
Extending General Compact Querieable

Representations to GIS Applications✩

Nieves R. Brisaboaa, Ana Cerdeira-Penaa, Guillermo de Bernardo∗,a, Gonzalo
Navarrob, Óscar Pedreiraa

aUniversidade da Coruña, Centro de investigación CITIC, Databases Lab., Spain.
bUniversity of Chile, Millenium Institute for Foundational Research on Data (IMFD),

Department of Computer Science, Chile.

Abstract

The raster model is commonly used for the representation of images in many

domains, and is especially useful in Geographic Information Systems (GIS) to

store information about continuous variables of the space (elevation, temper-

ature, etc.). Current representations of raster data are usually designed for

external memory or, when stored in main memory, lack efficient query capabil-

ities. In this paper we propose compact representations to efficiently store and

query raster datasets in main memory. We present different representations for

binary raster data, general raster data and time-evolving raster data. We exper-

imentally compare our proposals with traditional storage mechanisms such as

linear quadtrees or compressed GeoTIFF files. Results show that our structures

are up to 10 times smaller than classical linear quadtrees, and even compara-

ble in space to non-querieable representations of raster data, while efficiently

answering a number of typical queries.

✩Partially funded by: IMFD; Xunta de Galicia/FEDER-UE grants CSI:ED431G/01 and
GRC:ED431C 2017/58; Xunta de Galicia/FEDER-UE, ConectaPeme grant GEMA: IN852A
2018/14; Xunta de Galicia/GAIN grant Innovapeme: IN848D-2017-2350417; by MINECO-
AEI/FEDER-UE grants Flatcity: TIN2016-77158-C4-3-R, Datos 4.0: TIN2016-78011-C4-1-
R and ETOME-RDFD3: TIN2015-69951-R; MICINN-AEI/FEDER-UE grants Steps: RTC-
2017-5908-7 and BIZDEVOPS: RTI2018-098309-B-C32; and EU H2020 MSCA RISE BIRDS:
690941. An early partial version of this article appeared in Proc SPIRE’13 [13]. Some parts
of this work also appeared in G. de Bernardo’s PhD thesis [12].

∗Corresponding author
Email addresses: brisaboa@udc.es (Nieves R. Brisaboa), acerdeira@udc.es (Ana

Cerdeira-Pena), gdebernardo@udc.es (Guillermo de Bernardo), gnavarro@dcc.uchile.cl

(Gonzalo Navarro), opedreira@udc.es (Óscar Pedreira)

Preprint submitted to Information Sciences August 4, 2019

Key words: Compact Data Structures, Querying Raster Data, Geographic

Information Systems

1. Introduction

The raster model is a logical model widely used for the representation of data

in Geographic Information Systems (GIS) [31, 25] and for the storage of images

in general. It is mainly used in GIS to store information of continuous variables,

that cover the whole space and for which a specific value at each point in space

may exist. Essentially the raster model represents this information as matrices

of values. A matrix is built by dividing the space into fixed-size cells, so each cell

represents the value of the spatial feature in the corresponding region. Raster

image representations store the value of each pixel in a cell of the matrix.

The raster model is frequently used in GIS to store data related to natural

geographic phenomena like temperature, wind speed, rainfall level, land ele-

vation, atmospheric pressure, etc. Other not nature-related information, such

as land use, is also suitable to be represented by this model. The alternative

model, the vector model, usually represents discrete variables that have well-

defined boundaries, using a collection of points and segments. This is a good

fit for the representation of information related to human-made constructions,

rivers, boundaries of lakes and forests, etc., but not for others that cannot be

described with a few points and lines.

In this paper, we focus on the efficient representation of raster data. As

stated before, a raster is essentially a matrix, so an uncompressed raster repre-

sentation would use much space (for instance, a raster image with a resolution

of just 0.5 km and worldwide coverage would require a 80, 000× 40, 000 matrix,

or around 13 GB to store an integer per cell; modern high-resolution raster

imagery can reach much higher spatial resolution, and therefore require much

larger storage space). Because of this, plain raster representations usually have

to be stored in secondary memory. Compressed raster representations exist,

but they are mainly designed to reduce storage, and do not provide efficient

2

access. Most of them are based on well-known compression techniques such as

run-length encoding or LZW [30]. In these compressed solutions the space re-

quirements become much smaller, due to the locality of raster datasets (spatial

continuity): close cells tend to have similar values. However, in most of them

the full file, or at least large chunks of the file, must be decompressed even to

display a small region of the space. A well-known technique, called tiling [28],

divides the raster in smaller, fixed-size tiles and compresses each tile indepen-

dently, providing some level of direct access and taking advantage of the locality

of values to improve compression. For example, the TIFF image format and its

extension for geographical information GeoTIFF 1 support this partition into

tiles with different compression techniques including LZW. Still, tiles must be

relatively large to enable compression.

When data collections are stored by a GIS in a compressed format, such

as the ones we describe before, some of the processing tasks that involve the

complete raster can be performed by simply decompressing the data. However,

many operations would benefit from direct access to regions (e.g., to display a

local map), or the ability to find the cells whose value is within some range. A

classic example of this is the visualization of pressure or temperature bands [32],

where the raster is filtered to display in a different way the cells according to

the range of values to which they belong. Another example involves retriev-

ing the regions of a raster with an elevation above a given threshold, to find

zones with snow alert, or below a value, to find regions with risk of floods [22].

Regular compressed raster representations lack the indexing capabilities on the

values stored in the raster that would be required to answer this type of queries.

Therefore, these representations need to traverse the complete raster in order

to return the cells that contain a given value, even when the results may be

restricted to a small subset of the cells.

There are several approaches to provide direct access to values in a raster

dataset. For instance, we can consider the raster as a 3-dimensional matrix and

1http://trac.osgeo.org/geotiff/

3

use computational geometry solutions to answer any query involving spatial

ranges or ranges of values by means of range reporting queries [9]. However,

these solutions require superlinear space and therefore they are not suitable to

the large datasets involved. Other representations of raster data that aim at

efficient querying are usually based on quadtrees [14], particularly variations

of the linear quadtree [15], a data structure originally devised for secondary

memory. There exist other quadtree representations [10, 20] that can work in

internal memory, and they are very efficient for processing complete rasters,

but they usually lack query capabilities to access specific regions or cells with

specific values. An extension of the quadtree to 3 dimensions, or oct-tree [26],

could support those queries in a similar way to the computational geometry so-

lutions. This structure does not require superlinear space, but does not provide

compression either.

Compact data structures have been a very active research topic for the last

few decades. They aim to represent any kind of information (texts, permu-

tations, trees, graphs, etc.) in compressed space, while supporting query and

processing algorithms that are able to work over the compact representation.

This allows compact data structures to improve the efficiency of classical data

structures, thanks to being stored in upper levels of the memory hierarchy. How-

ever, regarding spatial information, and more precisely, raster data representa-

tion and querying, most of the previous work based on compact representations

lacks in advanced query support [10, 21].

A simple solution to store raster data using compact data structures could

be achieved by reading the raster row-wise and storing the sequence of values.

We could use any compressed sequence representation [17, 16, 3] to return the

cells with a given value (or a range of values [17, 24]) efficiently, but in this kind

of approach restricting the search to a spatial range becomes difficult. Fur-

thermore, these sequence representations achieve at best the zero-order entropy

space of the sequence, and this is not a significant space reduction in many

cases, since it cannot fully exploit the spatial locality of values in raster data.

In this paper, we propose several compact data structures for raster data

4

that efficiently support different queries, particularly those combining spatial

indexing (filtering cells in a spatial window) with filters on values (retrieving

cells with a specific value or in a range of values). We build on existing compact

data structures that represent sets of points in a kind of compressed linear

quadtree, and upgrade them to efficiently store and query raster data in different

forms: simple binary images, general raster matrices, and even time-evolving

raster data. We experimentally test our proposals to demonstrate their low

space requirements and good performance in these new application domains.

Notice that our data structures can be conceived as a compact representation

for any kind of matrix. Nevertheless, they rely on the locality of values to

achieve compression, so we focus our evaluation on raster data that displays

spatial continuity.

2. Previous Concepts

2.1. The k2-tree

The k2-tree [8] is a compact data structure for the representation of sparse

binary matrices, that was initially devised to represent the adjacency matrix of

Web graphs, and later applied to compression of social networks [11] or RDF

databases [2]. Given a binary matrix of size n × n, the k2-tree conceptually

represents it as a k2-ary tree, for a given k2. The root of the conceptual tree

corresponds to the complete matrix. Then, the matrix is partitioned into k2

equal-sized submatrices of size n
k
× n

k
, and each of them (taken from left to right

and top to bottom) is represented as a child of the root node. A single bit is

associated to each node: a 1 is used if the submatrix associated to the node

contains at least one 1; otherwise, the the bit is set to 0. The subdivision is

applied recursively for each node with value 1, until we reach a matrix full of

0s or the cells of the original matrix. The conceptual tree is then stored using

2The size of the matrix n is assumed to be a power of k. If it is not, the matrix is expanded

to the next power of k filling the new cells with 0s.

5

two bitmaps: T stores all the bits in the upper levels of the tree, following a

levelwise traversal, and L stores only the bits in the last level. Figure 1 shows

an example of k2-tree.

