattranspositions make the urrent olumn dependent on the two previous ones). Note thatsine a node may have several hildren, di�erent olumns an follow from a given one.When we arrive to the leaves of the trie, we have omputed the ost matrix C betweenthe text word x and some pattern word y, so we hek whether the last ell of the �nal

olumn is smaller than the threshold. If this is the ase, then the orresponding patternword mathes the text word.So the trie is used as a devie to avoid repeating the omputation of the ost againstthe same pre�xes of many patterns. This algorithm is not new but an adaptation ofexisting tehniques [16, 5℄. We redue the traversal ost further by performing severalimprovements over the basi algorithm. For lak of spae we just mention the mostimportant: it is possible to determine, prior to reahing the leaves, that the urrentbranh annot produe any relevant math: if all the values of the urrent olumn arelarger than the threshold, then a math annot our sine we an only inrease the ostor at best keep it the same.Figure 2 shows how to searh the text word "abord" in an example trie holding thewords "abaus", "aboard", "board" and "border". We assume that all the operationsost 1 and that our threshold is 2. In this ase the pattern words "aboard" and "board"math, but "abaus" and "border" do not. If we omputed the 4 matries separately,we would have �lled 27 olumns, while the trie permitted us to ompute only 19, mostlydue to shared pre�xes (the redution is muh larger when there are many patterns andhene many pre�xes shared). In the example we do not need to traverse all the path of"abaus", sine at the point of "abau" it is already lear that a math is not possible.

a b a c u s
0
1
2
3
4
5

a
b
o
r
d

1 2 3 4 5 6
0
1
2
3
4

1
0
1
2
3

2
1
1
2
3

3
2
2
2
3

4
3
3
3
3

5
4
4
4
4

o

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5 6
1
1
2
3
4

2
2
1
2
3

3
3
2
1
2

4
4
3
2
1

5
5
4
3
2

6
6
5
4
3

b o r d e r

��
��
��
��

��
��
��
��

s

c

u

b

a

a

r

d

o r

a

a

b

r

d

d

e

r

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5 6
0
1
2
3
4

1
0
1
2
3

2
1
0
1
2

3
2
1
1
2

4
3
2
1
2

5
4
3
2
1

a b o a r d

a
b
o
r
d

0
1
2
3
4
5

1 2 3 4 5
1
1
2
3
4

2
2
1
2
3

2
3
2
2
3

3
3
3
2
3

4
4
4
3
2

b o a r d

Figure 2: Searhing "abord" with threshold 2 in our example trie.4.4 Reognizing Whole PatternsWe �rst explain how to determine, given two sequenes of words, whether they math ornot under the (I;D) restrition. Later we show how to apply this algorithm only usingthe information of words (approximately) mathed.

