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Abstract. The need to index and search huge highly repetitive sequence
collections is rapidly arising in various fields, including computational
biology, software repositories, versioned collections, and others. In this
short survey we briefly describe the progress made along three research
lines to address the problem: compressed suffix arrays, grammar com-
pressed indexes, and Lempel-Ziv compressed indexes.

1 Introduction

After a years-long race to sequence the first human genome in the early 2000’s,
sequencing has become a routine activity that costs a few thousand dollars1

and large sequencing companies are producing thousands of genomes per day2.
Maintaining databases of millions of genomes will be a real possibility very soon.
With a storage requirement of about 715 MB per human genome (about 3×109

bases using 2 bits each), storing, say, one million genomes is perfectly realistic
(around 700 TB). However, sequence analysis tools require indexed access to the
data, where one can carry out pattern searches and mining. Such indexes require
at the very least 50 bits per base (one pointer), raising the 700 TB to more than
16 PB (petabytes). Those sizes, especially if we require fast indexed access to
the data, exceed today’s technological possibilities within reasonable cost.

What makes this challenge affordable is that most of those genomes (if we
assume they belong to the same species, say human) are very similar to each
other — 99.99% similar according to typical figures (although there is some
debate about the exact value). If we were able to index such a collection within
space proportional to the number of differences between the genomes, and not
to their total size, then a one-million genome collection could be indexed within
1.6 TB, which is perfectly feasible. Yet, we still do not know how to do this.

Other scenarios where a set of very similar sequences is indexed and pattern
searches are provided on them are software repositories (where versions form a
tree or graph structure) and versioned document collections (such as Wikipedia
or the Internet Wayback Machine, where versions have a linear structure).

In this short survey we will cover the results achieved on the challenge of
storing and indexing those “highly repetitive” sequence collections. We will focus
on the following scenario, looking for a balance of generality and simplicity that
leads to both useful and algorithmically interesting research:

1 The Guardian Jan 12, 2012, “Company announces low-cost DNA decoding machine”.
2 The New York Times Jan 12, 2011, “DNA sequencing caught in deluge of data”.



1. The collection has d documents of total length n, where each document is
an arbitrary string of symbols over an alphabet of size σ. This is general
enough to consider DNA, proteins, source code, natural language, etc. Then
the uncompressed data size is n log σ bits (our logarithms are in base 2) and
a classical index requires O(n log n) bits.

2. The collection is repetitive, meaning that most documents can be covered
by a few chunks that appear in other documents. This captures most cases,
in particular those with known linear, tree, etc. version structures as well as
those with unknown version structures like DNA collections. Yet, it leaves
aside special cases such as reverse complemented repetitions that are frequent
in DNA, which must be dealt with separately.

3. We wish to store and index the collection in a way that provides efficient ac-
cess, that is, extracting any substring of any document, and searches, that is,
locating the occurrences of string patterns in the collection. We ignore more
complex searches such as approximate matching, complex pattern matching,
sequence mining, etc. Yet this is challenging enough to leave aside methods
like encoding the differences, which may support access but not searches.

4. We wish to use space proportional to the “repetitiveness” of the collection.
While we seek for techniques that work on any collection without any ex-
plicit structure, we analyze them on a simplified case where there is one
uncompressible base sequence of length ` and then d − 1 other sequences
identical to the base one, where s edit operations (single character inser-
tions, deletions, and replacements) have been done on them. Ideally, we
should achieve ` log σ+O(s log n) bits of space, as well as search time within
O((m+ occ) polylogn) to find the occ occurrences of a pattern of length m.

2 Compressed Suffix Arrays

The suffix array [18] is a classical structure to support pattern searches. Assume
the d documents are concatenated into a single string T [1, n], using a special
symbol “$” to mark the end of the documents. Each string T [i, n] is called a
suffix and is identified with its starting point i. The suffix array A[1, n] is a
permutation of [1..n] where all the suffixes are listed in lexicographic order. The
occurrences of P [1,m] in T can be seen as the suffixes of T that start with P ,
and these form a contiguous interval of A that can be binary searched in time
O(m log n), where m owes to the time needed to compare P with a suffix of A.

The suffix array uses n log n bits, but can be compressed into O(n log σ) bits
by means of the Ψ function [13, 23], Ψ(i) = A−1[(A[i] mod n) + 1], which tells
where the value A[i] + 1 appears in A. With a bitmap D[1, n] that marks the
points in A where the first letter of suffixes change, and a string S[1, σ] noting the
different symbols of T in order, we know that the first letter of suffix T [A[i], n]
is S[rank(D, i)], where rank(D, i) counts the number of 1s in D[1, i]. Moreover,
the second letter is S[rank(D,Ψ(i))], the third is S[rank(D,Ψ2(i))], and so on.
With a preprocessing of D to solve rank in constant time, we can do the binary
search in O(m log n) time using Ψ , S and D, and without A or T .