To navigate the tree a rank structure over T is built. This structure is used to

compute the number of ones in the bitmap up to any position (rank1 operation)

in constant time, using sublinear space [23]. The k2-tree exhibits a property that

provides simple navigation over the conceptual tree using only the bitmaps and

the rank structure: given a value 1 at any position pos in T , its k2 children will

start at position pos′ = rank1(T, pos)× k2 of T . When the last level is reached,

pos′ > |T |, so the excess pos′−|T | determines their position in L. A k2-tree can

answer single cell queries, queries reporting a complete row/column or general

range queries (i.e., retrieve all the 1s in a range) using only rank operations to

traverse the tree, by visiting all the necessary subtrees.

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000 00

00011100 00

00000000 10

01000011 00

00000000 00

10000000 01

00000000 01

01000000 00

01000000 00

00000000

00

00000000

00000000

00000000

00000000

01010000
1 1 0000 1 1 11 0 0 10 0 1 0 10 0

0011 0010

1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T = 1110 1101 1010 0100 0110 1001 0101 0010 1010 1100

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 1010

Figure 1: Binary matrix and its k2-tree representation, for k=2. The matrix is artificially

expanded to the next power of k.

Some improvements have been proposed by the original authors of the k2-

tree [8] to enhance its compression and query efficiency. For instance, a hybrid

k2-tree uses different values of k in the upper and lower levels of decomposition.

Other techniques use statistical compression of the bitmap L. A dynamic variant

of the k2-tree, called dk2-tree, has also been proposed [4]. The dk2-tree is based

on a custom implementation of dynamic bitmaps for T and L. By supporting

6

update operations over T and L, in addition to rank and select operations, the

dk2-tree is able to handle changes in the bits of the binary matrix, as well as

insertion of new rows/columns at the end of the matrix.

2.2. The Ik2-tree

The Interleaved k2-tree [1] (Ik2-tree) is a data structure based on the k2-

tree and devised to deal with RDF triples. Given a ternary relation T =

{(xi, yj , zk)} ⊆ X × Y × Z, the Ik2-tree uses vertical partitioning to decom-

pose T into |Y | binary relations Tj , one for each different value yj ∈ Y . Hence,

each adjacency matrix Tj will store the pairs (xi, zk) that are related with yj .

The dimension Y is called partitioning variable. After this transformation, each

of the binary relations could simply be stored in a separate k2-tree, but the

Ik2-tree is able to represent all those matrices simultaneously in the same tree,

providing indexing capabilities also on Y .

Conceptually, building an Ik2-tree is equivalent to building a collection of k2-

trees and merging the equivalent branches of the conceptual trees into a single

tree, where each node will store the bits of all the k2-trees. This means that the

children of the root node will always have |Y | bits, but nodes at lower levels of

the tree have as many bits as 1s exist in their parent node (i.e., as many bits as

trees contain that node). The conceptual tree is stored in two bitmaps T and

L, exactly like a k2-tree. Figure 2 displays an example of Ik2-tree, for |Y | = 3.

Note that the fourth node at the first level of the Ik2-tree (N0) has 3 bits, one

per matrix; its first bit is 0, because the bottom-right submatrix of matrix y0 is

full of 0s, and the second and third bits of N0 are set to 1; therefore, its children

have 2 bits each.

The Ik2-tree can be navigated in a similar fashion to k2-trees: at the root

level we have k2 nodes of |Y | bits each; given a node at position p, with b bits,

its children are located at position (rank1(T, p−1)+c)×k2 in T , where c = |Y |

is a fixed correction factor; each children of the node will have o bits, where

o = rank1(T, p + b − 1) − rank1(T, p − 1) is the number of bits set to 1 in

the current node. Observe also that, thanks to having the bits for all the yi

7

�� � �✁ ✁ ✁✁✁ ✁��

✁ ✁ ✁ �

✁ � ✁ ✁✁✁✁ ✁✁ ✁✁✁✁ �� �

✁✁✁ ✁�� �� � �� �

�� ✁� ✁✁ ✁✁

✁ ✁ ✁ �✁✁ ✁✁��✁�

��� �✁ ✁ ✁✁✁✁��✂✄ ✁✁✁✁✁ ✁✁✁✁��� ��✁�✁✁ ✁✁

✁✁✁✁�������� ✁✁ ✁✁��✁�

✁�✁✁

�✁✁ ✁ ✁✁✁�☎✄

✆✝

✆✞

✆✟

✝ ✠ ✡ ☛ ✞✟ ✞☞ ✞✌ ✟✞ ✟✍ ✟✎ ✠✝ ✠✠

✁

�

✏

✑

✒

✓

✔

✕

✁ � ✏ ✑ ✒ ✓ ✔ ✕ ✁ � ✏ ✑ ✒ ✓ ✔ ✕

✁

�

✏

✑

✒

✓

✔

✕

✁ � ✏ ✑ ✒ ✓ ✔ ✕

✁

�

✏

✑

✒

✓

✔

✕

✖✝ ✖✞ ✖✟

Figure 2: Representation of a ternary relation using the Ik2-tree.

together in the same node, it is possible to restrict traversal of the tree to a

specific value yj in the partitioning dimension. However, pruning the tree by

the Y dimension requires more complex operations than filtering branches on

the other dimensions, so the structure is usually limited to domains where a

partitioning variable of small size can be selected. See [1] for a further details

on the implementation of query operations. in the Ik2-tree.

2.3. The k2-treap

The k2-treap [5] is another proposal based on the k2-tree, and also inspired

by the treap [27]. It is specifically designed to answer range top-k queries

on multidimensional grids (e.g. OLAP cubes). Given a matrix and a spatial

window inside the matrix, a range top-k query asks for the location of the k

highest values in the query window.

Starting with a matrix M [n × n], where each cell can be empty or store a

numeric value, the k2-treap follows a recursive partition of the matrix into k2

submatrices, similar to the k2-tree. The decomposition works as follows: the

root of the tree stores the coordinates of the cell whose weight is the maximum

8

value in the matrix, as well as the cell value. Then, the cell is marked as empty

and removed from the matrix. Then, the resulting matrix is subdivided into

k2 submatrices and we add the corresponding k2 children nodes to the root of

the tree. The assignment process is repeated for each child, taking the cell with

the maximum value and its coordinates from the corresponding submatrix, and

deleting the value of the cell before continuing. Decomposition eventually stops

when a completely empty submatrix is found or the cells or the original matrix

are reached.

The conceptual k2-treap is stored using three elements: i) a sequence coords

per level, keeping the coordinates of the local maxima, and stored as relative off-

set to the origin of the current submatrix (note that empty nodes are dismissed,

and coordinates are not needed in the last level of the tree since submatrices are

of size 1); ii) the values of the local maxima (i.e. their weights), also differen-

tially encoded with respect to their parent node and compressed using DACs [7]

(notice that a small array first is also stored to mark the offset in the array

where each level of the tree starts); and iii) the tree topology, stored like a

k2-tree with a single bit array, T , with rank support. This change is necessary

since rank operations are also needed in the last level of the tree in the k2-treap.

Figure 3 shows a k2-treap construction, for k = 2. The top of the image

shows the state of the matrix at each level of decomposition, and the cells

selected as local maxima at each level are highlighted, except in the last level

where all the cells are local maxima. Empty submatrices are represented in the

tree with the symbol “-”.

The k2-treap provides support for cell access, basic range and top-k queries,

and also interval queries regarding cell weights. A detailed description of the

structure and navigation algorithms is presented in [6].

3. Representation of binary rasters

Binary images can be considered as the simplest form of raster data. In

a binary image we store a matrix that uses a single bit per cell, to determine

9

Figure 3: Example of k2-treap construction from a matrix and data structures used to repre-

sent it.

whether a single feature is present or not within the region of the space corre-

sponding to that cell. Hence, a binary raster is essentially a simplified version of

a general raster, limiting the range of possible values to two. Several GIS appli-

cations make use of this simple technique to represent binary attributes of the

space. Examples of this would be information of events like oil spills, plagues or

cloud cover in their simplest version, as well as simple rasterized representations

of vectorial data.

Due to the simplicity of these binary images, their representation usually

requires specific techniques to achieve the best compression and query perfor-

mance. The k2-tree, introduced in Section 2.1, is an example of those. However,

it was devised to compress Web graphs, so it works well mostly on binary ma-

trices that are very sparse.

In this section we propose a solution, that we call k2-ones, based on the

k2-tree, designed to efficiently compress the kind of binary images that usually

10

appear in GIS applications. Essentially, our technique is devised to overcome

the limitation of the k2-tree to sparse matrices: our technique is designed to

efficiently compress binary matrices with a large percentage of 1s, as long as

there is some clusterization of the values, which is typical of most real-world

raster data.

Our proposal is based on the same decomposition of the binary matrix used

by the k2-tree, but we recursively divide the matrix until we reach any uniform

region, be it full of 0s or 1s. This means that in our k2-ones we have 3 possible

types, or “colors”, of node, following the usual naming of quadtrees: black and

white nodes are regions full of ones and zeros, respectively; the internal nodes,

that are regions with ones and zeros, are gray. Note that the main difference

of our proposal with a k2-tree is that we are able to represent large regions of

ones with a single node, instead of using a full subtree.