4.4.1 Sequential Word MathingLet us assume that our pattern is a sequene of words P = p1p2 : : : pm. Also assume thatwe have a spei� sequene of text words T = t1t2 : : : tn. Furthermore, for eah text wordti and eah pattern word pj we have preomputed the answer to the question \does timath pj?". The following algorithm, whih is new as far as we know, permits evaluatingthe similarity between P and T .We onsider the words ti one by one, and for eah new word we (re)�ll a matrix W ofm+ 1 rows and I + 1 olumns. After we have proessed t1 : : : ti, it holds that Wj;k is theminimum number of deletions neessary to math p1 : : : pj against t1 : : : ti permitting atmost k insertions. Hene, P and T math if and only if at the end it holds Wm;I � D.Before proessing the �rst text word we initialize W with the formula Wj;k = j,whih means that in order to math p1 : : : pj against " with at most k insertions, we needthe deletion of the j pattern words (indeed the insertions are not used). When we have anew text word ti, we update W (whih refers to t1 : : : ti�1) to W 0 using the formulaW 00;k = W0;k�1W 0j;k = if pj = ti then Wj�1;k else min(W 0j�1;k + 1;Wj;k�1); j > 0whose rationale is as follows. If we onsider the empty pattern (j = 0), then the questionis how many deletions are neessary to math " against t1 : : : ti with k insertions. Clearlythe answer is zero for i � k and 1 otherwise. Alternatively, this an be expressed as:zero if i = 0 (whih mathes our initialization Wj;k = j), otherwise the same value as fori � 1 with k � 1 insertions (whih is preisely W0;k�1). We assume that W delivers 1when aessed outside bounds, so the 1 shows up when we use this sheme for i > k..Let us now onsider a nonempty pattern. If the new text word mathes pj, thenthe number of deletions neessary to math p1 : : : pj against t1 : : : ti permitting up to kinsertions is the same as that for mathing p1 : : : pj�1 against t1 : : : ti�1 permitting upto k insertions. Otherwise we must do something with those pj and ti that refuse tomath. A �rst hoie is to get rid of the last pj (paying a deletion) and math in the bestpossible way p1 : : : pj�1 against t1 : : : ti, whih an be done with W 0j�1;k deletions (we keepk beause we have not used insertions). Note that we use W 0 instead of W beause werefer to i, not i� 1. The seond hoie is to get rid of the last ti by inserting it at the endof p1 : : : pj, and then onvert in the best possible way p1 : : : pj into t1 : : : ti�1, using Wj;k�1deletions (it is k � 1 beause we have used one insertion).It is easy to keep W and W 0 in the same matrix, as long as we �ll it for dereasingvalues of k and inside eah k for inreasing values of j.Something that is interesting for what omes next is that, if we know that the next stext words do not math against any pattern word, then we an diretly skip them in oneshot. The reason is that the only way to deal with these words is inserting them into thepattern, so for eah of them we will have to shift all the Wj;k values to the right. Fasterthan that is to shift virtually, i.e. keep a � value initialized in zero and aessing Wj;k��every time we need the value of Wj;k. Hene, we an proess the sequene of s text wordsby assigning � �+ s.For lak of spae we omit the modi�ations neessary to aomodate the partiularrestritions for mathing personal and ompany names.

4.4.2 Operating with Triggered OurrenesFinally, we explain how we simulate the algorithm of Setion 4.4.1 when, for a givenpattern, we are only noti�ed of relevant words that appear as the text is sanned.We keep for every pattern P a list of up to m+ I pairs (pos1; mask1) : : : (pos`; mask`),where posr is the index of a text word that has mathed a word in P and maskr is a bitmask (ofm bits) indiating whih pattern words have been mathed by tposr . The positionsare in inreasing order in the list, posr < posr+1. After we have proessed text word ti,the following invariants hold on the list of pairs stored for every P : (1) Every ourreneending before pos1 stored has already been reported. (2) It holds pos`�pos1+1 � m+ I.Sine m + I is the maximum possible length of an ourrene of P , this means that allthe window ould be part of a single ourrene, and hene we still do not have enoughinformation to determine a maximal math starting at pos1.The word mathing algorithm proesses eah text word in turn. Some data are storedat the trie leaves so that eah time a word y is found in the trie, we an identify thepatterns the word y belongs to and its index(es) in those patterns (i.e. those (P; j) suhthat y = pj). For eah of these patterns involved, we have to arry out some ations.First, say that we �nd that a word ti mathes y = pj. We start by adding (pos`+1; mask`+1) =(i; fjg) at the end of the list of P (and inrement ` of ourse). In fat it is possible thatti has already mathed some other word of P , in whih ase i = pos`. In this ase we donot add a new entry to the list but simply add j to the set represented by the bit maskmask`, indiating that tj also mathes pj.If the enlargement of the window does not make it exeed the size m+ I, nothing elseneeds to be done. However, if after the insertion we have that pos` � pos1 + 1 > m + I,then we need to restore the invariants. We have now information on a text area that spansmore than m + I words, whih is enough to report at least maximal mathes starting atpos1.The idea is then to remove pairs from the beginning of the list until it overs an areanot larger than m + I. However, prior to deleting eah pair, we must make sure thata maximal math annot start at it. So, while pos` � pos1 + 1 > m + I, we hek fora maximal ourrene starting at text position pos1. If it is not found, we remove the�rst entry (pos1; mask1) and make the list start at pos2. If, on the other hand, we �nd amaximal math spanning the text area [pos1; pose℄, we report it and make the list startat pose + 1. This last assertion means that our reporting is greedy, i.e. no overlappingsequenes are reported.Cheking for a maximal ourrene is done using the sequential word mathing algo-rithm of Setion 4.4.1: we initialize the matrix and feed it with the text words of thewindow. The preomputed answers to \pj = ti?" are preisely in the bit mask maski(so we do not have to really look at the text). We abandon the algorithm only when itholds Wj;I > D for all j (sine no ourrene an appear later). This eventually happensbeause our window is long enough. When this �nally ours, we hek whih was thelast window position where we found a math, i.e. the last position pose where the matrixsatis�ed Wm;I � D. If this ever happened, then that e is the end of a maximal our-rene, otherwise there are no ourrenes starting at pos1. Ourrenes are reported attheir exat text positions thanks to information kept together with every pair.Note that between onseutive entries (posr; maskr) and (posr+1; maskr+1) we have