In principle Ψ would also require n log n bits, but it is shown to be compress-
ible as it is covered by σ increasing ranges. In fact, those ranges feature a much
richer structure [12, 21], which allows one to represent the whole index within
nHk(T ) + o(n log σ) bits for any k < logσ n (roughly), where Hk(T ) ≤ log σ is
the empirical k-th order entropy of T [19, 21]. This is a statistical compressibility
measure sensitive to symbols distribution but blind to long-range repetitions: If
we concatenate two copies of T , its k-th order entropy is 2nHk(TT ) ≥ 2nHk(T ),
so the space of such compressed indexes simply doubles [16].

What is most interesting for us is that, when the text contains long and
frequent repetitions of a string, long runs of consecutive values appear on Ψ
[10, 17]. In our model of s edits, it is shown that Ψ contains ` runs of length d
when s = 0, and then each edit breaks, on average (assuming the base text and
the edits are uniformly generated), O(logσ `) runs. As a consequence, Ψ can be
represented using ` log σ +O(s logσ ` log n) bits on average.

A further problem is that, since we do not store A, knowing the interval of
A given by the binary search is not sufficient to output the occurrence positions
(which would be the content of the cells of A within the range). This can be
done within O(log n) time per occurrence if we use O(n) further bits of space
for sampling the suffix array [23]. Such sampling also provides extraction of any
substring of T of length t in time O(t+ log n). While various attempts to reduce
those O(n) bits have been made [17], they have not been successful in practice.
Further, they [17] show that, while LZ78-based compression [25] is poor on highly
repetitive sequences, LZ77-based compression [24] is extremely promising.

3 Lempel-Ziv (LZ77) Compressed Indexes

The compression that most accurately reflects the kind of repetitiveness we wish
to capture is Lempel-Ziv’s, particularly the LZ77 parsing [24]. Here we advance
in T , and at each step generate a new phrase by taking the longest prefix of the
remaining text that has already appeared before in T , plus one further letter.
Let us call z the number of phrases generated by such a parsing. It is not hard
to see that, in our model, it holds z ≤ `/ logσ `+ s.

Extracting an arbitrary substring of T is not easy in an LZ77 parsing. If we
call h ≤ n the “height” of the parse, that is, the maximum number of times a
single character is copied, then a substring of length t is extracted in time O(t h)
(variants that speed this up [16] may produce more phrases than edits).

Searching for patterns yields further complications. An occurrence of P in T
may be split across phrases, that is, a prefix P [1, i] may match a suffix of a phrase,
and the corresponding suffix P [i+1,m] may match a prefix of the concatenation
of the following phrases. Such occurrences cut by a phrase boundary are called
primary, whereas the others are called secondary. The strategy of LZ77-based
indexes [15, 16] is to find both types of occurrences with different means.

Let T = Z1 . . . Zz be the partition of T into phrases. For primary occurrences,
we index all reverse phrases Zrevj and all suffixes starting at phrase boundaries,
ZkZk+1 . . . Zz. Both sets are connected in a grid where the rows correspond



to the lexicographically sorted Zrevj and the columns to the lexicographically
sorted ZkZk+1 . . . Zz. Points in this grid connect reverse phrases Zrevj with the
following suffix, Zj+1Zj+2 . . . Zz. At query time, P is partitioned into P [1, i] and
P [i+1,m] in the m−1 possible ways. We find the interval of the reverse phrases
starting with (P [1, i])rev (i.e., phrases ending with P [1, i]) and the interval of the
phrase-aligned suffixes starting with P [i+1,m]. Then each point in the grid in the
intersection of the row and column ranges is precisely one primary occurrence.

For secondary occurrences, a structure to describe which portions of T are
copied where, is used to track copies of areas where primary occurrences appear.
Those copies are secondary occurrences, which must be recursively tracked for
further secondary occurrences, until all are reported.

The most recent index of this family [16] uses O(z log n) bits of space and
can search for P in time O(m2h + (m + occ) logε z), for any constant ε > 0,
if we use the best grid representation that fits in this space [3]. The term m2

owes to the search for all the partitions of P , and the h factor to the time to
extract the phrase prefixes/suffixes when determining the intervals of rows and
columns. The term O(m logε z) refers to the m − 1 range searches on the grid,
and O(occ logε z) to the time to report each point (i.e., primary occurrence) in
the grid. Secondary occurrences take just constant time each. Note that the h
factor is highly undesirable, as it is limited only by n in the worst case.