The k2-ones can efficiently answer cell retrieval queries, as well as row/column

or range queries, simply by performing a top-down traversal of the tree branches

that intersect the region of interest. The only consideration is that when a black

node is found, we need to output all the cells of the region of interest that fall

within the submatrix covered by that node.

The goal of the k2-ones is to be efficiently traversed in a similar manner to the

k2-tree, using just rank operations. To achieve this purpose, we devised a small

set of implementation alternatives that store the conceptual tree in different

ways. Figure 4 shows all our implementation variants for the same conceptual

tree. For each variant we will describe how the components are built, and how

the basic traversal operations are implemented, since query algorithms are based

on the same conceptual traversal of the tree in all cases.

3.1. Naive 2-bit coding: k2-ones2bits−naive

A simple representation for the new conceptual tree, where three kinds of

nodes exist, is just to use 2 bits per node instead of one. According to this idea,

we use the following encoding: internal (gray) nodes are encoded with 10; white

nodes with 00; black nodes with 01. Then, the first bit of each node is stored

11

Figure 4: k2-ones conceptual representation and implementation variants.

in a bitmap T , and the second bit in a second bitmap T ′. With this setup, the

bitmap T marks internal nodes with 1 and leaves with 0, and T ′ stores the type

of leaf. Note that this is not necessary in the last level of the tree, where no

internal nodes can exist, so in the last level we use a bitmap L like in regular

k2-trees.

The k2-ones2bits−naive can be efficiently navigated, much like a k2-tree, as

follows: given an internal node at position p, we can compute the position where

its children start as p′ = rank1(T, p)× k2, since each 1 in T is an internal node

that yields exactly k2 children. If we find a leaf node (T [p] = 0), we check T ′[p]

to determine whether it is a black or white node. Notice that the rank structure

to perform traversal in constant time is only needed in T but not in T ′ or L.

3.2. Improved 2-bit encoding: k2-ones2bits

The k2-ones2bits−naive uses 2 bits per node to represent only three possible

node types in the tree. We can use a more space-efficient encoding using just

1 bit for internal nodes. In this variant, internal nodes are stored with a bit 1

in T , but do not have a second bit in T ′. Again, the last level is stored with a

single bitmap L.

12

In the k2-ones2bits we can compute the children of a node using the same

formula of the previous approach, since T and L are identical. The only differ-

ence is that, when we reach a leaf node at position p, the corresponding bit in

T ′ will not be located at position p but at T ′[rank0(T, p)].

3.3. Navigable DF-expression: k2-onesdf

Following the same ideas of the previous variants of using two bitmaps T

and T ′, we propose a variant based on the DF-expression encoding [18]. In this

variant, we encode internal nodes with 10, white nodes with 0 and black nodes

with 11. We use the same bitmaps T and T ′ for the first and second bits of each

node, and a single bitmap L in the last level.

The encoding used by the k2-onesdf has been suggested to be more space

efficient than the previous ones, but it is not as efficient in our implementation

since it requires more complex computations. Particularly, to compute the

children of a gray node we need to count the number of internal nodes up to

the current position, as rank1(T, p) − rank1(T
′, rank1(T, p)). This increases

complexity and forces us to add a rank structure not only to T but also to

bitmap T ′ in order to perform the previous computation. Notice also that,

unlike in previous variants, we now need to check the bitmap T ′ to know if the

current node is internal or a (black) leaf.

3.4. An asymmetric approach: k2-ones1-5bits

Our last proposal aims at storing our conceptual tree, with three types of

nodes, using the same data structure of the original k2-tree, and almost identical

encoding. Internal nodes are encoded with 1 and white leafs with 0, like in the

original k2-tree. Black leaves are encoded as a small subtree: an internal node

with k2 white leaves as children. We take advantage of this configuration, that

is not possible in a k2-tree, to mark black nodes using k2 + 1 (typically 5) bits.

The k2-ones1-5bits can be traversed exactly like a k2-tree. The only difference

is that, when we are performing traversal, if we reach a node encoded with 1,

we need to check its children: if all of them are white, the current node is

13

black. In practice, this can be performed when checking the node, or we can

simply traverse it like an internal node in the k2-tree, and in the next step check

whether it was indeed an internal or black node.

The k2-ones1-5bits uses a very asymmetric encoding for the nodes, requiring

k2 + 1 bits for black nodes and only 1 bit for white nodes. However, it also has

an interesting property: since it is identical to a k2-tree where regions of ones

are encoded using a shorter subtree, this approach will never exceed the space

of the original k2-tree.

3.5. Experimental evaluation

In this section we compare the k2-ones with the original k2-tree. We focus on

two different types of data, with fundamentally different characteristics: Web

graph datasets, that are very sparse, and raster data, where there can be a

large percentage of ones. Table 1 shows the datasets used. The Web graph

datasets3 are very sparse datasets (less than 0.005% of ones). The raster datasets

have been extracted from the Digital Land Model (MDT05) of the Spanish

Geographic Institute4. They are high-resolution (cells of 5×5 meters) elevation

rasters. We took several fragments of the overall dataset, numbered as shown

in Table 1. Datasets mdt-A and mdt-B are built by combining several adjacent

pieces to build larger rasters. Note that the original datasets store decimal

values; we select a reference value and build binary matrices by selecting all

cells with value below the given threshold.

We run all the experiments on an AMD-Phenom-II X4 955@3.2 GHz, with

8GB DDR2 RAM, running Ubuntu 12.04.1. Our implementations are written

in C and compiled with gcc version 4.6.2. with -O9 optimizations.

3Provided by the Laboratory for Web Algorithmics (LAW) at

http://law.di.unimi.it/datasets.php
4http://www.cnig.es

14

Type Dataset #Size

Web graph

cnr 325, 557× 325, 557

eu 862, 664× 862, 664

indochina 7, 414, 186× 7, 414, 186

uk 18, 520, 486× 18, 520, 486

Raster

mdt-200 3, 881× 5, 461

mdt-400 3, 921× 5, 761

mdt-500 4, 001× 5, 841

mdt-600 3, 961× 5, 881

mdt-700 3, 841× 5, 841

mdt-900 3, 961× 6, 041

mdt-A 7, 721× 11, 081

mdt-B 48, 266× 47, 050

Table 1: Web graphs used to measure the compression of ones.

3.5.1. Space analysis

We evaluate our k2-ones implementation variants comparing them with orig-

inal k2-trees. We use for the comparison Web graphs and raster datasets, with

a threshold set to have 50% of ones. For all the approaches we use a hybrid

version, where k = 4 in the first three levels of decomposition and k = 2 in the

remaining levels.

Table 2 shows the compression achieved by our techniques and the original

k2-tree. We highlight the best compression results for each dataset. In the first

four datasets, Web graphs, the k2-ones1-5bits slightly improves the compression

of the original k2-tree, thanks to being able to exploit slightly larger clusters of

ones that appear in most Web graphs. However, the sparsity of the datasets

makes all of our other variants larger than the k2-tree. In raster datasets, due

to the much higher percentage of ones, the k2-tree becomes much less efficient

than our variants: our techniques are roughly 10 times smaller than the k2-tree

in all the datasets. The k2-ones2bits achieves the best compression results in all

of them, but all the variants are relatively close.

To better demonstrate the difference in performance when compared with the

k2-tree, we extended the evaluation to binary rasters with varying percentage of

15

Dataset k2-tree k2-ones2bits−naive k2-ones2bits k2-onesdf k2-ones1-5bits

cnr 3.15 4.36 3.79 3.69 3.14

eu 3.81 5.17 4.50 4.47 3.79

indochina 2.03 2.60 2.25 2.26 1.92

uk 2.95 4.02 3.49 3.43 2.91

mdt-200 0.25 0.04 0.03 0.03 0.04

mdt-400 0.22 0.02 0.01 0.02 0.02

mdt-500 0.23 0.03 0.02 0.02 0.03

mdt-600 0.22 0.01 0.01 0.01 0.01

mdt-700 0.23 0.02 0.02 0.02 0.02

mdt-900 0.24 0.04 0.03 0.04 0.04

Table 2: Compression ratio of our techniques vs k2-trees (in bits per one)

 1

 10

 100

 10 20 30 40 50 60 70 80 90

S
iz

e(
K

B
)

Rate of ones in the matrix (%)

base
2bits-naive

2bits
df

1-5bits

 10

 10 20 30 40 50 60 70 80 90

S
iz

e(
K

B
)

Rate of ones in the matrix (%)

base
2bits-naive

2bits
df

1-5bits

Figure 5: Space results of k2-ones variants with different percentage of ones.

ones. Figure 5 (left) displays the compression obtained for the dataset mdt-400,

with thresholds set to get between 1% and 90% of ones. Results show that all

the k2-ones variants are already smaller than the k2-tree baseline with a 1% of

ones in the dataset, due to the larger size of the clusters of ones. The right-hand

plot in Figure 5 focuses on the differences among our proposals. All of them

achieve similar results and evolve almost in parallel, but the k2-ones2bits is the

best variant in general and the k2-ones2bits−naive is the worst. The k2-ones1-5bits,

being asymmetric, is slightly worse when the percentage of ones is around 50%.