posr+1�posr�1 text words that math no pattern word. Here is where we use our abilityto proess all the gap in one shot.We an avoid the sequential mathing in some ases. First, if the length of the listof pairs is ` < m �D, then we will need more than D deletions to math it. Seond, ifthe aumulated gap length pos`� pos1� (`� 1) > m+ I then we will need more than Iinsertions. We keep trak of those values so as to verify as little as possible.5 PerformaneWe onsider now the performane of our system, both in theory and in pratie.Analysis. Let us assume that we have a text of N words, where we have to searh forM patterns of m words eah, permitting I insertions and D deletions when mathingphrases. Assume that words have w letters on average. We estimate the ost of ouralgorithm as follows.The trie of the Mm words has O(Mm) nodes on average [15℄. Eah time we traverseit with baktraking permitting a maximum error threshold we touh O((Mm)�) nodes,for some 0 < � < 1 that depends on the threshold and the osts of the operations(under a simple model of onstant probability of traversing an edge [1℄). Sine we �ll aolumn of the matrix at eah node, we have a total ost of O(Nw(Mm)�) average timefor reognizing pattern words. The spae neessary for the traversal is that to store thetrie, O(Mm), plus that of the baktraking. This last one is proportional to the heightof the trie beause we need to store only the olumns of the urrent path during thebaktraking, whih gives O(w log(Mm)) [15℄.Let us now onsider reognizing whole patterns. Unlike words, eah omplete patternis in general di�erent from the rest, so we an onsider that their probability of ourring(approximately) in the text is additive. Hene, if we have M patterns we expet that theywill trigger O(NM) veri�ations (albeit multiplied by a very small onstant). Assumingthat every time a word from a pattern appears we add a node to the list of that pattern,and that we are unable to avoid veri�ations, we have that every node that enters the listneeds to exit it, and in order to exit the list a veri�ation is neessary. The veri�ationneeds to �ll the W matrix, of size O(Im), a number of times whih is at most m + I.Hene the total ost of this level is pessimistially bounded by O(MNIm(m + I)). Thespae required is that of one list per pattern, O(M(m+ I)).Hene the total ost of the algorithm is O(N(w(Mm)�+MmI(m+I))) and the spaeis O(Mm+w log(Mm)+M(m+I)). If we are interested in the behavior of the algorithmwhen the text size N or the number of patterns M grow, and want to assume that theother quantities D, I, m and w remain more or less onstant, then we an make thesimpler statement that the algorithm is O(NM�) time to traverse the trie and O(NM)to proess the sequenes of words. Despite that this is formally O(NM), in pratie thetime spent at the trie dominates, as proessing the sequenes of words is multiplied by amuh smaller onstant. Hene in pratie the algorithm behaves more like O(NM�) for0 < � < 1. The spae required is O(M).