4 Grammar Compressed Indexes

Grammar compression is a successful approach to factor out repetitiveness in
a text. It derives a context-free grammar that generates (only) T , and such a
grammar can be small if T is repetitive. While finding the smallest grammar that
generates T is NP-complete and popular methods offer poor approximation ra-
tios [22, 5], an O(log n) approximation is easy to achieve by converting the LZ77
factorization, which lower-bounds the smallest grammar, into a balanced gram-
mar [22]. A more sophisticated approximation [4] achieves ratio O(log(n/g∗)),
where g∗ is the size of the smallest grammar. We will call g the size (total length
of the rules) of our grammar that generates T , where it holds z ≤ g ≤ z log n.
In our model it is easy to obtain g ≤ `/ logσ `+ s log n. It has been shown that a
grammar representation using O(g log n) bits provides access to any substring of
T of length t in time O(t+ log n) [2], much better than with LZ77 compression.

The concept of primary and secondary occurrences is useful here too. Given
a rule X → ABC . . ., a prefix P [1, i] may match a suffix of the string generated
by A, and the corresponding suffix P [i+1,m] may match a prefix of the string
generated by BC . . ., and thus P will have a primary occurrence inside the string
generated by X. Occurrences of X elsewhere yield secondary occurrences of P .

In the most recent grammar-based compressed index [8], primary occurrences
are handled very much as in LZ77 parsings, by indexing the reverse string gen-
erated by nonterminals and the strings generated by the following sequences of
nonterminals on right hands of the grammar productions. Tracking secondary
occurrences is done by using a pruned version of the parse tree of T , where all



Table 1. Simplified complexities for current approaches to index repetitive collections.

Approach Space +` log σ Time +O(occ logn) Extract time

Suffix arrays [17] (avg. space) O(n+ s logσ ` logn) O(m logn) O(t+ logn)
Grammar compression [2, 8] O(s log2 n) O(m2 +m logn) O(t+ logn)
Lempel-Ziv compression [16] O(s logn) O(m2h+m logn) O(t h)

the nodes labeled by a given nonterminal containing a primary occurrence are
found. To find the text position of an occurrence at a node v, the grammar tree
is traversed upwards from v to the root. Each label (i.e., nonterminal) found
in this upward traversal is a source of further secondary occurrences, and as
such is sought in the tree node labels. The grammar is transformed so that it
is guaranteed that any nonterminal appears at least twice in the tree, and thus
the upward traversal time is amortized with more secondary occurrences.

The resulting structure requires O(g log n) bits of space and supports searches
in time O(m2 + (m+ occ) logε g) for any constant ε > 0 [8].

5 Conclusions

Table 1 summarizes the state of the art in very broad terms. While suffix arrays
offer the ideal search time O((m+occ) log n), they are far from the ideal space of
` log σ + O(s log n), which is offered only by Lempel-Ziv indexes. These in turn
are far from the ideal time complexity, both for searching and for extracting sub-
strings. Grammar compression offers an intermediate space/time tradeoff that
might be attractive. This theoretical picture coincides pretty well with practical
experiences on biological and natural language sequence collections [6, 7].

The most obvious challenge ahead is to combine good space and time on
repetitive sequences. For example, a recent development combining grammars
and LZ77 parsing [11] achieves O(m2 + (m + occ) log log z) search time and
O(z log n log log z) bits of space (i.e., slightly superlinear on the LZ77 compressed
size). Other close relatives of LZ77 parsings may also yield interesting indexes
in particular application scenarios [14, 20, 9]. A further challenge is to support
more complex searches, for example suffix tree functionality [1].
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10. J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded compressed suffix
trees. Theor. Comp. Sci., 410(51):5354–5364, 2009.
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15. J. Kärkkäinen. Repetition-Based Text Indexing. PhD thesis, Dept of Comp. Sci.,
Univ. of Helsinki, Finland, 1999.

16. S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theor.
Comp. Sci., 2012. To appear. Earlier versions in Proc. DCC’10 and Proc. CPM’11.

17. V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol., 17(3):281–308, 2010.

18. U. Manber and E. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comp., pages 935–948, 1993.

19. G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–
430, 2001.

20. S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. ESP-index: A com-
pressed index based on edit-sensitive parsing. In Proc. 18th SPIRE, pages 398–409,
2011.
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