16

3.5.2. Query times

In this section we focus on the query performance of the k2-ones, particularly

compared to that of the k2-tree. Specifically, we measure performance on cell

retrieval queries, that involve the traversal of a single branch of the tree to locate

a cell, so they provide a clearer comparison of the differences in traversal cost

among variants. We perform tests using Web graphs and binary rasters, that

are again generated using a threshold over the original datasets to get binary

images with 50% and 10% of ones, respectively. To compare the techniques, we

measure query times to answer cell retrieval queries, i.e. returning the value of

a given cell. We use a set of 10 million random queries for each dataset, and

show the average query times in µs/query.

Family Dataset k2-tree k2-ones2bits−naive k2-ones2bits k2-onesdf k2-ones1-5bits

cnr 0.46 0.47 0.52 0.66 0.49

Web eu 0.43 0.43 0.48 0.61 0.45

graphs indochina 0.50 0.51 0.58 0.75 0.53

uk 0.58 0.60 0.66 0.89 0.61

mdt-200 0.54 0.37 0.41 0.58 0.42

mdt-400 0.50 0.29 0.33 0.43 0.34

Raster mdt-500 0.53 0.33 0.37 0.51 0.38

(50%) mdt-600 0.54 0.27 0.30 0.40 0.31

mdt-700 0.51 0.29 0.32 0.43 0.33

mdt-900 0.55 0.36 0.41 0.56 0.41

mdt-200 0.27 0.24 0.27 0.34 0.26

mdt-400 0.25 0.22 0.24 0.30 0.24

Raster mdt-500 0.28 0.25 0.28 0.36 0.27

(10%) mdt-600 0.26 0.23 0.25 0.32 0.25

mdt-700 0.19 0.15 0.17 0.20 0.17

mdt-900 0.30 0.28 0.31 0.41 0.31

Table 3: Cell retrieval query times (in µs/query)

Table 3 shows the results for all the datasets, grouped by family. In Web

graphs, the k2-tree achieves the best query times, due to the simpler navigation

required. Our encodings obtain higher query times than original k2-trees. Nev-

17

ertheless, the overhead of our fastest variant, the k2-ones2bits−naive, is very low.

The k2-ones1-5bits is also very efficient, whereas the k2-ones2bits and especially

the k2-onesdf are slower, due to the extra rank operations required. In the raster

datasets, our fastest solutions are always more efficient than the k2-tree, due to

the improved access to regions full of ones. Again, the k2-ones2bits−naive is the

fastest variant and the k2-onesdf the slowest. There is also a difference in per-

formance depending on the percentage of ones in the dataset: the k2-ones2bits

and k2-ones1-5bits are very similar in both cases, but the k2-ones1-5bits is slightly

better when the percentage of ones is lower. Considering that the k2-ones2bits

achieves the best compression in all the datasets, we consider it to yield the

best space-time tradeoff overall for any dataset. The k2-ones2bits−naive can offer

slightly better query times sacrificing space, whereas the k2-ones1-5bits can be

an alternative when the number of ones is expected to be relatively low.

3.6. Comparison with linear quadtrees

The decomposition of the space in k2 submatrices used in the k2-ones is a

generalization of the quadrant decomposition used by generic quadtrees. Hence,

our technique can be seen as a compact quadtree representation, since the con-

ceptual tree we are representing in our variants, for k = 2, can also be stored as

a classical quadtree.

The linear quadtree [15] is a representation devised to work efficiently from

secondary storage. In the linear quadtree, the quadrants are numbered 0-3 from

left to right and top to bottom. Each entry in the matrix (i.e. each 1 in binary

matrices) will be represented by a sequence representing the quadrant chosen at

each decomposition step to reach the corresponding cell. These sequences, called

quadcodes, can be sorted and stored in a B-Tree in secondary memory. Cell

retrieval queries can be implemented as a simple search for the corresponding

quadcode in the B-Tree.

Our k2-ones variants are in practice more similar in space to compact quadtree

representations designed for main memory, but those are usually designed for

operations involving the full raster, whereas our techniques still retain the abil-

18

ity to efficiently access a subregion of the space, something that can be easily

performed with linear quadtrees but not with other compact representations.

In this section we compare the performance to answer cell retrieval queries of

our techniques against linear quadtree implementations. We implemented an

in-memory version of the linear quadtree, that uses a B-Tree maintained in

main memory. Additionally, since the linear quadtree is a dynamic data struc-

ture that allows efficient modifications, we perform different comparisons for

a static and dynamic setup. In the static comparison, we use our k2-ones2bits,

and compare it with a linear quadtree that stores quadcodes in an array in main

memory, using binary search to answer queries. In the dynamic comparison, we

use a linear quadtree with a regular B-Tree, fully in main memory. We use a

dynamic version of the k2-ones1-5bits, that is a straightforward adaptation of

the existing dk2-tree data structure to properly handle the new semantics for

regions of ones. The machine and configuration of our variants are the same as

in Section 3.5.

Dataset
Static Dynamic

k
2-ones Quadtree k

2-ones Quadtree

mdt-60050% 0.02 0.25 0.04 0.31

mdt-70050% 0.02 0.17 0.04 0.23

mdt-A50%
0.01 0.22 0.02 0.23

cnr 3.14 41.32 4.95 41.46

eu 3.81 49.92 5.86 50.07

Table 4: Compression of k2-ones and linear quadtrees (in bits per one).

Table 4 shows the compression, in bits per one, achieved by the k2-ones

and the corresponding static and dynamic linear quadtrees (QT). We only show

results for a subset of the collections, since results are similar among all Web

graphs, and among all raster datasets. Results show that our variants are around

10 times smaller than linear quadtrees in all the datasets.

Table 5 displays a comparison of query times. We measure the average query

19

Dataset
Static Dynamic

k
2-ones Quadtree k

2-ones Quadtree

mdt-60050% 0.25 0.84 0.56 0.89

mdt-70050% 0.28 0.88 0.61 0.92

mdt-A50%
0.26 0.98 0.71 1.23

cnr 0.77 2.08 2.55 2.28

eu 1.10 2.62 3.80 2.94

Table 5: Query times of k2-ones and linear quadtrees (times in µs/query).

time over a query set with 1 million random cell retrieval queries. As shown,

our query times are still 2-3 faster than the linear quadtree in the static setup.

In the dynamic setup, the overhead required by the dynamic implementation

of our structure causes it to become 2-3 times slower than the static version,

so query times become similar to those of linear quadtrees. Due to this, we are

faster than linear quadtrees in the raster datasets, but slower in Web graphs.

We consider the raster datasets to be more significant to the actual performance

of the solutions, since they are designed for this kind of data, but even the worse

query times obtained in Web graphs are easily compensated by the much better

(8x) compression.

4. Representation of general rasters and spatio-temporal data

In this section we introduce solutions based on the k2-ones that can handle

more complex raster data. Particularly, we focus on the representation of general

raster data and temporal raster data. In general rasters we have a matrix of

non-binary values in which each cell contains a numeric value. Temporal rasters

store the evolution of a raster data along time. We will describe the usual

problems for both kinds of raster data and then introduce our proposals to

store them.

In our representations for general raster data we aim at providing support

for queries involving not only the spatial dimension of the dataset, but also

20

the possible values stored. For instance, the values above a given threshold in

an elevation raster can be selected to yield snow alerts in a given region. Our

solutions are designed to efficiently answer this kind of queries, combining a

spatial constraint with a filter on the possible values, as well as simpler queries

involving constraints only on space or values.

Due to their characteristics, some of the data structures we introduce for

integer rasters can also be adapted to the representation of spatio-temporal

data, or time-evolving regional data. We consider temporal rasters containing

the evolution of a binary raster dataset along time. Hence, we essentially have a

collection of rasters corresponding to the same feature in different time points.

In these datasets, we also have two ways to filter the data: spatial constraints,

to obtain values in a region, and temporal constraints, to obtain values in a

given time interval. We consider the following temporal constraints:

• Time-instant, or time-slice, queries refer to a single point in time.

• Time-interval queries refer to a time interval. We consider three different

types of interval: standard queries just return all the results found, possi-

bly with multiple occurrences for the same cell; weak queries will return

the set of cells that fulfilled the query constraints at any point in the inter-

val (e.g., in a cloud cover raster, find the regions that were covered at any

time); strong queries return the set of cells that fulfilled the constraints

during the full interval.

4.1. Our proposals

The proposals we introduce next are k2-tree variants, in most cases built

from our k2-ones implementations. For general rasters, we assume that our

input is a matrix M , of size n×n whose cells contain integer values in the range

[1, |V |]. Note that this implies the assumption that the number of different

values is not too large, and raster dataset with floating-point values can either

be rounded or mapped to an integer range. For temporal rasters, we assume

that we have a collection T of binary rasters of the same size. Most of our

21

Figure 6: Raster matrix and its Mk2-ones representation.

proposals can be applied to both cases, with adjusted algorithms to answer the

relevant queries.

4.1.1. Multiple k2-ones: Mk2-ones

The Mk2-ones uses a collection of k2-ones to store the original data. If we see

the input matrix M as a collection of binary matrices Mi, one for each possible

value, the representation of M is reduced to the representation of a collection

of binary rasters. The Mk2-ones simply stores each Mi (i.e. the cells with each

possible value) in a different k2-ones Ki.