Experimental results. We have tested our algorithm in a real ase (see a brief de-sription in the Conlusions).We took our measures in a development mahine, a Sun UltraSpar-1 of 167 MHzand 64 Mb of RAM, running Solaris 2.5.1. Sine there is no doubt that the algorithmis linear time with N , we have �xed a text of 1 Mb size. In this text, we searhed the�rst M = 5; 000 names of our test data, the �rst M = 10; 000 names, and so on untilM = 65; 000. Also we have notied that the proess is strongly CPU bound, so we measureuser times, as these turn out to be very lose to elapsed times.Figure 3 shows the results. We show a plot with all the �gures and also a zoomedversion to appreiate the heaper parts of the ost.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

U
se

r
tim

e
(m

in
ut

es
)

Number of patterns (thousands)

Times for 1 Mb of text

Total
Boot
Scan

Trie
Words

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70

C
P

U
 ti

m
e

(s
ec

on
ds

)

Number of patterns (thousands)

Times for 1 Mb of text

Boot
Scan

Figure 3: Searh time for 1 Mb of text as the number of patterns M grows. On the leftwe show all the times and on the right a detail of the heaper osts.The Boot time is that of loading the M patterns from disk and setting up the trieand other data strutures to start the searh. As it an be seen, this ost is negligibleompared to the rest. Preditably, it grows linearly with M and it is independent of N .A least squares estimation yields 0:17 + 6:4� 10�5M seonds (1.5% of relative error).The San time is that of tokenizing the text: reading , separating the words, normal-izing, removing stopwords, keeping positional information to permit reporting the exatpositions of the ourrenes, searhing the ditionaries, et. This is basially dependenton N , although there is a slight dependene onM probably due to less loality of refereneas M grows. A least squares estimation yields 2:05N + 1:6 � 10�5MN (4% of relativeerror), where N is measured in megabytes (not in words).The Trie time is that of searhing every relevant word in the trie of pattern words, withbaktraking. This is by far the heaviest part of the proess, and it is learly sublinear.A least squares estimation yields 5:69NM0:6, with a relative error of 3%.Finally, the Words time is that of verifying potentially relevant sequenes of words.We argumented that this proess was linear onM , so we now hek the hypothesis NM b,obtaining 0:005NM1:04, whih shows that it is e�etively linear. Under a model of theform NM we obtained 0:01NM , with 3.7% of error.Hene, the total ost in our mahine to proess M patterns on N Mb of text isN � (2:05 + 5:69M0:6 + 0:01M), disarding negligible ontributions.The onstants in the result depend on the mahine we used and are only illustrativeof the relative importane of the main parts of the algorithm and of their growth rate in