In this approach, queries involving cells with a given value can be answered

by checking a single k2-ones. Queries involving a range of values, however, re-

quire checking all the trees in the range, so they become less efficient. The

worst performance, therefore, is expected in queries with no constraints on val-

ues, where all the trees have to be checked.

The same approach can be used for temporal raster data: we use a different

tree per time instant. Time-instant queries are executed on a single tree but

time-interval queries require a synchronized traversal of several trees. Note that

in standard time-interval queries we can just return all the results querying each

tree separately, but for weak and strong queries we need to traverse all the trees

simultaneously and compute the or or and operation of their corresponding bits

to filter out branches that do not fulfill the query semantics.

22

Figure 7: Raster matrix and its CMk2-ones representation.

4.1.2. Cumulative k2-ones: CMk2-ones

Our second proposal, the CMk2-ones, is based on the same idea of building a

tree per value, but uses a cumulative approach: the first tree will store the cells

with the minimum value; each consecutive tree will store the cells with the next

value, plus all the cells stored in previous trees. Figure 7 shows the CMk2-ones

representation, for the same input matrix of Figure 6.

In this approach, the trees store a much larger number of ones. However,

taking advantage of the ability of the k2-ones to store large regions of ones, the

space of the final structure is not expected to increase too much with respect

to the previous approach. In some raster datasets, where values tend to form

concentric curves, the use of cumulative values can even improve compression

by generating larger clusters.

The CMk2-ones can answer any query involving a single value, or range of

values, using the same strategy: for a range [ℓ, r], we compute the results for

value r and subtract those of value ℓ − 1 (in practice, we can traverse both

trees simultaneously to filter out branches as soon as possible). Hence, its

performance is independent of the length of the range. Additionally, it can

answer queries not involving value constraints more efficiently: to find the value

of a single cell, instead of checking every tree, we can use binary search to look

for the leftmost tree that contains the cell.

The CMk2-ones relies on the fact that the leftmost tree containing a 1 for

the cell yields the actual value of the cell. This approach cannot be used for

time-evolving data, where the same cell can change value several times.

23

4.1.3. k3-tree

The k3-tree is a straightforward extension of the k2-tree to three dimensions.

The conceptual decomposition of a bi-dimensional matrix can be extended to

any number of dimensions, creating kn submatrices at each step to build a kn-

tree. Navigation of the tree is similar, just considering constraints in the new

dimensions and adjusting the formulas to nodes with kn children.

Our approach uses a k3-tree to store the complete raster matrix. Particularly,

it will store a 3-dimensional binary matrix, where the third dimension is the

value of the cell. Hence, for each coordinate the only 1 in the third dimension

will correspond to the value of that cell.

Retrieval algorithms in the k3-tree are quite simple: to get the value of a

cell, we simply traverse the conceptual tree looking at all the branches for that

(x, y) coordinate; to find cells with a given value or range of values, we fix the

range in the third dimension and search for all the ones in the corresponding

slice of the matrix.

The k3-tree can also be applied to temporal raster data. Considering the

third dimension as time, we can combine all the raster datasets in a single 3-

dimensional matrix. Time-instant and standard time-interval queries are similar

to queries on values. Weak and strong time-interval queries can be processed as

standard queries, filtering out repeated values during or after traversal.

4.1.4. Ik2-ones

The Ik2-tree has been shown to improve the performance of a collection

of k2-trees in other application domains. Therefore, our next proposal is an

adaptation of the same data structure to work with our k2-ones. This just

requires adjustments in the data structures and basic navigation operations

similar to those performed in individual k2-ones. For instance, using the variant

based on the k2-ones2bits, a second bitmap T ′ must be added, and additional

operations are defined to check the color of a node and traverse the tree to reach

its children.

Figure 8 shows the Ik2-ones, for the same input matrix used in previous

24

Figure 8: Raster matrix and its Ik2-ones representation

examples. We display the actual bits used by the k2-ones2bits encoding, and the

final bitmaps generated. Notice that the bits of each node correspond to the

concatenation of the corresponding bits in the equivalent Mk2-ones representa-

tion.

The Ik2-ones can answer queries involving a single value or a range value

using the same traversal techniques of the original Ik2-tree. Even if navigation

is slower than in individual k2-ones, making simple queries slower, the ability

to combine all the trees into one provides a much more efficient way to perform

checks in queries involving ranges of values or not involving value constraints.

The Ik2-ones can also be adapted to temporal raster data. Particularly, most

time-interval queries can be efficiently answered by keeping track of the corre-

sponding limits of the range for each node: in weak queries, if the current node

contains at least a one in our interval, we can confirm the result immediately;

in strong queries, if a node has at least a 0 in the interval, we can discard the

result.

4.2. Experimental Evaluation for General Rasters

We test the performance of our proposals using the real elevation rasters

described in Section 3. Since the values stored are floating-point values obtained

from interpolation, we round the values to a precision of 1m.

25

We compare the compression of our techniques with a GeoTIFF5 represen-

tation of the same datasets. tiff plain simply stores the matrix row-wise, using a

16-bit integer per cell; tiff comp uses the default compression options: the matrix

is partitioned in tiles of size 256×256, and LZW compression is applied to each

tile.

To measure the query efficiency of our proposals, we compare them with

GeoTIFF using the libtiff library, version 4.0.3. All time measurements cor-

respond to CPU time. We consider the following representative queries: cell

retrieval queries, that ask for the value of a given cell; single-value queries, that

ask for all the cells with a given value; and combined queries, that ask for cells

within a spatial region and with values in a given range.

Dataset #values H0 Mk2 CMk2 k3 Ik2 tiff plain tiff comp

mdt-500 578 5.43 2.75 2.21 1.83 2.53 16.01 1.52

mdt-700 472 4.39 2.07 2.30 1.38 1.84 16.01 1.12

mdt-A 978 5.86 3.24 2.83 1.94 3.10 16.01 1.52

mdt-B 2,142 5.32 3.15 4.36 1.62 3.12 16.00 1.35

Table 6: Compression results in raster datasets (bits/cell).

Table 6 shows the compression obtained for different raster datasets. For

each dataset, we show the number of different values existing in the dataset, as

well as the zero-order entropy of the matrix, read in row order. The best space

results are obtained by the compressed TIFF representation, and the best of

our proposals is the k3-tree, that is only 10-20% larger. Note that tiff comp is

designed mainly for compression, and it does not provide support for efficient

access.

Table 7 shows the results obtained for cell retrieval queries. Our best ap-

proach, the k3-tree, is much faster than the tiff comp variant, and even faster

than the plain version (this is an artifact due to the nature of the library, that

is not designed to access specific cells and always processes the data in chunks).

5http://trac.osgeo.org/geotiff/

26

Dataset Mk
2 CMk

2
k
3

Ik
2 tiff plain tiff comp

mdt-500 123.6 7.1 2.2 30.7 2.6 491.7

mdt-700 65.8 6.1 1.6 27.5 2.7 461.9

mdt-A 131.9 10.2 2.8 46.2 5.2 499.0

mdt-B 421.0 11.1 2.9 75.6 87.9 494.8

Table 7: Cell retrieval query times (µs/query).

Among our techniques, the CMk2-ones variant is several times slower than the

k3-tree, but still efficient. The Mk2-ones and Ik2-ones variants are much less

efficient in this simple query, in the first case due to the need for a sequential

search in all the trees, and in the second case because of the added complexity

of the structure.

Dataset Mk
2 CMk

2
k
3

Ik
2 tiff plain tiff comp

mdt-500 3.9 5.8 9.4 5.9 39.5 221.4

mdt-700 3.0 6.0 7.3 4.5 37.5 199.5

mdt-A 8.2 13.6 18.9 12.7 142.6 799.0

mdt-B 110.2 255.1 196.6 173.5 3,838.9 19,913.4

Table 8: Query times for single-value queries (ms/query).

Table 8 displays the query times to retrieve all cells with a given value. This

query demonstrates the indexing capabilities of our techniques, all of them being

much faster than the TIFF-based implementations, because we can filter results

by value while they have to traverse the complete dataset. The Mk2-ones is the

fastest technique, since it has a specific structure per value. The CMk2-ones,

as expected, is roughly two times slower. The Ik2-ones is also inefficient, due

to the more complex navigation of the structure. Finally, the k3-tree is now

slightly slower than the other techniques, due to the locality of values: many

regions with values close to the target generate branches in the tree that have

to be checked but will be discarded later.

27

Dataset Window Range Mk
2 CMk

2
k

3
Ik

2 tiff plain tiff comp

size length

mdt-500

10
10 9.0 1.9 1.8 25.9 33.0 533.0

50 43.1 2.1 2.6 27.9 25.0 528.0

50
10 13.5 3.4 5.0 29.0 119.0 694.0

50 69.7 5.9 16.0 41.2 120.0 695.0

mdt-700

10
10 9.6 2.1 1.7 24.1 32.0 506.0

50 45.3 2.1 2.3 25.1 25.0 496.0

50
10 13.5 4.0 4.4 29.2 123.0 649.0

50 68.5 5.4 13.4 37.7 123.5 649.0

mdt-A

10
10 9.9 2.6 2.0 37.2 81.0 548.0

50 43.6 2.8 2.6 38.6 47.0 532.0

50
10 13.4 3.8 4.2 39.2 228.0 703.0

50 62.2 4.9 11.0 46.9 229.0 697.0

mdt-B

10
10 11.6 3.9 2.3 55.7 1,329.0 1,265.0

50 56.9 3.9 2.5 58.1 881.0 892.0

50
10 14.5 4.5 3.2 59.1 2,007.0 1,237.0

50 49.8 5.5 21.2 89.0 5,715.0 2,038.0

Table 9: Query times for combined queries (µs/query).

Table 9 shows the query times obtained for combined queries involving dif-

ferent spatial windows and value ranges. Results confirm that all our proposals

are again faster than the TIFF-based solutions, that are unable to filter small

subsets of data. The CMk2-ones is now the fastest of our techniques in most

cases, thanks to its ability to efficiently compute the difference between any two

values. The k3-tree also achieves good query times overall, and is the fastest

technique in some of our tests, thanks to its ability to efficiently filter in the 3

dimensions at the same time. The Mk2-ones is very inefficient, especially with

longer ranges, whereas the Ik2-ones is also inefficient but scales better to longer

ranges.

28

4.3. Experimental Evaluation for Temporal Rasters

Next we test the application of our proposals to temporal raster data. We

perform an experimental evaluation on real and synthetic datasets. CFCA and

CFCB contain cloud fractional cover data6, covering the whole world with a

resolution of 0.25 degrees. CFCA uses data from years 1982 to 1985, and CFCB

data from 2007 to 2009. Our threshold to determine the value of the raster

is a cover value above 50%. RegionsA and RegionsB are synthetic datasets

created by randomly grouping circles and altering their borders to build random

but generally smooth and connected regions. Time evolution in these datasets

simulates slow movement and changes/deformations of the original shapes.

The experiments in this section were run in a machine with 4 Intel Xeon

E5520 cores at 2.27 GHz and 72 GB of RAM memory, running Ubuntu 9.10.

Our code is compiled with gcc 4.4.1, with -O9 optimizations.

Dataset Size #snaps.
%

k
3 Mk

2 Ik2
Quadcodes

ones base diff

CFCA 720× 1440 1,111 67.6 1.11 0.71 0.55 6.73 5.01

CFCB 720× 1440 918 58.4 1.37 0.83 0.65 7.53 5.77

RegionsA 1000× 1000 1,000 23.7 0.04 0.09 0.06 0.64 0.16

RegionsB 1000× 1000 1,000 24.2 0.03 0.08 0.06 0.53 0.13

Table 10: Temporal raster datasets used and compression results (in bits per one).

Table 10 displays the spatial size, number of time instants and percentage of

ones in each dataset. The remaining columns of the table show the compression

results obtained by our proposals. As a baseline, we show the space that would

be necessary to store the quadcodes of the corresponding raster datasets with

two approaches: using a separate representation per time instant (base); and

using a differential approach where only the changes are stored at each time

instant (diff). The latter corresponds to the minimum space that would be

6Obtained from the Satellite Application Facility on Climate Monitoring, at

http://www.cmsaf.eu

29

required by a linear quadtree that uses differential encoding, like the OLQ [29].

Results show that our techniques are much more space-efficient than the base-

line. The Mk2-ones and the Ik2-ones, that do not take advantage of similarities

between consecutive time instants, achieve the best results in the CFCA and

CFCB datasets. However, in RegionsA and RegionsB the k3-tree is much more

efficient. This is due to the change rate of the datasets: in the CFC datasets

a large fraction of values change between consecutive time instants, whereas in

our Regions datasets changes are more gradual. Therefore, the k3-tree can take

advantage of similarities between consecutive time instants in the latter, but is

not able to do it in the former.

In order to confirm the effect of the change rate, we build smaller datasets

taking subsets of 100 snapshots from RegionsA. We build datasets taking every

time instant, every second time instant, and so on, hence representing the same

temporal raster with different time granularity. We also create a new dataset,

built like RegionsA but with 2000×2000, and generate a similar group of subsets

from it.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 1 2 3 4 5

C
om

pr
es

si
on

 (
bi

ts
 p

er
 o

ne
)

Change rate (% of ones)

RegionsA subsets

k3-tree

Mk2-ones

Ik2-ones

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.5 1 1.5 2 2.5 3

Change rate (% of ones)

Regions-large subsets

k3-tree

Mk2-ones

Ik2-ones

Figure 9: Compression results with different change rate

Figure 9 shows the compression results obtained in the datasets built from

RegionsA (left) and in the datasets built from the larger raster (right). Each

plot displays how the compression obtained by our structures evolves as the

change rate (measured as the percentage of ones that change on average between

consecutive time instants) increases. The k3-tree is the most efficient of our

30

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64

Q
ue

ry
 ti

m
es

 (
µs

 /
qu

er
y)

RegionsA

k3-tree

Mk2-ones

Ik2-ones

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64

Q
ue

ry
 ti

m
es

 (
µs

 /
qu

er
y)

Window size

RegionsB

k3-tree

Mk2-ones

Ik2-ones

 0

 50

 100

 150

 200

 4 8 16 32 64

CFCA

k3-tree

Mk2-ones

Ik2-ones

 0

 50

 100

 150

 200

 4 8 16 32 64

Window size

CFCB

k3-tree

Mk2-ones

Ik2-ones

Figure 10: Query times for time-instant windows queries (µs/query).

proposals for datasets with very small change rate, but when the number of

changes reaches a given threshold, the implementations that ignore similarity

between snapshots (Mk2-ones and Ik2-ones) become more efficient. Hence, the

k3-tree is the best alternative for slowly changing datasets, but it is not able

to exploit similarities when changes exceed a relatively slow percentage. Notice

that datasets with high change rate would also be difficult to compress using any

other state-of-the-art techniques based on exploiting this similarity, like OLQs.

We compare the query performance of our proposals using snapshot queries

and time-interval queries. We select different window sizes and time interval

lengths, and build random query sets for each of them. For time-instant queries,

our query sets for each configuration contain 1,000 random queries. For time-

interval queries, we also consider different interval lengths, and build query

sets with 10,000 random queries per window size, interval length and dataset.

In all cases, we measure CPU times, and average the times over a number of

repetitions of the full query set to obtain precise results.

Figure 10 shows the results obtained for all the datasets in snapshot queries,

31

 0

 50

 100

 150

 200

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

RegionsA

k3-tree

Mk2-ones

Ik2-ones

 0

 50

 100

 150

 200

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

Interval length

RegionsB

k3-tree

Mk2-ones

Ik2-ones

 0

 500

 1000

 1500

 2000

 2500

 1 5 10 20 40

CFCA

k3-tree

Mk2-ones

Ik2-ones

 0

 500

 1000

 1500

 2000

 2500

 1 5 10 20 40

Interval length

CFCB

k3-tree

Mk2-ones

Ik2-ones

Figure 11: Query times for time-interval queries (window size 32, times in µs/query)

for different spatial window sizes. Results are consistent with those in the previ-

ous section: the Mk2-ones is the fastest technique, since it only has to query one

tree. The Ik2-ones is around two times slower, but still faster than the k3-tree,

that must traverse many branches corresponding to time instants close to the

target.

Figure 11 shows the query times for standard time-interval queries (i.e.

queries returning all occurrences for the same cell). We display results for a

representative window of size 32, and interval lengths 1 to 40. The k3-tree

is the most efficient technique for long intervals, whereas the Ik2-ones is com-

petitive in shorter intervals. Notice that the Mk2-ones is only the fastest for

snapshot queries.

In addition to standard time-interval queries we also check weak and strong

queries. The results are shown in Figures 12 and 13 respectively. The evolution

of query times is significantly different for these queries: the Mk2-ones technique

still achieves query times roughly proportional to the length of the interval, since

it must perform a search in all the trees involved. However, the k3-tree and the

32

Ik2-ones are much less affected by the interval length. The Ik2-ones obtains

similar times for any interval length, and is the best solution in general in this

case, since it has the ability to efficiently check any time interval at any node of

the conceptual tree. The k3-tree, on the other hand, cannot improve the query

times of the standard query algorithm, being forced to check all the branches

and then removing duplicates, so it becomes much slower than the Ik2-ones.

In strong interval queries, in which many search branches could be potentially

filtered checking the intervals, the k3-tree is the slowest technique in general,

especially in the CFC datasets, due to their higher change rate.

 0

 20

 40

 60

 80

 100

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

RegionsA

k3-tree

Mk2-ones

Ik2-ones

 0

 20

 40

 60

 80

 100

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

Interval length

RegionsB

k3-tree

Mk2-ones

Ik2-ones

 0

 200

 400

 600

 800

 1000

 1 5 10 20 40

CFCA

k3-tree

Mk2-ones

Ik2-ones

 0

 200

 400

 600

 800

 1000

 1 5 10 20 40

Interval length

CFCB

k3-tree

Mk2-ones

Ik2-ones

Figure 12: Query times for weak interval queries, for window size 32.