terms of N and M . The prodution mahine in Mathsimile is right now an Intel 700MHz mahine with 128 Mb of RAM, with a ommon IDE hard disk. In this mahine wesearh all the 65,000 patterns in 60 Mb of text every day, in an elapsed time of 3 hours,muh faster than in our development mahine.Let us ompare this performane against that of LikeIt. As reported in [17℄, thattool is able of sanning the text for one pattern at a rate of 2.5 Mb/se on an Intel 200MHz proessor. Laking multipattern searh apabilities, the searh for M patterns inN megabytes of text would take about 0:4NM seonds. Extrapolating to our mahine of700 MHz, sanning 60 Mb for 65,000 names would require 5 days.The result also depends on the searh parameters. The values reported representa realisti senario, sine they orrespond to the urrent real world appliation whereMathsimile is being used.6 ConlusionsThe �rst well sueeded ommerial appliation of this software is also alledMathsimile.Despite that more tuning of the parameters is still needed, the ombination of performaneand preision/reall has proven very good in pratie for this appliation, whih has beenresponsible for the development of the software and has pushed the improvement of theode performane and apabilities to adapt it to new irumstanes.The objetive of this appliation is to retrieve lawyers names from oÆial law journalsin Brazil and gather that information for eah ompany, personalized through daily reportsthat an be retrieved by www, html-mail and wap-enabled elulars (www.mathsimile.om).Currently, three oÆial publiations are sanned daily: DOSP (Diario O�ial de SaoPaulo), DOMG (Diario O�ial de Minas Gerais) and DOPE (Diario O�ial de Pernam-buo). Nevertheless, this tool an be useful for other appliations, like eliminating dupla-ates in addresses lists or to identify a lient in software that handles ustomer omplaintsvia e-mail.Future plans with Mathsimile inlude sorting the output by dereasing similaritywith the input and inorporating new models for word mathing where the order betweenwords is not important (useful for ompany names in some ases, and for personal nameswith some modi�ations). On the side of the eÆieny, we plan to improve it using amore sophistiated tehnique: right now we build a trie of patterns and searh every textword sequentially. This avoids repeating the same work for similar pattern pre�xes, butsimilar text words are proessed over an over. Using a tehnique known in omputationalbiology to �nd all the approximate mathes between two tries [2℄, we plan to build a triewith the text words and math it against the trie of pattern words. Sine the whole textwill not �t in main memory, the text will be divided in hunks of appropriate size andeah hunk will be proessed as a whole trie against the patterns.Referenes[1℄ R. Baeza-Yates and G. Gonnet. Fast text searhing for regular expressions or automatonsearh ing on a trie. Journal of the ACM, 43(6):915{936, 1996.

[2℄ R. Baeza-Yates and G. Gonnet. A fast algorithm for all-against-all sequene mathing.In Pro. String Proessing and Information Retrieval (SPIRE'98), pages 16{23. IEEE CSPress, 1998.[3℄ R. Baeza-Yates and G. Navarro. Blok-addressing indies for approximate text retrieval.Journal of the Amerian Soiety for Information Siene (JASIS), 51(1):69{82, January2000.[4℄ F. Damerau. A tehnique for omputer detetion and orretion of spelling errors. Comm.of the ACM, 7(3):171{176, 1964.[5℄ G. Gonnet. A tutorial introdution to Computational Biohemistry using Darwin. Tehnialreport, Informatik E.T.H., Zurih, Switzerland, 1992.[6℄ K. Kukih. Tehniques for automatially orreting words in text. ACM Computing Surveys,24(4):377{439, 1992.[7℄ V. Levenshtein. Binary odes apable of orreting spurious insertions and deletions ofones. Problems of Information Transmission, 1:8{17, 1965.[8℄ R. Lowrane and R. Wagner. An extension of the string-to-string orretion problem.Journal of the ACM, 22:177{183, 1975.[9℄ U. Manber and S. Wu. glimpse: A tool to searh through entire �le systems. In Pro.USENIX Tehnial Conferene, pages 23{32. USENIX Assoiation, Berkeley, CA, USA,Winter 1994.[10℄ H. Masters. A study of spelling errors. University of Iowa Studies in Eduation, 4(4), 1927.[11℄ G. Navarro. A guided tour to approximate string mathing. ACM Computing Surveys,33(1):31{88, 2001.[12℄ G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for approximatestring mathing. IEEE Data Engineering Bulletin, 24(4):19{27, 2001. Speial issue onManaging Text Natively and in DBMSs. Invited paper.[13℄ G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding ompressionto blok addressing inverted indexes. Kluwer Information Retrieval Journal, 3(1):49{77,2000.[14℄ J. Nesbit. The auray of approximate string mathing algorithms. Journal of Computer-Based Instrution, 13(3):80{83, 1986.[15℄ R. Sedgewik and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 1996.[16℄ H. Shang and T. Merrettal. Tries for approximate string mathing. IEEE Transations onKnowledge and Data Engineering, 8(4), August 1996.[17℄ P. Yianilos and K. Kanzelberger. The likeit intelligent string omparison faility. Tehnialreport, NEC Researh Institute, 1997.