5. Top-k range queries in raster data

In this section we describe how to apply the same ideas devised in previous

sections to obtain structures that solve top-k range queries, i.e. given a spatial

window, queries that retrieve the cells with maximum values inside it. The

k2-treap, introduced in Section 2.3, is able to answer this kind of queries in

33

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

RegionsA

k3-tree

Mk2-ones

Ik2-ones

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 5 10 20 40

Q
ue

ry
 ti

m
es

 (
µs

/q
ue

ry
)

Interval length

RegionsB

k3-tree

Mk2-ones

Ik2-ones

 0

 200

 400

 600

 800

 1000

 1200

 1 5 10 20 40

CFCA

k3-tree

Mk2-ones

Ik2-ones

 0

 200

 400

 600

 800

 1000

 1200

 1 5 10 20 40

Interval length

CFCB

k3-tree

Mk2-ones

Ik2-ones

Figure 13: Query times for strong interval queries, for window size 32.

general matrices. We introduce next two variants that extend the original k2-

treap to efficiently handle raster matrices where values are highly clustered.

Then, we compare our proposals with a naive technique based on the Mk2-ones,

that simply searches for cells in the tree corresponding to the maximum value,

and keeps searching in consecutive trees until the desired number of results is

obtained.

5.1. k2-treap variants

Our first variant, called k2-treap-uniform (k2-treapU), is built in a similar

manner to the original k2-treap. Yet, like in our k2-ones, the decomposition of

the matrix stops whenever a “uniform” submatrix is found. This can happen

when an empty region is identified or when the same value is shared by all its

cells. Figure 14 shows an example of this tree decomposition. Matrices M0

to M3 display the consecutive steps of the k2-treapU construction, where the

top cells (cells with the maximum value) for each step are highlighted. Observe

that any dataset can be represented in a more compact way if similar values

34

are present on many of its submatrices. Notice also that in uniform nodes all

the cells in the submatrix share the same values, so we do not have to keep the

coordinates of the cell with the maximum.

3 4 5 6 7

(7,1)-6(0,4)-5

(0,5)-5 4

(4,4)-3

(7,0)-6

M0 M2 M3

1

2

3

4

5

6

7

0

0

1 2

6 6

6 6

6 6

6 6

6 6

6 6

6 6

6 6

3 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

5 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

3

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4 (4,5)-2 (4,6)-2 1 (6,6)-2

- - 5 4 - 2 2 1 - 1 1 0

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

 6

2 2

 2

2 1

 1

1 0

5 4

(6,0)-66 6 6

- 6 - - - - 2 2

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

6 6

6 6

6 6

6 6

6 6

6

6 6

6 6

3 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

5 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

M1

3

6 6

6 6

6 6

6 6

6 6 6 6

6 6

Figure 14: Conceptual representation of the k2-treapU .

After these changes in the conceptual tree, we use a k2-ones2bits to store

the tree shape. Uniform nodes are marked as black nodes were in a binary

raster, and empty nodes as white nodes. Using the same techniques explained

for binary matrices, we can easily check whether a node is empty or uniform. In

empty nodes we stop traversal, and in uniform nodes we can immediately output

all the cells in the submatrix with the same value. The actual representation

uses, in addition to the k2-ones2bits, the arrays coords, values and first, that

work essentially like in the original k2-treap.

Only minor adjustments are required to traverse the conceptual tree in our

variant. Unlike node values, which are kept for all the nodes in the k2-treapU ,

coordinates are just stored for non-leaf nodes. Therefore, we can use the formula

rank1(T, p)−first[ℓ] to get the offset in the list of coordinates corresponding to

the current position p and level ℓ in the tree. To compute the offset of the node in

the list of values, we also have to consider uniform nodes (marked with a 1 in T ′)

35

in our formula: rank1(T, p)+rank1 (T
′, rank0(T, p)) (i.e., the number of internal

nodes and uniform nodes that exist up to the current position, respectively).

Our second proposal, called k2-treap-uniform-or-empty (k2-treapUoE), tries

to improve compression even more, at the expense of increasing query times.

This approach slightly differs from the previous one. Here, we stop decompo-

sition at any node as long as all the values in the corresponding submatrix are

equal (even if some cells have a value and others are empty). For instance,

in Figure 14, the bottom-left quadrant in M1 becomes uniform with this new

definition. This variant essentially builds the same k2-treap representation, but

taking into account that these regions are now also considered as uniform. Fig-

ure 15 depicts an example of this new approach.

3 4 5 6 7

(0,4)-5

(0,5)-5 4

(4,4)-3

(7,0)-6

M0 M2 M3

1

2

3

4

5

6

7

0

0

1 2

6 6

6 6

6 6

6 6

6 6

6 6

6 6

6 6

3 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

5 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

3

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4 (4,6)-2 1 (6,6)-2

- - 5 4 - 2 2 1 - 1 1 0

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

 2

2 1

 1

1 0

5 4

3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2

6 6

6 6

6 6

6 6

6 6

6

6 6

6 6

3 2

2 2

2 2

2 1

1 1

1 1

2 1

1 0

3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

5 5

5 4

4 4

4 4

4 4

4 4

4 4

4 4

M1

3

6

2

Figure 15: Conceptual representation of the k2-treapUoE .

This proposal will cut many branches earlier during the construction of the

tree. Even so, it has a drawback: since we cannot tell apart uniform and empty

regions easily, some results may be emitted more than once. For instance, if cell

(7, 0) had the maximum value in the matrix, it will be emitted at the root of the

tree. But when traversing the bottom-left quadrant, if we identify that region

as “uniform”, it may be emitted a second time. Hence, to solve top-k queries

36

we use an additional data structure to keep track of already emitted results

(any binary search tree or hash table suffices for this purpose). The additional

overhead may become significant in space and/or time for large k, providing a

space/time tradeoff between this proposal and the k2-treapU .

5.2. Experimental evaluation

To test the query efficiency of our proposals, we compare them with the

Mk2-ones representation of raster data. Notice that, despite its simplicity, the

Mk2-ones can efficiently answer top-k queries by querying the individual trees,

starting from the one corresponding to the highest value, so it should be rela-

tively efficient for this kind of queries.

Table 11 shows the compression results obtained by our k2-treap variants

and the Mk2-ones for different raster datasets. Our first variant, the k2-treapU ,

is larger than the Mk2-ones, but the k2-treapUoE achieves better compression.

Both variants obtain reasonable results in terms of space, at least comparable to

the solutions described for general raster data, so they are a viable alternative

if top-k queries are relevant.

Dataset Mk2-ones k2-treapU k2-treapUoE

mdt-500 2.75 3.18 2.87

mdt-700 2.07 2.19 1.98

mdt-A 3.24 3.51 3.20

Table 11: Compression results obtained for k2-tree data structures and Mk2-ones (in bits/cell).

Table 12 shows the query times for top-k queries obtained by all the tested

data structures. For each dataset several window sizes and values of k are tested,

by generating sets of random square windows within the bounds of the raster.

Results show that the k2-treapU exhibits a good performance, regardless of the

window size or k value, as it is the alternative that achieves the best results in

most of the cases. The k2-treapUoE , the most compact of the k2-treap variants,

still behaves well for small values of k, but when k increases the overhead of

37

keeping track of previous results dominates the query cost. Also, observe that

for larger values of k, the Mk2-ones becomes more competitive with the k2-treap

data structures, since if the query involves many accesses to the tree retrieving

cells from one or more k2-trees, it requires less computation than extracting

values one by one from the k2-treap.

6. Conclusions

We have presented several compact data structures for the representation

of general raster data with advanced query support. Our representations store

real raster datasets in small space and provide efficient access not only to re-

gions of the raster, but also advanced query capabilities, such as selecting cells

with a particular value or range of values, queries that involve spatio-temporal

restrictions, or even top-k queries.

Most of the proposals are based on variants of the k2-tree. We propose a rep-

resentation, called k2-ones, that enhances the k2-tree so that we can efficiently

compress any kind of clustered binary matrix. Building over this, we propose

compact and indexed solutions for different application domains. Additionally,

most of the approaches introduced can be transformed into dynamic solutions

using a dynamic k2-tree.

Overall, our proposals obtain good compression results and are able to an-

swer a variety of interesting queries. In our experiments we show that our

proposals are very compact, several times smaller than state-of-the-art repre-

sentations based on linear quadtrees, and still able to store and query large

datasets in main memory. We evaluate our representations for general raster

data, showing their relative strengths and drawbacks: the k3-tree obtains very

good space results, being close to a compressed GeoTIFF representation, and

shows competitive times in most cases, but the variant with independent k2-

ones obtains the best time results to retrieve all the cells with a given value,

and the variant with cumulative k2-ones obtains the best results in most of the

queries involving ranges of values. Nevertheless, the results of our proposals

38

Dataset Window k Mk
2-ones k

2-treapU
k
2-treapUoE

mdt-500

100

10 164.2 15.3 15.8

100 178.3 40.8 49.8

1,000 279.8 233.7 385.5

500

10 131.3 15.8 16.0

100 143.5 41.8 50.5

1,000 217.0 230.0 372.5

1000

10 125.5 15.8 16.3

100 134.5 41.5 51.0

1,000 200.0 219.8 358.0

mdt-700

100

10 357.0 12.3 12.8

100 381.5 31.3 37.3

1,000 455.3 185.0 284.8

500

10 309.0 15.8 16.0

100 346.3 41.3 49.0

1,000 495.8 244.5 383.0

1000

10 281.0 16.8 17.3

100 318.0 46.3 54.0

1,000 514.0 281.8 446.3

mdt-A

100

10 493.6 20.4 19.2

100 478.0 43.2 50.8

1,000 665.0 239.2 376.0

500

10 426.8 23.2 21.6

100 422.0 50.4 56.0

1,000 581.2 253.6 396.0

1000

10 422.4 22.4 22.4

100 419.2 52.8 60.0

1,000 547.2 260.0 408.0

Table 12: Query times for top-k queries (times in µs/query).

are clearly better than the representations based on GeoTIFF images. We also

apply some of the proposals to the representation of time-evolving raster data.

39

Results show again relative strengths among our proposals: a k3-tree is the best

solution for slowly-changing datasets, but as soon as the change rate increases

the approaches based on multiple k2-ones become smaller. Finally, we also test

new proposals to answer top-k queries in raster data. Our experiments confirm

the space efficiency of the k2-treap variants, that are competitive in space with

our other representations of raster data and faster to answer top-k queries.

We show the scalability of our representations to efficiently represent rasters

with several thousands of different values. Nevertheless, the space efficiency of

most of our proposals will degrade if the number of different values in the raster

becomes too high. An assumption in our proposals is that the number of dif-

ferent values in the dataset is not too high. We claim that in many real-world

datasets, even though the values actually stored may have a high precision,

that precision does not add quality or accuracy after a given threshold: when

measuring features such as temperature, elevation, pressure, etc. the actual

measurements may have high-precision but the interpolation of values, or even

the simple averaging of measurements, distorts the precision of the measure-

ments, so for many purposes we can safely reduce the precision of the values

significantly without reducing the quality of the dataset.

The preliminary version of this work inspired several other research lines. In

particular, limitations to handling large ranges of values were recently addressed

in follow-up research [19], that extends our original work to support higher-

precision datasets. Our representations are preferable when high-resolution val-

ues are not available or not relevant (e.g., in some applications, high-resolution

values are just interpolations), as well as in domains where the number of dif-

ferent values is small (e.g., land-use rasters). Additionally, we have extended

our proposals to efficiently store and query time-evolving data, a challenging

problem where other solutions are difficult to apply due to the particularities of

spatio-temporal queries.

40

References

[1] Álvarez-Garćıa, S., Brisaboa, N. R., de Bernardo, G., Navarro, G., 2017.

A succinct data structure for self-indexing ternary relations. Journal of

Discrete Algorithms 43, 38 – 53.

[2] Álvarez-Garćıa, S., Brisaboa, N. R., Fernández, J., Mart́ınez-Prieto, M.,

Navarro, G., 2015. Compressed vertical partitioning for efficient RDF man-

agement. Knowledge and Information Systems 44 (2), 439–474.

[3] Barbay, J., Gagie, T., Navarro, G., Nekrich, Y., 2010. Alphabet parti-

tioning for compressed rank/select and applications. In: Proc. of the 21st

International Symposium on Algorithms and Computation (ISAAC 2010).

pp. 315–326.

[4] Brisaboa, N. R., Cerdeira-Pena, A., de Bernardo, G., Navarro, G., 2017.

Compressed representation of dynamic binary relations with applications.

Information Systems 69, 106 – 123.

[5] Brisaboa, N. R., de Bernardo, G., Konow, R., Navarro, G., 2014. k2-treaps:

Range top-k queries in compact space. In: Proc. 21st Int. Symp. on String

Processing and Information Retrieval (SPIRE 2014). pp. 215–226.

[6] Brisaboa, N. R., de Bernardo, G., Konow, R., Navarro, G., Seco, D., 2016.

Aggregated 2d range queries on clustered points. Information Systems, 34–

49.

[7] Brisaboa, N. R., Ladra, S., Navarro, G., 2013. DACs: Bringing direct access

to variable-length codes. Information Processing and Management 49 (1),

392–404.

[8] Brisaboa, N. R., Ladra, S., Navarro, G., 2014. Compact representation of

web graphs with extended functionality. Information Systems 39 (1), 152–

174.

41

[9] Chan, T. M., Larsen, K. G., Pătraşcu, M., 2011. Orthogonal range search-

ing on the RAM, revisited. In: Proc. of the 27th International Symposium

on Computational Geometry (SoCG 2011). pp. 1–10.

[10] Chang, H. K., Chang, J. W., 1994. Fixed binary linear quadtree coding

scheme for spatial data. In: Proc. of the 9th IEEE International Conference

on Visual Communications and Image Processing (VCIP 1994). Vol. 2308.

pp. 1214–1220.

[11] Claude, F., Ladra, S., 2011. Practical representations for web and social

graphs. In: Proc. 20th ACM Int. Conf. on Information and Knowledge

Management (CIKM 2011). pp. 1185–1190.

[12] de Bernardo, G., 2014. New data structures and algorithms for the effi-

cient management of large espatial datasets. Ph.D. thesis, Department of

Computer Science, University of A Coruña, Spain.

[13] de Bernardo, G., Álvarez Garćıa, S., Brisaboa, N. R., Navarro, G., Pedreira,

O., 2013. Compact querieable representations of raster data. In: Proc. of

the 20th Int. Sym. on String Processing and Information Retrieval (SPIRE

2013). pp. 96–108.

[14] Finkel, R. A., Bentley, J. L., 1974. Quad trees: A data structure for retrieval

on composite keys. Acta Informatica 4, 1–9.

[15] Gargantini, I., 1982. An effective way to represent quadtrees. Communica-

tions of the ACM 25 (12), 905–910.

[16] Golynski, A., Munro, J. I., Rao, S. S., 2006. Rank/select operations on

large alphabets: a tool for text indexing. In: Proc. of the 17th ACM-SIAM

Symposium on Discrete Algorithms (SODA 2006). pp. 368–373.

[17] Grossi, R., Gupta, A., Vitter, J. S., 2003. High-order entropy-compressed

text indexes. In: Proc. of the 14th ACM-SIAM Symposium on Discrete

Algorithms (SODA 2003). pp. 841–850.

42

[18] Kawaguchi, E., Endo, T., jan. 1980. On a method of binary-picture repre-

sentation and its application to data compression. IEEE Transactions on

Pattern Analysis and Machine Intelligence PAMI-2 (1), 27 –35.

[19] Ladra, S., Paramá, J. R., Silva-Coira, F., 2017. Scalable and queryable

compressed storage structure for raster data. Information Systems 72, 179

– 204.

[20] Lin, T. W., 1997. Set operations on constant bit-length linear quadtrees.

Pattern Recognition 30 (7), 1239–1249.

[21] Lin, T. W., 1997. Set operations on constant bit-length linear quadtrees.

Pattern Recognition 30 (7), 1239–1249.

[22] Martinis, S., Twele, A., Voigt, S., 03 2009. Towards operational near real-

time flood detection using a split-based automatic thresholding procedure

on high resolution terrasar-x data. Natural Hazards and Earth System Sci-

ences 9, 303–314.

[23] Munro, J. I., 1996. Tables. In: Proc. of the 16th Foundations of Software

Technology and Theoretical Computer Science Conference (FSTTCS 1996).

pp. 37–42.

[24] Navarro, G., 2012. Wavelet trees for all. In: Proc. of the 23rd Annual

Symposium on Combinatorial Pattern Matching (CPM 2012). pp. 2–26.

[25] Rigaux, P., M., Voisard, A., 2002. Spatial databases - with applications to

GIS. Elsevier.

[26] Samet, H., Jun. 1984. The quadtree and related hierarchical data struc-

tures. ACM Comput. Surv. 16 (2), 187–260.

URL http://doi.acm.org/10.1145/356924.356930

[27] Seidel, R., Aragon, C., 1996. Randomized search trees. Algorithmica

16 (4/5), 464–497.

43

http://doi.acm.org/10.1145/356924.356930

[28] Shekhar, S., Xiong, H., Zhou, X. (Eds.), 2017. Encyclopedia of GIS.

Springer.

URL https://doi.org/10.1007/978-3-319-17885-1

[29] Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y., 2004. Bench-

marking access methods for time-evolving regional data. Data & Knowledge

Engineering 49 (3), 243–286.

[30] Welch, T. A., 1984. A technique for high-performance data compression.

Computer 17 (6), 8–19.

[31] Worboys, M., Duckham, M., 2004. GIS: A Computing Perspective, 2nd

Edition. CRC Press, Inc.

[32] Zhang, J., You, S., 2010. Supporting web-based visual exploration of large-

scale raster geospatial data using binned min-max quadtree. In: Gertz,

M., Ludäscher, B. (Eds.), Scientific and Statistical Database Management.

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 379–396.

44

https://doi.org/10.1007/978-3-319-17885-1

	Introduction
	Previous Concepts
	The k 2-tree
	The Ik 2-tree
	The k 2-treap

	Representation of binary rasters
	Naive 2-bit coding: k 2-ones2bits-naive
	Improved 2-bit encoding: k 2-ones2bits
	Navigable DF-expression: k 2-onesdf
	An asymmetric approach: k 2-ones1-5bits
	Experimental evaluation
	Space analysis
	Query times

	Comparison with linear quadtrees

	Representation of general rasters and spatio-temporal data
	Our proposals
	Multiple k 2-ones: Mk 2-ones
	Cumulative k 2-ones: CMk 2-ones
	k 3-tree
	Ik 2-ones

	Experimental Evaluation for General Rasters
	Experimental Evaluation for Temporal Rasters

	Top-k range queries in raster data
	k 2-treap variants
	Experimental evaluation

	Conclusions

